CN117401987A - 一种高炉用不烧Al-SiC耐火材料及其制备方法 - Google Patents

一种高炉用不烧Al-SiC耐火材料及其制备方法 Download PDF

Info

Publication number
CN117401987A
CN117401987A CN202311263798.4A CN202311263798A CN117401987A CN 117401987 A CN117401987 A CN 117401987A CN 202311263798 A CN202311263798 A CN 202311263798A CN 117401987 A CN117401987 A CN 117401987A
Authority
CN
China
Prior art keywords
sic
aln
silicon carbide
refractory material
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311263798.4A
Other languages
English (en)
Inventor
李勇
韩基铄
李红霞
马晨红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Original Assignee
University of Science and Technology Beijing USTB
Sinosteel Luoyang Institute of Refractories Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB, Sinosteel Luoyang Institute of Refractories Research Co Ltd filed Critical University of Science and Technology Beijing USTB
Priority to CN202311263798.4A priority Critical patent/CN117401987A/zh
Publication of CN117401987A publication Critical patent/CN117401987A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于耐火材料领域,尤其涉及一种高炉用不烧Al‑SiC耐火材料及其制备方法。所述Al‑SiC耐火材料包括如下原料组成:60~97wt%的碳化硅,2~25wt%的金属铝粉,1~15wt%的碳黑,外加3~5wt%的酚醛树脂作为结合剂。将上述原料与结合剂经配料并均匀混合后,机压成型并于220℃~300℃干燥12h~48h,制得不烧Al‑SiC耐火材料。本发明针对现有技术中高炉用Si3N4‑SiC耐火材料中Si3N4作为结合相在长期服役过程中失效以及SiC基耐火材料制备工艺复杂化的问题,创新性地将Al引入到SiC基体,利用Al的高温活性,能够在其服役过程中与高炉中主要气氛(N2(g)+CO(g))反应进一步原位转化为高性能的AlN并固溶到SiC基体中,使其与SiC稳定结合,以解决耐火材料制备绿色化以及高炉用SiC基耐火材料长寿化的问题。

Description

一种高炉用不烧Al-SiC耐火材料及其制备方法
技术领域:
本发明属于耐火材料领域,尤其涉及一种高炉用不烧Al-SiC耐火材料及其制备方法。
背景技术
随着世界钢铁需求量的逐年增加,我国已然成为钢铁制造行业大国,并且多年居世界首位。随着资源短缺以及环境恶化,低碳环保和可持续发展已成为钢铁行业的首要任务。高炉炼铁是炼铁的主要方式,耐火材料是砌筑高炉的基础材料,其性能将直接决定高炉的循环使用周期,因此,开发并适应高炉长寿化用耐火材料同时实现其制备工艺的绿色化是亟待解决的问题。
非氧化物复合耐火材料不仅具有传统氧化物耐火材料的高熔点、优异的高温力学和热学性能,还兼具含碳耐火材料优良的抗侵蚀和抗热震能力,同时在服役过程中不会对钢水产生增碳等问题,已成为现阶段复合耐火材料的研究热点。其中,SiC基复合耐火材料是非氧化物耐火材料的典型代表,其具有高温强度高、导热系数大、抗热震性能好、热膨胀系数低、抗侵蚀性能好、不会被有色金属润湿等特点而被广泛应用于钢铁冶金等高温工业,是新一代耐火材料的核心原料。其中,Si3N4-SiC耐火材料已成功应用于高炉体系,然而,随着高炉服役周期的延长,Si3N4-SiC耐火材料服役过程的问题也被不断暴露出来。高炉体系内碱金属侵蚀及循环热冲击的作用会严重危害Si3N4-SiC耐火材料的使用寿命,导致砖体内部形成循环受损机制,即:砖体基体氧化→碱金属侵蚀→渣壳剥落→基体暴露再次被氧化。此外,高炉体系内主要气体组成为N2(g)+CO(g),Fe易侵蚀Si3N4形成Fe-Si合金,在Fe-Si合金和CO(g)的协同作用下,致使Si3N4向SiC转化,最终导致结合相Si3N4逐渐消失而失去结合强度。
此外,Si3N4和SiC同属共价化合物,高温下仍具有较高的键合强度,低温常压下难以将二者实现致密化烧结,往往需要高压或借助特殊的烧结工艺,限制了其工业化大型生产。因此,对于目前Si3N4-SiC耐火材料的制备工艺,普遍是在SiC原料中掺入Si粉,机压成型后坯体在高纯氮气气氛中于1400℃左右烧成。然而,材料在氮化过程中需要坯体内部的Si粉需实现完全氮化(游离Si≤1wt%),因此需要制定特殊的氮化工艺或使用高纯度氮气,这无疑会增加工业化制备成本。因此,开发一种高温性能更加稳定的SiC基耐火材料服役于高炉体系,同时使其制备工艺绿色化、节能化,是本发明亟待解决的问题。
发明内容
为改善SiC基耐火材料应用于高炉体系中出现结合相失效的问题,同时使材料在制备工艺过程中实现绿色化、节能化,本发明创新性地研制出一种无需高温预烧结的高炉用不烧Al-SiC耐火材料。利用金属Al的高活性使其在服役过程中与高炉中主要气氛(N2(g))反应进一步原位转化为高性能的AlN并实现与SiC的无限固溶,随着其服役周期的延长,最终完全转化为AlN-SiC固溶体耐火材料,最终实现高炉稳定运行、安全长寿的目的。
本发明所采取的技术方案如下:以碳化硅、金属铝粉和碳黑为原料,所述原料组成按照以下重量百分比计:碳化硅60~97wt%,金属铝粉2~25wt%,碳黑1~15wt%,同时外加3~5wt%的结合剂。
作为优选,所述结合剂选用热固性酚醛树脂。
作为优选,所述碳化硅包括粒度为3~1mm、1~0mm的颗粒料,以及≤0.088mm的碳化硅细粉,其中碳化硅颗粒料质量占比为55%~85%,碳化硅细粉的质量占比5%~12%。
如上所述不烧Al-SiC耐火材料的制备方法,包括如下步骤:
(1)将碳化硅颗粒料、碳化硅细粉、金属铝粉、碳黑和酚醛树脂按配比精准称量,随后搅拌40min~60min并使其混合均匀;
(2)利用压力机将步骤(1)中的混合料压制成砖坯,随后将砖坯置于220℃~300℃干燥窑中经12h~48h后制得不烧Al-SiC耐火材料。
在本技术方案中,金属Al是耐火材料中常用的原料,酚醛树脂经220℃~300℃干燥后能够将颗粒料与细粉紧密包裹在一起,低温下利用金属Al的塑形变形实现塑形成型,提高坯体致密度以提高强度。将不烧Al-SiC耐火材料应用于高炉体系中,Al能够利用其服役环境原位转化为AlN,随着服役周期的延长,Al能够完全转化为AlN并且与SiC实现无限固溶,最终形成性能更加稳定的AlN-SiC固溶体耐火材料。AlN因其高导热性、低热膨胀性能、低介电常数和高热震稳定性等性能,已被广泛应用于金属熔炼、电子器件等领域,然而,自然条件下AlN极易水化使其应用受到一定限制。SiC存在多个晶相,而AlN只有唯一的2H相(纤锌矿型),SiC和AlN在一定条件下能够形成固溶体,由于SiC和AlN之间具有高度的共价键结合特征,在2000℃以下很难结合,往往需要高温高压或借助特殊的烧结工艺。α-SiC与AlN结构相似,晶格常数相差极小,它比β-SiC能更好地与2H-AlN致密结合形成固溶体,使材料兼具氮化物的优异抗铁水侵蚀性能及碳化物的抗热震稳定性能,以此能够解决单一SiC材料的易氧化及单一AlN材料的易水化问题。
当高炉内温度达到660℃以上时,金属Al熔化形成液相,以此加快了Al原子的迁移速率,Al(l)能够与环境中N2(g)通过液-气反应形成AlN,由于新生AlN具有较高活性,因此能够较大程度上降低AlN-SiC固溶体的激活能并使其在低温下形成。同时,部分Al(l)夹杂高温下酚醛树脂裂解所产生的高活性纳米级残C沿着材料内部气孔通道流动,当流动至SiC颗粒表面时,高比表面积的残C能够增加Al对SiC的润湿性,随后Al(l)和N以原子的形式向SiC表面沉积并逐渐向SiC内部扩散最终在SiC颗粒表面形成固溶体层,这一过程能够阻碍SiC晶粒过分长大,从而促使材料实现致密化烧结。随着AlN的原位形成,AlN-SiC固溶体的晶粒尺寸明显细化,呈现多层次效应,固溶体的形成所引起的一次晶粒细化和晶内亚晶界所引起的二次晶粒细化均有利于材料综合使用性能的提高。同时由于AlN-SiC固溶体的形成存在多种路径,其形貌及其位置可能存在差异,起到了多形貌、多点位协同增韧的作用。
本技术方案中,金属Al作为塑性中间相能够在高炉运转过程中原位转化为AlN并与SiC基体无限固溶,原位合成的AlN-SiC固溶体材料热力学性能稳定、界面结合无污染,结合强度高,解决了SiC基耐火材料高温下结合相失效以及制备工艺繁琐等问题,真正意义上实现了材料制备工艺绿色化、节能化。此外,随着高炉运转周期的延长,砖体内未反应的Al可在环境中N2(g)的持续催化作用下不断转化为AlN,随后固溶到SiC基体中,使材料具有自形成以及梯度转化的特点,延长材料的使用寿命。
有益效果:
本发明针对目前高炉用Si3N4-SiC耐火材料中Si3N4在服役过程中失效从而无法达到高炉稳定长寿的需求,同时考虑目前制备Si3N4-SiC耐火材料复杂的氮化工艺以及高昂的成本。本发明创新地将金属Al作为原料引入到SiC基体中,制备不烧Al-SiC耐火材料。利用Al的高活性,使其在高炉内部服役过程中原位形成AlN并向SiC基体无限固溶,随着服役周期的延长,最终完全转化为AlN-SiC固溶体耐火材料,有效地解决了SiC基耐火材料结合相失效的问题,同时省略传统耐火材料的烧结工序使其制备工艺趋向绿色化、节能化。具体如下:
(1)对比目前Si3N4-SiC耐火材料的制备工艺,通过将Si粉引入到SiC基体中压成生坯,随后在高温氮气气氛下经过分段升温等复杂的氮化工艺才能使Si粉实现完全氮化,存在高成本、高能耗、高污染等问题。本技术利用砖坯中Al的高温活性,在服役期间能够原位转化为AlN,并与SiC基体无限固溶,随着高炉运转周期的延长,最终自发转化为AlN-SiC固溶体耐火材料。可简化材料的制备工艺,以达到绿色化、节能化的目的。
(2)对比目前AlN-SiC固溶体材料的制备工艺,本技术通过砖坯中的金属Al在高炉环境服役过程中原位转化为AlN结合相,省去了传统工艺中AlN预合成再引入的二次合成工序。同时解决了传统工艺中引入的AlN结合相存在颗粒尺寸粗大,导致与SiC界面结合强度低等缺点。通过原位合成得到的AlN结合相热力学性能稳定,颗粒尺寸与SiC相匹配,能够达到与SiC颗粒界面结合无污染,结合强度高等优点。
(3)AlN的熔点高达2517℃,远高于目前高炉用SiC基耐火材料结合相Si3N4的熔点(1870℃)。因此,AlN-SiC固溶体耐火材料在高温下的性能更加稳定,可满足未来高炉体系更高冶炼温度的需求。
(4)AlN-SiC固溶体的形成能够使材料兼具氮化物的优异抗铁水侵蚀性能及碳化物的抗热震稳定性能,解决了单一SiC材料的易氧化及单一AlN材料的易水化问题,能够很好地满足高炉用高性能长寿化耐火材料的迫切需求。
(5)由于材料内部AlN-SiC固溶体的形成存在多种路径,导致其形成位置及形貌存在差异。因此AlN-SiC固溶体能够起到多点位、多形貌协同增韧的作用,有助于提高材料的综合使用性能。
具体实施方式
实施例1
将80wt%的碳化硅颗粒料、5wt%的碳化硅细粉、10wt%的金属铝粉和5wt%的碳黑预先混合25min,随后外加4wt%的酚醛树脂作为结合剂继续混合25min,待混合均匀后压制成砖坯,随后将砖坯置于干燥窑中240℃经24h后制得不烧Al-SiC耐火材料。
实施例2
将85wt%的碳化硅颗粒料、12wt%的碳化硅细粉、2wt%的金属铝粉和1wt%的碳黑预先混合20min,随后外加3wt%的酚醛树脂作为结合剂继续混合20min,待混合均匀后压制成砖坯,随后将砖坯置于干燥窑中220℃经12h后制得不烧Al-SiC耐火材料。
实施例3
将55wt%的碳化硅颗粒料、5wt%的碳化硅细粉、25wt%的金属铝粉和15wt%的碳黑预先混合30min,随后外加5wt%的酚醛树脂作为结合剂继续混合30min,待混合均匀后压制成砖坯,随后将砖坯置于干燥窑中300℃经48h后制得不烧Al-SiC耐火材料。
实施例4
将65wt%的碳化硅颗粒料、15wt%的碳化硅细粉、15wt%的金属铝粉和5wt%的碳黑预先混合30min,随后外加5wt%的酚醛树脂作为结合剂继续混合30min,待混合均匀后压制成砖坯,随后将砖坯置于干燥窑中300℃经48h后制得不烧Al-SiC耐火材料。
实施例5
将70wt%的碳化硅颗粒料、24wt%的碳化硅细粉、5wt%的金属铝粉和1wt%的碳黑预先混合30min,随后外加4wt%的酚醛树脂作为结合剂继续混合30min,待混合均匀后压制成砖坯,随后将砖坯置于干燥窑中240℃经24h后制得不烧Al-SiC耐火材料。

Claims (6)

1.一种高炉用不烧Al-SiC耐火材料,其特征在于,所述材料包括如下质量分数的原料组成:60~97wt%的碳化硅,2~25wt%的金属铝粉,1~15wt%的碳黑,外加3~5wt%的结合剂。
2.根据权利要求1所述的不烧Al-SiC耐火材料,其特征在于:所述结合剂选用热固性酚醛树脂。
3.根据权利要求1所述的不烧Al-SiC耐火材料,其特征在于:所述碳化硅包括粒度为3~1mm、1~0mm的颗粒料,以及碳化硅细粉;其中粒度为3~1mm、1~0mm的碳化硅颗粒料占比为55%~85%,碳化硅细粉的质量占比5%~12%。
4.根据权利要求1或2或3所述的不烧Al-SiC耐火材料的制备方法,其特征在于,包括如下步骤:
(1)将碳化硅颗粒料、碳化硅细粉、金属铝粉、碳黑和结合剂按配比精准称量,随后搅拌40~60min并使其混合均匀;
(2)利用压力机将步骤(1)中的混合料压制成砖坯,随后将砖坯置于220℃~300℃干燥窑中经12h~48h制得不烧Al-SiC耐火材料。
5.根据权利要求3所述的不烧Al-SiC耐火材料的制备方法,其特征在于:步骤(1)中首先将碳化硅颗粒料、碳化硅细粉、碳黑以及铝粉预先混合20~30min,随后加入酚醛树脂结合剂继续混合20~30min至混合均匀。
6.根据权利要求4所述的不烧Al-SiC耐火材料的制备方法,所述不烧Al-SiC耐火材料具有以下技术特征,
(1)利用砖坯中Al的高温活性,在服役期间能够原位转化为AlN,并与SiC基体无限固溶,随着高炉运转周期的延长,最终自发转化为AlN-SiC固溶体耐火材料,可简化材料的制备工艺,以达到绿色化、节能化的目的;
(2)通过砖坯中的金属Al在高炉环境服役过程中原位转化为AlN结合相,省去了传统工艺中AlN预合成再引入的二次合成工序;解决了传统工艺中引入的AlN结合相存在颗粒尺寸粗大,导致与SiC界面结合强度低缺点;通过原位合成得到的AlN结合相热力学性能稳定,颗粒尺寸与SiC相匹配,与SiC颗粒界面结合无污染,结合强度高;
(3)AlN的熔点高达2517℃,远高于目前高炉用SiC基耐火材料结合相Si3N4的熔点,使得AlN-SiC固溶体耐火材料在高温下的性能更加稳定,可满足未来高炉体系更高冶炼温度的需求;
(4)AlN-Si C固溶体的形成能够使材料兼具氮化物的优异抗铁水侵蚀性能及碳化物的抗热震稳定性能,解决了单一SiC材料的易氧化及单一AlN材料的易水化问题,能够很好地满足高炉用高性能长寿化耐火材料的迫切需求;
(5)由于材料内部AlN-SiC固溶体的形成存在多种路径,导致其形成位置及形貌存在差异;因此AlN-SiC固溶体能够起到多点位、多形貌协同增韧的作用,有助于提高材料的综合使用性能。
CN202311263798.4A 2023-09-27 2023-09-27 一种高炉用不烧Al-SiC耐火材料及其制备方法 Pending CN117401987A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311263798.4A CN117401987A (zh) 2023-09-27 2023-09-27 一种高炉用不烧Al-SiC耐火材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311263798.4A CN117401987A (zh) 2023-09-27 2023-09-27 一种高炉用不烧Al-SiC耐火材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117401987A true CN117401987A (zh) 2024-01-16

Family

ID=89493400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311263798.4A Pending CN117401987A (zh) 2023-09-27 2023-09-27 一种高炉用不烧Al-SiC耐火材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117401987A (zh)

Similar Documents

Publication Publication Date Title
CN101423403B (zh) 一种碳硅化铝和碳化硅复合材料及其制备方法
CN101423404B (zh) 一种Al4SiC4/SiC复合耐火材料及其制备方法
CN110818437B (zh) 一种碳化硅-氧化物复合耐火制品的制备方法
CN111807822B (zh) 一种添加铝硅合金低温烧制的铝锆碳滑板及其生产方法
CN114988879B (zh) 一种大型复相反应烧结碳化硅制品及制备方法
CN101555150B (zh) 一种含纳米氧化锌的低碳镁碳砖
CN101423406B (zh) 一种Al4SiC4-Al2O3复合耐火材料及其制备方法
CN110483023B (zh) 一种微孔化刚玉砖及其制备方法
CN110963807A (zh) 一种用于水泥窑过渡带的节能型莫来石质耐火砖及其制备方法
CN117164348A (zh) 一种碳硅化铝晶须增强的氧化铝-碳化硅-碳免烧耐火材料及其制备方法和应用
CN101423407B (zh) 一种Al4SiC4-Al2OC复合耐火材料及其制备方法
CN114149269B (zh) 铝电解槽侧墙用AlN-SiC固溶体结合SiC复合耐火材料及制备方法
CN105152663B (zh) 一种氮化硅结合氮化硅铁材料的制备方法
CN111517798A (zh) 一种碳化物基陶瓷材料、制备方法及其应用
CN117401987A (zh) 一种高炉用不烧Al-SiC耐火材料及其制备方法
CN111892411B (zh) 氮化物-碳化硅-六铝酸钙复合耐火制品及其制备方法
CN114349520A (zh) 一种高炉本体用Al4SiC4-SiC复合耐火材料及其制备方法
CN101423405A (zh) 一种Al8B4C7-Al4O4C质复合耐火材料及其制备方法
CN112624743B (zh) 一种浇注成型的转炉出钢口挡渣用滑板砖及生产方法
CN1108212C (zh) 含塞隆的滑动水口砖
CN101423402A (zh) 一种含Al8B4C7的复合耐火材料及其制备方法
CN114605158A (zh) 一种钛合金熔炼用氮化物复合耐火材料及其制备方法
CN110423118B (zh) 一种用多晶硅废料生产的铜溜槽用复合陶瓷相防渗耐磨材料
CN115231907B (zh) 一种钒钛合金-刚玉复合滑板及其制备方法
CN102320847A (zh) 一种Al4SiC4-Al4Si2C5耐火材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination