CN114149269B - 铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备方法 - Google Patents

铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备方法 Download PDF

Info

Publication number
CN114149269B
CN114149269B CN202111473931.XA CN202111473931A CN114149269B CN 114149269 B CN114149269 B CN 114149269B CN 202111473931 A CN202111473931 A CN 202111473931A CN 114149269 B CN114149269 B CN 114149269B
Authority
CN
China
Prior art keywords
sic
aln
solid solution
powder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111473931.XA
Other languages
English (en)
Other versions
CN114149269A (zh
Inventor
李勇
马晨红
岳茜
韩基铄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202111473931.XA priority Critical patent/CN114149269B/zh
Publication of CN114149269A publication Critical patent/CN114149269A/zh
Application granted granted Critical
Publication of CN114149269B publication Critical patent/CN114149269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于耐火材料领域,尤其涉及一种铝电解槽侧墙用AlN‑SiC固溶体结合SiC复合耐火材料及其制备方法。所述AlN‑SiC固溶体结合SiC复合耐火材料包括如下原料组成:65~90wt%的碳化硅、5~20wt%的铝粉、5~10wt%的硅粉、0~5wt%的碳粉,外加2~5wt%的结合剂。将上述原料与结合剂混合均匀后压制成型并干燥,得到低碳Al‑Si‑SiC复合坯体,于1450℃~2000℃埋碳气氛下烧成,制得AlN‑SiC固溶体结合SiC复合耐火材料。本发明针对现有技术中铝电解槽用Si3N4‑SiC复合材料中的Si3N4结合相在服役过程中易与Al液、冰晶石等发生反应,导致材料结构破坏、使用性能大大降低,创新地在Si‑SiC复合体系中进一步引入金属Al,并在高温下原位合成化学稳定性更高、综合性能更优的AlN‑SiC固溶体结合相,制备新型AlN‑SiC固溶体结合SiC复合耐火材料。

Description

铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备 方法
技术领域
本发明属于耐火材料领域,尤其涉及一种铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及其制备方法。
背景技术
高温熔盐电解法是目前普遍采用的铝电解生产方式。电解槽的寿命以及稳定性一直是工业生产最为关心的课题之一。炭素材料由于价格低廉,一直被用作侧壁内衬材料,但容易被高温的冰晶石电解质侵蚀,造成内衬的破损,而且易被氧化、冲刷,造成侧壁炭块的剥落,严重影响了电解槽寿命。Si3N4-SiC复合材料由于导热性好、耐侵蚀、抗氧化、绝缘性好,有利于电解槽内炉帮的形成,因此现代工业铝电解槽一般采用Si3N4-SiC复合材料作为槽侧部材料。Si3N4-SiC复合材料虽然比炭素材料具有较多的优势,但Si3N4-SiC复合材料在电解槽中使用时,由于受较多因素的综合作用,该复合材料还是会发生一定程度的腐蚀,使用效果不甚理想。
Si3N4-SiC复合材料是通过Si-SiC坯体高温氮化生成,高温下坯体中的Si与N2反应生成Si3N4结合相,将SiC颗粒结合起来,使其具有一定的强度。在铝电解槽应用时,Si3N4结合相是Si3N4-SiC复合材料的薄弱点,SiC相比Si3N4表现出更好的化学稳定性和抗腐蚀能力。在铝电解槽服役过程中:(1)Si3N4易与HF气体发生反应,生成SiF4而被腐蚀;(2)电解温度下,Si3N4亦会与铝液发生反应,生成AlN和Si,而AlN极易水化,会加速材料的腐蚀和损毁;(3)由于铝液中通常还有一定量的钠元素,材料容易发生钠蒸汽渗透作用以及空气和阳极气体的渗透,从而导致Na(g)和Si3N4之间发生化学反应生成Na2SiO3,造成材料的腐蚀。综合以上,铝电解过程中,气体、电解质和铝液均会导致Si3N4不稳定发生转化,导致Si3N4-SiC复合材料失效。
研发一种铝电解槽用高性能SiC基复合材料及其制备方法是本发明亟需解决的问题。
发明内容
为解决现有技术中铝电解槽用Si3N4-SiC复合材料中Si3N4结合相易被腐蚀,化学稳定性较差,导致材料使用性能不佳等不足和缺陷,本发明提供一种新型高性能铝电解槽用AlN-SiC固溶体结合的SiC复合耐火材料及其制备方法。
本发明所采用的技术方案如下。一种AlN-SiC固溶体结合的SiC复合耐火材料,所述复合材料的原料组成按重量百分比计为:碳化硅65%~90%,铝粉5%~20%,硅粉5%~10%,碳粉0~5%,外加结合剂2~5%。
进一步地,所述碳化硅包括粒度为3~0.5mm和0.5~0mm的碳化硅骨料,以及碳化硅细粉,其中粒度为3~0.5mm和0.5~0mm的碳化硅骨料的质量百分比为60%~85%,碳化硅细粉的质量百分比为5~30%。
作为优选,所述结合剂为热固性酚醛树脂结合剂。
本发明还提供了上述AlN-SiC固溶体结合的SiC复合耐火材料的制备方法,步骤如下:将碳化硅、铝粉、硅粉、碳粉和结合剂混合均匀后压制成型,得到低碳Al-Si-SiC复合坯体;
将低碳Al-Si-SiC复合坯体干燥后置于匣钵中,在工业窑炉埋碳条件下进行低温保温,再升温进行高温烧成,使体系中Al、Si、C和CO(g)、N2(g)等各组分之间充分反应,原位合成AlN-SiC固溶体结合相。
作为优选,将低碳Al-Si-SiC复合坯体在150℃~300℃干燥8~24h。
作为优选,所述的在埋碳气氛下低温保温为在500℃~620℃温度范围内保温1~10h,再进一步升温至1450℃~2000℃保温1~24h烧成,升温速率为3~20℃/min。
作为优选,所述窑炉为隧道窑。
在埋碳气氛中500℃~620℃温度范围保温过程中,金属Al粉颗粒表面优先缓慢氮化,生成高熔点的AlN包覆膜,形成Al@AlN包覆结构;随着温度升高至660℃,金属Al熔融,高熔点的AlN包覆层可将Al(l)固定在膜内,防止低温铝液过早地堵塞气孔,阻碍反应的进行;随着温度进一步升高,AlN包覆膜破裂,高活性的Al(l)逸出,裹挟破碎的细小的AlN微粒在结构中迁移并进一步发生反应;高温下,在AlN微粒的诱导作用下,金属Al进一步与N2反应生成高活性的AlN中间体。AlN-SiC固溶体具有和AlN相同的晶体结构,在早期形成的AlN中间体的作用下,AlN-SiC固溶体形成所需的势能大大降低。因此,部分Si、C以原子形式向AlN固溶,进一步生成更加稳定的AlN-SiC固溶体;部分Al(g)、Si(g)、N2(g)和CO(g)在AlN中间体的诱导下直接反应生成AlN-SiC固溶体。当烧成温度高于1700℃时,体系中的SiC细粉进一步参与反应,与AlN固溶生成更加稳定的AlN-SiC固溶体。
本发明技术关键点在于
对比文件《SiC-AlN固溶体结合Al2O3-C复合滑板制备方法》(申请号:CN201910678127.1),以Al2O3、C、Al、Si粉为原料,在1450~1700℃氮气气氛下热处理,通过基质中的Al、Si、C粉和N2之间的化学反应,制得AlN-SiC固溶体结合的Al2O3-C复合滑板。与对比文件相比,本发明具有以下几点优势和创新:(1)与对比文件相比,本发明采用SiC为骨料,热处理温度更高,更有利于AlN-SiC固溶体的合成。SiC是非氧化物耐火材料,具有高熔点(2700℃)、化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好、抗冰晶石侵蚀性能优异等优势。一方面,与Al2O3相比,SiC基体材料可以满足铝电解槽应用需求;另一方面,以SiC为基体,材料可承受的热处理温度更高,更有利于AlN-SiC的合成。(2)对比文件通过在1450~1700℃氮气气氛下热处理,利用Al与氮气、Si和C之间的气-液和固-固反应分别生成AlN和SiC(包括α-SiC、β-SiC)相,其中具有相同晶体结构的AlN和α-SiC(纤锌矿结构)进一步相互固溶,生成AlN-SiC固溶体。然而,固态Si与固态的C反应,在1450~1700℃温度范围内极易生成稳定的β-SiC(立方结构)副产物,影响AlN-SiC固溶体产量,导致材料性能不理想。本发明中,将低碳Al-Si-SiC置于匣钵中高温埋碳气氛下烧成,利用Al和Si与气氛中的N2(g)和CO(g)反应直接生成AlN-SiC固溶体相,具有动力学优势,无副产物。(3)与对比文件中的Al2O3基体相比,本发明中的SiC基体与AlN-SiC固溶体的晶体结构相近,二者的相容性更佳,结合强度更高。同时,本发明中使用的SiC既是基体材料,也是原位合成AlN-SiC固溶体的反应物,从而实现了高强度的反应结合。
有益效果:本发明针对现有铝电解槽用Si3N4-SiC复合材料化学稳定性不佳,使用性能不理想。在铝电解槽服役环境下,Si3N4结合相易与HF气体、Al液、冰晶石等发生化学反应,导致材料结构破坏,使用性能大大降低。本发明以碳化硅、铝粉、硅粉、碳粉为原料制得低碳Al-Si-SiC复合坯体,通过将干燥后的坯体在氮气气氛下500~620℃保温引入Al@AlN包覆结构,提高了金属Al的释放及反应温度,并引入了高活性的AlN中间相作为晶核,在高温下诱导体系中Al、Si、C和CO(g)、N2(g)进一步反应生成相同晶体结构的AlN-SiC固溶体,制得AlN-SiC固溶体结合的SiC复合材料。与Si3N4相比,AlN-SiC固溶体具有优异的化学稳定性和抗侵蚀性能,更适宜应用于铝电解工业,可大大提高铝电解槽用耐火材料的使用寿命。具体表现如下:
(1)在铝电解温度下,现有技术中Si3N4-SiC复合材料中的Si3N4易与Al液发生反应,生成AlN和Si产物,除会污染铝液,AlN的水化还会导致材料粉化、损毁。本发明中AlN-SiC固溶体不与金属铝液反应,且不易被铝液润湿,具有更加优异的抗侵蚀性和化学稳定性,且抗水化性能优异;
(2)在铝电解服役过程中,现有技术中Si3N4-SiC复合材料中的Si3N4结合相还会与冰晶石、含氟蒸气发生化学反应,造成腐蚀和材料损毁。本发明中AlN-SiC固溶体不会与冰晶石、含氟蒸气发生反应,化学稳定性优异,可保持材料结构、性能的稳定,从而实现铝电解槽用耐火材料的长寿化发展。
具体实施方式
实施例1
将70wt.%的碳化硅骨料、5wt.%的碳化硅细粉、10wt.%的铝粉、10wt.%的硅粉和5wt.%的碳粉混合,外加上述混合料3wt.%的酚醛树脂结合剂,混炼均匀,压制成型制得低碳Al-Si-SiC复合材料坯体,并在200℃干燥24小时。将干燥后的低碳Al-Si-SiC复合材料坯体于580℃埋碳气氛下保温4h,再进一步升温至1600℃保温4h烧成,制得AlN-SiC固溶体结合的SiC复合耐火材料。
所得AlN-SiC固溶体结合的SiC复合耐火材料经检测,显气孔率为12.2%,体积密度为2.70g/cm3,常温耐压强度为276MPa。
实施例2
将68wt.%的碳化硅骨料、10wt.%的碳化硅细粉、15wt.%的铝粉、5wt.%的硅粉和2wt.%的碳粉混合,外加上述混合料4wt.%的酚醛树脂结合剂,混炼均匀,压制成型制得低碳Al-Si-SiC复合材料坯体,并在200℃干燥18小时。将干燥后的低碳Al-Si-SiC复合材料坯体于500℃埋碳气氛下保温8h,再进一步升温至1450℃保温8h烧成,制得AlN-SiC固溶体结合的SiC复合耐火材料。
所得AlN-SiC固溶体结合的SiC复合耐火材料经检测,显气孔率为11.7%,体积密度为2.72g/cm3,常温耐压强度为324MPa。
实施例3
将60wt.%的碳化硅骨料、5wt.%的碳化硅细粉、20wt.%的铝粉、10wt.%的硅粉和5wt.%的碳粉混合,外加上述混合料4wt.%的酚醛树脂结合剂,混炼均匀,压制成型制得低碳Al-Si-SiC复合材料坯体,并在200℃干燥12小时。将干燥后的低碳Al-Si-SiC复合材料坯体于580℃埋碳气氛下保温8h,再进一步升温至1700℃保温3h烧成,制得AlN-SiC固溶体结合的SiC复合耐火材料。
所得AlN-SiC固溶体结合的SiC复合耐火材料经检测,显气孔率为13.3%,体积密度为2.71g/cm3,常温耐压强度为378MPa。
实施例4
将85wt.%的碳化硅骨料、5wt.%的碳化硅细粉、5wt.%的铝粉、5wt.%的硅粉混合,外加上述混合料4wt.%的酚醛树脂结合剂,混炼均匀,压制成型制得低碳Al-Si-SiC复合材料坯体,并在300℃干燥10小时。将干燥后的低碳Al-Si-SiC复合材料坯体于620℃埋碳气氛下保温8h,再进一步升温至1800℃保温2h烧成,制得AlN-SiC固溶体结合的SiC复合耐火材料。
所得AlN-SiC固溶体结合的SiC复合耐火材料经检测,显气孔率为14.0%,体积密度为2.70g/cm3,常温耐压强度为233MPa。
实施例5
将72wt.%的碳化硅骨料、3wt.%的碳化硅细粉、20wt.%的铝粉、5wt.%的硅粉混合,外加上述混合料4wt.%的酚醛树脂结合剂,混炼均匀,压制成型制得低碳Al-Si-SiC复合材料坯体,并在150℃干燥24小时。将干燥后的低碳Al-Si-SiC复合材料坯体于600℃埋碳气氛下保温2h,再进一步升温至2000℃保温1h烧成,制得AlN-SiC固溶体结合的SiC复合耐火材料。
所得AlN-SiC固溶体结合的SiC复合耐火材料经检测,显气孔率为13.6%,体积密度为2.73g/cm3,常温耐压强度为293MPa。

Claims (2)

1.一种铝电解槽侧墙用AlN-SiC固溶体结合的SiC复合耐火材料的制备方法,其特征在于,所述材料包括如下质量分数的原料组成:65~90wt%的碳化硅、5~20wt%的铝粉、5~10wt%的硅粉、0~5wt%的碳粉,外加2~5wt%的结合剂,所述结合剂为酚醛树脂;
所述制备方法包括如下步骤:
(1)将碳化硅骨料、碳化硅细粉、铝粉、硅粉、碳粉和结合剂按配比称量,搅拌均匀,制成泥料;
(2)采用压力机将步骤(1)中的泥料压制成坯体,经干燥、烧结工序制得AlN-SiC固溶体结合的SiC复合耐火材料;
步骤(2)中首先将坯体在150~300℃温度范围内干燥10~50小时,将干燥后的坯体置于匣钵中,在隧道窑埋碳条件下于500℃~620℃温度范围内保温1~10h,再以3~20℃/min速率升温至1450℃~2000℃进行原位反应合成,反应合成保温时间为1~24小时。
2.根据权利要求1所述的AlN-SiC固溶体结合的SiC复合耐火材料的制备方法,其特征在于:所述碳化硅包括粒度为3~0.5mm和0.5~0mm的碳化硅骨料,以及碳化硅细粉;其中粒度为3~0.5mm和0.5~0mm的碳化硅骨料的质量百分比为60%~85%,碳化硅细粉的质量百分比为5~30%。
CN202111473931.XA 2021-12-02 2021-12-02 铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备方法 Active CN114149269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111473931.XA CN114149269B (zh) 2021-12-02 2021-12-02 铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111473931.XA CN114149269B (zh) 2021-12-02 2021-12-02 铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备方法

Publications (2)

Publication Number Publication Date
CN114149269A CN114149269A (zh) 2022-03-08
CN114149269B true CN114149269B (zh) 2022-11-04

Family

ID=80452406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111473931.XA Active CN114149269B (zh) 2021-12-02 2021-12-02 铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备方法

Country Status (1)

Country Link
CN (1) CN114149269B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536397B (zh) * 2022-10-30 2023-06-16 中钢集团洛阳耐火材料研究院有限公司 一种用于埋碳气氛的自修复碳化硅耐火材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031799B2 (ja) * 1979-11-30 1985-07-24 黒崎窯業株式会社 SiC−Si↓3N↓4系複合耐熱セラミツクス材料及びその製造方法
WO1987001693A1 (en) * 1985-09-20 1987-03-26 Ceramatec, Inc. Dense ceramics containing a solid solution and method for making the same
US5371049A (en) * 1989-01-09 1994-12-06 Fmc Corporation Ceramic composite of silicon carbide and aluminum nitride
ES2111292T3 (es) * 1993-04-02 1998-03-01 Dow Chemical Co Nitruro de aluminio, nitruro de aluminio que contiene soluciones solidas y compuestos de nitruro de aluminio preparados por sintesis por combustion.
FR2727400B1 (fr) * 1994-11-24 1996-12-27 Savoie Refractaires Nouveaux materiaux formes de grains refractaires lies par une matrice de nitrure d'aluminium ou de sialon contenant du nitrure de titane et des particules de graphite et/ou de nitrure de bore dispersees
CN100381398C (zh) * 2005-07-29 2008-04-16 南京理工大学 AlN-Si3N4-SiC陶瓷材料的制备方法
CN104926309B (zh) * 2015-06-12 2016-10-12 中国科学院上海硅酸盐研究所 一种无硼或稀土元素的致密碳化硅陶瓷的制备方法
CN104926310B (zh) * 2015-06-12 2016-11-09 中国科学院上海硅酸盐研究所 一种氮化铝改性的碳化硅陶瓷粉体及其制备方法
CN110436901A (zh) * 2019-07-25 2019-11-12 北京科技大学 一种SiC-AlN固溶体结合Al2O3-C复合滑板及其制备方法
CN110436902A (zh) * 2019-07-29 2019-11-12 北京科技大学 RH精炼炉用SiC-AlN固溶体结合棕刚玉耐火材料及其制备方法

Also Published As

Publication number Publication date
CN114149269A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN102730690B (zh) 一种Al4SiC4材料的合成方法
CN101423404B (zh) 一种Al4SiC4/SiC复合耐火材料及其制备方法
CN108863414B (zh) 一种高性能的镁碳砖及其制备方法
CN111807822B (zh) 一种添加铝硅合金低温烧制的铝锆碳滑板及其生产方法
CN101798232B (zh) 一种赛隆-碳化硅-刚玉复合耐火材料的制备方法
CN114149269B (zh) 铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备方法
CN101503302A (zh) 一种炉衬用炭质耐火材料及其制备方法
CN101423406B (zh) 一种Al4SiC4-Al2O3复合耐火材料及其制备方法
CN111410519A (zh) 一种添加钛酸铝的Al2O3-C滑板砖及其生产方法
CN104003737B (zh) 赛隆结合红柱石/SiC复合耐火材料及制备方法
CN104944979A (zh) 回转窑用耐火砖的制备方法
CN101591190B (zh) 一种铝电解槽侧墙用新型Si3N4-SiC-C耐火砖及其制备方法
CN110550940A (zh) 一种Ti(C,N)固溶体结合刚玉-尖晶石质耐火材料及其制备方法
CN107954710B (zh) 一种碳化硅结合钛铝酸钙复相耐火材料及其制备方法
CN110436901A (zh) 一种SiC-AlN固溶体结合Al2O3-C复合滑板及其制备方法
CN113336552A (zh) 一种铝电解用低电阻率阳极炭块及其制备方法
CN108585863A (zh) 一种高强度超微孔电煅煤基炭砖及其制备方法
CN101423407B (zh) 一种Al4SiC4-Al2OC复合耐火材料及其制备方法
CN108002854B (zh) 一种高导热高抗蚀电煅煤基炭砖及其制备方法
CN112250451B (zh) 一种高炉陶瓷杯用Al2OC-AlN固溶体结合刚玉耐火材料及制备方法
CN114349520A (zh) 一种高炉本体用Al4SiC4-SiC复合耐火材料及其制备方法
CN114956829A (zh) 一种干熄焦斜道用氮化硅结合碳化硅砖及其制备方法
CN1108212C (zh) 含塞隆的滑动水口砖
CN117401987A (zh) 一种高炉用不烧Al-SiC耐火材料及其制备方法
CN117164367A (zh) 一种Si2N2O和TiN共增强的SiC复合耐火材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant