WO2022203088A1 - 方向性電磁鋼板及びその製造方法 - Google Patents

方向性電磁鋼板及びその製造方法 Download PDF

Info

Publication number
WO2022203088A1
WO2022203088A1 PCT/JP2022/015221 JP2022015221W WO2022203088A1 WO 2022203088 A1 WO2022203088 A1 WO 2022203088A1 JP 2022015221 W JP2022015221 W JP 2022015221W WO 2022203088 A1 WO2022203088 A1 WO 2022203088A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
grain
less
oriented electrical
annealing
Prior art date
Application number
PCT/JP2022/015221
Other languages
English (en)
French (fr)
Inventor
将嵩 岩城
隆史 片岡
智仁 田中
秀行 濱村
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023509356A priority Critical patent/JPWO2022203088A1/ja
Priority to BR112023019084A priority patent/BR112023019084A2/pt
Priority to EP22775869.5A priority patent/EP4317469A4/en
Priority to KR1020237032208A priority patent/KR20230146647A/ko
Priority to CN202280022501.2A priority patent/CN117015627A/zh
Priority to US18/283,162 priority patent/US20240177901A1/en
Publication of WO2022203088A1 publication Critical patent/WO2022203088A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D13/00After-treatment of the enamelled articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D3/00Chemical treatment of the metal surfaces prior to coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • C23D5/04Coating with enamels or vitreous layers by dry methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2207/00Compositions specially applicable for the manufacture of vitreous enamels
    • C03C2207/04Compositions specially applicable for the manufacture of vitreous enamels for steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the same.
  • This application claims priority based on Japanese Patent Application No. 2021-053619 filed in Japan on March 26, 2021, the contents of which are incorporated herein.
  • a grain-oriented electrical steel sheet is a soft magnetic material and is mainly used as a core material for transformers. Therefore, grain-oriented electrical steel sheets are required to have magnetic properties such as high magnetization properties and low iron loss. Iron loss is power loss that is consumed as thermal energy when an iron core is excited by an alternating magnetic field. From the viewpoint of energy saving, iron loss is required to be as low as possible. Magnetic susceptibility, plate thickness, film tension, amount of impurities, electrical resistivity, crystal grain size, magnetic domain size, etc. affect the level of iron loss. Even today, when various techniques have been developed for grain-oriented electrical steel sheets, research and development to reduce core loss is continuing in order to improve energy efficiency.
  • Patent Literature 1 discloses that iron loss in both the L-direction and C-direction of a grain-oriented electrical steel sheet can
  • Patent Document 2 by scanning irradiation of a continuous wave laser beam, linear circulation magnetic domains are formed at substantially regular intervals and substantially perpendicular to the rolling direction of the steel plate to improve the iron loss characteristics.
  • a method for manufacturing an electrical steel sheet is disclosed.
  • the laser is a TEM 00 mode in which the laser light intensity distribution in the cross section perpendicular to the beam propagation direction has the maximum intensity near the center of the optical axis, and the rolling direction focused diameter d [mm] of the irradiation beam,
  • the scanning linear velocity V [mm/s] of the laser beam and the average output P [W] of the laser are in the ranges of 0 ⁇ d ⁇ 0.2 and 0.001 ⁇ P / V ⁇ 0.012. It is shown that a grain oriented electrical steel sheet with reduced loss is obtained.
  • Patent Literature 3 discloses a method of manufacturing a grain-oriented electrical steel sheet in which the surface of the grain-oriented electrical steel sheet is irradiated with laser beams at regular intervals to improve magnetic properties.
  • the laser is a pulse oscillation Q-switched CO2 laser
  • the irradiation beam shape is an ellipse with a long axis in the sheet width direction
  • the irradiation power density of the laser pulse is set to a film damage threshold or less on the steel sheet surface.
  • Magnetostriction here means that when the grain-oriented electrical steel sheet is excited by an alternating current, the outer shape of the grain-oriented electrical steel sheet changes slightly due to the change in the magnetization strength, resulting in the rolling direction of the grain-oriented electrical steel sheet.
  • the magnitude of this magnetostriction is very small, on the order of 10 ⁇ 6 , but the magnetostriction generates vibration in the iron core, which propagates to external structures such as transformer tanks. noise.
  • Patent Document 4 discloses a grain-oriented electrical steel sheet that has low core loss and produces little noise when incorporated into a transformer.
  • closure domain regions are formed in which the width in the rolling direction on the steel plate surface varies periodically, and each closure domain region has a ratio (Wmax /Wmin) is 1.2 or more and 2.2 or less, the average width Wave in the rolling direction on the surface of the steel sheet is 80 ⁇ m or more and 200 ⁇ m or less, the maximum depth D in the thickness direction is 32 ⁇ m or more, and (Wave ⁇ D)/s is 0.2 ⁇ m or more. It is shown that satisfying the condition of 0007 mm or more and 0.0016 mm or less makes it possible to achieve a better iron loss/noise balance than conventionally.
  • Patent Document 5 discloses a grain-oriented electrical steel sheet in which local strain is introduced in a direction transverse to the rolling direction at periodic intervals with respect to the rolling direction, and a linear reflux is formed in the vicinity of the strain.
  • a magnetic domain portion is formed, and in a demagnetized state, the magnetic domain has a rolling direction length of 1.2 mm or more extending from the closure domain portion in the rolling direction, and the magnetic domain extends along the closure domain portion.
  • 1.8 or more lines are formed on average per 1 mm, and when the line spacing of the closure domain portion is s (mm), the width of the closure domain portion is w (mm), and the plate width of the closure domain portion is w (mm).
  • a grain-oriented electrical steel sheet is disclosed that satisfies the relationships of 4 mm ⁇ s ⁇ 1.5 mm and hw/s ⁇ 0.9 ⁇ m with respect to the depth in the thickness direction: h ( ⁇ m).
  • Patent Document 5 suggests that the strain introduction amount index expressed in hw/s affects iron loss and noise.
  • Patent Documents 4 and 5 are not sufficient to improve the noise characteristics in order to meet the recent demand for better iron loss/noise balance. Furthermore, it has been found that the magnetic domain control also damages the film formed on the surface of the steel sheet in order to impart insulation and tension to the grain-oriented electrical steel sheet, thus reducing the film adhesion.
  • the present invention provides a grain-oriented electrical steel sheet with excellent iron loss characteristics and noise characteristics (large iron loss improvement rate due to magnetic domain refining and small noise when incorporated in a transformer: excellent balance between iron loss and noise);
  • An object of the present invention is to provide a manufacturing method thereof.
  • it is an object to provide a grain-oriented electrical steel sheet which is excellent in iron loss properties and noise properties, and further excellent in film adhesion.
  • the present inventors studied magnetic domain control conditions for obtaining grain-oriented electrical steel sheets with an excellent balance between iron loss characteristics and noise characteristics (iron loss/noise balance). As a result, regarding the conditions for irradiating energy beams for magnetic domain control, when the shape of the irradiated surface of the energy beams is controlled and the input energy is set high and the power density is set low, good results can be obtained. It was found that iron loss and noise were balanced. However, in these steel sheets, it was found that coating peeling was likely to occur starting from the energy beam irradiated portion.
  • the grain-oriented electrical steel sheet is rapidly heated and cooled at the irradiated portion by irradiation with energy rays (laser beam, electron beam, etc.).
  • energy rays laser beam, electron beam, etc.
  • residual strain is generated from the surface near the irradiated portion to the inside of the steel plate, forming a strain region (residual strain region). Peeling of the film tends to occur starting from the energy beam irradiated portion, and this is considered to be caused by residual strain in the vicinity of the irradiated portion in addition to damage of the film on the irradiated portion.
  • the present inventors attempted to adjust the energy beam irradiation conditions to a strain amount that can maintain a good iron loss/noise balance.
  • the present inventors attempted to quantify the amount of strain in relation to the magnitude of magnetostriction in a grain-oriented electrical steel sheet irradiated with energy rays with a relatively high input energy and a relatively low power density. rice field. As a result, it was found that good film adhesion can be ensured by controlling the amount of change in magnetostriction before and after a specific heat treatment within a certain range.
  • the present inventors also focused on the relationship between the structure of the compound phase that constitutes the coating and the coating adhesion, and conducted extensive research on the modification of the coating. As a result of the investigation, it was found that by keeping the MgAl 2 O 4 phase formed in the coating in the lower portion of the glass coating, it is possible to ensure even better coating adhesion.
  • a grain-oriented electrical steel sheet according to an aspect of the present invention comprises a base steel sheet, a glass coating formed on the base steel sheet, a tension-applying insulating coating formed on the glass coating, wherein the base steel plate has a plurality of linear strain regions that extend continuously or intermittently in a direction intersecting the rolling direction, and the plurality of linear strain regions are each: The width in the rolling direction is 210 ⁇ m or less, the plurality of linear strain regions are parallel to each other, the interval between adjacent linear strain regions in the rolling direction is 10 mm or less, and the excitation is performed up to 1.7 T.
  • the magnetostriction ⁇ 0-pb in the unit ⁇ m/m and the magnetostriction ⁇ 0-pa in the unit ⁇ m/m when excited to 1.7 T after heat treatment at 800° C. for 4 hours are as follows.
  • the glass coating has a structure containing a Mg 2 SiO 4 phase and a MgAl 2 O 4 phase as main phases, and in a cross section in the thickness direction, The glass coating is divided into three equal thickness regions in the plate thickness direction, and each region is 1/3 region, 2/3 region, and 3/3 region from the base steel plate side toward the tension applying insulation coating side.
  • S1 is the area ratio of the MgAl 2 O 4 phase in the 1/3 region
  • S2 is the area ratio of the MgAl 2 O 4 phase in the 2/3 region
  • S2 is the area ratio of the MgAl 2 O 4 phase in the 3/3 region.
  • a method for producing a grain-oriented electrical steel sheet according to another aspect of the present invention is the method for producing a grain-oriented electrical steel sheet according to [1] or [2], in which a steel billet is heated and hot-rolled to A hot-rolling step of making a hot-rolled steel sheet, a hot-rolled sheet annealing step of subjecting the hot-rolled steel sheet to hot-rolled sheet annealing, and a pickling of the hot-rolled steel sheet after the hot-rolled sheet annealing step.
  • a cold-rolling step in which the hot-rolled steel sheet after the pickling step is cold-rolled once or multiple times with annealing interposed to obtain a cold-rolled steel sheet; and decarburization annealing of the cold-rolled steel sheet.
  • a decarburization annealing process, and an annealing separator mainly composed of MgO powder is applied to the front and back surfaces of the cold-rolled steel sheet after the decarburization annealing process, which is the base steel sheet, dried, and then finish annealing.
  • a glass coating by applying a final annealing step, forming a tension-applying insulating coating on the glass coating, forming the base steel plate, the glass coating formed on the base steel plate, and the glass coating on the glass coating a film forming step of obtaining a grain-oriented electrical steel sheet provided with a tension-imparting insulating coating formed on the grain-oriented electrical steel sheet; and a magnetic domain refining step of forming linear strained regions of , wherein in the magnetic domain refining step, an interval in the rolling direction between adjacent linear strained regions among the plurality of linear strained regions is 10 mm or less, and using the energy beam output P in unit W and the energy beam irradiation cross-sectional area S in unit mm 2 , the energy in unit W/mm 2 defined as (P/S)
  • the linear power density Ip satisfies the following formula (5), and using the energy beam output P and the energy beam scanning speed Vs in the unit mm/sec, the energy beam of unit J/mm defined
  • the energy beam may be a laser beam.
  • the laser beam may be a fiber laser beam.
  • the billet contains, in mass%, C: 0.010 to 0.200%, Si: 3.00. ⁇ 4.00%, sol.
  • the decarburization annealing step includes a temperature rising step and a soaking step, and The heating rate at ⁇ 750 ° C.
  • a first soaking process with a temperature of 800 to 900° C. and an annealing time of 100 to 500 seconds, and an annealing temperature of 850° C. to 1000° C. and an annealing time of 5 seconds in an atmosphere with an oxygen potential of 0.1 or less. and a second soaking process of not less than 100 seconds and not more than 100 seconds.
  • the cold-rolled steel sheet is further subjected to nitriding treatment during or after the decarburization annealing step. , may have a nitriding treatment step.
  • a grain-oriented electrical steel sheet according to one embodiment of the present invention includes a base steel sheet having a predetermined chemical composition, a glass coating formed on the base steel sheet, and a tensioned insulating coating formed on the glass coating.
  • a plurality of linear strain (residual strain) regions extending continuously or intermittently in a direction intersecting the rolling direction are formed in the base steel plate substantially parallel to each other.
  • the width (width in the rolling direction) of each linear distorted region is 210 ⁇ m or less, and the distance between adjacent linear distorted regions in the rolling direction is 10 mm or less.
  • the grain-oriented electrical steel sheet according to this embodiment will be described below.
  • the grain-oriented electrical steel sheet according to the present embodiment is characterized by the strained region (linear strained region) and the structure of the compound phase in the glass coating. It is not limited and may be within a known range.
  • the following chemical components are preferably included.
  • % relating to chemical components is % by mass unless otherwise specified.
  • C 0.010% or less
  • C (carbon) is an element effective in controlling the structure of the steel sheet until the decarburization annealing step in the manufacturing process is completed.
  • the C content is preferably 0.010% or less.
  • the C content is more preferably 0.005% or less. The lower the C content is, the better.
  • the C content may be 0.0001% or more.
  • Si 3.00-4.00%
  • Si is an element that increases the electrical resistance of grain-oriented electrical steel sheets and improves iron loss characteristics. If the Si content is less than 3.00%, a sufficient eddy current loss reduction effect cannot be obtained. Therefore, the Si content is preferably 3.00% or more. The Si content is more preferably 3.10% or more, still more preferably 3.20% or more. On the other hand, if the Si content exceeds 4.00%, the grain-oriented electrical steel sheet becomes embrittled and the threadability is significantly deteriorated. In addition, the workability of the grain-oriented electrical steel sheet is degraded, and the steel sheet may break during rolling. Therefore, the Si content is preferably 4.00% or less. The Si content is more preferably 3.80% or less, still more preferably 3.70% or less.
  • Mn 0.01-0.50%
  • Mn manganese
  • Mn is an element that combines with S to form MnS during the manufacturing process. These precipitates act as inhibitors (inhibitors of normal grain growth) and cause secondary recrystallization to occur in the steel.
  • Mn is also an element that enhances the hot workability of steel. If the Mn content is less than 0.01%, the above effects cannot be sufficiently obtained. Therefore, the Mn content is preferably 0.01% or more. The Mn content is more preferably 0.02% or more. On the other hand, if the Mn content exceeds 0.50%, secondary recrystallization does not occur and the magnetic properties of the steel deteriorate. Therefore, in the base material steel sheet of the grain-oriented electrical steel sheet according to the present embodiment, the Mn content is preferably 0.50% or less. The Mn content is more preferably 0.20% or less, still more preferably 0.10% or less.
  • N 0.010% or less
  • N nitrogen
  • the N content is preferably 0.010% or less.
  • the N content is more preferably 0.008% or less.
  • the lower limit of the N content is not particularly specified, but even if it is reduced to less than 0.001%, the manufacturing cost only increases. Therefore, the N content may be 0.001% or more.
  • sol. Al 0.020% or less sol.
  • Al acid-soluble aluminum
  • AlN is an element that combines with N during the manufacturing process of grain-oriented electrical steel sheets to form AlN that functions as an inhibitor. However, the sol.
  • the Al content is preferably 0.020% or less. sol.
  • the Al content is more preferably 0.010% or less, still more preferably less than 0.001%. sol.
  • the lower limit of the Al content is not particularly specified, but even if it is reduced to less than 0.0001%, the manufacturing cost only increases. Therefore, sol.
  • the Al content may be 0.0001% or more.
  • S 0.010% or less
  • S (sulfur) is an element that combines with Mn in the manufacturing process to form MnS that functions as an inhibitor.
  • the S content is preferably 0.010% or less. It is preferable that the S content in the grain-oriented electrical steel sheet is as low as possible. For example, less than 0.001%. However, reducing the S content in the grain-oriented electrical steel sheet to less than 0.0001% only increases the manufacturing cost. Therefore, the S content in the grain-oriented electrical steel sheet may be 0.0001% or more.
  • P phosphorus
  • P is an element that reduces workability in rolling. By setting the P content to 0.030% or less, it is possible to suppress excessive deterioration in rolling workability and to suppress breakage during production. From this point of view, the P content is preferably 0.030% or less. The P content is more preferably 0.020% or less, even more preferably 0.010% or less. The lower limit of the P content may include 0%, but since the detection limit of chemical analysis is 0.0001%, the practical lower limit of the P content is 0.0001% in practical steel sheets. P is also an element that has the effect of improving the texture and improving the magnetic properties. In order to obtain this effect, the P content may be 0.001% or more, or 0.005% or more.
  • the chemical composition of the base material steel sheet of the grain-oriented electrical steel sheet according to the present embodiment may contain the above elements, and the balance may be Fe and impurities.
  • Cu, Cr, Sn, Se, Sb, and Mo may be contained within the following ranges for the purpose of enhancing magnetic properties and the like. These elements are allowed to be contained as impurities.
  • any one or more of W, Nb, Ti, Ni, Bi, Co, and V even if the total content is 1.0% or less, the directionality according to the present embodiment It does not impair the effect of the electromagnetic steel sheet.
  • the impurities are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when industrially manufacturing the base material steel sheet. It means an element that is allowed to be contained in a content that does not give adverse effects.
  • Cr 0-0.50% Cr (chromium) is an element that contributes to increasing the Goss orientation occupation ratio in the secondary recrystallized structure and improves the magnetic properties.
  • the Cr content is preferably 0.01% or more, more preferably 0.02% or more, and even more preferably 0.03% or more.
  • the Cr content is preferably 0.50% or less.
  • the Cr content is more preferably 0.30% or less, still more preferably 0.10% or less.
  • Sn 0-0.50%
  • Sn (tin) is an element that contributes to the improvement of magnetic properties through primary recrystallization structure control.
  • the Sn content is preferably 0.01% or more.
  • the Sn content is more preferably 0.02% or more, still more preferably 0.03% or more.
  • the Sn content is preferably 0.50% or less.
  • the Sn content is more preferably 0.30% or less, still more preferably 0.10% or less.
  • Cu 0-0.50%
  • Cu (copper) is an element that contributes to increasing the Goss orientation occupancy in the secondary recrystallized structure.
  • Cu is an optional element in the base steel sheet according to the present embodiment. Therefore, the lower limit of the Cu content is 0%, but in order to obtain the above effect, the Cu content is preferably 0.01% or more.
  • the Cu content is more preferably 0.02% or more, still more preferably 0.03% or more.
  • the Cu content exceeds 0.50%, the steel sheet becomes embrittled during hot rolling. Therefore, in the base material steel sheet of the grain-oriented electrical steel sheet according to the present embodiment, it is preferable to set the Cu content to 0.50% or less.
  • the Cu content is more preferably 0.30% or less, still more preferably 0.10% or less.
  • Se is an element having an effect of improving magnetic properties. Therefore, it may be contained.
  • the content is preferably 0.001% or more in order to exhibit the effect of improving magnetic properties satisfactorily.
  • the Se content is preferably 0.003% or more, more preferably 0.006% or more.
  • the Se content exceeds 0.020%, the adhesion of the glass coating deteriorates. Therefore, it is preferable to set the Se content to 0.020% or less.
  • the Se content is more preferably 0.015% or less, more preferably 0.010% or less.
  • Sb 0-0.500%
  • Sb antimony
  • the content is preferably 0.005% or more in order to exhibit the effect of improving magnetic properties satisfactorily.
  • the Sb content is more preferably 0.010% or more, still more preferably 0.020% or more.
  • the Sb content exceeds 0.500%, the adhesion of the glass coating is significantly deteriorated. Therefore, it is preferable to set the Sb content to 0.500% or less.
  • the Sb content is more preferably 0.300% or less, still more preferably 0.100% or less.
  • Mo 0-0.10%
  • Mo mobdenum
  • the Mo content is preferably 0.01% or more in order to exhibit the effect of improving the magnetic properties satisfactorily.
  • the Mo content is more preferably 0.02% or more, still more preferably 0.03% or more.
  • the Mo content exceeds 0.10%, the cold-rollability deteriorates, possibly resulting in fracture. Therefore, it is preferable to set the Mo content to 0.10% or less.
  • the Mo content is more preferably 0.08% or less, still more preferably 0.05% or less.
  • the chemical composition of the base material steel sheet of the grain-oriented electrical steel sheet in the present embodiment contains the above-described essential elements and the balance is Fe and impurities, or contains the above-described essential elements, and further It is exemplified that it contains one or more arbitrary elements and the balance is composed of Fe and impurities.
  • the chemical composition of the base material steel sheet of the grain-oriented electrical steel sheet according to the present embodiment can be measured after removing the glass coating and tension-imparting insulating coating formed on the surface.
  • the grain-oriented electrical steel sheet is immersed in an aqueous sodium hydroxide solution containing 30 to 50% by mass of NaOH and 50 to 70% by mass of H 2 O at 80 to 90° C. for 7 to 10 minutes.
  • remove the tensioning insulation coating remove the tensioning insulation coating.
  • the grain-oriented electrical steel sheet from which the tension-imparting insulating coating has been removed is washed with water, and after washing with water, it is dried with a hot air blower for a little less than 1 minute.
  • the dried grain-oriented electrical steel sheet (the grain-oriented electrical steel sheet not provided with a tension-imparting insulating coating) is immersed in a hydrochloric acid aqueous solution containing 30 to 40% by mass of HCl at 80 to 90° C. for 1 to 10 minutes. to remove the glass coating.
  • the base steel plate is washed with water, and dried with a hot air blower for a little less than 1 minute.
  • the chemical composition of such a base material steel plate is determined by a well-known component analysis method. Specifically, a drill is used to generate chips from a base steel plate, the chips are collected, and the collected chips are dissolved in acid to obtain a solution.
  • ICP-AES is performed on the solution to perform elemental analysis for chemical composition.
  • Si in the chemical composition of the base steel sheet is determined by the method (silicon quantification method) specified in JIS G 1212 (1997). Specifically, when the above-mentioned chips are dissolved in acid, silicon oxide precipitates as a precipitate, so this precipitate (silicon oxide) is filtered with filter paper, the mass is measured, and the Si content is determined. .
  • the C content and S content are obtained by a well-known high-frequency combustion method (combustion-infrared absorption method). Specifically, the above solution is combusted by high-frequency heating in an oxygen stream, the generated carbon dioxide and sulfur dioxide are detected, and the C content and S content are determined.
  • the N content is determined using the well-known inert gas fusion-thermal conductivity method.
  • strain area A plurality of linear strain regions (residual strain regions) formed by energy ray irradiation are present in the base steel plate included in the grain-oriented electrical steel plate according to the present embodiment.
  • the plurality of linear distorted regions extend in a direction intersecting the rolling direction on the surface of the base steel plate, and the respective distorted regions are parallel (a deviation of about 5° is allowed in actual production).
  • the width in the rolling direction is 210 ⁇ m or less
  • adjacent linear strain regions are formed at intervals of 10 mm or less in the rolling direction.
  • the location of the strain can be analyzed using a residual strain measurement technique based on X-ray diffraction (for example, K. Iwata, et.al, J. Appl. Phys.117. 17A910 (2015)). Moreover, when an energy ray irradiation mark can be confirmed on the surface of the steel sheet, the irradiation mark may be determined to be the distorted region as it is.
  • this strain is particularly compressive strain in the rolling direction and tensile strain in the plate thickness direction. It is known that a region formed by
  • extending in a direction intersecting with the rolling direction means that the extending direction of the strained region is within a range of deviation angle of 30° or less with respect to the direction perpendicular to the rolling direction. If the angle is out of this range, the effect of refining the 180° magnetic domain of the steel sheet is reduced, and a sufficient iron loss reduction effect cannot be obtained.
  • the strain region may exist continuously in a straight line, or intermittently extend in one direction (for example, in the form of a dotted line). is preferably present in Formation of the linear distorted region is performed by energy beam irradiation. Although the type of energy beam is not particularly limited, laser or electron beam, which are generally put into practical use, are preferable.
  • the interval in the rolling direction between a plurality of adjacent linear distorted regions is more than 10 mm, the effect of refining the 180° magnetic domain is reduced, resulting in insufficient iron loss improvement effect. Therefore, the interval in the rolling direction between adjacent linear distorted regions is set to 10 mm or less.
  • the intervals between the plurality of linear distorted regions are preferably substantially equal intervals.
  • the interval in the rolling direction between adjacent linear distorted regions is preferably 3 mm or more.
  • the interval in the rolling direction between adjacent strained regions is the distance between the center of the linear strained region and the center of the adjacent linear strained region in the rolling direction.
  • the length of the strain in the sheet width direction is not limited, it is preferably formed from one end to the other end in the width direction of the base steel plate.
  • the major axis (length along the width direction) d0 of the energy beam irradiation part when the energy beam is irradiated onto the steel sheet at a specific pitch in the width direction, the major axis (length along the width direction) d0 of the energy beam irradiation part, The length d1 along the width direction of the energy ray non-irradiated section sandwiched between the two energy ray irradiation sections should satisfy d1 ⁇ 3 ⁇ d0. d0 may be in the range of 50 ⁇ m or more and 50 mm or less.
  • the width of the distorted region is set to 210 ⁇ m or less. It is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • the strain-related state is further defined by the amount of change in magnetostriction when a specific heat treatment is performed.
  • the magnetostriction ⁇ 0-pb when excited to 1.7 T and the magnetostriction ⁇ 0-pa when excited to 1.7 T after heat treatment at 800 ° C. for 4 hours are obtained by the following equation. (1) is satisfied. 0.02 ⁇ 0-pb ⁇ 0-pa ⁇ 0.20 ( ⁇ m/m) (1) When the above formula (1) is satisfied, it is possible to secure a good iron loss/noise balance.
  • This equation basically evaluates the strain introduced into the base material steel plate by energy beam irradiation, not only the amount of strain but also the distribution of strain and the state of lattice defects that make up the strain. It is thought that A good iron loss/noise balance can be achieved by setting the strain release by heat treatment at 800° C. for 4 hours to a strain within the range of formula (1) in relation to magnetostriction. If the change in magnetostriction before and after heat treatment is less than 0.02 ⁇ m/m, it means that an appropriate amount of strain has not been introduced at the time of energy beam irradiation, or that the heat treatment is in a strained state in which strain release is difficult to occur. means In this case, a good iron loss/noise balance cannot be obtained.
  • a change in magnetostriction of more than 0.20 ⁇ m/m before and after the heat treatment means that an excessive amount of strain has been introduced at the time of the energy beam irradiation, or that the heat treatment has brought about a strained state in which strain release is too easy to occur. means that Also in this case, a good iron loss/noise balance cannot be obtained.
  • a glass coating is formed on the surface of the base steel sheet.
  • a glass coating is an inorganic coating containing magnesium silicate as a main component.
  • the glass coating is formed by reaction between the annealing separator containing magnesia (MgO) applied to the surface of the base steel sheet and the components on the surface of the base steel sheet in the final annealing. and consists of a structure containing Mg 2 SiO 4 phase (50 area % or more) as a main phase and MgAl 2 O 4 phase. In addition to these phases, precipitates may be contained by about 1% or less.
  • MgO magnesia
  • the region (area ratio) occupied by each phase is determined from the oxide composition obtained by an energy dispersive X-ray analyzer attached to a scanning electron microscope in observation of the plate thickness cross-section of the glass coating.
  • Mg, Al, and O are present, and a region with an Al concentration of 5% or more is defined as a MgAl 2 O 4 phase, and a region with a Si concentration of 5% or more is defined as a Mg 2 SiO 4 phase.
  • the compound phase constituting the glass coating has a predetermined structure.
  • the glass coating is divided in the thickness direction into three regions of equal thickness, and each region is divided into 1 /3 region, 2/3 region, and 3/3 region, the area ratio of the MgAl 2 O 4 phase in the 1/3 region is S1, and the area ratio of the MgAl 2 O 4 phase in the 2/3 region is S2, 3
  • the area ratio of the MgAl 2 O 4 phase in the /3 region is S3
  • the “region that is the glass coating” tends to have a severe irregular shape or a separated island-like region, and not a little Fe phase exists in the same thickness range, but MgAl
  • the Fe phase region is not included in the denominator region area (total area). Therefore, the total area of the 1/3 region is generally smaller than the total area of the 2/3 region and the 3/3 region.
  • the MgAl 2 O 4 phase is a compound phase that improves the adhesion of the coating.
  • 1/3 region of the glass coating is a region to be joined to the base steel plate.
  • the interface between the glass coating and the base steel sheet presents a complicated uneven shape, which is generally referred to as a "root". Due to this configuration, the glass coating and the base steel plate are strongly bonded by the so-called anchor effect. For this reason, even if the MgAl 2 O 4 phase is mixed in this region to some extent, cracks that may cause peeling of the film are less likely to occur. Therefore, it is preferable that the MgAl 2 O 4 phase is unevenly distributed in the 1 ⁇ 3 region of the glass coating.
  • the MgAl 2 O 4 phase is unevenly distributed on the base steel plate side as much as possible even in the 1/3 region, and the MgAl 2 O 4 phase is unevenly distributed (only) at the interface between the glass coating and the base steel plate. It can be said that the form to do is one of the most preferable forms.
  • the grain-oriented electrical steel sheet according to the present embodiment achieves a good balance between iron loss and noise under irradiation conditions typified by energy beam irradiation in which the input energy is high and the power density is low. It also becomes easy for the film to peel off. This suggests that the strain formed in the grain-oriented electrical steel sheet according to the present embodiment is different from the conventional general strain distribution.
  • the grain-oriented electrical steel sheet according to the present embodiment is a grain-oriented electrical steel sheet that achieves a good iron loss/noise balance under irradiation conditions typified by energy beam irradiation with a high input energy and a low power density. However, sufficient film adhesion can be obtained. Specifically, when the grain-oriented electrical steel sheet is wound around a round bar with a diameter of 20 mm and then bent back, the film residual area ratio is 90 to 100%. This film remaining area ratio is an index showing the quality of film adhesion. The film residual area ratio is preferably 95% or more.
  • the film remaining area ratio is evaluated by performing a bending adhesion test.
  • a flat plate-shaped test piece of 80 mm ⁇ 80 mm taken from a grain-oriented electrical steel sheet with a coating is wound around a round bar with a diameter of 20 mm, then flattened, and a coating (glass coating and/or tension The area of the insulation coating) is measured, and the value obtained by dividing the non-peeled area by the area of the steel sheet is defined as the remaining coating area ratio (%).
  • a transparent film with a 1 mm grid scale may be placed on the test piece and the area where the coating is not peeled off may be measured.
  • a tension applying insulating coating is formed on the surface of the glass coating.
  • the tension-imparting insulating coating provides electrical insulation to the grain-oriented electrical steel sheet, thereby reducing eddy current loss and improving iron loss of the grain-oriented electrical steel sheet.
  • the tension-imparting insulating coating provides various properties such as corrosion resistance, heat resistance, and slipperiness.
  • the tension-applying insulating coating has the function of applying tension to the grain-oriented electrical steel sheet. By applying tension to the grain-oriented electrical steel sheet to facilitate domain wall movement in the grain-oriented electrical steel sheet, the core loss of the grain-oriented electrical steel sheet can be improved.
  • the tension-applying insulating coating may be a known coating formed by applying a coating liquid containing, for example, metal phosphate and silica as main components to the surface of the glass coating, followed by baking.
  • the plate thickness of the base steel plate of the grain-oriented electrical steel plate according to the present embodiment is not limited, but when considering application to the core of a transformer, which requires low iron loss, low noise and low vibration, it is 0.17 to 0. It is preferably 0.30 mm. The thinner the plate thickness, the more effectively the eddy current loss can be reduced, and the better the iron loss. However, manufacturing a base material steel plate of less than 0.17 mm requires special equipment, which is not preferable in terms of production, such as an increase in manufacturing costs. Therefore, the industrially preferable lower limit of the plate thickness is 0.17 mm.
  • the grain-oriented electrical steel sheet according to this embodiment can be manufactured by a manufacturing method including the following steps.
  • a hot-rolling step of heating a steel billet and hot-rolling it into a hot-rolled steel sheet (ii) a hot-rolled sheet annealing step of subjecting the hot-rolled steel sheet to hot-rolled sheet annealing; (iii) a pickling step of pickling the hot-rolled steel sheet after the hot-rolled sheet annealing step; (iv) a cold-rolling step in which the hot-rolled steel sheet after the pickling step is cold-rolled once or multiple times (two or more times) with annealing interposed to obtain a cold-rolled steel sheet; (v) a decarburization annealing step of subjecting the cold-rolled steel sheet to decarburization annealing; (vi) An annealing separation agent containing MgO powder as a main component is applied to the front and back surfaces of the cold-rolled steel sheet after the de
  • a finish annealing step (vii) forming a tension-imparting insulation coating on the glass coating, comprising the base steel plate, the glass coating formed on the base steel plate, and the tension-imparting insulation coating formed on the glass coating; A coating forming step for obtaining a grain-oriented electrical steel sheet, (viii) A magnetic domain refining step of irradiating the surface of the tension applying insulating coating of the grain-oriented electrical steel sheet with energy rays to form a plurality of linear strain regions in the base steel sheet.
  • the conditions in the magnetic domain refining step for controlling the state of strain in particular, and the decarburization annealing step for controlling the morphology of the MgAl 2 O 4 phase in the glass coating in particular are characteristic.
  • the chemical composition of the billet to be subjected to the heating process is not limited, it preferably contains the following chemical components in order to obtain the properties generally required for grain-oriented electrical steel sheets.
  • the notation "%" represents "% by mass”.
  • a piece of steel is, for example, a slab.
  • C 0.010-0.200%
  • C (carbon) is an element that exhibits an effect of improving the magnetic flux density.
  • the C content of the steel slab exceeds 0.200%, the steel undergoes phase transformation during secondary recrystallization annealing (that is, finish annealing), secondary recrystallization does not proceed sufficiently, and good Magnetic flux density and iron loss characteristics cannot be obtained. Therefore, it is preferable to set the C content of the steel slab to 0.200% or less.
  • the smaller the C content the better for the iron loss reduction. From the viewpoint of iron loss reduction, the C content is more preferably 0.150% or less, still more preferably 0.100% or less.
  • the C content of the steel slab shall be 0.010% or more.
  • the C content is preferably 0.040% or more, more preferably 0.060% or more.
  • Si 3.00-4.00%
  • Si is an extremely effective element for increasing the electric resistance (specific resistance) of steel and reducing eddy current loss that constitutes a part of iron loss.
  • the Si content of the steel slab is 3.00% or more.
  • the Si content of the steel slab is more preferably 3.10% or more, still more preferably 3.20% or more.
  • the Si content of the steel slab is 4.00% or less.
  • the Si content of the steel slab is more preferably 3.80% or less, still more preferably 3.60% or less.
  • sol. Al 0.010-0.040% sol.
  • Al acid-soluble aluminum
  • the Al content is preferably 0.010% or more.
  • sol. The Al content is more preferably 0.015% or more, still more preferably 0.020%.
  • sol. When the Al content exceeds 0.040%, embrittlement of the steel sheet becomes significant. Therefore, the sol.
  • the Al content is preferably 0.040% or less. sol.
  • the Al content is more preferably 0.035% or less, still more preferably 0.030% or less.
  • Mn 0.01-0.50% Mn (manganese) is an important element forming MnS, which is one of the main inhibitors. If the Mn content of the steel slab is less than 0.01%, the absolute amount of MnS required to cause secondary recrystallization is insufficient. Therefore, the Mn content of the steel slab is preferably 0.01% or more. The Mn content is more preferably 0.03% or more, more preferably 0.06% or more. On the other hand, when the Mn content of the steel slab exceeds 0.50%, the steel undergoes phase transformation in secondary recrystallization annealing, secondary recrystallization does not proceed sufficiently, and good magnetic flux density and iron loss characteristics are obtained. and cannot be obtained. Therefore, the Mn content of the steel slab is set to 0.50% or less. The Mn content is more preferably 0.40% or less, still more preferably 0.30% or less.
  • N is an element that reacts with the acid-soluble Al to form AlN that functions as an inhibitor. If the N content of the steel slab exceeds 0.020%, blisters (voids) are generated in the steel sheet during cold rolling, and the strength increases, resulting in poor threadability during production. Therefore, it is preferable to set the N content of the steel slab to 0.020% or less. The N content is more preferably 0.015% or less, still more preferably 0.010% or less. If AlN is not utilized as an inhibitor, the lower limit of N content may include 0%. However, since the detection limit of chemical analysis is 0.0001%, the substantial lower limit of the N content in practical steel sheets is 0.0001%. On the other hand, in order to combine with Al to form AlN that functions as an inhibitor, the N content of the steel slab is preferably 0.001% or more, more preferably 0.005% or more.
  • S 0.005-0.040%
  • S (sulfur) is an important element that forms MnS, which is an inhibitor, by reacting with the Mn. If the S content of the steel slab is less than 0.005%, a sufficient inhibitor effect cannot be obtained. Therefore, it is preferable to set the S content of the steel slab to 0.005% or more.
  • the S content is more preferably 0.010% or more, still more preferably 0.020% or more.
  • the S content of the steel slab exceeds 0.040%, it causes hot brittleness and makes hot rolling extremely difficult. Therefore, the S content of the steel slab is preferably 0.040% or less.
  • the S content is more preferably 0.035% or less, still more preferably 0.030% or less.
  • P is an element that reduces workability in rolling. By setting the P content to 0.030% or less, it is possible to suppress excessive deterioration in rolling workability and to suppress breakage during production. From this point of view, the P content is preferably 0.030% or less. The P content is more preferably 0.020% or less, even more preferably 0.010% or less. The lower limit of the P content may include 0%, but since the detection limit of chemical analysis is 0.0001%, the practical lower limit of the P content is 0.0001% in practical steel sheets. P is also an element that has the effect of improving the texture and improving the magnetic properties. In order to obtain this effect, the P content may be 0.001% or more, or 0.005% or more.
  • the chemical composition of the steel billet used to manufacture the grain-oriented electrical steel sheet according to the present embodiment is basically based on containing the above-described elements and the balance being Fe and impurities.
  • Cu, Cr, Sn, Se, Sb, and Mo may be contained within the following ranges for the purpose of enhancing magnetic properties and the like.
  • the impurities are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when industrially manufacturing the base material steel sheet. It means an element that is allowed to be contained in a content that does not give adverse effects.
  • Cu 0-0.50%
  • Cu (copper) is an element that contributes to increasing the Goss orientation occupancy in the secondary recrystallized structure and improving the adhesion of the glass coating.
  • the Cu content is preferably 0.02% or more.
  • Cu content is more preferably 0.03% or more.
  • the Cu content exceeds 0.50%, the steel sheet becomes embrittled during hot rolling. Therefore, it is preferable to set the Cu content of the steel slab to 0.50% or less.
  • the Cu content is more preferably 0.30% or less, still more preferably 0.10% or less.
  • Cr 0-0.50% Cr (chromium), like Sn and Cu, which will be described later, is an element that contributes to an increase in the Goss orientation occupancy rate in the secondary recrystallized structure to improve the magnetic properties and contributes to the improvement of the glass coating adhesion. .
  • the Cr content is preferably 0.02% or more, more preferably 0.03% or more.
  • the Cr content is preferably 0.50% or less.
  • the Cr content is more preferably 0.30% or less, still more preferably 0.10% or less.
  • Sn 0-0.50% Sn (tin) is an element having an effect of improving magnetic properties. Therefore, it may be contained.
  • the content is preferably 0.005% or more in order to exhibit the effect of improving magnetic properties satisfactorily.
  • the Sn content is preferably 0.02% or more, more preferably 0.03% or more.
  • the Sn content exceeds 0.50%, the adhesion of the glass coating is significantly deteriorated. Therefore, it is preferable to set the Sb content to 0.50% or less.
  • the Sn content is more preferably 0.30% or less, still more preferably 0.10% or less.
  • Se is an element having an effect of improving magnetic properties. Therefore, it may be contained.
  • the content is preferably 0.001% or more in order to exhibit the effect of improving magnetic properties satisfactorily.
  • the Se content is more preferably 0.003% or more, and still more preferably 0.006% or more.
  • the Se content exceeds 0.020%, the glass coating is remarkably deteriorated. Therefore, it is preferable to set the upper limit of the Se content to 0.020%.
  • the Se content is more preferably 0.015% or less, still more preferably 0.010% or less.
  • Sb 0-0.500%
  • Sb antimony
  • the content is preferably 0.001% or more in order to exhibit the effect of improving magnetic properties satisfactorily.
  • the Sb content is more preferably 0.005% or more, and still more preferably 0.010% or more.
  • the Sb content is more preferably 0.300% or less, still more preferably 0.100% or less.
  • Mo 0-0.10%
  • Mo mobdenum
  • the Mo content is preferably 0.01% or more in order to exhibit the effect of improving the magnetic properties satisfactorily.
  • the Mo content is more preferably 0.02% or more, still more preferably 0.03% or more.
  • the Mo content exceeds 0.10%, the cold-rollability deteriorates, possibly resulting in fracture. Therefore, it is preferable to set the Mo content to 0.10% or less.
  • the Mo content is more preferably 0.08% or less, still more preferably 0.05% or less.
  • ⁇ Hot rolling process> a steel slab having a predetermined chemical composition is heated and then hot-rolled to obtain a hot-rolled steel sheet.
  • the heating temperature of the steel slab is preferably within the range of 1100 to 1450°C.
  • the heating temperature is more preferably 1300-1400°C.
  • the hot rolling conditions are not particularly limited, and may be appropriately set based on the required properties.
  • the thickness of the hot-rolled steel sheet is preferably, for example, within the range of 2.0 mm or more and 3.0 mm or less.
  • the hot-rolled sheet annealing process is a process of annealing the hot-rolled steel sheet manufactured through the hot rolling process to obtain a hot-rolled annealed steel sheet. By performing such an annealing treatment, recrystallization occurs in the steel sheet structure, making it possible to achieve good magnetic properties.
  • the hot-rolled steel sheet manufactured through the hot rolling process may be annealed according to a known method to obtain a hot-rolled annealed steel sheet.
  • the means for heating the hot-rolled steel sheet during annealing is not particularly limited, and a known heating method can be employed.
  • the annealing conditions are also not particularly limited, but for example, the hot-rolled steel sheet can be annealed in a temperature range of 900 to 1200° C. for 10 seconds to 5 minutes.
  • the hot-rolled annealed steel sheet after hot-rolled sheet annealing is cold-rolled including a plurality of passes to obtain a cold-rolled steel sheet having a thickness of 0.17 to 0.30 mm.
  • the cold rolling may be a single cold rolling (a series of cold rolling without intermediate anneals), where the cold rolling is interrupted and at least one or more intermediate anneals are performed before the final pass of the cold rolling process.
  • a plurality of cold rollings with intermediate anneals may be performed.
  • intermediate annealing it is preferable to set the temperature to 1000 to 1200° C. for 5 seconds or more and 180 seconds or less.
  • the annealing atmosphere is not particularly limited. Considering the manufacturing cost, the number of times of intermediate annealing is preferably 3 times or less.
  • the surface of the hot-rolled and annealed steel sheet may be pickled before the cold rolling process.
  • a hot-rolled annealed steel sheet may be cold-rolled into a cold-rolled steel sheet according to a known method.
  • the final rolling reduction can be in the range of 80% or more and 95% or less. If the final rolling reduction is less than 80%, there is a high possibility that Goss nuclei with a high degree of accumulation of the ⁇ 110 ⁇ 001> orientation in the rolling direction cannot be obtained, which is undesirable. On the other hand, if the final rolling reduction exceeds 95%, secondary recrystallization is likely to become unstable in the subsequent finish annealing step, which is not preferable.
  • the final rolling reduction is the cumulative rolling reduction of cold rolling, and when intermediate annealing is performed, the cumulative rolling reduction of cold rolling after final intermediate annealing.
  • the decarburization annealing process is an important process for controlling the state of the MgAl 2 O 4 phase in the glass coating.
  • the temperature rising rate at 550 to 750 ° C. is 700 to 2000 ° C./sec.
  • the oxygen potential is 0.0001 to 0.0100, and the soaking process is performed in an atmosphere with an oxygen potential of 0.4 to 0.8, the annealing temperature is 800 to 900 ° C., and the annealing time is 100 to 500 seconds.
  • a first soaking process and a second soaking process in which the annealing temperature is 850° C. or higher and 1000° C. or lower and the annealing time is 5 seconds or longer and 100 seconds or shorter in an atmosphere with an oxygen potential of 0.1 or lower.
  • the second soaking process may be performed after the temperature is lowered once after the first soaking process (first heat treatment), or the temperature is lowered after the first heat treatment. It may be carried out continuously.
  • the glass coating is formed by reaction between MgO applied as an annealing separator on the surface of the steel sheet before final annealing and Si contained in the base steel sheet. As the finish annealing progresses, the reaction progresses, and the interface between the glass coating and the base steel sheet advances into the base steel sheet. It develops to present a complex concave-convex shape like ".
  • the MgAl 2 O 4 phase is formed by the reaction between MgO and Al in the base steel sheet, and it is thought that there are roughly two routes.
  • MgO in the annealing separator and Al supplied from the base steel sheet react directly with each other.
  • MgO in the annealing separator first reacts with Si derived from the base steel sheet to form the Mg 2 SiO 4 phase, and then reacts with Al to change to the MgAl 2 O 4 phase.
  • the MgAl 2 O 4 phase is believed to occur at a relatively early stage in the glass coating formation process.
  • Mg and O are once fixed as oxides with Si, the formation of the MgAl 2 O 4 phase is thought to occur at a relatively late stage in the glass coating formation process.
  • the MgAl 2 O 4 phase formed at a relatively early stage is considered to be arranged so as to be left on the surface side of the glass coating.
  • the MgAl 2 O 4 phase formed at a relatively late stage is arranged on the interface side between the glass coating and the base steel sheet.
  • the MgAl 2 O 4 phase formed in the glass coating should be kept in a state where MgO present on the surface of the base steel sheet reacts preferentially with Si in the finish annealing.
  • the decarburization annealing conditions of the present embodiment are conditions for forming a sufficient amount of SiO 2 on the surface of the steel sheet that has undergone the decarburization annealing process.
  • an annealing separator mainly composed of MgO is further applied to the surface, and the reaction of the annealing separator is performed in the final annealing.
  • MgO will preferentially form the Mg 2 SiO 4 phase in the early stages of the reaction.
  • the state of existence of the MgAl 2 O 4 phase in the glass coating becomes favorable.
  • the above decarburization annealing conditions are not met, there will not be a sufficient amount of SiO2 on the surface of the steel sheet that has undergone the decarburization annealing process.
  • MgO directly reacts with the Al-containing base steel sheet in the initial stage of the reaction to form the MgAl 2 O 4 phase.
  • the state of existence of the MgAl 2 O 4 phase in the glass coating becomes unfavorable.
  • the glass coating formed on the surface of the base steel sheet after that takes a favorable form By going through the above-mentioned thermal history in the decarburization annealing process, the glass coating formed on the surface of the base steel sheet after that takes a favorable form. ⁇ Production of grain-oriented electrical steel sheets with noise balance and better film adhesion becomes possible.
  • a nitriding treatment may be performed during the decarburization annealing step, after the decarburization annealing step, or before the finish annealing step described later.
  • the cold-rolled steel sheet after the soaking process of the decarburization annealing process is heated to about 700 to 850 ° C. in a nitriding atmosphere (an atmosphere containing a gas having nitriding ability such as hydrogen, nitrogen, and ammonia). to maintain
  • the steel sheet is preferably subjected to nitriding treatment so that the N content of the cold-rolled steel sheet is 40 to 1000 ppm on a mass basis.
  • the N content in the cold-rolled steel sheet after nitriding treatment is less than 40 ppm, AlN may not precipitate sufficiently in the cold-rolled steel sheet and AlN may not function as an inhibitor. Therefore, when using AlN as an inhibitor, the N content in the cold-rolled steel sheet after nitriding treatment is preferably 40 ppm or more. On the other hand, when the N content of the cold-rolled steel sheet exceeds 1000 ppm, excessive AlN is present in the steel sheet even after secondary recrystallization is completed in finish annealing. Such AlN causes iron loss deterioration. Therefore, the N content in the cold-rolled steel sheet after nitriding treatment is preferably 1000 ppm or less.
  • the cold-rolled steel sheet obtained in the decarburization annealing step or further subjected to nitriding treatment is coated with a predetermined annealing separating agent and then subjected to finish annealing.
  • Finish annealing is generally performed for a long time while the steel sheet is coiled. Therefore, prior to final annealing, an annealing separating agent is applied to the cold-rolled steel sheet and dried for the purpose of preventing seizure between the inside and outside of the coil windings.
  • an annealing separator containing MgO as a main component (for example, containing 80% by mass or more) is used.
  • a glass coating can be formed on the surface of the base steel sheet by using the annealing separator containing MgO as a main component. If MgO is not the main component, no primary coating (glass coating) is formed. This is because the primary coating is a Mg 2 SiO 4 or MgAl 2 O 4 compound and lacks Mg necessary for the formation reaction.
  • the finish annealing may be performed, for example, under the conditions of heating to 1150 to 1250° C. and annealing for 10 to 60 hours in an atmospheric gas containing hydrogen and nitrogen.
  • a tension-applying insulating coating is formed on one or both surfaces of the cold-rolled steel sheet after final annealing.
  • the conditions for forming the tension-applying insulating coating are not particularly limited, and a known insulating coating treatment liquid may be used and applied and dried by a known method.
  • the surface of the steel sheet on which the insulating coating (tension-imparting insulating coating) is to be formed is subjected to any pretreatment such as degreasing with alkali, or pickling with hydrochloric acid, sulfuric acid, phosphoric acid, etc. It may be the surface that has been subjected to the pretreatment, or the surface that has not been subjected to these pretreatments after the final annealing.
  • the tension-applying insulating coating formed on the surface of the glass coating (formed on the base steel sheet via the glass coating) is not particularly limited as long as it is used as an insulating coating for grain-oriented electrical steel sheets. It is possible to use a known insulating coating without the coating.
  • an insulating coating for example, a composite insulating coating containing an inorganic substance as a main component and an organic substance can be cited.
  • the composite insulating coating is mainly composed of, for example, at least one of inorganic substances such as metal chromate, metal phosphate, colloidal silica, Zr compound, Ti compound, etc., and fine organic resin particles are dispersed.
  • ⁇ Magnetic domain refining process> by irradiating the surface of the tension-applying insulating coating with energy rays, a plurality of linear strains extending in the direction intersecting the rolling direction are introduced into the surface of the base steel sheet.
  • the base material steel sheet has a plurality of substantially parallel linear strains (thermal strain caused by rapid heating by energy beam irradiation and subsequent rapid cooling) at predetermined intervals in the rolling direction.
  • a strained region is formed, and the interval between the strained regions (that is, the interval between adjacent strained regions) is set to 10 mm or less in the rolling direction.
  • the type of energy ray is not particularly limited.
  • a laser or an electron beam which are generally put into practical use, can be applied.
  • the laser beam may be a continuous wave laser or a pulsed laser, but a continuous wave laser is preferred.
  • a laser beam is preferable between a laser beam and an electron beam. This is because the electron beam irradiation process requires a vacuum environment, which increases the production cost. Therefore, in this embodiment, magnetic domain refining processing using a laser beam is performed.
  • the laser beam is for example a fiber laser beam.
  • strain is introduced into the base steel sheet in order to achieve both low core loss and low noise and to obtain a grain-oriented electrical steel sheet with excellent film adhesion.
  • the energy beam power density Ip defined by P/S satisfies the following formula (5).
  • the energy beam input energy Up in the unit J/mm defined by P/Vs satisfies the following formula (6) to irradiate the energy beam.
  • Ip is 250 or more. Ip is preferably 500 or more.
  • Ip is 2000 or less. Ip is preferably 1750 or less, more preferably 1500 or less.
  • Up is less than 0.010, sufficient irradiation effect cannot be obtained and iron loss cannot be improved.
  • Up exceeds 0.050, noise characteristics deteriorate.
  • the diameter dl of the energy beam in the unit ⁇ m in the direction perpendicular to the beam scanning direction (scanning direction) and the length of the beam scanning direction is controlled so as to satisfy the following equation (7).
  • the beam aspect ratio is 0.0010 or less, heat removal occurs due to beam irradiation, the input efficiency of input energy decreases, and a sufficient magnetic domain refining effect (iron loss improvement effect) cannot be obtained. Therefore, the beam aspect ratio is greater than 0.0010.
  • the beam aspect ratio is 1.0000 or more, the heat removal due to the beam irradiation does not occur, but instead residual stress is generated and the noise reduction effect cannot be obtained. Therefore, the beam aspect ratio is less than 1.0000.
  • the beam aspect ratio is preferably less than 0.0500, more preferably less than 0.0050.
  • the diameter dl of the energy ray in the direction perpendicular to the beam scanning direction in units of ⁇ m should satisfy the following formula (8).
  • dl is greater than 10.
  • dl is less than 200.
  • dl is preferably less than 150, more preferably less than 100.
  • a slab having the chemical composition described in Table 1 is produced.
  • a hot rolling process is performed on this slab. Specifically, after heating the slab to 1350° C., the slab is subjected to hot rolling to produce a hot-rolled steel sheet having a thickness of 2.3 mm.
  • the hot rolled steel sheet after the hot rolling process is subjected to a hot rolled steel annealing process at an annealing temperature of 900 to 1200° C. for a holding time of 10 to 300 seconds. After that, a plurality of cold rollings are applied to obtain a cold-rolled steel sheet of 0.17 to 0.27 mm. This cold-rolled steel sheet is subjected to decarburization annealing under the conditions shown in Tables 2A and 2B.
  • test no After decarburization annealing, test no. For Nos. 11, 13, and 15, they were held at 700 to 850° C. for 10 to 60 seconds in a well-known nitriding atmosphere (an atmosphere containing a gas having nitriding ability such as hydrogen, nitrogen, and ammonia), and after decarburization annealing.
  • the N content of the cold-rolled steel sheet is set to 40 ppm or more and 1000 ppm or less.
  • Test no After nitriding treatment for Nos. 11, 13, and 15, and for the others after decarburization annealing, an annealing separator containing magnesium oxide (MgO) as a main component is applied to the surface of the steel sheet, and a finish annealing step is performed. implement.
  • MgO magnesium oxide
  • the finish annealing temperature in the finish annealing step is 1200° C., and the holding time at the finish annealing temperature is 20 hours.
  • baking is performed to provide tension-applied insulation. Form a film.
  • each test No. before magnetic domain refining obtained in the manner described above.
  • the chemical composition of the base material steel sheet of the grain-oriented electrical steel sheet is obtained by the following method. First, each test no. Remove the tension-applying insulating coating from the grain-oriented electrical steel sheet. Specifically, the grain-oriented electrical steel sheet is immersed in a sodium hydroxide aqueous solution containing 30 to 50% by mass of NaOH and 50 to 70% by mass of H 2 O at 80 to 90° C. for 7 to 10 minutes. The immersed grain-oriented electrical steel sheet (the grain-oriented electrical steel sheet from which the tension-imparting insulating coating has been removed) is washed with water.
  • the glass coating is removed from the grain-oriented electrical steel sheet that does not have the tension-imparting insulating coating.
  • the grain-oriented electrical steel sheet is immersed in a hydrochloric acid aqueous solution containing 30 to 40% by mass of HCl at 80 to 90° C. for 1 to 10 minutes.
  • the glass coating is removed from the base steel plate.
  • the base material steel plate after immersion is washed with water.
  • the base material steel sheet is taken out from the grain-oriented electrical steel sheet.
  • the chemical composition of the taken-out base steel sheet is determined by a well-known component analysis method. Specifically, a drill is used to generate chips from the base steel plate, and the chips are collected. The collected chips are dissolved in acid to obtain a solution. ICP-AES is performed on the solution to perform elemental analysis for chemical composition. Si in the chemical composition of the base steel sheet is determined by the method (silicon quantification method) specified in JIS G 1212:1997. Specifically, when the above chips are dissolved in acid, silicon oxide precipitates as a precipitate. This precipitate (silicon oxide) is filtered with a filter paper and weighed to determine the Si content. The C content and S content are obtained by a well-known high-frequency combustion method (combustion-infrared absorption method).
  • the above solution is combusted by high-frequency heating in an oxygen stream, the generated carbon dioxide and sulfur dioxide are detected, and the C content and S content are determined.
  • the N content is determined using the well-known inert gas fusion-thermal conductivity method.
  • the chemical composition of the base material steel sheet is obtained by the above analysis method. Each test no. Table 3 shows the chemical composition of the steel plate (base steel plate). A "-" in Table 3 indicates that the content of the corresponding element is below the detection limit.
  • each test No. A sample having a width of 60 mm and a length of 300 mm including the central position of the plate width is taken from the grain-oriented electrical steel sheet. The length of the sample is parallel to the rolling direction. The collected sample is held in a nitrogen atmosphere with a dew point of 0° C. or less at 800° C. for 2 hours to remove the strain introduced at the time of sample collection.
  • the magnetic flux density (T) is determined by a single plate magnetic property test (SST test) in accordance with JIS C2556 (2015). Specifically, a magnetic field of 800 A/m is applied to the sample to obtain the magnetic flux density (T). Furthermore, using the above samples, iron loss W 17/50 (W/kg) is measured at a frequency of 50 Hz and a maximum magnetic flux density of 1.7 T in accordance with JIS C2556 (2015).
  • each test No. obtained.
  • the steel sheet surface is irradiated with energy rays using a laser (fiber laser or pulse laser) or an electron beam.
  • the magnetic domains are subdivided, and evaluation tests for noise characteristics and magnetic characteristics are performed.
  • the area ratios S1, S2, and S3 of the MgAl 2 O 4 phase in each region are also measured.
  • a sample having a width of 100 mm and a length of 500 mm is taken from each grain-oriented electrical steel sheet.
  • the length direction of the sample corresponds to the rolling direction RD
  • the width direction corresponds to the plate width direction TD.
  • the magnetostriction of the sample is measured by an AC magnetostriction measuring method using a magnetostriction measuring device.
  • the magnetostriction measuring device is provided with a laser Doppler vibrometer, an excitation coil, an excitation power supply, a magnetic flux detection coil, an amplifier, and an oscilloscope. Specifically, an alternating magnetic field is applied to the sample so that the maximum magnetic flux density in the rolling direction is 1.7 T and the frequency is 50 Hz.
  • the change in length of the sample due to expansion and contraction of the magnetic domains is measured with a laser Doppler vibrometer to obtain the magnetostriction signal.
  • Fourier analysis is performed on the obtained magnetostrictive signal to obtain the amplitude Cn of each frequency component fn (n is a natural number equal to or greater than 1) of the magnetostrictive signal.
  • the magnetostrictive velocity level LVA (dB) given by the following equation is obtained.
  • LVA 20 ⁇ Log( ⁇ ( ⁇ ( ⁇ c ⁇ 2 ⁇ fn ⁇ n ⁇ Cn/ ⁇ 2) 2 )/Pe0)
  • ⁇ c is the specific acoustic resistance
  • ⁇ c 400.
  • a correction coefficient ⁇ n values given in Table 2 of JIS C 1509-1 (2005) are used.
  • LVA magnetostriction velocity level
  • Each test no A sample having a width of 60 mm and a length of 300 mm including the central position of the plate width is taken from the grain-oriented electrical steel sheet. The length of the sample is parallel to the rolling direction. The collected sample is held in a nitrogen atmosphere with a dew point of 0° C. or less at 800° C. for 2 hours to remove the strain introduced at the time of sample collection.
  • the magnetic flux density (T) is determined by a single plate magnetic property test (SST test) in accordance with JIS C2556 (2015). Specifically, a magnetic field of 800 A/m is applied to the sample to obtain the magnetic flux density (T).
  • iron loss W 17/50 (W/kg) is measured at a frequency of 50 Hz and a maximum magnetic flux density of 1.7 T in accordance with JIS C2556 (2015).
  • iron loss improvement rate 5.0% or more is satisfied, it is judged that the iron loss improvement rate is excellent.
  • Tables 6A and 6B The measurement results are shown in Tables 6A and 6B.
  • the coating adhesion (residual coating area ratio) of the grain-oriented electrical steel sheet is measured by the method described above. If the film residual area ratio is 50% or more, the film adhesion is judged to be good (evaluation ⁇ ), and if it is 90% or more, the film adhesion is judged to be excellent (evaluation ⁇ ). Evaluation results are shown in Tables 6A and 6B.
  • a good iron loss/noise balance can be secured in steel sheets (invention examples) in which a strain region preferably exists and ⁇ 0-pb - ⁇ 0-pa is within the range of the present invention.
  • the area ratio of the MgAl 2 O 4 phase in the glass coating in each region satisfies a preferable relationship. In this case, the film residual area ratio is sufficiently high, and good adhesion can be achieved at the same time.
  • the present invention it is possible to provide a grain-oriented electrical steel sheet having a good iron loss/noise balance and a method for manufacturing the same. Moreover, according to a preferred embodiment of the present invention, it is possible to provide a grain-oriented electrical steel sheet that has a good iron loss/noise balance and excellent film adhesion. Therefore, the industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この方向性電磁鋼板は、母材鋼板と、前記母材鋼板上に形成されているグラス被膜と、前記グラス被膜上に形成されている張力付与絶縁被膜と、を備え、前記母材鋼板には、圧延方向と交差する方向に連続的にまたは断続的に延在する複数の線状の歪領域が存在し、前記複数の線状の歪領域は、それぞれ、前記圧延方向における幅が210μm以下であり、前記複数の線状の歪領域は、互いに平行であり、隣り合う線状の歪領域の前記圧延方向における間隔が10mm以下であり、1.7Tまで励磁した際の単位μm/mでの磁歪λ0-pbと、800℃で4時間の熱処理を施した後に1.7Tまで励磁した際の単位μm/mでの磁歪λ0-paが、0.02≦λ0-pb-λ0-pa≦0.20を満たす。

Description

方向性電磁鋼板及びその製造方法
 本発明は、方向性電磁鋼板及びその製造方法に関する。
 本願は、2021年03月26日に、日本に出願された特願2021-053619号に基づき優先権を主張し、その内容をここに援用する。
 方向性電磁鋼板は、軟磁性材料であり、主に、変圧器の鉄心材料として用いられる。そのため、方向性電磁鋼板には、高磁化特性および低鉄損という磁気特性が要求される。
 鉄損とは、鉄心を交流磁場で励磁した場合に、熱エネルギとして消費される電力損失であり、省エネルギの観点から、鉄損はできるだけ低いことが求められる。鉄損の高低には、磁化率、板厚、被膜張力、不純物量、電気抵抗率、結晶粒径、磁区サイズなどが影響する。方向性電磁鋼板に関し、様々な技術が開発されている現在においても、エネルギ効率を高めるため、鉄損を低減する研究開発が継続されている。
 例えば、特許文献1には、方向性電磁鋼板の表面に、集光した連続波レーザ光を、前記方向性電磁鋼板の圧延方向から傾斜した方向に走査しながら照射する工程と、前記連続波レーザ光を走査する部分を所定の間隔でずらしながら繰り返す工程を有し、前記連続波レーザ光の平均パワーをP(W)、前記走査の速度をVc(mm/s)、前記所定の間隔をPL(mm)と表わし、平均照射エネルギ密度UaをUa=P/(Vc×PL)(mJ/mm)と定義したとき、1.0mm≦PL≦3.0mm、及び0.8mJ/mm≦Ua≦2.0mJ/mm、を満たすことを特徴とする、レーザ光の照射により磁区が制御された方向性電磁鋼板の製造方法が開示されている。
 特許文献1では、容易に、かつ高い生産性を確保しながら、方向性電磁鋼板のL方向及びC方向の両方向における鉄損を低減することができることが示されている。
 また、特許文献2には、連続発振レーザビームの走査照射により、鋼板の圧延方向に対して概垂直で、且つ概一定間隔で線状の環流磁区を形成して鉄損特性を改善した方向性電磁鋼板の製造方法が開示されている。
 特許文献2では、レーザが、ビーム伝搬方向に垂直な断面内のレーザ光強度分布が光軸中心近傍に最大強度を持つTEM00モードであり、照射ビームの圧延方向集光径d[mm]、レーザビームの走査線速度V[mm/s]、レーザの平均出力P[W]が、0<d≦0.2、0.001≦P/V≦0.012の範囲であることで、鉄損の低減された方向性電磁鋼板が得られることが示されている。
 また、特許文献3には、方向性電磁鋼板の表面に、等間隔にレーザビームを照射して、磁気特性を改善する方向性電磁鋼板の製造方法が開示されている。
 特許文献3では、レーザがパルス発振QスイッチCOレーザであり、照射ビーム形状が板幅方向に長軸を持つ楕円であり、レーザパルスの照射パワー密度を鋼板表面の皮膜損傷閾値以下に設定することで、レーザ照射痕の発生を抑制し、且つ楕円ビームの長軸長を板幅方向のパルスビーム照射間隔以上に設定することで、連続するパルスビームを鋼板表面で重畳させ、磁気特性改善に必要十分な積算照射エネルギを与え、レーザ照射痕を抑制し、効率的な磁区制御効果が得られることが示されている。
 一方、近年、トランスなどの電磁応用機器にも騒音や振動の低減がますます要請されるようになり、トランスの鉄心に使われる方向性電磁鋼板には、低鉄損と共に、低騒音や低振動に適した材料であることが求められる様になってきた。トランスの騒音や振動に対する素材における原因の一つとして、方向性電磁鋼板の磁歪があるといわれている。ここでいう磁歪とは、方向性電磁鋼板を交流で励磁したときに、その磁化の強さの変化に伴って方向性電磁鋼板の外形がわずかに変化することによる、方向性電磁鋼板の圧延方向に見られる振動のことである、この磁歪の大きさは、10-6オーダーであり非常に小さいが、その磁歪が鉄心に振動を発生させ、それが変圧器のタンクなどの外部構造物に伝搬して騒音となる。
 上述した特許文献1~3に提案されるような方向性電磁鋼板へのレーザ照射は、鉄損の低減には効果的であるものの、レーザ照射によって形成される還流磁区が、磁歪を大きくすることで騒音特性が劣化するという課題があった。
 このような課題に対し、例えば特許文献4では、低鉄損で、変圧器に組み込んだときの騒音が小さい方向性電磁鋼板が開示されている。
 特許文献4では、鋼板表面における圧延方向の幅が周期的に変化した還流磁区領域が形成され、各々の前記還流磁区領域が、鋼板表面における圧延方向の最大幅Wmaxの最小幅Wminに対する比(Wmax/Wmin)が1.2以上2.2以下、鋼板表面における圧延方向の平均幅Waveが80μm以上200μm以下、板厚方向の最大深さDが32μm以上、(Wave×D)/sが0.0007mm以上0.0016mm以下の条件を満たすことによって、従来よりも良好な鉄損・騒音バランスが実現できることが示されている。
 また、特許文献5には、圧延方向に対して周期的間隔で、圧延方向を横切る方向に、局所的な歪みが導入された方向性電磁鋼板であって、上記歪みの近傍に線状の還流磁区部が形成され、かつ、消磁状態において、該還流磁区部から圧延方向に伸びた圧延方向長さが1.2mm以上の磁区を有し、さらに、該磁区が、該還流磁区部に沿った領域において、1mm当り平均で1.8本以上形成され、前記還流磁区部の線間隔をs(mm)とした場合、前記還流磁区部の幅:w(mm)と、前記還流磁区部の板厚方向の深さ:h(μm)との間で、4mm≦s≦1.5mm、及びhw/s≦0.9μmの関係を満たす方向性電磁鋼板が開示されている。
 特許文献5では、hw/sで表される歪み導入量指標が鉄損及び騒音に影響することが示唆されている。
 しかしながら、本発明者らの検討の結果、特許文献4及び5の技術では、騒音特性の改善が、近年求められるより優れた鉄損・騒音バランスに対しては、十分でないことが分かった。さらに、磁区制御は、方向性電磁鋼板に絶縁性と張力を付与するために鋼板表面に形成されている被膜を損傷することにもなるので、被膜密着性を低下させることが分かった。
日本国特許第4669565号公報 日本国特許第4510757号公報 日本国特許第3361709号公報 日本国特許第6060988号公報 日本国特許第6176282号公報
 上述の通り、従来、鉄損特性と騒音特性とを同時に十分に向上させ、かつ被膜密着性の確保にも配慮した方向性電磁鋼板及びその製造方法は開示されていなかった。
 本発明は、鉄損特性と騒音特性とに優れる(磁区細分化による鉄損改善率が大きく、変圧器に組み込んだときの騒音が小さい:鉄損・騒音バランスに優れる)、方向性電磁鋼板及びその製造方法を提供することを課題とする。好ましくは、鉄損特性と騒音特性とに優れ、さらに被膜密着性に優れる、方向性電磁鋼板を提供することを課題とする。
 本発明者らは鉄損特性と騒音特性とのバランス(鉄損・騒音バランス)の優れた方向性電磁鋼板を得るための磁区制御条件について検討した。その結果、磁区制御のためにエネルギ線を照射する際の条件について、エネルギ線の照射面での形状を制御した上で、投入エネルギを高めとし、かつパワー密度を低めとした場合に、良好な鉄損・騒音バランスとなることを知見した。しかしながら、これらの鋼板では、エネルギ線照射部を起点とした被膜剥離が発生しやすいことが分かった。
 方向性電磁鋼板は、エネルギ線(レーザビーム、電子ビーム等)の照射により、照射部が急速加熱及び急速冷却される。その結果、照射部近傍の表面から鋼板内部にかけて残留歪が発生し、歪領域(残留歪領域)が形成される。被膜剥離はエネルギ線照射部を起点として発生しやすいが、これは、照射部の被膜が損傷することに加え、照射部近傍の残留歪が原因となっていると考えられる。これを考慮し、本発明者らは、エネルギ線照射条件を、良好な鉄損・騒音バランスを維持できる歪量に調整することを試みた。その結果、エネルギ線照射条件の調整によって、歪領域の幅や形成間隔を適切な範囲とすることで、良好な鉄損・騒音バランスが得られることが分かった。
 また、本発明者らは、投入エネルギを高めとし、かつパワー密度を低めとしたエネルギ線照射を行った方向性電磁鋼板において、歪量を、磁歪の大きさとの関連で定量化することを試みた。その結果、特定の熱処理前後の磁歪の変化量を一定の範囲に制御することで、良好な被膜密着性を確保できることが分かった。
 また、本発明者らは、被膜の改質については、被膜を構成する化合物相の構造と被膜密着性との関係にも着目し、鋭意調査を行った。検討の結果、被膜中に形成されるMgAl相をグラス被膜下部に留めることで、さらに良好な被膜密着性を確保できることが分かった。
 本発明は上記の知見に鑑みてなされた。本発明の要旨は以下の通りである。
[1]本発明の一態様に係る方向性電磁鋼板は、母材鋼板と、前記母材鋼板上に形成されているグラス被膜と、前記グラス被膜上に形成されている張力付与絶縁被膜と、を備え、前記母材鋼板には、圧延方向と交差する方向に連続的にまたは断続的に延在する複数の線状の歪領域が存在し、前記複数の線状の歪領域は、それぞれ、前記圧延方向における幅が210μm以下であり、前記複数の線状の歪領域は、互いに平行であり、隣り合う線状の歪領域の前記圧延方向における間隔が10mm以下であり、1.7Tまで励磁した際の単位μm/mでの磁歪λ0-pbと、800℃で4時間の熱処理を施した後に1.7Tまで励磁した際の単位μm/mでの磁歪λ0-paが、以下の式(1)を満たす、方向性電磁鋼板。
  0.02≦λ0-pb-λ0-pa≦0.20・・・・(1)
[2][1]に記載の方向性電磁鋼板は、前記グラス被膜が、主相であるMgSiO相と、MgAl相と、を含む組織からなり、板厚方向断面において、前記グラス被膜を板厚方向に3つの等しい厚さの領域に分割し、各領域を母材鋼板側から張力付与絶縁被膜側に向かって、1/3領域、2/3領域、3/3領域とし、前記1/3領域におけるMgAl相の面積率をS1、前記2/3領域におけるMgAl相の面積率をS2、前記3/3領域におけるMgAl相の面積率をS3としたとき、前記S1、前記S2、前記S3が、以下の式(2)~(4)を満たしてもよい。
   S1>S2>S3      ・・・・(2)
   (S1+S2+S3)/3<0.50  ・・・・(3)
   S3<0.10       ・・・・(4)
[3]本発明の別の態様に係る方向性電磁鋼板の製造方法は、[1]または[2]に記載の方向性電磁鋼板の製造方法であり、鋼片を加熱し、熱間圧延で熱延鋼板とする、熱間圧延工程と、前記熱延鋼板に熱延板焼鈍を施す、熱延板焼鈍工程と、前記熱延板焼鈍工程後の前記熱延鋼板を酸洗する、酸洗工程と、前記酸洗工程後の前記熱延鋼板に、一回又は焼鈍を挟む複数回の冷間圧延を行って冷延鋼板とする、冷間圧延工程と、前記冷延鋼板に脱炭焼鈍を施す、脱炭焼鈍工程と、母材鋼板である前記脱炭焼鈍工程後の冷延鋼板の表裏面に、MgO粉末を主成分とする焼鈍分離剤を塗布し、乾燥させた後、仕上げ焼鈍を施すことでグラス被膜を形成する、仕上げ焼鈍工程と、前記グラス被膜上に張力付与絶縁被膜を形成し、前記母材鋼板と前記母材鋼板上に形成されているグラス被膜と前記グラス被膜上に形成されている張力付与絶縁被膜とを備える方向性電磁鋼板を得る、被膜形成工程と、前記方向性電磁鋼板の前記張力付与絶縁被膜の表面にエネルギ線を照射し、前記母材鋼板に複数の線状の歪領域を形成する、磁区細分化工程と、を有し、前記磁区細分化工程において、前記複数の線状の歪領域のうち、隣り合う線状の歪領域の圧延方向の間隔が10mm以下であり、単位Wでのエネルギ線出力Pと、単位mmでのエネルギ線照射断面積Sとを用いて、(P/S)で定義される、単位W/mmでのエネルギ線パワー密度Ipが下記式(5)を満たし、前記エネルギ線出力Pと、単位mm/秒でのエネルギ線走査速度Vsとを用いて、P/Vsで定義される単位J/mmのエネルギ線投入エネルギUpが、下記式(6)を満たし、かつ
  前記エネルギ線の、単位μmでの、ビームスキャン方向に垂直な方向の径dlおよび前記ビームスキャン方向の径dcを用いて、(dl/dc)で定義されるビームアスペクト比、並びに、前記dlがそれぞれ下記式(7)および下記式(8)を満たす。
250≦Ip≦2000   (5)
0.010<Up≦0.050   (6)
0.0010<dl/dc<1.0000   (7)
10<dl<200   (8)
[4][3]に記載の方向性電磁鋼板の製造方法では、前記エネルギ線がレーザビームであってもよい。
[5][4]に記載の方向性電磁鋼板の製造方法では、前記レーザビームがファイバーレーザビームであってもよい。
[6][3]~[5]のいずれかに記載の方向性電磁鋼板の製造方法では、前記鋼片が、質量%で、C:0.010~0.200%、Si:3.00~4.00%、sol.Al:0.010~0.040%、Mn:0.01~0.50%、N:0.020%以下、S:0.005~0.040%、P:0.030%以下、Cu:0~0.50%、Cr:0~0.50%、Sn:0~0.50%、Se:0~0.020%、Sb:0~0.500%、Mo:0~0.10%を含有し、残部がFe及び不純物からなってもよい。
[7][3]~[6]のいずれかに記載の方向性電磁鋼板の製造方法では、前記脱炭焼鈍工程が昇温過程と均熱過程とを有し、前記昇温過程での550~750℃における昇温速度を700~2000℃/秒、酸素ポテンシャルを0.0001~0.0100とし、前記均熱過程が、酸素ポテンシャルが0.4以上0.8以下の雰囲気中で、焼鈍温度を800~900℃、焼鈍時間を100~500秒とする第1均熱過程と、酸素ポテンシャルが0.1以下の雰囲気中で、焼鈍温度を850℃以上1000℃以下、焼鈍時間を5秒以上100秒以下とする第2均熱過程と、を含んでもよい。
 [8][3]~[7]のいずれかに記載の方向性電磁鋼板の製造方法では、前記脱炭焼鈍工程中又は前記脱炭焼鈍工程後に、さらに、前記冷延鋼板に窒化処理を施す、窒化処理工程を有してもよい。
 本発明の上記態様によれば、良好な鉄損・騒音バランスを有する方向性電磁鋼板及びその製造方法を提供することができる。また、本発明の好ましい態様によれば、良好な鉄損・騒音バランスを有し、かつ被膜密着性にも優れる方向性電磁鋼板を提供することができる。
 本発明の一実施形態に係る方向性電磁鋼板(本実施形態に係る方向性電磁鋼板)は、所定の化学組成を有する母材鋼板と、前記母材鋼板上に形成されているグラス被膜と、前記グラス被膜上に形成されている張力付与絶縁被膜と、を備える。
 また、母材鋼板には、圧延方向と交差する方向に連続的にまたは断続的に延在する、複数の線状の歪(残留歪)領域が、略平行に形成されている。線状の各歪領域の幅(圧延方向の幅)は210μm以下であり、複数の線状の歪領域の、隣り合う線状の歪領域の圧延方向における間隔がそれぞれ10mm以下である。
 以下、本実施形態に係る方向性電磁鋼板について説明する。
<母材鋼板>
(化学組成)
 本実施形態に係る方向性電磁鋼板は、歪領域(線状の歪領域)、グラス被膜における化合物相の構造に大きな特徴があり、方向性電磁鋼板が備える母材鋼板は、その化学組成については限定されず、公知の範囲でよい。例えば、方向性電磁鋼板として一般に求められる特性を得るため、化学成分として、以下を含むことが好ましい。本実施形態において、化学成分に係る%は、断りがない限り質量%である。
 C:0.010%以下
 C(炭素)は、製造工程における脱炭焼鈍工程の完了までの工程での、鋼板の組織制御に有効な元素である。しかしながら、C含有量が0.010%を超えると、製品板である方向性電磁鋼板の磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、C含有量は、0.010%以下とすることが好ましい。C含有量は、より好ましくは0.005%以下である。C含有量は、低ければ低いほうが好ましいが、C含有量を0.0001%未満に低減しても、組織制御の効果は飽和し、製造コストが嵩むだけとなる。従って、C含有量は、0.0001%以上としてもよい。
 Si:3.00~4.00%
 Si(珪素)は、方向性電磁鋼板の電気抵抗を高めて、鉄損特性を改善する元素である。Si含有量が3.00%未満では、十分な渦電流損低減効果が得られない。そのため、Si含有量は3.00%以上とすることが好ましい。Si含有量は、より好ましくは3.10%以上、さらに好ましくは3.20%以上である。
 一方、Si含有量が4.00%を超えると、方向性電磁鋼板が脆化し、通板性が顕著に劣化する。また、方向性電磁鋼板の加工性が低下し、圧延時に鋼板が破断しうる。このため、Si含有量は4.00%以下とすることが好ましい。Si含有量は、より好ましくは3.80%以下、さらに好ましくは3.70%以下である。
 Mn:0.01~0.50%
 Mn(マンガン)は、製造工程中に、Sと結合して、MnSを形成する元素である。これらの析出物は、インヒビター(正常結晶粒成長の抑制剤)として機能し、鋼において、二次再結晶を発現させる。Mnは、更に、鋼の熱間加工性も高める元素である。Mn含有量が0.01%未満である場合には、上記のような効果を十分に得ることができない。そのため、Mn含有量は、0.01%以上とすることが好ましい。Mn含有量は、より好ましくは0.02%以上である。
 一方、Mn含有量が0.50%を超えると、二次再結晶が発現せずに、鋼の磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、Mn含有量は、0.50%以下とすることが好ましい。Mn含有量は、より好ましくは0.20%以下、さらに好ましくは0.10%以下である。
 N:0.010%以下
 N(窒素)は、製造工程においてAlと結合して、インヒビターとして機能するAlNを形成する元素である。しかしながら、N含有量が0.010%を超えると、母材鋼板中に過剰に残存するインヒビターにより、磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、N含有量は、0.010%以下とすることが好ましい。N含有量は、より好ましくは0.008%以下である。
 一方、N含有量の下限値は、特に規定するものではないが、0.001%未満に低減しても、製造コストが嵩むだけとなる。従って、N含有量は、0.001%以上としてもよい。
 sol.Al:0.020%以下
 sol.Al(酸可溶性アルミニウム)は、方向性電磁鋼板の製造工程中において、Nと結合して、インヒビターとして機能するAlNを形成する元素である。しかしながら、母材鋼板のsol.Al含有量が0.020%を超えると、母材鋼板中に過剰に残存するインヒビターにより、磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、sol.Al含有量は、0.020%以下とすることが好ましい。sol.Al含有量は、より好ましくは0.010%以下であり、さらに好ましくは0.001%未満である。sol.Al含有量の下限値は、特に規定するものではないが、0.0001%未満に低減しても、製造コストが嵩むだけとなる。従って、sol.Al含有量は、0.0001%以上としてもよい。
 S:0.010%以下
 S(硫黄)は、製造工程においてMnと結合して、インヒビターとして機能するMnSを形成する元素である。しかしながら、S含有量が0.010%を超える場合には、過剰に残存するインヒビターにより、磁気特性が低下する。従って、本実施形態に係る方向性電磁鋼板の母材鋼板において、S含有量は、0.010%以下とすることが好ましい。方向性電磁鋼板におけるS含有量は、なるべく低い方が好ましい。例えば0.001%未満である。しかしながら、方向性電磁鋼板中のS含有量を0.0001%未満に低減しても、製造コストが嵩むだけとなる。従って、方向性電磁鋼板中のS含有量は、0.0001%以上であってもよい。
 P:0.030%以下
 P(リン)は圧延における加工性を低下させる元素である。P含有量を0.030%以下とすることにより、圧延加工性が過度に低下することを抑制でき、製造時における破断を抑制することができる。このような観点からP含有量は0.030%以下とすることが好ましい。P含有量は、0.020%以下であることがより好ましく、0.010%以下であることがさらに好ましい。
 P含有量の下限は0%を含み得るが、化学分析の検出限界値が0.0001%であるため、実用鋼板において、実質的なP含有量の下限値は、0.0001%である。また、Pは集合組織を改善し、磁気特性を改善する効果を有する元素でもある。この効果を得るため、P含有量を0.001%以上としてもよく、0.005%以上としてもよい。
 残部:Fe及び不純物
 本実施形態に係る方向性電磁鋼板の母材鋼板の化学組成は、上述の元素を含有し、残部は、Fe及び不純物であってもよい。しかしながら、磁気特性等を高めることを目的として、さらにCu、Cr、Sn、Se、Sb、Moを以下に示す範囲で含有してもよい。これらの元素は不純物として含有されることも許容する。
 またこれら以外の元素として、例えばW、Nb、Ti、Ni、Bi、Co、Vのいずれか1種あるいは2種類以上を合計で1.0%以下含有しても、本実施形態に係る方向性電磁鋼板の効果を阻害するものではない。
 ここで、不純物とは、母材鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入するものであり、本実施形態に係る方向性電磁鋼板の作用に悪影響を及ぼさない含有量で含有することを許容される元素を意味する。
 Cr:0~0.50%
 Cr(クロム)は、二次再結晶組織におけるGoss方位占有率の増加に寄与して磁気特性を向上させる元素である。上記効果を得るためには、Cr含有量を、0.01%以上とすることが好ましく、0.02%以上とすることがより好ましく、0.03%以上とすることがさらに好ましい。
 一方、Cr含有量が0.50%を超える場合には、Cr酸化物が形成され、磁気特性が低下する。そのため、Cr含有量は、0.50%以下とすることが好ましい。Cr含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。
 Sn:0~0.50%
 Sn(スズ)は、一次再結晶組織制御を通じ、磁気特性改善に寄与する元素である。磁気特性改善効果を得るためには、Sn含有量を0.01%以上とすることが好ましい。Sn含有量は、より好ましくは0.02%以上、さらに好ましくは0.03%以上である。
 一方、Sn含有量が0.50%を超える場合には、二次再結晶が不安定となり、磁気特性が劣化する。そのため、Sn含有量は0.50%以下とすることが好ましい。Sn含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。
 Cu:0~0.50%
 Cu(銅)は、二次再結晶組織におけるGoss方位占有率の増加に寄与する元素である。Cuは、本実施形態に係る母材鋼板において、任意元素である。そのため、その含有量の下限値は0%となるが、上記効果を得るためには、Cu含有量を0.01%以上とすることが好ましい。Cu含有量は、より好ましくは0.02%以上、さらに好ましくは0.03%以上である。
 一方、Cu含有量が0.50%を超える場合には、熱間圧延中に鋼板が脆化する。そのため、本実施形態に係る方向性電磁鋼板の母材鋼板では、Cu含有量を0.50%以下とすることが好ましい。Cu含有量は、より好ましくは0.30%以下、さらに好ましくは0.10%以下である。
 Se:0~0.020%
 Se(セレン)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Seを含有させる場合は、磁気特性改善効果を良好に発揮するべく、含有量を0.001%以上とすることが好ましい。Se含有量は、好ましくは0.003%以上であり、より好ましくは0.006%以上である。
 一方、Se含有量が0.020%を超えると、グラス被膜の密着性が劣化する。従って、Se含有量を0.020%以下とすることが好ましい。Se含有量は、より好ましくは0.015%以下、より好ましくは0.010%以下である。
 Sb:0~0.500%
 Sb(アンチモン)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Sbを含有させる場合は、磁気特性改善効果を良好に発揮するべく、含有量を0.005%以上とすることが好ましい。Sb含有量は、より好ましくは0.010%以上であり、さらに好ましくは0.020%以上である。
 一方、Sb含有量が0.500%を超えると、グラス被膜の密着性が顕著に劣化する。従って、Sb含有量を0.500%以下とすることが好ましい。Sb含有量は、より好ましくは0.300%以下であり、さらに好ましくは0.100%以下である。
 Mo:0~0.10%
 Mo(モリブデン)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Moを含有させる場合は、磁気特性改善効果を良好に発揮するため、Mo含有量を0.01%以上とすることが好ましい。Mo含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。
 一方、Mo含有量が0.10%を超えると、冷間圧延性が劣化し、破断に至る可能性がある。従って、Mo含有量を0.10%以下とすることが好ましい。Mo含有量は、より好ましくは0.08%以下であり、さらに好ましくは0.05%以下である。
 上述の通り、本実施形態に方向性電磁鋼板の母材鋼板の化学組成は、上述の必須の元素を含有し、残部がFe及び不純物からなる、もしくは、上述の必須の元素を含有し、さらに任意元素の1種以上を含有し、残部がFe及び不純物からなることが例示される。
 本実施形態に係る方向性電磁鋼板の母材鋼板の化学組成は、表面に形成されているグラス被膜及び張力付与絶縁被膜を除去してから測定することができる。
 具体的には、方向性電磁鋼板を、NaOH:30~50質量%及びHO:50~70質量%を含有し、80~90℃の水酸化ナトリウム水溶液に、7~10分間浸漬することで、張力付与絶縁被膜を除去する。
 張力付与絶縁被膜が除去された方向性電磁鋼板を水洗し、水洗後、温風のブロアーで1分間弱、乾燥させる。乾燥後の方向性電磁鋼板(張力付与絶縁被膜を備えていない方向性電磁鋼板)を、30~40質量%のHClを含有し、80~90℃の塩酸水溶液に、1~10分間浸漬することで、グラス被膜を除去する。
 浸漬後の母材鋼板を水洗し、水洗後、温風のブロアーで1分間弱、乾燥させる。
 以上の工程により、方向性電磁鋼板から、母材鋼板を取り出すことができる。
 このような母材鋼板の化学組成は、周知の成分分析法により求める。具体的には、ドリルを用いて、母材鋼板から切粉を生成し、その切粉を採取し、採取された切粉を酸に溶解させて溶液を得る。溶液に対して、ICP-AESを実施して、化学組成の元素分析を実施する。
 ここで、母材鋼板の化学組成中のSiについては、JIS G 1212(1997)に規定の方法(けい素定量方法)により求める。具体的には、上述の切粉を酸に溶解させると、酸化ケイ素が沈殿物として析出するので、この沈殿物(酸化ケイ素)をろ紙で濾し取り、質量を測定して、Si含有量を求める。
 C含有量及びS含有量については、周知の高周波燃焼法(燃焼-赤外線吸収法)により求める。具体的には、上述の溶液を酸素気流中で高周波加熱により燃焼して、発生した二酸化炭素、二酸化硫黄を検出し、C含有量及びS含有量を求める。
 N含有量については、周知の不活性ガス溶融-熱伝導度法を用いて求める。
(歪領域)
 本実施形態に係る方向性電磁鋼板が備える母材鋼板には、エネルギ線照射によって形成された、複数の線状の歪領域(残留歪領域)が存在する。
 この複数の線状の歪領域は、母材鋼板の表面において、圧延方向と交差する方向に延在しており、それぞれの歪領域は平行(実製造上、5°程度のずれは許容する)であり、圧延方向の幅が210μm以下であり、それぞれの隣り合う線状の歪領域は、圧延方向に10mm以下の間隔で形成されている。歪領域を上記の通りとすることで、良好な鉄損・騒音バランスが得られる。
 歪の存在箇所はX線回折法による残留歪測定技術(例えばK. Iwata, et.al, J. Appl. Phys.117. 17A910 (2015))を用いて分析することが出来る。また、鋼板表面にエネルギ線照射痕が確認できる場合、その照射痕をそのまま歪領域と判断しても良い。
 また、この歪(残留歪)は、特に圧延方向において圧縮歪であり、板厚方向において引張歪である場合に、歪が存在する領域(歪領域)に還流磁区と呼ばれる、板厚方向に磁化した領域が形成されることが知られている。
 本実施形態において、圧延方向と交差する方向に延在するとは、歪領域の延在方向が、圧延方向に直角な方向に対して、ずれ角度で30°以内の範囲にあることを示す。この角度範囲から外れると、鋼板の180°磁区細分化作用は少なくなり十分な鉄損低減効果が得られない。
 歪領域は、連続的に直線状に存在してもよく、断続的に一方向に延在して(例えば点線状に)存在してもよいが、鉄損の改善の点からは、連続的に存在することが好ましい。線状の歪領域の形成は、エネルギ線の照射によって行う。エネルギ線の種類は特に限定されないが、一般的に実用化されているレーザまたは電子ビームが好ましい。電子ビームを照射する場合は、電子ビーム照射時の雰囲気を真空度が一定値以下の真空にする必要があり、生産コストが上がる懸念がある。
 また、隣り合う複数の線状の歪領域の圧延方向の間隔が10mm超であると、180°磁区の磁区細分化効果が減少するため鉄損改善効果が不足する。そのため、それぞれの隣り合う線状の歪領域の圧延方向の間隔は、10mm以下とする。複数の線状の歪領域の間隔は、略等間隔であることが好ましい。
 照射ピッチを狭くすると基本的には鉄損が小さくなるものの、過度に小さくなると磁区細分化効果が飽和し渦電流損がほとんど低下しなくなる一方で、歪によるヒステリシス損の増加が顕著になり、鉄損が悪化する。また、騒音特性が劣化する場合がある。そのため、それぞれの隣り合う線状の歪領域の圧延方向の間隔は、3mm以上とすることが好ましい。
 ここで、隣り合う歪領域の圧延方向の間隔は、圧延方向における、線状の歪領域の中心と隣り合う線状の歪領域の中心との距離である。
 板幅方向における歪の長さは限定されないが、母材鋼板の幅方向の一端からもう一方の端部まで形成されていることが好ましい。不連続(断続)にエネルギ線照射する場合においては、幅方向に対し、特定ピッチで鋼板上にエネルギ線照射する際に、エネルギ線照射部の長径(幅方向に沿った長さ)d0と、2つのエネルギ線照射部に挟まれたエネルギ線非照射区間の、幅方向に沿った長さd1とが、d1≦3×d0を満たせばよい。d0は50μm以上、50mm以下の範囲であればよい。
 また、母材鋼板の表面における歪領域が占める割合が過度に大きくなると、母材鋼板全体の歪が増大し、全ヒステリシス損が増加して鉄損が劣化するとともに、騒音特性が劣化する。そのため、歪領域の幅を210μm以下とする。好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下である。
 本実施形態に係る方向性電磁鋼板では、さらに、歪に関連する状態を、特定の熱処理を実施した際の磁歪の変化量により規定する。具体的には、1.7Tまで励磁した際の磁歪λ0-pbと、800℃で4時間の熱処理を施した後に1.7Tまで励磁した際の磁歪λ0-paとが、以下の式(1)を満たす。
  0.02≦λ0-pb-λ0-pa≦0.20 (μm/m)・・・・(1)
 上述の式(1)を満たす場合、良好な鉄損・騒音バランスを確保可能となる。
 この式は、基本的にはエネルギ線照射により母材鋼板に導入されている歪を、歪量だけでなく歪の分布、さらには歪を構成する格子欠陥の状態などを併せて評価する式になっていると考えられる。800℃で4時間の熱処理による歪の解放が、磁歪との関係で式(1)の範囲にある歪とすることで、良好な鉄損・騒音バランスを実現することが可能となる。
 熱処理前後の磁歪の変化が0.02μm/m未満であるということは、エネルギ線照射時点で適切な量の歪が導入されていないか、熱処理により歪解放が起きにくい歪状態になっていることを意味する。この場合、良好な鉄損・騒音バランスが得られない。一方で、熱処理前後の磁歪の変化が0.20μm/m超であるということは、エネルギ線照射時点で過度な量の歪が導入されているか、熱処理により歪解放が起き易過ぎる歪状態になっていることを意味する。この場合も、良好な鉄損・騒音バランスが得られない。
<グラス被膜>
 本実施形態に係る方向性電磁鋼板では、母材鋼板の表面上にグラス被膜が形成されている。
 グラス被膜は、ケイ酸マグネシウムを主成分とする無機質の被膜である。グラス被膜は、仕上げ焼鈍において、母材鋼板の表面に塗布されたマグネシア(MgO)を含む焼鈍分離剤と母材鋼板の表面の成分とが反応することにより形成され、焼鈍分離剤及び母材鋼板の成分に由来する組成を有し、主相である(50面積%以上である)MgSiO相と、MgAl2相とを含む組織からなる。これらの相以外には、析出物が1%以下程度含まれる場合がある。
 各相が占める領域(面積率)は、グラス被膜の板厚断面観察において走査型電子顕微鏡に付属のエネルギ分散型X線分析装置により得られる酸化物の組成から決定する。Mg、Al、Oが存在し、Al濃度が5%以上の領域をMgAl2相、Si濃度が5%以上の領域をMgSiO相とする。
 本実施形態に係る方向性電磁鋼板は、グラス被膜を構成する化合物相が所定の構造を有していることが好ましい。具体的には、方向性電磁鋼板の板厚方向の断面において、グラス被膜を板厚方向に3つの等しい厚さの領域に分割し、各領域を母材鋼板側から鋼板表面に向かって、1/3領域、2/3領域、3/3領域とし、さらにこの1/3領域におけるMgAl相の面積率をS1、2/3領域におけるMgAl相の面積率をS2、3/3領域におけるMgAl相の面積率をS3としたとき、以下の式(2)~(4)を満たすことが好ましい。
 断面観察においてグラス被膜先端は激しい凹凸や分離した島状領域も観察される。本実施形態においては、鋼板表面に平行な方向に20mm以上の十分な長さを観察し、母材鋼板内部に最も深く侵入したグラス被膜位置とグラス被膜が存在している位置の板厚方向の鋼板の最表面との距離をグラス被膜の全厚さとして、上記1/3領域、2/3領域、3/3領域(の厚さ)を決定する。また、各領域のMgAl相の面積率の算定において、分母となる各領域の全面積は島状領域も含めた「グラス被膜である領域」である。つまり、グラス被膜先端領域である1/3領域では、「グラス被膜である領域」は激しい凹凸形状や分離した島状領域となりやすく、同じ厚さ範囲には少なからずFe相が存在するが、MgAl相の面積率の算定においてFe相領域は分母となる領域面積(全面積)には含めない。よって、1/3領域の全面積は、2/3領域や3/3領域の全面積より小さくなることが一般的である。
   S1>S2>S3      ・・・・(2)
   (S1+S2+S3)/3<0.50  ・・・・(3)
   S3<0.10       ・・・・(4)
 式(2)~(4)を満足する場合、混在相であるMgAl相がグラス被膜中で母材鋼板側に偏在していることを示す。
 1/3領域においてMgAl相は被膜の密着性を向上させる化合物相である。グラス被膜のうち、1/3領域は母材鋼板と接合される領域である。グラス被膜と母材鋼板との界面は一般的に「根」とも表現される、複雑な凹凸形状を呈する。この形態によりグラス被膜と母材鋼板は、いわゆるアンカー効果により強く結合されている。このため、この領域にMgAl相がある程度混在したとしても、被膜剥離の起点となるようなクラックは発生しにくい。
 そのため、グラス被膜のうち、1/3領域にMgAl相が偏在していることが好ましい。密着性の観点からは、1/3領域においてもMgAl相はできるだけ母材鋼板側に偏在する形態が好ましく、MgAl相がグラス被膜と母材鋼板の界面(のみ)に偏在する形態は最も好ましい形態の一つと言える。
 一方、3/3領域において、MgAl相は形成が回避されるべき化合物相である。グラス被膜の3/3領域にMgAl相が存在すると、MgAl相がクラック発生の起点となり被膜密着性が著しく低下する。そのため、好ましくはS3<0.10であり、より好ましくはS3<0.05であり、S3=0であることは最も好ましい形態である。また、全体でのMgAl相の割合が0.50以上になると、MgAl相とMgSiO相との間に剥離の起点が発生してしまう。そのため、MgAl相のグラス被膜中の面積率(S1+S2+S3)/3は0.50未満であることが好ましく、0.30以下であることがより好ましい。
 一次被膜がこのような形態を有することで、前述の歪(熱処理による磁歪変化)を有する鋼板において、良好な鉄損・騒音バランスを確保しつつ、さらに良好な被膜密着性を得ることが可能となる。この理由は明確ではないが、以下のように考えている。
 本実施形態に係る方向性電磁鋼板は、投入エネルギを高めとし、かつパワー密度を低めとしたエネルギ線照射に代表される照射条件で良好な鉄損・騒音バランスを実現するが、レーザ照射部からの被膜剥離が起き易くもなる。これは、本実施形態に係る方向性電磁鋼板で形成される歪がこれまでの一般的な歪分布とは異なっていることを示唆している。このため、方向性電磁鋼板に応力が作用した際、歪領域において母材鋼板とグラス被膜との界面に従来より高い剥離応力が作用していることが予想される。この剥離応力が、グラス被膜中でMgAl相が母材鋼板側に偏在することで緩和されると考えられる。この緩和は、異種相の偏在配置により発生する応力が残留歪に起因する剥離応力を緩和することによるのか、異種相の偏在配置自体が剥離応力に対して強い抵抗力を持っているのかは不明である。しかしながら、本実施形態で規定するMgAl相の偏在配置による被膜密着性向上効果が、本実施形態で示す歪を有する磁区制御材で顕著に作用することを考えると、この組み合わせが特別な好ましい相互作用を有するものと思われる。
 さらには、エネルギ線照射条件だけでなく、グラス被膜でのMgAl相の偏在配置自体がエネルギ線照射部の歪に質的な影響を及ぼし、鉄損・騒音バランスをより好ましくさせている可能性も考えられる。歪とグラス被膜形態の相互作用が、鉄損・騒音バランスまたは密着性に及ぼす影響の解明については、今後の詳細な解析に期待する。
 本実施形態に係る方向性電磁鋼板では、投入エネルギを高めとし、かつパワー密度を低めとしたエネルギ線照射に代表される照射条件で良好な鉄損・騒音バランスを実現した方向性電磁鋼板であっても、十分な被膜密着性が得られる。具体的には、方向性電磁鋼板を直径20mmの丸棒に巻き付けて曲げ戻した時の被膜残存面積率が、90~100%となる。この被膜残存面積率は、被膜密着性の良し悪しを表す指標となる。被膜残存面積率は、95%以上であることが好ましい。
 被膜残存面積率は、曲げ密着性試験を行って評価する。被膜付きの方向性電磁鋼板から採取した80mm×80mmの平板状の試験片を、直径20mmの丸棒に巻き付けた後、平らに伸ばし、この電磁鋼板から剥離していない被膜(グラス被膜及び又は張力絶縁被膜)の面積を測定し、剥離していない面積を鋼板の面積で割った値を被膜残存面積率(%)と定義する。例えば、1mm方眼目盛付きの透明フィルムを試験片の上に載せて、被膜が剥離していない面積を測定すればよい。
<張力付与絶縁被膜>
 本実施形態に係る方向性電磁鋼板では、グラス被膜の表面上に張力付与絶縁被膜が形成されている。
 張力付与絶縁被膜は、方向性電磁鋼板に電気絶縁性を付与することで渦電流損を低減して、方向性電磁鋼板の鉄損を向上させる。また、張力付与絶縁被膜によれば、上記のような電気絶縁性以外にも、耐蝕性、耐熱性、すべり性といった種々の特性が得られる。
 更に、張力付与絶縁被膜は、方向性電磁鋼板に張力を付与するという機能を有する。方向性電磁鋼板に張力を付与して、方向性電磁鋼板における磁壁移動を容易にすることで、方向性電磁鋼板の鉄損を向上させることができる。
 張力付与絶縁被膜は、例えば、金属リン酸塩とシリカとを主成分とするコーティング液をグラス被膜の表面に塗布し、焼付けることによって形成される公知の被膜であってよい。
<母材鋼板の板厚:0.17~0.30mm>
 本実施形態に係る方向性電磁鋼板の母材鋼板の板厚は限定されないが、低鉄損と共に、低騒音や低振動が求められるトランスの鉄心への適用を考慮した場合、0.17~0.30mmであることが好ましい。板厚が薄いほど渦電流損の低減効果が享受でき、良好な鉄損が得られるため、母材鋼板の好ましい板厚上限は0.30mmである。ただし0.17mm未満の母材鋼板を製造するには特殊な設備が必要になり、製造コストアップ等、生産面で好ましくない。従い、工業的に好ましい板厚の下限は0.17mmである。
<製造方法>
 本実施形態に係る方向性電磁鋼板は、以下の工程を含む製造方法によって製造できる。
(i)鋼片を加熱し、熱間圧延で熱延鋼板とする、熱間圧延工程、
(ii)前記熱延鋼板に熱延板焼鈍を施す、熱延板焼鈍工程、
(iii)前記熱延板焼鈍工程後の前記熱延鋼板を酸洗する、酸洗工程、
(iv)前記酸洗工程後の前記熱延鋼板に、一回又は焼鈍を挟む複数回(二回以上)の冷間圧延を行って冷延鋼板とする、冷間圧延工程、
(v)前記冷延鋼板に脱炭焼鈍を施す、脱炭焼鈍工程、
(vi)母材鋼板である前記脱炭焼鈍工程後の冷延鋼板の表裏面に、MgO粉末を主成分とする焼鈍分離剤を塗布し、乾燥させた後、仕上げ焼鈍を施すことでグラス被膜を形成する、仕上げ焼鈍工程、
(vii)前記グラス被膜上に張力付与絶縁被膜を形成し、前記母材鋼板と前記母材鋼板上に形成されているグラス被膜と前記グラス被膜上に形成されている張力付与絶縁被膜とを備える方向性電磁鋼板を得る、被膜形成工程、
(viii)前記方向性電磁鋼板の前記張力付与絶縁被膜の表面にエネルギ線を照射し、前記母材鋼板に複数の線状の歪領域を形成する、磁区細分化工程。
 本実施形態に係る方向性電磁鋼板の製造方法においては、特に歪の状態を制御する磁区細分化工程での条件と、特にグラス被膜中のMgAl相の形態を制御する脱炭焼鈍工程での条件が特徴的なものとなる。
 以下、これらの工程について、詳細に説明する。以下の説明において、各工程における何らかの条件が記載されていない場合には、公知の条件を適宜適用して各工程を行うことが可能である。
<鋼片の化学組成について>
 加熱工程に供される鋼片の化学組成は限定されないが、方向性電磁鋼板として一般に求められる特性を得るため、化学成分として、以下を含むことが好ましい。以下の説明において、特に断りのない限り、「%」との表記は「質量%」を表わすものとする。鋼片は例えばスラブである。
 C:0.010~0.200%
 C(炭素)は、磁束密度の改善効果を示す元素である。しかしながら、鋼片のC含有量が0.200%を超える場合には、二次再結晶焼鈍(すなわち、仕上げ焼鈍)において鋼が相変態し、二次再結晶が十分に進行せず、良好な磁束密度と鉄損特性とが得られない。そのため、鋼片のC含有量を0.200%以下とすることが好ましい。C含有量が少ないほど鉄損低減にとって好ましい。鉄損低減の観点から、C含有量は、より好ましくは0.150%以下であり、さらに好ましくは0.100%以下である。
 一方、鋼片のC含有量が0.010%未満である場合には、磁束密度の改善効果を得ることはできない。従って、鋼片のC含有量は、0.010%以上とする。C含有量は、好ましくは0.040%以上であり、より好ましくは0.060%以上である。
 Si:3.00~4.00%
 Si(ケイ素)は、鋼の電気抵抗(比抵抗)を高めて鉄損の一部を構成する渦電流損を低減するのに、極めて有効な元素である。鋼片のSi含有量が3.00%未満である場合には、二次再結晶焼鈍において鋼が相変態して、二次再結晶が十分に進行せず、良好な磁束密度と鉄損特性とが得られない。そのため、鋼片のSi含有量は3.00%以上とすることが好ましい。鋼片のSi含有量は、より好ましくは3.10%以上であり、さらに好ましくは3.20%以上である。
 一方、Si含有量が4.00%を超える場合には、鋼板が脆化し、製造工程での通板性が顕著に劣化する。そのため、鋼片のSi含有量は4.00%以下とすることが好ましい。鋼片のSi含有量は、より好ましくは3.80%以下であり、さらに好ましくは3.60%以下である。
 sol.Al:0.010~0.040%
 sol.Al(酸可溶性アルミニウム)は、方向性電磁鋼板において二次再結晶を左右するインヒビターと呼ばれる化合物のうち、主要なインヒビターの構成元素であり、本実施形態に係る母材鋼板において、二次再結晶発現の観点から必須の元素である。鋼片のsol.Al含有量が0.010%未満である場合には、インヒビターとして機能するAlNが十分に生成せず、二次再結晶が不充分となって、鉄損特性が向上しない。そのため、鋼片において、sol.Al含有量は、0.010%以上とすることが好ましい。sol.Al含有量は、より好ましくは、0.015%以上であり、さらに好ましくは0.020%である。
 一方、sol.Al含有量が0.040%を超える場合には、鋼板の脆化が顕著となる。そのため、鋼片のsol.Al含有量は、0.040%以下とすることが好ましい。sol.Al含有量は、より好ましくは0.035%以下であり、さらに好ましくは0.030%以下である。
 Mn:0.01~0.50%
 Mn(マンガン)は、主要なインヒビターの一つであるMnSを形成する、重要な元素である。鋼片のMn含有量が0.01%未満である場合には、二次再結晶を生じさせるのに必要なMnSの絶対量が不足する。そのため、鋼片のMn含有量は、0.01%以上とすることが好ましい。Mn含有量は、より好ましくは0.03%以上であり、より好ましくは0.06%以上である。
 一方、鋼片のMn含有量が0.50%を超える場合には、二次再結晶焼鈍において鋼が相変態し、二次再結晶が十分に進行せず、良好な磁束密度と鉄損特性とが得られない。そのため、鋼片のMn含有量は、0.50%以下とする。Mn含有量は、より好ましくは0.40%以下であり、さらに好ましくは0.30%以下である。
 N:0.020%以下
 N(窒素)は、上記の酸可溶性Alと反応して、インヒビターとして機能するAlNを形成する元素である。鋼片のN含有量が0.020%を超える場合には、冷間圧延時、鋼板中にブリスター(空孔)が生じるうえに、強度が上昇し、製造時の通板性が悪化する。そのため、鋼片のN含有量を0.020%以下とすることが好ましい。N含有量は、より好ましくは0.015%以下であり、さらに好ましくは0.010%以下である。AlNをインヒビターとして活用しないのであれば、N含有量の下限値は0%を含みうる。しかしながら、化学分析の検出限界値が0.0001%であるため、実用鋼板において、実質的なN含有量の下限値は、0.0001%である。一方、Alと結合して、インヒビターとして機能するAlNを形成するためには、鋼片のN含有量は0.001%以上であることが好ましく、0.005%以上であることがより好ましい。
 S:0.005~0.040%
 S(硫黄)は、上記Mnと反応することで、インヒビターであるMnSを形成する重要な元素である。鋼片のS含有量が0.005%未満である場合には、十分なインヒビター効果を得ることができない。そのため、鋼片のS含有量を0.005%以上とすることが好ましい。S含有量は、より好ましくは0.010%以上であり、さらに好ましくは0.020%以上である。
 一方、鋼片のS含有量が0.040%を超える場合には、熱間脆性の原因となり、熱間圧延が著しく困難となる。そのため、鋼片のS含有量は0.040%以下とすることが好ましい。S含有量は、より好ましくは0.035%以下であり、さらに好ましくは0.030%以下である。
 P:0.030%以下
 P(リン)は圧延における加工性を低下させる元素である。P含有量を0.030%以下とすることにより、圧延加工性が過度に低下することを抑制でき、製造時における破断を抑制することができる。このような観点からP含有量は0.030%以下とすることが好ましい。P含有量は、0.020%以下であることがより好ましく、0.010%以下であることがさらに好ましい。
 P含有量の下限は0%を含み得るが、化学分析の検出限界値が0.0001%であるため、実用鋼板において、実質的なP含有量の下限値は、0.0001%である。また、Pは集合組織を改善し、磁気特性を改善する効果を有する元素でもある。この効果を得るため、P含有量を0.001%以上としてもよく、0.005%以上としてもよい。
残部:Fe及び不純物
 本実施形態に係る方向性電磁鋼板の製造に用いる鋼片の化学組成は、上述の元素を含有し、残部は、Fe及び不純物であることを基本とする。しかしながら、磁気特性等を高めることを目的として、さらにCu、Cr、Sn、Se、Sb、Moを以下に示す範囲で含有してもよい。
 ここで、不純物とは、母材鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入するものであり、本実施形態に係る方向性電磁鋼板の作用に悪影響を及ぼさない含有量で含有することを許容される元素を意味する。
 Cu:0~0.50%
 Cu(銅)は、二次再結晶組織におけるGoss方位占有率の増加に寄与するとともに、グラス被膜密着性の向上に寄与する元素である。上記効果を得る場合、Cu含有量を0.02%以上とすることが好ましい。Cu含有量は、より好ましくは0.03%以上である。
 一方、Cu含有量が0.50%を超える場合には、熱間圧延中に鋼板が脆化する。そのため、鋼片のCu含有量を0.50%以下とすることが好ましい。Cu含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。
 Cr:0~0.50%
 Cr(クロム)は、後述するSn及びCuと同様に、二次再結晶組織におけるGoss方位占有率の増加に寄与して磁気特性を向上させるとともに、グラス被膜密着性の向上に寄与する元素である。上記効果を得るためには、Cr含有量を、0.02%以上とすることが好ましく、0.03%以上とすることがより好ましい。
 一方、Cr含有量が0.50%を超える場合には、Cr酸化物が形成され、磁気特性が低下する。そのため、Cr含有量は、0.50%以下とすることが好ましい。Cr含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。
 Sn:0~0.50%
 Sn(スズ)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Snを含有させる場合は、磁気特性改善効果を良好に発揮するべく、含有量を0.005%以上とすることが好ましい。磁気特性と被膜密着性との両立を考慮すると、Sn含有量は、好ましくは0.02%以上であり、より好ましくは0.03%以上である。
 一方、Sn含有量が0.50%を超えると、グラス被膜の密着性が顕著に劣化する。従って、Sb含有量を0.50%以下とすることが好ましい。Sn含有量は、より好ましくは0.30%以下であり、さらに好ましくは0.10%以下である。
 Se:0~0.020%
 Se(セレン)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Seを含有させる場合は、磁気特性改善効果を良好に発揮するべく、含有量を0.001%以上とすることが好ましい。磁気特性と被膜密着性との両立を考慮すると、Se含有量は、より好ましくは0.003%以上であり、さらに好ましくは0.006%以上である。
 一方、Se含有量が0.020%を超えると、グラス被膜が著しく劣化する。従って、Se含有量の上限を0.020%とすることが好ましい。Se含有量は、より好ましくは0.015%以下であり、さらに好ましくは0.010%以下である。
 Sb:0~0.500%
 Sb(アンチモン)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Sbを含有させる場合は、磁気特性改善効果を良好に発揮するべく、その含有量を0.001%以上とすることが好ましい。磁気特性と被膜密着性との両立を考慮すると、Sb含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。
 一方、Sb含有量が0.500%を超えると、グラス被膜が顕著に劣化する。従って、Sb含有量の上限を0.500%とすることが好ましい。Sb含有量は、より好ましくは0.300%以下であり、さらに好ましくは0.100%以下である。
 Mo:0~0.10%
 Mo(モリブデン)は、磁気特性改善効果を有する元素である。そのため、含有させてもよい。Moを含有させる場合は、磁気特性改善効果を良好に発揮するため、Mo含有量を0.01%以上とすることが好ましい。Mo含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。
 一方、Mo含有量が0.10%を超えると、冷間圧延性が劣化し、破断に至る可能性がある。従って、Mo含有量を0.10%以下とすることが好ましい。Mo含有量は、より好ましくは0.08%以下であり、さらに好ましくは0.05%以下である。
<熱間圧延工程>
 熱間圧延工程では、所定の化学組成を有する鋼片を、加熱した後に熱間圧延し、熱延鋼板を得る。鋼片の加熱温度は、1100~1450℃の範囲内とすることが好ましい。加熱温度は、より好ましくは1300~1400℃である。
 熱間圧延条件については、特に限定されず、求められる特性に基づいて適宜設定すればよい。熱延鋼板の板厚は、例えば、2.0mm以上3.0mm以下の範囲内であることが好ましい。
<熱延板焼鈍工程>
 熱延板焼鈍工程は、熱間圧延工程を経て製造された熱延鋼板を焼鈍して、熱延焼鈍鋼板とする工程である。このような焼鈍処理を施すことで、鋼板組織に再結晶が生じ、良好な磁気特性を実現することが可能となる。
 本実施形態に係る熱延板焼鈍工程では、公知の方法に従い、熱間圧延工程を経て製造された熱延鋼板を焼鈍して、熱延焼鈍鋼板とすればよい。焼鈍に際して熱延鋼板を加熱する手段については、特に限定されるものではなく、公知の加熱方式を採用することが可能である。また、焼鈍条件についても、特に限定されるものではないが、例えば、熱延鋼板に対して、900~1200℃の温度域で10秒~5分間の焼鈍を行うことができる。
<冷間圧延工程>
 冷間圧延工程では、熱延板焼鈍後の熱延焼鈍鋼板に対して、複数のパスを含む冷間圧延を実施し、板厚が0.17~0.30mmの冷延鋼板を得る。冷間圧延は、一回の(中間焼鈍を挟まない一連の)冷間圧延でもよく、冷間圧延工程の最終パスの前に、冷延を中断し少なくとも1回または2回以上の中間焼鈍を実施して、中間焼鈍をはさむ複数の冷間圧延を施してもよい。
 中間焼鈍を行う場合、1000~1200℃の温度で5秒以上180秒以下とすることが好ましい。焼鈍雰囲気は特には限定されない。中間焼鈍の回数は製造コストを考慮すると3回以内が好ましい。
 また、冷間圧延工程の前に、熱延焼鈍鋼板の表面に対して酸洗を施してもよい。
 本実施形態に係る冷間圧延工程では、公知の方法に従い、熱延焼鈍鋼板を冷間圧延し、冷延鋼板とすればよい。例えば、最終圧下率は、80%以上95%以下の範囲内とすることができる。最終圧下率が80%未満である場合には、{110}<001>方位が圧延方向に高い集積度をもつGoss核を得ることができない可能性が高くなり、好ましくない。一方、最終圧下率が95%を超える場合には、後工程である仕上げ焼鈍工程において、二次再結晶が不安定となる可能性が高くなるため、好ましくない。最終圧下率を上記範囲内とすることにより、{110}<001>方位が圧延方向に高い集積度をもつGoss核を得るとともに、二次再結晶の不安定化を抑制することができる。
 最終圧下率とは、冷間圧延の累積圧下率であり、中間焼鈍を行う場合には、最終中間焼鈍後の冷間圧延の累積圧下率である。
<脱炭焼鈍工程>
 脱炭焼鈍工程は、グラス被膜中のMgAl相の状態を制御するための重要な工程である。前述のMgAl相の存在状態とする場合、昇温過程及び均熱過程を含む脱炭焼鈍工程の、昇温過程において、550~750℃における昇温速度を700~2000℃/秒、酸素ポテンシャルを0.0001~0.0100とし、均熱過程が、酸素ポテンシャルが0.4以上0.8以下の雰囲気中で、焼鈍温度を800~900℃、焼鈍時間を100~500秒とする第1均熱過程と、酸素ポテンシャルが0.1以下の雰囲気中で、焼鈍温度を850℃以上1000℃以下、焼鈍時間を5秒以上100秒以下とする第2均熱過程と、を含む必要がある。
 第2均熱過程(第二の熱処理)は、第1均熱過程(第一の熱処理)の後一度温度を低下させてから実施しても良いし、第一の熱処理の後、温度を低下させず連続的に実施しても良い。
 脱炭焼鈍を上記範囲で実施することにより、グラス被膜中のMgAl相の状態が上述した好ましいものとなる理由は明確ではないが、以下のように考えられる。
 グラス被膜は、焼鈍分離剤として仕上げ焼鈍前の鋼板の表面に塗布されたMgOと母材鋼板に含有されるSiが反応して形成される。仕上げ焼鈍の進行に伴い反応が進行することでグラス被膜と母材鋼板との界面は母材鋼板中に進行していき、最終的にグラス被膜の母材鋼板側の先端は、上述の「根」のような複雑な凹凸形状を呈するように発達する。
 この過程においてMgAl相は、MgOと母材鋼板中のAlが反応して形成されるが、その経路は大きく2つ存在すると考えられる。一つは焼鈍分離剤中のMgOと母材鋼板から供給されるAlとが直接反応して形成される場合である。もう一つは、焼鈍分離剤中のMgOは最初に母材鋼板起因のSiと反応してMgSiO相を形成し、その後、さらにAlと反応してMgAl相に変化する場合である。前者では、MgAl相はグラス被膜形成過程の比較的早い段階で起きると考えられる。一方、後者の場合、MgおよびOは一旦Siとの酸化物として固定されるため、MgAl相の形成はグラス被膜形成過程の比較的遅い段階で起きると考えられる。最終的にMgSiO相を主相とするグラス被膜の形成が、酸化領域が母材鋼板中に進行する形で起きることを考えると、比較的早い段階で形成されたMgAl相はグラス被膜の表面側に取り残されるような配置になると考えられる。逆に、比較的遅い段階で形成されるMgAl相はグラス被膜と母材鋼板の界面側に配置されるようになると考えられる。このような事項を考慮すると、仕上げ焼鈍において母材鋼板表面に存在するMgOがSiと優先的に反応する状況としておくことが、グラス被膜中に形成されるMgAl相を母材鋼板側に留めるために好ましいと推定できる。
 本実施形態の脱炭焼鈍条件は、脱炭焼鈍工程を終了した鋼板の表面に十分な量のSiOを形成する条件になっていると考えられる。つまり、脱炭焼鈍工程を終了した鋼板の表面が十分な量のSiOで覆われていれば、その表面にさらにMgOを主体とする焼鈍分離剤を塗布して仕上げ焼鈍で焼鈍分離剤の反応を開始させる場合、MgOは反応の初期段階で優先的にMgSiO相を形成することになる。この結果、グラス被膜中のMgAl相の存在状態が好ましいものとなる。反対に、上記の脱炭焼鈍条件を外れる場合は、脱炭焼鈍工程を終了した鋼板の表面には十分な量のSiOが存在しないため、仕上げ焼鈍で焼鈍分離剤の反応を開始させる場合、MgOは反応の初期段階でAlを含有する母材鋼板と直接反応し、MgAl相を形成することになる。この結果、グラス被膜中のMgAl相の存在状態が好ましくないものとなる。
 脱炭焼鈍工程において上記の熱履歴を経ることで、その後に母材鋼板の表面に形成されるグラス被膜が好ましい形態となり、適切なレーザ処理条件で磁区制御を実施することにより、良好な鉄損・騒音バランスと、より優れた被膜密着性とを備える方向性電磁鋼板の製造が可能となる。
<窒化処理工程>
 脱炭焼鈍工程中、または脱炭焼鈍工程後、後述する仕上げ焼鈍工程の前に、窒化処理を行ってもよい。
 窒化処理工程では、例えば脱炭焼鈍工程の均熱過程より後の冷延鋼板を窒化処理雰囲気(水素、窒素、及びアンモニア等の窒化能を有するガスを含有する雰囲気)内で700~850℃程度に維持する。冷延鋼板のN含有量が質量基準で40~1000ppmとなるように、鋼板に窒化処理を施すことが好ましい。窒化処理後の冷延鋼板のN含有量が40ppm未満では冷延鋼板内にAlNが十分に析出せず、AlNがインヒビターとして機能しない可能性がある。このため、AlNをインヒビターとして活用する場合、窒化処理後の冷延鋼板のN含有量は40ppm以上とすることが好ましい。
 一方、冷延鋼板のN含有量が1000ppm超となった場合、仕上げ焼鈍において二次再結晶完了後も鋼板内に過剰にAlNが存在する。このようなAlNは鉄損劣化の原因となる。このため、窒化処理後の冷延鋼板のN含有量は1000ppm以下とすることが好ましい。
<仕上げ焼鈍工程>
 仕上げ焼鈍工程では、脱炭焼鈍工程で得られた、またはさらに窒化処理が行われた、冷延鋼板に対して所定の焼鈍分離剤を塗布した後に、仕上げ焼鈍を施す。仕上げ焼鈍は、一般に、鋼板をコイル状に巻いた状態において、長時間行われる。従って、仕上げ焼鈍に先立ち、コイルの巻きの内と外との焼付きの防止を目的として、焼鈍分離剤を冷延鋼板に塗布し、乾燥させる。
 塗布する焼鈍分離剤として、MgOを主成分とする(例えば80質量%以上含む)焼鈍分離剤を用いる。MgOを主成分とする焼鈍分離剤を用いることで、母材鋼板の表面にグラス被膜を形成することができる。MgOを主成分としない場合には、一次被膜(グラス被膜)は形成されない。なぜならば、一次被膜はMgSiOまたはMgAl化合物だからであり、形成反応に必要なMgが欠乏するからである。
 仕上げ焼鈍は例えば水素及び窒素を含有する雰囲気ガス中で、1150~1250℃まで昇温し、10~60時間焼鈍する条件で行えばよい。
<絶縁被膜形成工程>
 絶縁被膜形成工程では、仕上げ焼鈍後の冷延鋼板の片面又は両面に対し、張力付与絶縁被膜を形成する。張力付与絶縁被膜の形成の条件については、特に限定されるものではなく、公知の絶縁被膜処理液を用いて、公知の方法により処理液の塗布及び乾燥を行えばよい。鋼板表面に張力付与絶縁被膜を形成することで、方向性電磁鋼板の磁気特性を更に向上させることが可能となる。
 絶縁被膜(張力付与絶縁被膜)が形成される鋼板の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施された表面であってもよいし、これら前処理が施されない仕上げ焼鈍後のままの表面であってもよい。
 グラス被膜の表面に形成される(グラス被膜を介して母材鋼板上に形成される)張力付与絶縁被膜は、方向性電磁鋼板の絶縁被膜として用いられるものであれば、特に限定されるものではなく、公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、更に有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩又はコロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくとも何れかを主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩やZrあるいはTiのカップリング剤、又は、これらの炭酸塩やアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
<磁区細分化工程>
 磁区細分化工程では、エネルギ線を張力付与絶縁被膜の表面に照射することにより、母材鋼板の表面に、圧延方向と交差する方向に延在する複数の線状の歪を導入する。磁区細分化工程では、母材鋼板に、圧延方向に所定の間隔で、略平行な複数の線状の歪(エネルギ線照射による急速加熱とその後の急速冷却によって生じる熱歪)が存在する領域(歪領域)を形成するが、その間隔(すなわち、隣り合う歪領域の間隔)は、圧延方向に10mm以下とする。
 複数の線状の歪領域の圧延方向の間隔が10mm超であると、鉄損改善効果が不足する。そのため、それぞれの圧延方向に10mm以下の間隔でエネルギ線を照射し、歪(残留歪)を形成する。
 エネルギ線の種類は特に限定されない。一般的に実用化されているレーザまたは電子ビームが適用できる。
 レーザ照射を適用する場合、レーザビームは、連続波レーザでもパルスレーザでもよいが、連続波レーザが好ましい。また、レーザビームと電子ビームとでは、レーザビームが好ましい。これは電子ビームを照射する工程では真空環境が必須であり、生産コストが増大するためである。従って本実施形態ではレーザビームを用いた磁区細分化処理を実施する。レーザビームは例えばファイバーレーザビームである。
 また、上述したように、低鉄損と低騒音とを両立し、被膜密着性に優れた方向性電磁鋼板を得るため、母材鋼板に対し、歪を導入する。
 具体的には、単位Wでのエネルギ線出力Pと、単位mmでのエネルギ線照射断面積Sを用いて、P/Sで定義されるエネルギ線パワー密度Ipが下記式(5)を満たし、かつ、エネルギ線出力Pと、単位mm/秒でのエネルギ線走査速度Vsを用いて、P/Vsで定義される単位J/mmのエネルギ線投入エネルギUpが、下記式(6)を満たすように、エネルギ線を照射する。
  250≦Ip≦2000   式(5)
  0.010<Up≦0.050   式(6)
 Ipが250未満では、十分なエネルギが投入されず、磁区細分化効果(鉄損改善効果)が得られない。そのため、Ipは250以上である。Ipは、好ましくは500以上である。
 一方、Ipが2000超となると、磁区細分化効果を超えて、余剰の熱歪が導入されることで、騒音特性が劣化する。そのため、Ipは2000以下である。Ipは好ましくは1750以下、より好ましくは1500以下である。
 また、Upが0.010未満では、照射効果が十分に得られず鉄損が改善しない。一方、Upが0.050超であると、騒音特性が劣化する。
 さらに、本実施形態に係る方向性電磁鋼板の製造方法では、エネルギ線の照射に際し、エネルギ線の、単位μmでの、ビームスキャン方向(走査方向)に垂直な方向の径dlおよびビームスキャン方向の径dcを用いて、(dl/dc)で定義されるビームアスペクト比が、下記式(7)を満足するように制御する。
  0.0010<dl/dc<1.0000 (7)
 ビームアスペクト比が0.0010以下では、ビーム照射に伴い抜熱が起こり、投入エネルギの投入効率が下がり、十分な磁区細分化効果(鉄損改善効果)が得られない。そのため、ビームアスペクト比は0.0010超である。
 一方、ビームアスペクト比が1.0000以上であると、ビーム照射に伴う抜熱は起こらないが、代わって、残留応力が発生し、低騒音効果が得られない。そのため、ビームアスペクト比は、1.0000未満である。ビームアスペクト比は、好ましくは0.0500未満、より好ましくは0.0050未満である。
 また、エネルギ線の、単位μmでのビームスキャン方向に垂直な方向の径dlは、下記(8)式を満足するようにする。
  10<dl<200          (8)
 一般的なレーザ光源ではビーム径を10μm以下にすることは困難である。そのため、dlは10超である。
 一方、dlが200以上となると、磁区細分化効果を超えて、余剰の熱歪が導入されることで、騒音特性が劣化する。そのため、dlは200未満である。dlは好ましくは150未満、より好ましくは100未満である。
 本実施形態に係る方向性電磁鋼板の製造方法では、上述の通り、比較的強いIpのエネルギ線を、ビームアスペクト比が小さい状態で照射する。このような照射は通常行われない。なぜなら、ビームアスペクト比を小さくすることは、照射エネルギを分散させることにつながり、Ipを高める効果が低くすると考えられるからである。
 しかしながら、本発明者らは、歪の空間分布制御が鉄損と騒音とを同時に低くする観点で重要であるとの新たな知見に基づいて検討した結果、上記の照射条件が好ましいことを初めて見出した。
 表1記載の化学組成を有するスラブを製造する。このスラブに対して熱間圧延工程を実施する。具体的には、スラブを1350℃に加熱した後、スラブに対して熱間圧延を実施して、板厚2.3mmの熱延鋼板を製造する。
 熱間圧延工程後の熱延鋼板に対して、900~1200℃の焼鈍温度で、保持時間10~300秒の熱延板焼鈍工程を実施する。
 その後、複数の冷間圧延を施して、0.17~0.27mmの冷延鋼板を得る。
 この冷延鋼板に対し、表2A、表2Bに示す条件で脱炭焼鈍を行う。
 脱炭焼鈍後、試験No.11、13、15については、周知の窒化処理雰囲気(水素、窒素、及びアンモニア等の窒化能を有するガスを含有する雰囲気)内で700~850℃で10~60秒保持し、脱炭焼鈍後の冷延鋼板のN含有量が40ppm以上1000ppm以下となるようにする。
 試験No.11、13、15については窒化処理後、それ以外については、脱炭焼鈍後に、鋼板表面に、酸化マグネシウム(MgO)を主成分とする焼鈍分離剤を鋼板表面に塗布して、仕上げ焼鈍工程を実施する。仕上げ焼鈍工程での仕上げ焼鈍温度は1200℃であり、仕上げ焼鈍温度での保持時間は20時間である。
 仕上げ焼鈍工程の冷却後の鋼板(方向性電磁鋼板)の表面(グラス被膜上)に、コロイド状シリカ及びリン酸塩を主体とする絶縁コーティング剤を塗布した後、焼付けを実施して張力付与絶縁被膜を形成する。以上の工程により、各試験No.の方向性電磁鋼板を製造する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[母材鋼板の化学組成の分析]
 上記の要領で得られた磁区細分化前の各試験No.の方向性電磁鋼板の母材鋼板の化学組成を、次の方法により求める。始めに、各試験No.の方向性電磁鋼板から、張力付与絶縁被膜を除去する。具体的には、方向性電磁鋼板を、NaOH:30~50質量%及びHO:50~70質量%を含有し、80~90℃の水酸化ナトリウム水溶液に、7~10分間浸漬する。浸漬後の方向性電磁鋼板(張力付与絶縁被膜が除去された方向性電磁鋼板)を水洗する。水洗後、温風のブロアーで1分間弱、乾燥させる。
 次に、張力付与絶縁被膜を備えていない方向性電磁鋼板から、グラス被膜を除去する。具体的には、方向性電磁鋼板を、30~40質量%のHClを含有し、80~90℃の塩酸水溶液に、1~10分間浸漬する。これにより、母材鋼板上からグラス被膜が除去される。浸漬後の母材鋼板を水洗する。水洗後、温風のブロアーで1分間弱、乾燥させる。以上の工程により、方向性電磁鋼板から、母材鋼板を取り出す。
 取り出した母材鋼板の化学組成を、周知の成分分析法により求める。具体的には、ドリルを用いて、母材鋼板から切粉を生成し、その切粉を採取する。採取された切粉を酸に溶解させて溶液を得る。溶液に対して、ICP-AESを実施して、化学組成の元素分析を実施する。母材鋼板の化学組成中のSiについては、JIS G 1212:1997に規定の方法(けい素定量方法)により求める。具体的には、上述の切粉を酸に溶解させると、酸化ケイ素が沈殿物として析出する。この沈殿物(酸化ケイ素)をろ紙で濾し取り、質量を測定して、Si含有量を求める。C含有量及びS含有量については、周知の高周波燃焼法(燃焼-赤外線吸収法)により求める。具体的には、上述の溶液を酸素気流中で高周波加熱により燃焼して、発生した二酸化炭素、二酸化硫黄を検出し、C含有量及びS含有量を求める。N含有量については、周知の不活性ガス溶融-熱伝導度法を用いて求める。以上の分析法により、母材鋼板の化学組成を求める。各試験No.の鋼板(母材鋼板)の化学組成は表3に示すとおりである。表3中の「-」は、対応する元素含有量が検出限界未満であることを示す。
[磁気特性評価]
 表には示さないが、各試験No.の方向性電磁鋼板から、板幅中央位置を含む、幅60mm×長さ300mmのサンプルを採取する。サンプルの長さは、圧延方向に平行とする。採取されたサンプルは露点0℃以下の窒素雰囲気で800℃、2時間保持し、サンプル採取時に導入された歪除去を実施する。
 このサンプルを用いて、JIS C2556(2015)に準拠して、単板磁気特性試験(SST試験)により、磁束密度(T)を求める。具体的には、サンプルに800A/mの磁場を付与して、磁束密度(T)を求める。
 さらに、上記サンプルを用いて、JIS C2556(2015)に準拠して、周波数を50Hz、最大磁束密度を1.7Tとしたときの鉄損W17/50(W/kg)を測定する。
Figure JPOXMLDOC01-appb-T000004
 また、得られた各試験No.の方向性電磁鋼板(張力付与絶縁被膜形成後)に対して、表4A、表4Bに示す条件で、レーザ(ファイバーレーザまたはパルスレーザ)、または電子ビームを用いて、鋼板表面にエネルギ線照射を行うことで磁区細分化を行い、騒音特性と磁気特性の評価試験を実施する。また、上述した方法で、グラス被膜の全厚さを測定した上で、各領域におけるMgAl相の面積率S1、S2、S3も測定する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[騒音特性及び磁歪評価]
 各方向性電磁鋼板から幅100mm×長さ500mmのサンプルを採取する。サンプルの長さ方向は圧延方向RDに対応し、幅方向は板幅方向TDに対応させる。
 サンプルに対し、磁歪測定装置を用いて、交流磁歪測定法により磁歪を測定する。磁歪測定装置は、レーザードップラ振動計と、励磁コイルと、励磁電源と、磁束検出コイルと、増幅器と、オシロスコープとを備える装置とする。
 具体的には、圧延方向に最大磁束密度が1.7T、周波数を50Hzとなるように、サンプルに交流磁界を印加する。磁区の伸縮によるサンプルの長さの変化を、レーザードップラ振動計で測定し、磁歪信号を得る。得られた磁歪信号をフーリエ解析して、磁歪信号の各周波数成分fn(nは1以上の自然数)の振幅Cnを求める。各周波数成分fnのA補正係数αnを用いて、次式で示される磁歪速度レベルLVA(dB)を求める。
 LVA=20×Log(√(Σ(ρc×2π×fn×αn×Cn/√2))/Pe0)
 ここで、ρcは固有音響抵抗であり、ρc=400とした。Pe0は最小可聴音圧であり、Pe0=2×10-5(Pa)を用いる。A補正係数αnは、JIS C 1509-1(2005)の表2に記載の値を用いる。
得られた磁歪速度レベル(LVA)に基づいて、以下の基準に則して騒音特性を評価する。磁歪速度レベルが、60dBA未満であれば、騒音特性に優れると判断する。
 さらに、上記磁歪信号から磁歪λ0-p(μm/m)を求める。具体的には、上記の励磁条件下における磁束密度が1.7Tでの試験片(鋼板)の長さLp(μm)および磁束密度0Tでの試験片の長さL(m)から、λ0-p=(Lp-L)/Lにより算出する。
 さらに800℃4時間の熱処理を施した鋼板について、同様に、周波数を50Hz、最大磁束密度を1.7Tとしたときの磁歪λ0-p(μm/m)を測定する。そして、熱処理前の磁歪をλ0-pb、熱処理後の磁歪をλ0-paとして、λ0-pb-λ0-paを求める。
 結果を表5A、表5B、表6A、表6Bに示す。
[磁気特性評価]
 各試験No.の方向性電磁鋼板から、板幅中央位置を含む、幅60mm×長さ300mmのサンプルを採取する。サンプルの長さは、圧延方向に平行とする。採取されたサンプルは露点0℃以下の窒素雰囲気で800℃、2時間保持し、サンプル採取時に導入された歪除去を実施する。
 このサンプルを用いて、JIS C2556(2015)に準拠して、単板磁気特性試験(SST試験)により、磁束密度(T)を求める。具体的には、サンプルに800A/mの磁場を付与して、磁束密度(T)を求める。
 さらに、上記サンプルを用いて、JIS C2556(2015)に準拠して、周波数を50Hz、最大磁束密度を1.7Tとしたときの鉄損W17/50(W/kg)を測定する。鉄損改善率5.0%以上を満足する場合に鉄損改善率に優れると判断する。測定結果を表6A、表6Bに示す。
[被膜密着性]
 方向性電磁鋼板の被膜密着性(被膜残存面積率)を前述の方法で測定する。被膜残存面積率が50%以上であれば被膜密着性は可(評価〇)、90%以上であれば被膜密着性に優れる(評価◎)と判断する。評価結果を表6A、表6Bに記載する。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表1~表6Bから分かるように、歪領域が好ましく存在し、λ0-pb-λ0-paが本発明範囲内である鋼板(発明例)では良好な鉄損・騒音バランスを確保できている。さらにλ0-pb-λ0-paが本発明範囲内で良好な鉄損・騒音バランスを確保できている鋼板では、各領域のグラス被膜におけるMgAl相の面積率が好ましい関係を満たす場合に被膜残存面積率が十分に高く、良好な密着性を両立できる。
 一方、λ0-pb-λ0-paが本発明範囲外で良好な鉄損・騒音バランスを確保できていない鋼板では、グラス被膜におけるMgAl相の面積率が被膜残存面積率に及ぼす影響は明確ではない。
 本発明によれば、良好な鉄損・騒音バランスを有する方向性電磁鋼板及びその製造方法を提供することができる。また、本発明の好ましい態様によれば、良好な鉄損・騒音バランスを有し、かつ被膜密着性にも優れる方向性電磁鋼板を提供することができる。そのため、産業の利用可能性が高い。

Claims (8)

  1.  母材鋼板と、
     前記母材鋼板上に形成されているグラス被膜と、
     前記グラス被膜上に形成されている張力付与絶縁被膜と、
    を備え、
     前記母材鋼板には、圧延方向と交差する方向に連続的にまたは断続的に延在する複数の線状の歪領域が存在し、
     前記複数の線状の歪領域は、それぞれ、前記圧延方向における幅が210μm以下であり、
     前記複数の線状の歪領域は、互いに平行であり、隣り合う線状の歪領域の前記圧延方向における間隔が10mm以下であり、
     1.7Tまで励磁した際の単位μm/mでの磁歪λ0-pbと、800℃で4時間の熱処理を施した後に1.7Tまで励磁した際の単位μm/mでの磁歪λ0-paが、以下の式(1)を満たす
    ことを特徴とする方向性電磁鋼板。
      0.02≦λ0-pb-λ0-pa≦0.20・・・・(1)
  2.  前記グラス被膜が、主相であるMgSiO相と、MgAl相と、を含む組織からなり、
     板厚方向断面において、前記グラス被膜を板厚方向に3つの等しい厚さの領域に分割し、各領域を母材鋼板側から張力付与絶縁被膜側に向かって、1/3領域、2/3領域、3/3領域とし、前記1/3領域におけるMgAl相の面積率をS1、前記2/3領域におけるMgAl相の面積率をS2、前記3/3領域におけるMgAl相の面積率をS3としたとき、
     前記S1、前記S2、前記S3が、以下の式(2)~(4)を満たすことを特徴とする請求項1に記載の方向性電磁鋼板。
       S1>S2>S3      ・・・・(2)
       (S1+S2+S3)/3<0.50  ・・・・(3)
       S3<0.10       ・・・・(4)
  3.  請求項1または2に記載の方向性電磁鋼板の製造方法であり、
     鋼片を加熱し、熱間圧延で熱延鋼板とする、熱間圧延工程と、
     前記熱延鋼板に熱延板焼鈍を施す、熱延板焼鈍工程と、
     前記熱延板焼鈍工程後の前記熱延鋼板を酸洗する、酸洗工程と、
     前記酸洗工程後の前記熱延鋼板に、一回又は焼鈍を挟む複数回の冷間圧延を行って冷延鋼板とする、冷間圧延工程と、
     前記冷延鋼板に脱炭焼鈍を施す、脱炭焼鈍工程と、
     母材鋼板である前記脱炭焼鈍工程後の冷延鋼板の表裏面に、MgO粉末を主成分とする焼鈍分離剤を塗布し、乾燥させた後、仕上げ焼鈍を施すことでグラス被膜を形成する、仕上げ焼鈍工程と、
     前記グラス被膜上に張力付与絶縁被膜を形成し、前記母材鋼板と前記母材鋼板上に形成されているグラス被膜と前記グラス被膜上に形成されている張力付与絶縁被膜とを備える方向性電磁鋼板を得る、被膜形成工程と、
     前記方向性電磁鋼板の前記張力付与絶縁被膜の表面にエネルギ線を照射し、前記母材鋼板に複数の線状の歪領域を形成する、磁区細分化工程と、
    を有し、
     前記磁区細分化工程において、
      前記複数の線状の歪領域のうち、隣り合う線状の歪領域の圧延方向の間隔が10mm以下であり、
      単位Wでのエネルギ線出力Pと、単位mmでのエネルギ線照射断面積Sとを用いて、(P/S)で定義される、単位W/mmでのエネルギ線パワー密度Ipが下記式(5)を満たし、
      前記エネルギ線出力Pと、単位mm/秒でのエネルギ線走査速度Vsとを用いて、P/Vsで定義される単位J/mmのエネルギ線投入エネルギUpが、下記式(6)を満たし、かつ
      前記エネルギ線の、単位μmでの、ビームスキャン方向に垂直な方向の径dlおよび前記ビームスキャン方向の径dcを用いて、(dl/dc)で定義されるビームアスペクト比、並びに、前記dlがそれぞれ下記式(7)および下記式(8)を満たす、
    ことを特徴とする方向性電磁鋼板の製造方法。
    250≦Ip≦2000   (5)
    0.010<Up≦0.050   (6)
    0.0010<dl/dc<1.0000   (7)
    10<dl<200   (8)
  4.  前記エネルギ線がレーザビームであることを特徴とする請求項3に記載の方向性電磁鋼板の製造方法。
  5.  前記レーザビームがファイバーレーザビームであることを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。
  6.  前記鋼片が、質量%で、C:0.010~0.200%、Si:3.00~4.00%、sol.Al:0.010~0.040%、Mn:0.01~0.50%、N:0.020%以下、S:0.005~0.040%、P:0.030%以下、Cu:0~0.50%、Cr:0~0.50%、Sn:0~0.50%、Se:0~0.020%、Sb:0~0.500%、Mo:0~0.10%を含有し、残部がFe及び不純物からなることを特徴とする、
    請求項3~5のいずれか一項に記載の方向性電磁鋼板の製造方法。
  7.  前記脱炭焼鈍工程が昇温過程と均熱過程とを有し、
      前記昇温過程での550~750℃における昇温速度を700~2000℃/秒、酸素ポテンシャルを0.0001~0.0100とし、
      前記均熱過程が、酸素ポテンシャルが0.4以上0.8以下の雰囲気中で、焼鈍温度を800~900℃、焼鈍時間を100~500秒とする第1均熱過程と、酸素ポテンシャルが0.1以下の雰囲気中で、焼鈍温度を850℃以上1000℃以下、焼鈍時間を5秒以上100秒以下とする第2均熱過程と、を含む、
    ことを特徴とする請求項3~6のいずれか一項に記載の方向性電磁鋼板の製造方法。
  8.  前記脱炭焼鈍工程中又は前記脱炭焼鈍工程後に、さらに、前記冷延鋼板に窒化処理を施す、窒化処理工程を有する、
    ことを特徴とする請求項3~7のいずれか一項に記載の方向性電磁鋼板の製造方法。
PCT/JP2022/015221 2021-03-26 2022-03-28 方向性電磁鋼板及びその製造方法 WO2022203088A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023509356A JPWO2022203088A1 (ja) 2021-03-26 2022-03-28
BR112023019084A BR112023019084A2 (pt) 2021-03-26 2022-03-28 Chapa de aço elétrico de grão orientado, e, método para fabricar a chapa de aço elétrico de grão orientado
EP22775869.5A EP4317469A4 (en) 2021-03-26 2022-03-28 GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET AND MANUFACTURING METHOD THEREOF
KR1020237032208A KR20230146647A (ko) 2021-03-26 2022-03-28 방향성 전자 강판 및 그 제조 방법
CN202280022501.2A CN117015627A (zh) 2021-03-26 2022-03-28 方向性电磁钢板及其制造方法
US18/283,162 US20240177901A1 (en) 2021-03-26 2022-03-28 Grain-oriented electrical steel sheet and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053619 2021-03-26
JP2021053619 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022203088A1 true WO2022203088A1 (ja) 2022-09-29

Family

ID=83397514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015221 WO2022203088A1 (ja) 2021-03-26 2022-03-28 方向性電磁鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US20240177901A1 (ja)
EP (1) EP4317469A4 (ja)
JP (1) JPWO2022203088A1 (ja)
KR (1) KR20230146647A (ja)
CN (1) CN117015627A (ja)
BR (1) BR112023019084A2 (ja)
WO (1) WO2022203088A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269562A (ja) * 1995-03-29 1996-10-15 Nippon Steel Corp 磁歪の低い方向性珪素鋼板およびその製造方法
JP3361709B2 (ja) 1997-01-24 2003-01-07 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
JP4510757B2 (ja) 2003-03-19 2010-07-28 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板とその製造方法
JP4669565B2 (ja) 2007-12-12 2011-04-13 新日本製鐵株式会社 レーザ光の照射により磁区が制御された方向性電磁鋼板の製造方法
WO2012172624A1 (ja) * 2011-06-13 2012-12-20 新日鐵住金株式会社 一方向性電磁鋼板の製造方法
JP6060988B2 (ja) 2015-02-24 2017-01-18 Jfeスチール株式会社 方向性電磁鋼板及びその製造方法
JP2017128765A (ja) * 2016-01-20 2017-07-27 新日鐵住金株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、変圧器またはリアクトル用の鉄心、および、騒音評価方法
JP6176282B2 (ja) 2014-04-11 2017-08-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2019182154A1 (ja) * 2018-03-22 2019-09-26 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
WO2020158732A1 (ja) * 2019-01-28 2020-08-06 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
US20210023659A1 (en) * 2018-03-30 2021-01-28 Baoshan Iron & Steel Co., Ltd. A grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
JP2021053619A (ja) 2019-09-26 2021-04-08 新コスモス電機株式会社 硫化カルボニル分解装置および硫化カルボニル検知装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060988U (ja) 1983-10-04 1985-04-27 クロイ電機株式会社 香炉装置
JPH0125258Y2 (ja) 1984-10-24 1989-07-28
JP5919617B2 (ja) * 2010-08-06 2016-05-18 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5532185B2 (ja) * 2011-12-28 2014-06-25 Jfeスチール株式会社 方向性電磁鋼板およびその鉄損改善方法
CN107012303B (zh) * 2011-12-28 2020-01-24 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
JP6432713B1 (ja) * 2017-02-28 2018-12-05 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269562A (ja) * 1995-03-29 1996-10-15 Nippon Steel Corp 磁歪の低い方向性珪素鋼板およびその製造方法
JP3361709B2 (ja) 1997-01-24 2003-01-07 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板の製造方法
JP4510757B2 (ja) 2003-03-19 2010-07-28 新日本製鐵株式会社 磁気特性の優れた方向性電磁鋼板とその製造方法
JP4669565B2 (ja) 2007-12-12 2011-04-13 新日本製鐵株式会社 レーザ光の照射により磁区が制御された方向性電磁鋼板の製造方法
WO2012172624A1 (ja) * 2011-06-13 2012-12-20 新日鐵住金株式会社 一方向性電磁鋼板の製造方法
JP6176282B2 (ja) 2014-04-11 2017-08-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6060988B2 (ja) 2015-02-24 2017-01-18 Jfeスチール株式会社 方向性電磁鋼板及びその製造方法
JP2017128765A (ja) * 2016-01-20 2017-07-27 新日鐵住金株式会社 方向性電磁鋼板、方向性電磁鋼板の製造方法、変圧器またはリアクトル用の鉄心、および、騒音評価方法
WO2019182154A1 (ja) * 2018-03-22 2019-09-26 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法
US20210023659A1 (en) * 2018-03-30 2021-01-28 Baoshan Iron & Steel Co., Ltd. A grain-oriented silicon steel having heat-resistant magnetic domain and manufacturing method thereof
WO2020158732A1 (ja) * 2019-01-28 2020-08-06 日本製鉄株式会社 方向性電磁鋼板及びその製造方法
JP2021053619A (ja) 2019-09-26 2021-04-08 新コスモス電機株式会社 硫化カルボニル分解装置および硫化カルボニル検知装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. IWATA, J. APPL. PHYS., vol. 117, 2015, pages 17A910
See also references of EP4317469A4

Also Published As

Publication number Publication date
KR20230146647A (ko) 2023-10-19
EP4317469A4 (en) 2024-08-07
US20240177901A1 (en) 2024-05-30
CN117015627A (zh) 2023-11-07
JPWO2022203088A1 (ja) 2022-09-29
BR112023019084A2 (pt) 2023-10-17
EP4317469A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
KR102477847B1 (ko) 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
WO2015040799A1 (ja) 方向性電磁鋼板およびその製造方法
JP5446377B2 (ja) 方向性電磁鋼板およびその製造方法
KR102419354B1 (ko) 방향성 전자 강판 및 그 제조 방법
JP7393623B2 (ja) 方向性電磁鋼板
JP3952606B2 (ja) 磁気特性および被膜特性に優れた方向性電磁鋼板およびその製造方法
US20240183012A1 (en) Grain-oriented electrical steel sheet and method for forming insulating coating
JP7188458B2 (ja) 方向性電磁鋼板およびその製造方法
WO2022203088A1 (ja) 方向性電磁鋼板及びその製造方法
RU2823712C2 (ru) Лист анизотропной электротехнической стали и способ его производства
WO2022203087A1 (ja) 方向性電磁鋼板及びその製造方法
WO2022203089A1 (ja) 方向性電磁鋼板及びその製造方法
WO2024063163A1 (ja) 方向性電磁鋼板
WO2024106462A1 (ja) 方向性電磁鋼板およびその製造方法
JP7268724B2 (ja) 方向性電磁鋼板とその製造方法
US20240186042A1 (en) Grain-oriented electrical steel sheet
WO2024214785A1 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP7188460B2 (ja) 方向性電磁鋼板およびその製造方法
JP2013234342A (ja) 磁区細分化処理方法および方向性電磁鋼板
WO2024147360A1 (ja) 方向性電磁鋼板
JP2019019358A (ja) 皮膜密着性に優れる一方向性電磁鋼板及びその製造方法
WO2024225454A1 (ja) 方向性電磁鋼板及びその製造方法
JP2022097004A (ja) 方向性電磁鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509356

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202317061916

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280022501.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237032208

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18283162

Country of ref document: US

Ref document number: 1020237032208

Country of ref document: KR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023019084

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023019084

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230919

WWE Wipo information: entry into national phase

Ref document number: 2023124552

Country of ref document: RU

Ref document number: 2022775869

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775869

Country of ref document: EP

Effective date: 20231026