CN113336552A - 一种铝电解用低电阻率阳极炭块及其制备方法 - Google Patents

一种铝电解用低电阻率阳极炭块及其制备方法 Download PDF

Info

Publication number
CN113336552A
CN113336552A CN202110735103.2A CN202110735103A CN113336552A CN 113336552 A CN113336552 A CN 113336552A CN 202110735103 A CN202110735103 A CN 202110735103A CN 113336552 A CN113336552 A CN 113336552A
Authority
CN
China
Prior art keywords
carbon block
low
resistivity
anode carbon
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110735103.2A
Other languages
English (en)
Other versions
CN113336552B (zh
Inventor
李亚伟
梁雄
廖梓昕
李俊峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202110735103.2A priority Critical patent/CN113336552B/zh
Publication of CN113336552A publication Critical patent/CN113336552A/zh
Application granted granted Critical
Publication of CN113336552B publication Critical patent/CN113336552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明提供了一种铝电解用低电阻率阳极炭块及其制备方法。其技术方案是:以石油焦、高导电碳粉、沥青粉、单质硅粉和纳米铜粉为原料,混合均匀,即得混合料;再向混合料中加入占混合料8~18wt%的热固型酚醛树脂,在真空混碾机内搅拌30~60min,即得泥料;将泥料机压成型或冷等静压成型,于100~160℃条件下烘干24~48h,即得阳极炭块坯体;将阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以1~3℃/min的速率升温至600~800℃,再以3~5℃/min的速率升温至1000~1400℃,保温2~8h,随炉冷却至室温,制得铝电解用低电阻率阳极炭块。本发明制备的铝电解用低电阻率阳极炭块具有电阻率低、体积密度大、气孔率低和强度高的特点。

Description

一种铝电解用低电阻率阳极炭块及其制备方法
技术领域
本发明属于阳极炭块技术领域。尤其是涉及一种铝电解用低电阻率阳极炭块及其制备方法。
技术背景
阳极炭块在电解铝生产过程中,伴随着金属铝的生成而不断消耗,是电解铝生产技术关键之一,是电解铝工艺中最主要的组成部分。在电解铝生产过程中,阳极既承担着导电作用,又要在氧化性气氛下与氧化铝发生化学反应。因此,阳极质量的好坏直接关系到电解铝的生产。优质的阳极炭块应该包括:1)具有良好的物理化学性能,以减少阳极对空气和二氧化碳的活性,进而降低炭耗、延长阳极使用寿命;2)有良好的电化学性能,以求达到提高阳极电化学反应活性,降低电解过程中电能的消耗;3)质量更均匀、更稳定,以求达到电解槽稳定操作和进一步降低阳极效应系数。
阳极炭块的主要原料为石油焦,采用煤沥青结合,通过成型焙烧等阶段制成。近年来,已有部分阳极炭块将粘结剂由煤沥青替换为酚醛树脂,粘结炭素材料。酚醛树脂相比煤沥青对环境的污染小、操作条件温和、工艺简单,但酚醛树脂的高成本使其应用受到限制。此外,酚醛树脂的残碳率低,造成加热后酚醛树脂的碳产量低,所制备的阳极的气孔率高和致密程度低。在使用过程中会增加阳极的损耗,降低寿命,增加生产成本。
“一种炭素阳极及其制备方法和应用”(CN109400163B)专利技术,该技术的配比为:骨料85~95份,粘结剂5~15份。骨料包括石油焦80~150份、碳纳米管0~20份、石墨碎5~30份;粘结剂包括酚醛树脂85~100份,煤沥青5~15份。所制备的阳极炭块的耐压强度为40MPa左右,电阻率为60μΩ·m左右,真密度则普遍为2g/cm3。该技术制备的阳极炭块虽然强度高,但电阻率高、体积密度小和气孔率高。
“一种电解铝用阳极炭块的制备方法”(CN106083052A)专利技术,在石油焦产量下降的背景下,该技术选择无烟煤、半焦与炭黑作为主要原料,煤沥青作为结合剂。所制备的阳极炭块的电阻率和耐压强度虽然达到了使用的标准,但电阻率依旧过高。
“铝电解预焙阳极及其生产工艺”(CN106757162A)专利技术,该技术在原料中加入了阴极铣面粉,粘结剂包括煤沥青和酚醛树脂,经混料、振动成型、水冷养护和焙烧后得到气孔率在23~24%的阳极炭块,体积密度虽为1.59g/cm3左右,但电阻率下降到53μΩ·m左右,耐压强度亦减少到38MPa,力学性能大幅下降。
“一种铝用碳素阳极及其制备方法”(CN104532297A)专利技术,原料采用焦炭颗粒、球磨粉和残级颗粒,粘结剂采用改质沥青。所得到的炭素阳极的电阻率为55μΩ·m、体积密度为1.54g/cm3左右,耐压强度虽提高到43~53MPa,但电阻率依旧没有得到有效改善。
“一种经改进的电解铝用炭阳极的制备方法”(CN102718487A)专利技术,以石油焦为主要原料,以改性液态酚醛树脂为粘结剂,制得的炭素阳极的电阻率最低可达35μΩ·m,体积密度为1.56g/cm3左右,但耐压强度最高只有30MPa,无法满足使用条件。
从现有技术可以看出,所制备的阳极炭块电阻率高、体积密度小、气孔率高和强度较低的问题依旧没有得到改善。
发明内容
本发明旨在克服现有技术缺陷,目的在于提供了一种铝电解用低电阻率阳极炭块的制备方法,用该方法所制备的铝电解用低电阻率阳极炭块的电阻率低、体积密度大、气孔率较和强度高。
为实现上述目的,本发明采用的技术方案是:
步骤一、以75~85wt%的石油焦、5~15wt%的高导电碳粉、5~15wt%的沥青粉、4~8wt%的单质硅粉和1~2wt%的纳米铜粉为原料,混合均匀,制得混合料;再向所述混合料中加入占所述混合料8~18wt%的热固型酚醛树脂,在真空混碾机内搅拌30~60min,即得泥料。
步骤二、将所述泥料机压成型或冷等静压成型,再于100~160℃条件下烘干24~48h,即得阳极炭块坯体。
步骤三、将所述阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以1~3℃/min的速率升温至600~800℃,再以3~5℃/min的速率升温至1000~1400℃,保温2~8h,然后随炉冷却至室温,制得铝电解用低电阻率阳极炭块。
所述石油焦的颗粒级配是:粒度<0.075mm占28~32wt%,粒度≥0.075mm且<1mm占15~19wt%,粒度≥1mm且<2mm占30~53wt%,粒度≥2mm且<5mm占0~23wt%。
所述高导电碳粉为鳞片石墨和微晶石墨的混合物,其中:鳞片石墨∶微晶石墨的质量比为1∶(0.5~1.5);所述鳞片石墨的平均粒度≤3μm,所述微晶石墨的平均粒度≤3μm,微晶石墨的C含量≥90wt%。
所述沥青粉的平均粒径≤45μm;沥青粉的残碳量≥55wt%。
所述单质硅粉的平均粒度≤45μm;单质硅粉的Si含量≥99wt%。
所述纳米铜粉的平均粒度≤50nm;纳米铜粉的Cu含量≥99.9wt%。
所述热固型酚醛树脂的残碳量≥45wt%。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
(1)本发明对石油焦的颗粒级配进行了优化,减少了原料中大骨料的占比,使原料中各种粒度的石油焦配比进一步达到更紧密的堆积,颗粒之间的空隙被细粉所填充,有效地提高了所制制品的耐压强度和体积密度。
(2)本发明引入高导电碳粉、单质硅粉和纳米铜粉,使超细高导电碳粉在阳极炭块坯体中均匀分布,同时在纳米铜粉催化酚醛树脂原位形成碳纳米管,促进了单质硅粉与制品中的碳源(酚醛树脂裂解含碳气体、固体残余碳以及碳粉原料)形成高导SiC晶须网络,不仅能填充制品内部气孔,而且还能实现高导电碳粉的相互连接,达到制品内部的三维高导电互通,降低制品三维方向的界面电阻以及制品电阻率的各向异性;且原位形成的碳纳米管和SiC晶须网络还能有效提高制品的高温力学性能,实现制品低电阻率和高强度的协同兼顾。
(3)本发明引入的纳米铜粉,除催化碳纳米管生成外,还能有效吸附酚醛树脂热解产生的含碳气相物质,提高酚醛树脂残碳率的同时,还能降低酚醛树脂因热解形成的气孔率,达到致密化炭块的目的,进而降低制品对空气和二氧化碳的活性,降低炭耗和延长制品使用寿命;其次,未反应完全的纳米铜粉同样作为高导相存在于制品中,同样起到降低电阻率的效果,能提高制品的导电性。
本发明所制备的铝电解用低电阻率阳极炭块经检测:其平行于机压方向的电阻率为37.8~45.6μΩ·m;垂直于机压方向的电阻率为38.6~42.5μΩ·m;体积密度为1.62~1.65g/cm3;气孔率为17.6~19.3%;常温耐压强度为58.8~63.6MPa。
因此,本发明所制备的铝电解用低电阻率阳极炭块具有电阻率低、体积密度大、气孔率低和强度高的特点,能够有效地降低电解铝生产过程中的能耗,降低生产成本,提高经济效益。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
一种铝电解用低电阻率阳极炭块及其制备方法。本具体实施方式所述制备方法是:
步骤一、以75~85wt%的石油焦、5~15wt%的高导电碳粉、5~15wt%的沥青粉、4~8wt%的单质硅粉和1~2wt%的纳米铜粉为原料,混合均匀,制得混合料;再向所述混合料中加入占所述混合料8~18wt%的热固型酚醛树脂,在真空混碾机内搅拌30~60min,即得泥料。
步骤二、将所述泥料机压成型或冷等静压成型,再于100~160℃条件下烘干24~48h,即得阳极炭块坯体。
步骤三、将所述阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以1~3℃/min的速率升温至600~800℃,再以3~5℃/min的速率升温至1000~1400℃,保温2~8h,然后随炉冷却至室温,制得铝电解用低电阻率阳极炭块。
所述石油焦的颗粒级配是:粒度<0.075mm占28~32wt%,粒度≥0.075mm且<1mm占15~19wt%,粒度≥1mm且<2mm占30~53wt%,粒度≥2mm且<5mm占0~23wt%。
所述高导电碳粉为鳞片石墨和微晶石墨的混合物,其中:鳞片石墨∶微晶石墨的质量比为1∶(0.5~1.5)。
本具体实施方式中:
所述鳞片石墨的平均粒度≤3μm;所述微晶石墨的平均粒度≤3μm;微晶石墨的C含量≥90wt%;
所述沥青粉的平均粒径≤45μm;沥青粉的残碳量≥55wt%;
所述单质硅粉的平均粒度≤45μm;单质硅粉的Si含量≥99wt%;
所述纳米铜粉的平均粒度≤50nm;纳米铜粉的Cu含量≥99.9wt%;
所述热固型酚醛树脂的残碳量≥45wt%。
实施例中不再赘述。
实施例1
一种铝电解用低电阻率阳极炭块及其制备方法。本具体实施方式所述制备方法是:
步骤一、以75wt%的石油焦、10wt%的高导电碳粉、10wt%的沥青粉、4wt%的单质硅粉和1wt%的纳米铜粉为原料,混合均匀,制得混合料;再向所述混合料中加入占所述混合料10wt%的热固型酚醛树脂,在真空混碾机内搅拌40min,即得泥料。
步骤二、将所述泥料机压成型或冷等静压成型,再于100℃条件下烘干24h,即得阳极炭块坯体。
步骤三、将所述阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以2℃/min的速率升温至650℃,再以5℃/min的速率升温至1000℃,保温2h,然后随炉冷却至室温,制得铝电解用低电阻率阳极炭块。
所述石油焦的颗粒级配是:粒度<0.075mm占32wt%,粒度≥0.075mm且<1mm占15wt%,粒度≥1mm且<2mm占30wt%,粒度≥2mm且<5mm占23wt%。
所述高导电碳粉为鳞片石墨和微晶石墨的混合物,其中:鳞片石墨∶微晶石墨的质量比为1∶1。
本实施例制备的铝电解用低电阻率阳极炭块经检测:平行于机压方向的电阻率为41.7μΩ·m;垂直于机压方向的电阻率为40.6μΩ·m;体积密度为1.63g/cm3;气孔率为18.9%;常温耐压强度为58.8MPa。
实施例2
一种铝电解用低电阻率阳极炭块及其制备方法。本具体实施方式所述制备方法是:
步骤一、以75wt%的石油焦、15wt%的高导电碳粉、5wt%的沥青粉、4wt%的单质硅粉和1wt%的纳米铜粉为原料,混合均匀,制得混合料;再向所述混合料中加入占所述混合料8wt%的热固型酚醛树脂,在真空混碾机内搅拌30min,即得泥料。
步骤二、将所述泥料机压成型或冷等静压成型,再于120℃条件下烘干36h,即得阳极炭块坯体。
步骤三、将所述阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以2℃/min的速率升温至600℃,再以3℃/min的速率升温至1300℃,保温4h,然后随炉冷却至室温,制得铝电解用低电阻率阳极炭块。
所述石油焦的颗粒级配是:粒度<0.075mm占28wt%,粒度≥0.075mm且<1mm占19wt%,粒度≥1mm且<2mm占53wt%。
所述高导电碳粉为鳞片石墨和微晶石墨的混合物,其中:鳞片石墨∶微晶石墨的质量比为1∶0.5。
本实施例制备的铝电解用低电阻率阳极炭块经检测:平行于机压方向的电阻率为40.6μΩ·m;垂直于机压方向的电阻率为43.9μΩ·m;体积密度为1.63g/cm3;气孔率为18.4%;常温耐压强度为61.3MPa。
实施例3
一种铝电解用低电阻率阳极炭块及其制备方法。本具体实施方式所述制备方法是:
步骤一、以75wt%的石油焦、5wt%的高导电碳粉、15wt%的沥青粉、4wt%的单质硅粉和1wt%的纳米铜粉为原料,混合均匀,制得混合料;再向所述混合料中加入占所述混合料12wt%的热固型酚醛树脂,在真空混碾机内搅拌40min,即得泥料。
步骤二、将所述泥料机压成型或冷等静压成型,再于110℃条件下烘干24h,即得阳极炭块坯体。
步骤三、将所述阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以2℃/min的速率升温至700℃,再以3℃/min的速率升温至1200℃,保温6h,然后随炉冷却至室温,制得铝电解用低电阻率阳极炭块。
所述石油焦的颗粒级配是:粒度<0.075mm占30wt%,粒度≥0.075mm且<1mm占16wt%,粒度≥1mm且<2mm占42wt%,粒度≥2mm且<5mm占12wt%。
所述高导电碳粉为鳞片石墨和微晶石墨的混合物,其中:鳞片石墨∶微晶石墨的质量比为1∶0.67。
本实施例制备的铝电解用低电阻率阳极炭块经检测:平行于机压方向的电阻率为37.8μΩ·m;垂直于机压方向的电阻率为38.6μΩ·m;体积密度为1.64g/cm3;气孔率为19.3%;常温耐压强度为61.1MPa。
实施例4
一种铝电解用低电阻率阳极炭块及其制备方法。本具体实施方式所述制备方法是:
步骤一、以80wt%的石油焦、5wt%的高导电碳粉、5wt%的沥青粉、8wt%的单质硅粉和2wt%的纳米铜粉为原料,混合均匀,制得混合料;再向所述混合料中加入占所述混合料14wt%的热固型酚醛树脂,在真空混碾机内搅拌50min,即得泥料。
步骤二、将所述泥料机压成型或冷等静压成型,再于130℃条件下烘干48h,即得阳极炭块坯体。
步骤三、将所述阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以1℃/min的速率升温至650℃,再以3℃/min的速率升温至1100℃,保温5h,然后随炉冷却至室温,制得铝电解用低电阻率阳极炭块。
所述石油焦的颗粒级配是:粒度<0.075mm占32wt%,粒度≥0.075mm且<1mm占15wt%,粒度≥1mm且<2mm占53wt%。
所述高导电碳粉为鳞片石墨和微晶石墨的混合物,其中:鳞片石墨∶微晶石墨的质量比为1∶1.5。
本实施例制备的铝电解用低电阻率阳极炭块经检测:平行于机压方向的电阻率为42.3μΩ·m;垂直于机压方向的电阻率为44.6μΩ·m;体积密度为1.62g/cm3;气孔率为17.6%;常温耐压强度为62.5MPa。
实施例5
一种铝电解用低电阻率阳极炭块及其制备方法。本具体实施方式所述制备方法是:
步骤一、以85wt%的石油焦、5wt%的高导电碳粉、5wt%的沥青粉、4wt%的单质硅粉和1wt%的纳米铜粉为原料,混合均匀,制得混合料;再向所述混合料中加入占所述混合料18wt%的热固型酚醛树脂,在真空混碾机内搅拌60min,即得泥料。
步骤二、将所述泥料机压成型或冷等静压成型,再于160℃条件下烘干48h,即得阳极炭块坯体。
步骤三、将所述阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以3℃/min的速率升温至800℃,再以4℃/min的速率升温至1400℃,保温8h,然后随炉冷却至室温,制得铝电解用低电阻率阳极炭块。
所述石油焦的颗粒级配是:粒度<0.075mm占30wt%,粒度≥0.075mm且<1mm占17wt%,粒度≥1mm且<2mm占50wt%,粒度≥2mm且<5mm占3wt%。
所述高导电碳粉为鳞片石墨和微晶石墨的混合物,其中:鳞片石墨∶微晶石墨的质量比为1∶1.5。
本实施例制备的铝电解用低电阻率阳极炭块经检测:平行于机压方向的电阻率为45.6μΩ·m;垂直于机压方向的电阻率为42.5μΩ·m;体积密度为1.65g/cm3;气孔率为18.9%;常温耐压强度为63.6MPa。
实施例6
一种铝电解用低电阻率阳极炭块及其制备方法。本具体实施方式所述制备方法是:
步骤一、以79.5wt%的石油焦、8wt%的高导电碳粉、5wt%的沥青粉、6wt%的单质硅粉和1.5wt%的纳米铜粉为原料,混合均匀,制得混合料;再向所述混合料中加入占所述混合料16wt%的热固型酚醛树脂,在真空混碾机内搅拌50min,即得泥料。
步骤二、将所述泥料机压成型或冷等静压成型,再于140℃条件下烘干24h,即得阳极炭块坯体。
步骤三、将所述阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以3℃/min的速率升温至650℃,再以4℃/min的速率升温至1200℃,保温5h,然后随炉冷却至室温,制得铝电解用低电阻率阳极炭块。
所述石油焦的颗粒级配是:粒度<0.075mm占32wt%,粒度≥0.075mm且<1mm占18wt%,粒度≥1mm且<2mm占40wt%,粒度≥2mm且<5mm占20wt%。
所述高导电碳粉为鳞片石墨和微晶石墨的混合物,其中:鳞片石墨∶微晶石墨的质量比为1∶1。
本实施例制备的铝电解用低电阻率阳极炭块经检测:平行于机压方向的电阻率为41.3μΩ·m;垂直于机压方向的电阻率为40.7μΩ·m;体积密度为1.63g/cm3;气孔率为18.5%;常温耐压强度为60.3MPa。
本具体实施方式与现有技术相比具有如下积极效果:
(1)本具体实施方式对石油焦的颗粒级配进行了优化,减少了原料中大骨料的占比,使原料中各种粒度的石油焦配比进一步达到更紧密的堆积,颗粒之间的空隙被细粉所填充,有效地提高了所制制品的耐压强度和体积密度。
(2)本具体实施方式引入高导电碳粉、单质硅粉和纳米铜粉,使超细高导电碳粉在阳极炭块坯体中均匀分布,同时在纳米铜粉催化酚醛树脂原位形成碳纳米管,促进了单质硅粉与制品中的碳源(酚醛树脂裂解含碳气体、固体残余碳以及碳粉原料)形成高导SiC晶须网络,不仅能填充制品内部气孔,而且还能实现高导电碳粉的相互连接,达到制品内部的三维高导电互通,降低制品三维方向的界面电阻以及制品电阻率的各向异性;且原位形成的碳纳米管和SiC晶须网络还能有效提高制品的高温力学性能,实现制品低电阻率和高强度的协同兼顾。
(3)本具体实施方式引入的纳米铜粉,除催化碳纳米管生成外,还能有效吸附酚醛树脂热解产生的含碳气相物质,提高酚醛树脂残碳率的同时,还能降低酚醛树脂因热解形成的气孔率,达到致密化炭块的目的,进而降低制品对空气和二氧化碳的活性,降低炭耗和延长制品使用寿命;其次,未反应完全的纳米铜粉同样作为高导相存在于制品中,同样起到降低电阻率的效果,能提高制品的导电性。
本具体实施方式所制备的铝电解用低电阻率阳极炭块经检测:其平行于机压方向的电阻率为37.8~45.6μΩ·m;垂直于机压方向的电阻率为38.6~42.5μΩ·m;体积密度为1.62~1.65g/cm3;气孔率为17.6~19.3%;常温耐压强度为
58.8~63.6MPa。
因此,本具体实施方式所制备的铝电解用低电阻率阳极炭块具有电阻率低、体积密度大、气孔率低和强度高的特点,能够有效地降低电解铝生产过程中的能耗,降低生产成本,提高经济效益。

Claims (8)

1.一种铝电解用低电阻率阳极炭块的制备方法,其特征在于所述制备方法的步骤是:
步骤一、以75~85wt%的石油焦、5~15wt%的高导电碳粉、5~15wt%的沥青粉、4~8wt%的单质硅粉和1~2wt%的纳米铜粉为原料,混合均匀,制得混合料;再向所述混合料中加入占所述混合料8~18wt%的热固型酚醛树脂,在真空混碾机内搅拌30~60min,即得泥料;
步骤二、将所述泥料机压成型或冷等静压成型,再于100~160℃条件下烘干24~48h,即得阳极炭块坯体;
步骤三、将所述阳极炭块坯体置于高温烧结炉内,在埋碳气氛中,先以1~3℃/min的速率升温至600~800℃,再以3~5℃/min的速率升温至1000~1400℃,保温2~8h,然后随炉冷却至室温,制得铝电解用低电阻率阳极炭块。
2.如权利要求1所述的铝电解用低电阻率阳极炭块的制备方法,其特征在于所述石油焦的颗粒级配是:粒度<0.075mm占28~32wt%;粒度≥0.075mm且<1mm占15~19wt%;粒度≥1mm且<2mm占30~53wt%;粒度≥2mm且<5mm占0~23wt%。
3.如权利要求1所述的铝电解用低电阻率阳极炭块的制备方法,其特征在于所述高导电碳粉为鳞片石墨和微晶石墨的混合物,其中:鳞片石墨∶微晶石墨的质量比为1∶(0.5~1.5);所述鳞片石墨的平均粒度≤3μm,所述微晶石墨的平均粒度≤3μm,微晶石墨的C含量≥90wt%。
4.如权利要求1所述的铝电解用低电阻率阳极炭块的制备方法,其特征在于所述沥青粉的平均粒径≤45μm;沥青粉的残碳量≥55wt%。
5.如权利要求1所述的铝电解用低电阻率阳极炭块的制备方法,其特征在于所述单质硅粉的平均粒度≤45μm;单质硅粉的Si含量≥99wt%。
6.如权利要求1所述的铝电解用低电阻率阳极炭块的制备方法,其特征在于所述纳米铜粉的平均粒度≤50nm;纳米铜粉的Cu含量≥99.9wt%。
7.如权利要求1所述的铝电解用低电阻率阳极炭块的制备方法,其特征在于所述热固型酚醛树脂的残碳量≥45wt%。
8.一种铝电解用低电阻率阳极炭块,其特征在于所述铝电解用低电阻率阳极炭块是根据权利要求1~7项中任一项所述铝电解用低电阻率阳极炭块的制备方法所制备的铝电解用低电阻率阳极炭块。
CN202110735103.2A 2021-06-30 2021-06-30 一种铝电解用低电阻率阳极炭块及其制备方法 Active CN113336552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110735103.2A CN113336552B (zh) 2021-06-30 2021-06-30 一种铝电解用低电阻率阳极炭块及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110735103.2A CN113336552B (zh) 2021-06-30 2021-06-30 一种铝电解用低电阻率阳极炭块及其制备方法

Publications (2)

Publication Number Publication Date
CN113336552A true CN113336552A (zh) 2021-09-03
CN113336552B CN113336552B (zh) 2023-06-16

Family

ID=77481694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110735103.2A Active CN113336552B (zh) 2021-06-30 2021-06-30 一种铝电解用低电阻率阳极炭块及其制备方法

Country Status (1)

Country Link
CN (1) CN113336552B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613822B1 (en) 2022-01-10 2023-03-28 Shandong Shengquan New Materials Co., Ltd. Resin carbon anode green body and preparation method thereof, green body intermediate and preparation method thereof, and carbon anode and preparation method thereof
CN116409994A (zh) * 2022-01-10 2023-07-11 山东圣泉新材料股份有限公司 树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580331A (zh) * 2003-08-11 2005-02-16 姬军伟 新型铝电解用预焙阳极生块制备配方
CN103290430A (zh) * 2013-05-16 2013-09-11 中国矿业大学 一种电解铝用阳极钢爪保护环的制备方法
CN103855369A (zh) * 2012-12-05 2014-06-11 上海杉杉科技有限公司 一种锂电池负极材料及其制备方法
CN108439984A (zh) * 2018-05-14 2018-08-24 武汉科技大学 一种高抗氧化性石墨电极及其制备方法
CN109400163A (zh) * 2018-12-30 2019-03-01 山东圣泉新材料股份有限公司 一种炭素阳极及其制备方法和应用
CN110240466A (zh) * 2019-07-13 2019-09-17 南昌航空大学 一种含原位剥离的二维微纳米石墨片酚醛树脂结合的低碳超低碳含碳耐火材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580331A (zh) * 2003-08-11 2005-02-16 姬军伟 新型铝电解用预焙阳极生块制备配方
CN103855369A (zh) * 2012-12-05 2014-06-11 上海杉杉科技有限公司 一种锂电池负极材料及其制备方法
CN103290430A (zh) * 2013-05-16 2013-09-11 中国矿业大学 一种电解铝用阳极钢爪保护环的制备方法
CN108439984A (zh) * 2018-05-14 2018-08-24 武汉科技大学 一种高抗氧化性石墨电极及其制备方法
CN109400163A (zh) * 2018-12-30 2019-03-01 山东圣泉新材料股份有限公司 一种炭素阳极及其制备方法和应用
CN110240466A (zh) * 2019-07-13 2019-09-17 南昌航空大学 一种含原位剥离的二维微纳米石墨片酚醛树脂结合的低碳超低碳含碳耐火材料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613822B1 (en) 2022-01-10 2023-03-28 Shandong Shengquan New Materials Co., Ltd. Resin carbon anode green body and preparation method thereof, green body intermediate and preparation method thereof, and carbon anode and preparation method thereof
CN116409994A (zh) * 2022-01-10 2023-07-11 山东圣泉新材料股份有限公司 树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法
EP4209471A1 (en) * 2022-01-10 2023-07-12 Shandong Shengquan New Materials Co., Ltd. Resin carbon anode green body and preparation method thereof, green body intermediate and preparation method thereof, and carbon anode and preparation method thereof

Also Published As

Publication number Publication date
CN113336552B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN113336552A (zh) 一种铝电解用低电阻率阳极炭块及其制备方法
CN101255568B (zh) 一种铝电解用粒度级配功能梯度TiB2/C复合阴极及制备方法
CN101844926B (zh) 二硼化钛粉末造粒方法
CN105967718B (zh) 耐大电流镁电解用石墨阳极及其制备工艺
CN110620236B (zh) 一种锂离子电池用三相复合负极材料及其制备方法
CN111170757A (zh) 一种特种细颗粒石墨材料制备方法
CN103290430A (zh) 一种电解铝用阳极钢爪保护环的制备方法
CN109678509B (zh) 一种水性树脂基预焙碳阳极的制备方法
CN102674869B (zh) 一种铝电解槽下部侧壁用炭质复合材料及其制备方法
CN116462509B (zh) 一种光伏用等静压石墨及其制备方法和应用
CN115108833B (zh) 一种连铸石墨材料及其制备方法
CN112110730A (zh) 储热材料用组合物和储热材料及其制备方法
CN101724864B (zh) 一种非石墨化导电碳阳极材料的制备方法
CN100494507C (zh) 高体密半石墨质阴极炭块及其生产方法
CN108155385A (zh) 一种锂电池生产用石墨负极材料制备方法
CN103387221A (zh) 一种铝电解槽用无沥青结合阴极炭块材料及其生产方法
CN102290141A (zh) 一种用废碳阳极生块、生产密闭糊的方法
CN108002854B (zh) 一种高导热高抗蚀电煅煤基炭砖及其制备方法
CN114149269B (zh) 铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备方法
CN115140724B (zh) 储热碳材料及其制备方法与应用、用于制备储热碳材料的组合物
JP2000007436A (ja) 黒鉛材及び黒鉛材の製造方法
CN100350077C (zh) 铝电解槽用石墨化阴极炭块及其制造方法
CN110416544B (zh) 块体半闭孔催化石墨化制备高容量人造石墨负极材料的方法
CN108892135B (zh) 利用焙烧碎做艾奇逊型石墨化炉内电阻填料进行石墨化的方法
RU2443623C1 (ru) Способ получения графитированного материала с повышенной абразивной стойкостью

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant