WO2022205972A1 - 低取向度储热石墨、制备低取向度储热石墨的组合物及其制备方法 - Google Patents

低取向度储热石墨、制备低取向度储热石墨的组合物及其制备方法 Download PDF

Info

Publication number
WO2022205972A1
WO2022205972A1 PCT/CN2021/133577 CN2021133577W WO2022205972A1 WO 2022205972 A1 WO2022205972 A1 WO 2022205972A1 CN 2021133577 W CN2021133577 W CN 2021133577W WO 2022205972 A1 WO2022205972 A1 WO 2022205972A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
heat storage
spherical graphite
particle size
spherical
Prior art date
Application number
PCT/CN2021/133577
Other languages
English (en)
French (fr)
Inventor
段春婷
卫昶
梁文斌
刘均庆
郑冬芳
高光辉
盛英
文成玉
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究院 filed Critical 国家能源投资集团有限责任公司
Priority to US18/552,849 priority Critical patent/US20240191123A1/en
Priority to EP21934608.7A priority patent/EP4317355A1/en
Publication of WO2022205972A1 publication Critical patent/WO2022205972A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention relates to the technical field of heat storage materials, in particular to a low-orientation heat-storage graphite, a composition for preparing the low-orientation heat-storage graphite, and a preparation method of the low-orientation heat-storage graphite.
  • thermal storage carbon materials are generally made of binders (such as pitch) and fillers (such as natural graphite) after molding and sintering. Since natural graphite itself is an oriented structure, after the pressing process, the orientation of natural graphite becomes larger, and the obtained bulk material often has strong anisotropy, so the thermal conductivity is high. However, taking the height will also lead to a large difference between the vertical thermal conductivity and the facing thermal conductivity, and the ratio of the two is generally less than 0.2. Larger anisotropy is not conducive to the temperature transfer and temperature uniformity of the heat storage and exothermic process.
  • the purpose of the present invention is to overcome the problem of strong anisotropy of heat storage carbon materials in the prior art, and to provide a low-orientation heat storage graphite, a composition for preparing heat storage graphite and a preparation method thereof, and the heat storage graphite has The advantages of low degree of orientation, high thermal conductivity and high compressive strength.
  • a first aspect of the present invention provides a low-orientation heat storage graphite, based on the total mass of the heat storage graphite, the heat storage graphite comprises 65-85wt% of dispersed phase graphite and 15-35wt% % of continuous phase graphite; wherein, the dispersed phase graphite is spherical graphite, and the sphericity of the spherical graphite is 0.5-1; the ratio of vertical thermal conductivity/face thermal conductivity of the heat storage graphite is 0.4-0.8 , the thermal conductivity of the heat storage graphite is 50-150W/mK.
  • a second aspect of the present invention provides a composition for preparing low-orientation heat storage graphite, the composition comprising 60-80 parts by weight of spherical graphite and 20-40 parts by weight of pitch, wherein the spherical graphite The degree is 0.5-1.
  • a third aspect of the present invention provides a method for preparing low-orientation heat storage graphite, the method comprising the following steps:
  • the low-orientation heat storage graphite provided by the present invention has high thermal conductivity, high compressive strength, low orientation, and the ratio of vertical thermal conductivity/facing thermal conductivity is higher than 0.4. transfer stability;
  • the preparation method of the low-orientation heat storage graphite prepared by the present invention is simple in operation and suitable for industrialization.
  • a first aspect of the present invention provides a low degree of orientation heat storage graphite, based on the total mass of the heat storage graphite, the heat storage graphite includes 65-85wt% of dispersed phase graphite and 15-35wt% of continuous phase graphite ; wherein, the dispersed phase graphite is spherical graphite, and the sphericity of the spherical graphite is 0.5-1; the ratio of the vertical thermal conductivity/facing thermal conductivity of the heat-storage graphite is 0.4-0.8, and the heat-storage graphite has a ratio of 0.4-0.8.
  • the surface thermal conductivity of graphite is 50-150W/mK.
  • the inventors of the present invention have found through research that uniformly dispersing spherical graphite with a sphericity of 0.5-1 in the continuous phase graphite can reduce the degree of orientation of the heat storage graphite and increase the vertical thermal conductivity/face-to-face thermal conductivity.
  • the ratio ( ⁇ / ⁇ ) of makes the temperature transfer of the heat storage material in the heat storage and release process more stable.
  • the heat storage graphite includes 75-85 wt % of dispersed phase graphite and 15-25 wt % of continuous phase graphite.
  • the sphericity of the heat storage graphite is 0.8-1.
  • the ratio of vertical thermal conductivity/facing thermal conductivity of the heat storage graphite is 0.6-0.8.
  • the surface thermal conductivity of the heat storage graphite is 80-120 W/mK.
  • the density of the heat storage graphite is 1.6-2.1 g/cm 3 , preferably 1.8-2.1 g/cm 3 ; the compressive strength is 10-50 MPa, preferably 20-40 MPa.
  • a second aspect of the present invention provides a composition for preparing low-orientation heat storage graphite, the composition comprising 60-80 parts by weight of spherical graphite and 20-40 parts by weight of pitch, wherein the spherical graphite The degree is 0.5-1.
  • the composition comprises 70-80 parts by weight of spherical graphite and 20-30 parts by weight of pitch, wherein the spherical graphite has a sphericity of 0.8-1.
  • the average particle size of the spherical graphite is 25-2000 ⁇ m.
  • the spherical graphite is selected from spherical graphite with an average particle size of 10-25 ⁇ m, spherical graphite with an average particle size of 25-50 ⁇ m, spherical graphite with an average particle size of 50-100 ⁇ m, and spherical graphite with an average particle size of 50-100 ⁇ m. At least two kinds of spherical graphite with an average particle size of 300-600 ⁇ m, spherical graphite with an average particle size of 600-1000 ⁇ m, and spherical graphite of 100-300 ⁇ m.
  • 25-50 ⁇ m, 50-100 ⁇ m, 100-300 ⁇ m, and 300-600 ⁇ m refer to the interval including the minimum value, but excluding the maximum value
  • 600-1000 ⁇ m refers to the range including the minimum value and the maximum value. interval.
  • the spherical graphite is selected from spherical graphite with an average particle size of 10-25 ⁇ m, spherical graphite with an average particle size of 25-50 ⁇ m, spherical graphite with an average particle size of 50-100 ⁇ m, and spherical graphite with an average particle size of 50-100 ⁇ m. At least 3 kinds of spherical graphite with an average particle size of 300-600 ⁇ m, spherical graphite with an average particle size of 600-1000 ⁇ m, and spherical graphite with an average particle size of 100-300 ⁇ m.
  • the spherical graphite is selected from spherical graphite with an average particle size of 10-25 ⁇ m, spherical graphite with an average particle size of 25-50 ⁇ m, spherical graphite with an average particle size of 50-100 ⁇ m, Any 3 kinds of spherical graphite with a diameter of 100-300 ⁇ m, spherical graphite with an average particle size of 300-600 ⁇ m, and spherical graphite with an average particle size of 600-1000 ⁇ m
  • the mass ratio of spherical graphite with a particle size is 1:0.1-15:0.1-30, preferably 1:0.5-10:1-15, more preferably 1:1-4:2-8.
  • the small-range particle diameter, the medium-range particle diameter and the large-range particle diameter are distinguished according to the numerical values of the particle diameter ranges of the three selected spherical graphites.
  • the spherical graphite with a small particle size is selected from spherical graphite with an average particle size of 10-25 ⁇ m and/or spherical graphite with an average particle size of 25-50 ⁇ m;
  • the spherical graphite with a medium particle size is selected from the spherical graphite with an average particle size Spherical graphite with an average particle size of 50-100 ⁇ m and/or spherical graphite with an average particle size of 100-300 ⁇ m;
  • spherical graphite with a large particle size is selected from spherical graphite with an average particle size of 300-600 ⁇ m and/or an average particle size of 600-1000 ⁇ m spherical graphite.
  • the carbon content of the spherical graphite is ⁇ 95 wt%, preferably ⁇ 97 wt%; the degree of graphitization is ⁇ 85%, preferably ⁇ 90%.
  • the spherical graphite can be obtained commercially.
  • spherical graphite has a sphericity of 0.9, a carbon content of 99.5%, a degree of graphitization of 99%, and an average particle size of 25-50 ⁇ m, 100-300 ⁇ m, 600-1000 ⁇ m, etc. parameter.
  • the material can be screened by ball milling and screening.
  • the pitch is a non-mesophase pitch or a mesophase pitch.
  • the non-mesophase pitch has a mesophase content of 0, a softening point of 130-250° C., preferably 140-200° C., and a carbon residue rate of ⁇ 60 wt%, preferably ⁇ 65 wt%.
  • the mesophase content of the mesophase pitch is 50-100wt%, preferably 75-100wt%; the H/C molar ratio is 0.5-0.7, preferably 0.55-0.65; the softening point is 200-350°C, preferably 230-325 °C; residual carbon rate ⁇ 70wt%, preferably ⁇ 75wt%.
  • the non-mesophase pitch and mesophase pitch can be obtained commercially.
  • the non-mesophase pitch has parameters such as 0 mesophase content, 165° C. softening point, and 65 wt% carbon residue;
  • the phase content is 100wt%;
  • the H/C molar ratio is 0.64;
  • the softening point is 285°C;
  • the residual carbon rate is 75wt% and other parameters.
  • a third aspect of the present invention provides a method for preparing heat storage graphite, the method comprising the following steps:
  • the hot-press forming conditions include a forming temperature of 250-600°C, preferably 300-550°C; a forming pressure of 10-100 MPa, preferably 20-80 MPa, and a forming time of 1-5 h, Preferably it is 1.5-2h.
  • the conditions of the carbonization treatment include: the carbonization temperature is 800-1600°C, preferably 1200-1600°C; the carbonization time is 0.5-3h, preferably 0.5-1h.
  • the graphitization treatment is performed at 2700-3200° C. for 0.5-2 h; further preferably, the graphitization treatment is performed at 2800-3200° C. for 0.5-1 h.
  • the carbonization treatment and graphitization treatment are carried out under the protection of an inert gas, wherein the inert gas can be nitrogen and/or argon.
  • the present invention will be described in detail below by means of examples.
  • the sphericity of spherical graphite was measured by BT-2800 dynamic image particle size and shape analysis system.
  • the vertical thermal conductivity and the facing thermal conductivity in the examples and comparative examples are tested according to ASTM E1461, the vertical thermal conductivity refers to the lowest thermal conductivity in the three directions of x, y, and z, and the facing thermal conductivity refers to the It is the highest thermal conductivity in the three directions of x, y and z; the porosity is tested by mercury intrusion method, the compressive strength is tested according to GBT1431-2019, and the bulk density is tested according to GB/T24528-2009.
  • spherical graphite, mesophase pitch, and non-mesophase pitch are all commercially available commodities, and the commodity parameters meet the parameters in the examples and comparative examples.
  • spherical graphite (sphericity 0.9, carbon content 99.5%, graphitization degree 99%, wherein the spherical graphite with an average particle size of 25-50 ⁇ m is 10 g, and the spherical graphite with an average particle size of 100-300 ⁇ m is 15 g,
  • the composition of spherical graphite with an average particle size of 600-1000 ⁇ m is 45g), and 30g of mesophase pitch (mesophase content is 100wt%; H/C molar ratio is 0.64; softening point is 285°C; carbon residue rate is 75wt%) composition
  • mesophase pitch mesophase content is 100wt%; H/C molar ratio is 0.64; softening point is 285°C; carbon residue rate is 75wt% composition
  • the above-mentioned molding material is firstly carbonized at 1500° C. for 1 h, and then graphitized at 3000° C. for 0.5 h to obtain heat storage graphite.
  • Example 1 Similar to Example 1, the difference is that the mesophase pitch in Example 1 is replaced with a non-mesophase pitch (the mesophase content is 0, the softening point is 165° C., and the carbon residue rate is 65 wt%).
  • the molding pressure is 25MPa.
  • the difference is: the addition amount of spherical graphite is 60g, the mesophase pitch (the mesophase content is 50wt%; the H/C molar ratio is 0.6; the softening point is 245°C; the residual carbon rate is 70wt%) is added
  • the weight is 40g; the molding temperature is 400°C, the pressure is 50MPa; the graphitization temperature is 2800°C.
  • the difference is: 75g spherical graphite (sphericity 0.9, carbon content 99.5%, graphitization degree 99%, wherein the spherical graphite with an average particle size of 10-25 ⁇ m is 20g, and the average particle size is 25-50 ⁇ m.
  • the spherical graphite is 25g
  • the spherical graphite with an average particle size of 50-100 ⁇ m is 25g
  • the mesophase pitch is 25g.
  • Example 1 Similar to Example 1, the difference is that the spherical graphite in Example 1 is replaced by natural flake graphite (average particle size 500 ⁇ m, carbon content 99.5%, graphitization degree 99%).
  • Example 1 Similar to Example 1, the difference is that the spherical graphite in Example 1 is replaced with spherical graphite with a sphericity of 0.3, a carbon content of 99.5%, a degree of graphitization of 99%, and an average particle size of 600-1000 ⁇ m.
  • Example 2 Similar to Example 1, the difference is that the addition amount of spherical graphite is 90 g, and the addition amount of mesophase pitch is 10 g.
  • the heat storage graphite prepared by the present invention has the advantages of low degree of orientation, high thermal conductivity and high compressive strength.
  • Example 1 By comparing Example 1 with Comparative Example 1 and Comparative Example 2, it can be seen that when the sphericity of flake graphite or spherical graphite is relatively small, although the thermal conductivity of the obtained heat storage graphite is large, the degree of orientation is high, and the vertical thermal conductivity is too high. low, which is not conducive to the temperature transfer and temperature uniformity of the heat storage and release process.
  • Example 1 By comparing Example 1 and Comparative Example 3, it can be seen that when the amount of pitch is too small, effective bonding cannot be achieved, and the obtained heat storage graphite has poor compressive strength and low thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供了一种低取向度储热石墨、制备低取向度储热石墨的组合物及低取向度储热石墨的制备方法,以储热石墨的总质量计,储热石墨包括65-85wt%的分散相石墨和15-35wt%的连续相石墨;其中,分散相石墨为球形石墨,球形石墨的球度为0.5-1;储热石墨的垂直热导率/面向热导率的比值为0.4-0.8,储热石墨的面向热导率为50-150W/mK。储热石墨具有取向度低且面向热导率高的优点。

Description

低取向度储热石墨、制备低取向度储热石墨的组合物及其制备方法
相关申请的交叉引用
本申请要求2021年03月31日提交的发明名称为“低取向度储热石墨、制备低取向度储热石墨的组合物及其制备方法”的中国专利申请202110355151.9的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及储热材料技术领域,具体涉及一种低取向度储热石墨、制备低取向度储热石墨的组合物及低取向度储热石墨的制备方法。
背景技术
现有储热炭材料一般由粘接剂(例如沥青)和填料(例如天然石墨)经过模压成型后烧结而成。由于天然石墨自身是取向结构,经历压制过程之后,天然石墨的取向变大,得到的块体材料往往具有较强的各向异性,因而热导率高。但是高度取也会导致垂直热导率与面向热导率数值相差较大,二者比值一般小于0.2。较大的各向异性不利于储放热过程的温度传递和温度均匀性。
因此,亟待提供一种取向度低且热导率高的储热炭材料。
发明内容
本发明的目的是为了克服现有技术存在的储热炭材料各向异性强的问题,提供一种低取向度储热石墨、制备储热石墨的组合物及其制备方法,该储热石墨具有取向度低且热导率高、抗压强度大的优点。
为了实现上述目的,本发明第一方面提供了一种低取向度储热石墨,以所述储热石墨的总质量计,所述储热石墨包括65-85wt%的分散相石墨和15-35wt%的连续相石墨;其中,所述分散相石墨为球形石墨,所述球形石墨的球度为0.5-1;所述储热石墨的垂直热导率/面向热导率的比值为0.4-0.8,所述储热石墨的面向热导率为50-150W/mK。
本发明第二方面提供了一种制备低取向度储热石墨的组合物,所述组合物包括60-80重量份的球形石墨和20-40重量份的沥青,其中,所述球形石墨的球度为0.5-1。
本发明第三方面提供了一种低取向度储热石墨的制备方法,所述方法包括以下步骤:
(1)将包含球形石墨和沥青的组合物热压成型,得到成型材料;
(2)将所述成型材料先进行碳化处理后进行石墨化处理,得到储热石墨。
通过上述技术方案,本发明所取得的有益技术效果如下:
1)本发明所提供的低取向度储热石墨的热导率高,抗压强度大,取向度低,垂直热导率/面向热导率的比值高于0.4,储热放热过程的温度传递稳定;
2)本发明所制备的低取向度储热石墨的制备方法,操作简单,适合工业化推广。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围 或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供了一种低取向度储热石墨,以所述储热石墨的总质量计,所述储热石墨包括65-85wt%的分散相石墨和15-35wt%的连续相石墨;其中,所述分散相石墨为球形石墨,所述球形石墨的球度为0.5-1;所述储热石墨的垂直热导率/面向热导率的比值为0.4-0.8,所述储热石墨的面向热导率为50-150W/mK。
其中,本发明的发明人经过研究发现,将球度为0.5-1的球形石墨均匀的分散在连续相石墨中,可以降低储热石墨的取向度,增大垂直热导率/面向热导率的比值(λ⊥/λ∥),使得储热材料的储热放热过程的温度传递更加稳定。
在一个优选的实施方式中,以所述储热石墨的总质量计,所述储热石墨包括75-85wt%的分散相石墨和15-25wt%的连续相石墨。
在一个优选的实施方式中,所述储热石墨的球度为0.8-1。
在一个优选的实施方式中,所述储热石墨的垂直热导率/面向热导率的比值为0.6-0.8。
在一个优选的实施方式中,所述储热石墨的面向热导率为80-120W/mK。
在一个优选的实施方式中,所述储热石墨的密度为1.6-2.1g/cm 3,优选为1.8-2.1g/cm 3;抗压强度为10-50MPa,优选为20-40MPa。
本发明第二方面提供了一种制备低取向度储热石墨的组合物,所述组合物包括60-80重量份的球形石墨和20-40重量份的沥青,其中,所述球形石墨的球度为0.5-1。
在一个优选的实施方式中,所述组合物包括70-80重量份的球形石墨和20-30重量份的沥青,其中,所述球形石墨的球度为0.8-1。
在一个优选的实施方式中,所述球形石墨的平均粒径为25-2000μm。
在进一步优选的实施方式中,所述球形石墨选自平均粒径为10-25μm的球形石墨、平均粒径为25-50μm的球形石墨、平均粒径为50-100μm的球形石墨、平均粒径为100-300μm的球形石墨、平均粒径为300-600μm的球形石墨、平均粒径为600-1000μm的球形石墨中的至少2种。
在本发明中,25-50μm,50-100μm,100-300μm,300-600μm指的是包括最小值,但是不包括最大值的区间,600-1000μm指的是包括最小值,也包括最大值的区间。
在更优选的实施方式中,所述球形石墨选自平均粒径为10-25μm的球形石墨、平均粒径为25-50μm的球形石墨、平均粒径为50-100μm的球形石墨、平均粒径为100-300μm的球形石墨、平均粒径为300-600μm的球形石墨、平均粒径为600-1000μm的球形石墨中的至少3种。
在进一步更优选的实施方式中,所述球形石墨选自平均粒径为10-25μm的球形石墨、平均粒径为25-50μm的球形石墨、平均粒径为 50-100μm的球形石墨、平均粒径为100-300μm的球形石墨、平均粒径为300-600μm的球形石墨、平均粒径为600-1000μm的球形石墨中的任意3种,其中,小范围粒径、中范围粒径与大范围粒径的球形石墨的质量比为1:0.1-15:0.1-30,优选为1:0.5-10:1-15,进一步优选为1:1-4:2-8。其中,小范围粒径、中范围粒径与大范围粒径依据所选取的三种球形石墨的粒径范围的数值大小做区分。优选地,所述小范围粒径的球形石墨选自平均粒径为10-25μm的球形石墨和/或平均粒径为25-50μm的球形石墨;中范围粒径的球形石墨选自平均粒径为50-100μm的球形石墨和/或平均粒径为100-300μm的球形石墨;大范围粒径的球形石墨选自平均粒径为300-600μm的球形石墨和/或平均粒径为600-1000μm的球形石墨。
在一个优选的实施方式中,所述球形石墨的含碳量≥95wt%,优选≥97wt%;石墨化度≥85%,优选≥90%。
本发明中,所述球形石墨可以商购获得,例如,球形石墨具有球度0.9、含碳量99.5%、石墨化度99%,平均粒径为25-50μm,100-300μm,600-1000μm等参数。当球度不满足使用要求时,可通过球磨、筛分的方式对材料筛选。
在一个优选的实施方式中,所述沥青为非中间相沥青或中间相沥青。其中,所述非中间相沥青中间相含量为0,软化点为130-250℃,优选为140-200℃,残炭率≥60wt%,优选≥65wt%。所述中间相沥青的中间相含量为50-100wt%,优选为75-100wt%;H/C摩尔比为0.5-0.7,优选为0.55-0.65;软化点为200-350℃,优选230-325℃;残 碳率≥70wt%,优选≥75wt%。
本发明中,所述非中间相沥青和中间相沥青可以商购获得,例如,非中间相沥青具有中间相含量为0,软化点165℃,残炭率65wt%等参数;中间相沥青具有中间相含量为100wt%;H/C摩尔比为0.64;软化点为285℃;残碳率75wt%等参数。
本发明第三方面提供了一种储热石墨的制备方法,所述方法包括以下步骤:
(1)将包含球形石墨和沥青的组合物热压成型,得到成型材料;
(2)将所述成型材料先进行碳化处理后进行石墨化处理,得到储热石墨。
在一个优选的实施方式中,所述热压成型的条件包括成型温度为250-600℃,优选300-550℃;成型压力为10-100MPa,优选为20-80MPa,成型时间为1-5h,优选为1.5-2h。
在一个优选的实施方式中,所述碳化处理的条件包括:碳化温度为800-1600℃,优选为1200-1600℃;碳化时间为0.5-3h,优选为0.5-1h。
在一个优选的实施方式中,所述石墨化处理在2700-3200℃下进行0.5-2h;进一步优选地,所述石墨化处理在2800-3200℃下进行0.5-1h。
在一个优选的实施方式中,所述碳化处理和石墨化处理在惰性气体保护下进行,其中,所述惰性气体可以是氮气和/或氩气。
以下将通过实施例对本发明进行详细描述。其中,球形石墨的球 度采用BT-2800动态图像粒度粒形分析系统进行测量。实施例和对比例中的垂直热导率和面向热导率按照ASTM E1461进行测试,垂直热导率指的是x、y、z三个方向中最低的热导率,面向热导率指的是x、y、z三个方向中最高的热导率;孔隙率采用压汞法进行测试,抗压强度按照GBT1431-2019进行测试,体积密度按照GB/T24528-2009进行测试,储热石墨中分散相(球形石墨)的含量通过公式计算:储热石墨中分散相(球形石墨)的含量=原料中球形石墨的质量/(原料中球形石墨的质量+沥青的质量*沥青残炭率)。
以下实施例和对比例中,球形石墨、中间相沥青、非中间相沥青均为市售商品,商品参数满足实施例和对比例中的参数。
实施例1
(1)将70g的球形石墨(球度0.9、含碳量99.5%、石墨化度99%,其中平均粒径25-50μm的球形石墨为10g,平均粒径100-300μm的球形石墨为15g,平均粒径600-1000μm的球形石墨为45g),和30g的中间相沥青(中间相含量为100wt%;H/C摩尔比为0.64;软化点为285℃;残碳率75wt%)的组合物混合均匀后模压成型,成型温度为550℃,成型压力为80MPa,成型时间为2h,得到成型材料;
(2)在氮气保护下,将上述成型材料先在1500℃下碳化处理1h,然后在3000℃下石墨化处理0.5h,得到储热石墨。
实施例2
与实施例1相似,区别在于:用非中间相沥青(中间相含量为0,软化点165℃,残炭率65wt%)替换实施例1中的中间相沥青。
实施例3
与实施例1相似,区别在于:球形石墨的球度为0.6。
实施例4
与实施例1相似,区别在于:成型压力为25MPa。
实施例5
与实施例1相似,区别在于:球形石墨的添加量为60g,中间相沥青(中间相含量为50wt%;H/C摩尔比为0.6;软化点为245℃;残碳率70wt%)的添加量为40g;成型温度400℃,压力50MPa;石墨化温度为2800℃。
实施例6
与实施例1相似,区别在于:75g球形石墨(球度0.9、含碳量99.5%、石墨化度99%,其中,平均粒径10-25μm的球形石墨为20g,平均粒径25-50μm的球形石墨为25g,平均粒径50-100μm的球形石墨为25g),25g中间相沥青。
对比例1
与实施例1相似,区别在于:利用天然鳞片石墨(平均粒径500μm、含碳量99.5%、石墨化度99%)替换实施例1中的球形石墨。
对比例2
与实施例1相似,区别在于:利用球度0.3、含碳量99.5%、石墨化度99%,平均粒径600-1000μm的球形石墨替换实施例1中的球形石墨。
对比例3
与实施例1相似,区别在于:球形石墨的添加量为90g,中间相沥青的添加量为10g。
测试例1
对实施例1-6以及对比例1-3所制备的储热材料进行垂直热导率、面向热导率、抗压强度和密度的测试,测试结果如表1所示:
表1
Figure PCTCN2021133577-appb-000001
Figure PCTCN2021133577-appb-000002
通过表1中实施例1-6的结果可以看出,本发明制备的储热石墨具有取向度低且热导率高、抗压强度大的优点。通过对比实施例1和对比例1与对比例2可知,当采用鳞片石墨或球形石墨的球度比较小时,得到的储热石墨虽然面向热导率大,但是取向度高,垂直热导率过低,不利于储放热过程的温度传递和温度均匀性。
通过对比实施例1和对比例3可知,当沥青用量过少时,不能实现有效粘接,得到的储热石墨的抗压强度差,热导率低。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

  1. 一种低取向度储热石墨,其特征在于:以所述储热石墨的总质量计,所述储热石墨包括65-85wt%的分散相石墨和15-35wt%的连续相石墨;其中,所述分散相石墨为球形石墨,所述球形石墨的球度为0.5-1;所述储热石墨的垂直热导率/面向热导率的比值为0.4-0.8,所述储热石墨的面向热导率为50-150W/mK。
  2. 根据权利要求1所述的储热石墨,其中,所述储热石墨的密度为1.6-2.1g/cm 3,优选为1.8-2.1g/cm 3;抗压强度为10-50MPa,优选为20-40MPa。
  3. 一种制备低取向度储热石墨的组合物,其特征在于:所述组合物包括60-80重量份的球形石墨和20-40重量份的沥青,其中,所述球形石墨的球度为0.5-1。
  4. 根据权利要求3所述的组合物,其中,所述球形石墨的平均粒径为10-2000μm;
    优选地,所述球形石墨选自平均粒径为10-25μm的球形石墨、平均粒径为25-50μm的球形石墨、平均粒径为50-100μm的球形石墨、平均粒径为100-300μm的球形石墨、平均粒径为300-600μm的球形石墨、平均粒径为600-1000μm的球形石墨中的至少2种;
    优选地,所述球形石墨的含碳量≥95wt%,优选≥97wt%;石墨化度≥85%,优选≥90%。
  5. 根据权利要求3或4所述的组合物,其中,所述沥青为非中间相沥青或中间相沥青;
    优选地,所述非中间相沥青中间相含量为0,软化点为130-250℃,优选为140-200℃,残炭率≥60wt%,优选≥65wt%;
    优选地,所述中间相沥青的中间相含量为50-100wt%,优选为75-100wt%;H/C摩尔比为0.5-0.7,优选为0.55-0.65;软化点为200-350℃,优选230-325℃;残碳率≥70wt%,优选≥75wt%。
  6. 一种储热石墨的制备方法,其特征在于:所述方法包括以下步骤:
    (1)将包含球形石墨和沥青的组合物热压成型,得到成型材料;
    (2)将所述成型材料先进行碳化处理后进行石墨化处理,得到储热石墨。
  7. 根据权利要求6所述的制备方法,其中,所述热压成型的条件包括成型温度为250-600℃,优选为300-550℃;成型压力为10-100MPa,优选为20-80MPa,成型时间为1-5h,优选为1.5-2h。
  8. 根据权利要求6或7所述的制备方法,其中,所述碳化处理 的条件包括:碳化温度为800-1600℃,优选为1200-1600℃;碳化时间为0.5-3h,优选为0.5-1h。
  9. 根据权利要求6-8中任意一项所述的制备方法,其中,所述石墨化处理在2700-3200℃下进行0.5-2h;进一步优选地,所述石墨化处理在2800-3200℃下进行0.5-1h。
  10. 根据权利要求6-9中任意一项所述的制备方法,其中,所述碳化处理和石墨化处理在惰性气体保护下进行。
PCT/CN2021/133577 2021-03-31 2021-11-26 低取向度储热石墨、制备低取向度储热石墨的组合物及其制备方法 WO2022205972A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/552,849 US20240191123A1 (en) 2021-03-31 2021-11-26 Heat storage graphite having low degree of orientation, composition for preparing heat storage graphite having low degree of orientation, and method therefor
EP21934608.7A EP4317355A1 (en) 2021-03-31 2021-11-26 Heat storage graphite having low degree of orientation, composition for preparing heat storage graphite having low degree of orientation, and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110355151.9A CN115140730A (zh) 2021-03-31 2021-03-31 低取向度储热石墨、制备低取向度储热石墨的组合物及其制备方法
CN202110355151.9 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022205972A1 true WO2022205972A1 (zh) 2022-10-06

Family

ID=83405483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133577 WO2022205972A1 (zh) 2021-03-31 2021-11-26 低取向度储热石墨、制备低取向度储热石墨的组合物及其制备方法

Country Status (4)

Country Link
US (1) US20240191123A1 (zh)
EP (1) EP4317355A1 (zh)
CN (1) CN115140730A (zh)
WO (1) WO2022205972A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095747A (zh) * 1994-01-31 1994-11-30 中科院广州化学研究所 一种高热导高电导固-固相变贮能控温材料
CN1699497A (zh) * 2004-05-18 2005-11-23 Sgl碳股份公司 潜热储存材料
CN107673759A (zh) * 2017-11-07 2018-02-09 大同新成新材料股份有限公司 一种新型太阳能热发电石墨储热材料的制备方法
CN110408221A (zh) * 2019-08-29 2019-11-05 四川大学 一种具有高垂直导热系数的柔性热界面材料及其制备方法
WO2020203412A1 (ja) * 2019-03-29 2020-10-08 積水ポリマテック株式会社 熱伝導性組成物及び熱伝導性部材
CN112111310A (zh) * 2019-06-20 2020-12-22 国家能源投资集团有限责任公司 储热炭材料用组合物和储热炭材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403327B2 (ja) * 1999-07-05 2010-01-27 ソニー株式会社 リチウムイオン二次電池負極用黒鉛粉末およびその製造方法、ならびにリチウムイオン二次電池
JP2013001582A (ja) * 2011-06-13 2013-01-07 Kansai Coke & Chem Co Ltd 等方性黒鉛材料及びその製造方法
CN111362698A (zh) * 2020-04-28 2020-07-03 湖南大学 一种新型各向同性核级石墨材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095747A (zh) * 1994-01-31 1994-11-30 中科院广州化学研究所 一种高热导高电导固-固相变贮能控温材料
CN1699497A (zh) * 2004-05-18 2005-11-23 Sgl碳股份公司 潜热储存材料
CN107673759A (zh) * 2017-11-07 2018-02-09 大同新成新材料股份有限公司 一种新型太阳能热发电石墨储热材料的制备方法
WO2020203412A1 (ja) * 2019-03-29 2020-10-08 積水ポリマテック株式会社 熱伝導性組成物及び熱伝導性部材
CN112111310A (zh) * 2019-06-20 2020-12-22 国家能源投资集团有限责任公司 储热炭材料用组合物和储热炭材料及其制备方法
CN110408221A (zh) * 2019-08-29 2019-11-05 四川大学 一种具有高垂直导热系数的柔性热界面材料及其制备方法

Also Published As

Publication number Publication date
CN115140730A (zh) 2022-10-04
US20240191123A1 (en) 2024-06-13
EP4317355A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JP5154448B2 (ja) 黒鉛材料及びその製造方法
KR100966459B1 (ko) 낮은 cte의 고도로 등방성인 흑연
CN111018554A (zh) 一种利用石墨烯制备超高功率石墨电极的方法
CN110655413B (zh) 一种各向同性石墨材料的制备方法
CN107903878B (zh) 熔盐石墨复合材料及其制备方法
CN112174670A (zh) 一种石墨材料致密化改性的制备方法、由此得到的致密化石墨材料及其应用
CN109971982B (zh) 原位自生陶瓷相增强钛基复合材料的制备方法及制品
JP2010507550A (ja) 高純度原子炉用黒鉛
WO2022205972A1 (zh) 低取向度储热石墨、制备低取向度储热石墨的组合物及其制备方法
CN113336552A (zh) 一种铝电解用低电阻率阳极炭块及其制备方法
CN115259859B (zh) 一种碳化硼防弹陶瓷材料及其制备方法
CN115140724B (zh) 储热碳材料及其制备方法与应用、用于制备储热碳材料的组合物
Li et al. Gelcasting of aqueous mesocarbon microbead suspension
CN110615433B (zh) 一种高导热中间相沥青基泡沫碳的制备方法
CN114807656A (zh) 一种纳米级碳材料增强金属基复合材料的制备方法及其产品
TWI785803B (zh) 等方向性石墨塊材組成物及等方向性石墨塊材之製造方法
KR20210153335A (ko) 이중 분포를 갖는 탄소소재 조성물을 이용한 고강도 및 고열전도성 방열 부품의 제조방법 및 이로부터 제조되는 방열 부품
JP6922327B2 (ja) 黒鉛及びその製造方法、並びに混合物
Kim et al. Graphite block derived from natural graphite with bimodal particle size distribution
WO2022205970A1 (zh) 高导热蓄热材料及其制备方法与应用、用于制备高导热蓄热材料的组合物及其应用
WO2022205971A1 (zh) 煤基储热碳材料及其制备方法与应用、用于制备煤基储热碳材料的组合物与应用
JPS5978914A (ja) 特殊炭素材の製造方法
CN116496087B (zh) 一种超细结构特种炭材料及其制备方法
CN115159988A (zh) 耐高温蓄热材料及其制备方法与应用、用于制备耐高温蓄热材料的组合物及其应用
CN115141606A (zh) 一种低取向度储热材料、制备储热材料用组合物及储热材料制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552849

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021934608

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021934608

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE