WO2022196473A1 - 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材 - Google Patents

芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材 Download PDF

Info

Publication number
WO2022196473A1
WO2022196473A1 PCT/JP2022/010186 JP2022010186W WO2022196473A1 WO 2022196473 A1 WO2022196473 A1 WO 2022196473A1 JP 2022010186 W JP2022010186 W JP 2022010186W WO 2022196473 A1 WO2022196473 A1 WO 2022196473A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyester
polyester resin
expanded
foamed
crystallinity
Prior art date
Application number
PCT/JP2022/010186
Other languages
English (en)
French (fr)
Inventor
佑輔 ▲桑▼▲原▼
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to CN202280021425.3A priority Critical patent/CN116981724A/zh
Priority to US18/281,897 priority patent/US20240158598A1/en
Priority to KR1020237029575A priority patent/KR20230141827A/ko
Priority to EP22771225.4A priority patent/EP4310136A1/en
Publication of WO2022196473A1 publication Critical patent/WO2022196473A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/147Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration after the die nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components

Definitions

  • the present invention relates to foamed aromatic polyester resin particles for in-mold foam molding, a method for producing the same, foam molded articles, and automotive parts.
  • In-mold foam molding has hitherto been widely used as a method for producing an aromatic polyester resin foam molded article by expanding foamed particles made of an aromatic polyester resin.
  • In-mold foam molding is a process of filling resin foam particles into a mold, and heating the resin foam particles filled in the mold with a heat medium such as hot water or steam to cause secondary foaming. and a step of heat-sealing and integrating the subsequently expanded particles to produce an in-mold expansion-molded article having a desired shape.
  • Expanded beads made of aromatic polyester resin are produced by extruding and simultaneously foaming a melt-kneaded base resin in an extruder in the presence of a foaming agent. At this time, a hot cut method, an underwater cut method (underwater cut method), etc. are used.
  • foamed aromatic polyester-based resin particles are produced by a water ring hot cut method, that is, a method in which melt-kneaded resin extruded under gas is cut and the cut particles are cooled with cooling water. Further, in Patent Document 2, foamed aromatic polyester-based resin particles are produced by an underwater cutting method, that is, a method of cutting and cooling extruded melt-kneaded resin in water.
  • the method for producing expanded beads disclosed in Patent Document 1 can produce expanded beads that can be stored for a long time after production. However, it has been difficult to increase the mechanical strength of the foamed molded article obtained from the expanded beads obtained by this production method.
  • the cut resin beads are turned into expanded beads and immediately released into water at about 80° C. to be cooled.
  • the foamed beads produced by this method have poor secondary foamability and need to be improved in moldability.
  • One object of the present invention is to provide an aromatic polyester-based resin foam molded article having excellent mechanical properties.
  • One object of the present invention is to provide expanded aromatic polyester-based resin particles for producing the expanded molded article.
  • An object of the present invention is to provide a method for producing the expanded beads.
  • the inventors of the present invention have found that the thickness of the surface resin of the expanded beads obtained by the production method of Patent Document 1 is extremely large, and that the secondary foamability of the expanded beads is poor due to this. Furthermore, the inventors of the present invention have found that, in the expanded beads obtained by the production method of Patent Document 2, the thickness of the surface resin of the expanded beads is significantly large, and that the degree of crystallinity of the resin in the surface layer is significantly large compared to the crystallinity of the resin in the center of the expanded beads. It was found that the secondary foamability of the expanded beads is poor due to the considerably high degree of crystallinity and the large difference between the average cell diameter at the center of the expanded beads and the average cell diameter at the surface layer.
  • the present inventors have found that since the aromatic polyester resin is a crystalline resin, if the degree of crystallinity of the expanded particles is too high, the secondary expanded particles will not be fused when heat-sealed and integrated. It has been found that it can reduce performance. In addition, the present inventors have found that if the resin layer on the surface of the foamed particles is too thick, the secondary foamability is lowered, and the surface elongation of the molded article and the fusion bondability of the secondary foamed particles in the foamed article are deteriorated. I found out.
  • the present inventors have found that if the difference between the average cell diameter at the center of the foamed bead and the average cell diameter at the surface layer is too large, stress concentration in the cells during compression of the foamed molded product tends to occur. It was found that the mechanical properties of
  • the present inventors focused on the thickness of the resin on the surface of the expanded beads, the crystallinity of the expanded beads, the cell diameter of the expanded beads, etc., and adjusted the cooling water temperature to a specific range in the water ring hot cut method.
  • the thickness, degree of crystallinity, and cell diameter of the surface resin of the resulting expanded beads can be set within a predetermined range; the expanded beads are excellent in secondary foamability;
  • the inventors have found that it is excellent in compressive strength, bending strength, etc., and completed the present invention.
  • the present invention typically includes the following aspects. Section 1. Both the crystallinity (A) at the grain center and the crystallinity (B) at the grain surface are 10% or less, and the ratio (B/A) of the crystallinity at the surface to the crystallinity at the center is 0.30 to 1.40. Section 2. Item 2. The expanded aromatic polyester resin particles according to Item 1, wherein the resin layer on the particle surface has a thickness of 5 ⁇ m to 40 ⁇ m. Item 3. The average bubble diameter (C) at the particle center and the average bubble diameter (D) at the particle surface are both 50 ⁇ m to 300 ⁇ m, and the ratio (D/C) of the average bubble diameter at the surface to the average bubble diameter at the center 3.
  • Section 4. Item 4. The expanded aromatic polyester resin particles according to any one of Items 1 to 3, wherein the ratio (B/A) of the crystallinity in the surface layer to the crystallinity in the center of the particle is 0.30 to 1.30.
  • Item 5. The expanded aromatic polyester resin particles according to any one of Items 1 to 4, wherein the crystallinity (A) in the particle center and the crystallinity (B) in the particle surface are both 1 to 10%.
  • Item 6. Item 6. An expanded molded product of the aromatic polyester-based resin foamed particles according to any one of Items 1 to 5.
  • Item 7. Item 7.
  • the foam molded article according to Item 6 which has a density of 0.05 g/cm 3 to 0.7 g/cm 3 .
  • Item 8. An automotive member containing the foam molded article according to Item 6 or 7.
  • Item 9. A step of supplying an aromatic polyester resin to an extruder and melt-kneading in the presence of a foaming agent, and a nozzle mold attached to the front end of the extruder to melt-knead the aromatic polyester resin under gas conditions and a step of cooling the particulate cut product with cooling water, wherein the temperature of the cooling water is 23 ° C. to 55 ° C., A method for producing expanded polyester-based resin particles.
  • aromatic polyester-based resin expanded particles capable of producing foamed molded articles having excellent mechanical properties, and a method for producing the same.
  • INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a foam molded article having excellent mechanical properties such as compressive strength and bending strength, and an automobile member containing the same.
  • FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for producing expanded aromatic polyester-based resin particles.
  • FIG. It is a schematic diagram of the multi-nozzle mold viewed from the front.
  • FIG. 2 is a schematic diagram showing a state in which expanded aromatic polyester-based resin particles enter cooling water.
  • Fig. 2 shows SEM images of cross sections of the center (100x magnification) and surface layer (100x magnification and 500x magnification) of expanded beads produced in Examples 1 to 3.
  • Fig. 2 shows SEM images of cross sections of the central part (100x) and the surface layer part (100x and 500x) of the foamed beads produced in Examples 4 and 5; Fig.
  • FIG. 2 shows SEM images of cross sections of the center (100x magnification) and surface layer (100x magnification and 500x magnification) of foamed beads produced in Comparative Examples 1 to 3.
  • FIG. 10 shows SEM images of cross sections of the center portion (100 ⁇ ) and surface portions (100 ⁇ and 500 ⁇ ) of expanded beads produced in Comparative Examples 4 and 5.
  • FIG. 10 shows SEM images of cross sections of the center portion (100 ⁇ ) and surface portions (100 ⁇ and 500 ⁇ ) of expanded beads produced in Comparative Examples 4 and 5.
  • the aromatic polyester-based resin expanded particles contain an aromatic polyester-based resin as a main component.
  • the “main component” means 80 to 100% by mass, preferably 90 to 100% by mass of the aromatic polyester resin in the resin constituting the foamed aromatic polyester resin particles.
  • Aromatic polyester-based resins are polyesters containing an aromatic dicarboxylic acid component and a diol component. and polyethylene terephthalate is preferred.
  • the aromatic polyester-based resins may be used alone or in combination of two or more.
  • the aromatic polyester resin includes, for example, tricarboxylic acids such as trimellitic acid and tetracarboxylic acids such as pyromellitic acid.
  • tricarboxylic acids such as trimellitic acid and tetracarboxylic acids such as pyromellitic acid.
  • triols such as glycerin, triols or higher polyhydric alcohols such as tetraols such as pentaerythritol, etc. may be contained as constituent components.
  • Aromatic polyester-based resins can be not only petroleum-derived, but also plant-derived and recycled products collected and recycled from used PET bottles.
  • the intrinsic viscosity (IV value) of the aromatic polyester resin is preferably 0.7 to 1.1, and 0.75 to 1 0.05 is more preferred.
  • the intrinsic viscosity (IV value) of the aromatic polyester resin is the value measured according to JIS K7367-5 (2000). Specifically, the aromatic polyester resin is dried at a degree of vacuum of 133 Pa at 40° C. for 15 hours.
  • the intrinsic viscosity of the aromatic polyester resin is calculated based on the following formula. The following was calculated from the flow time (t 0 ) of the mixed solvent and the flow time (t) of the sample solution.
  • Relative viscosity ( ⁇ r ) t/t 0
  • Reduced viscosity ⁇ sp /C
  • a graph is created with the vertical axis as the reduced viscosity and the horizontal axis as the concentration C of the sample solution, and the obtained linear relationship is C
  • the aromatic polyester resin constituting the foamed aromatic polyester resin particles may be a modified aromatic polyester resin crosslinked with a crosslinking agent.
  • a known cross-linking agent is used, and examples thereof include acid dianhydrides such as pyromellitic anhydride, polyfunctional epoxy compounds, oxazoline compounds, and oxazine compounds.
  • the cross-linking agents may be used alone or in combination of two or more.
  • the aromatic polyester resin and the cross-linking agent are supplied to the extruder at the time of manufacturing the foamed aromatic polyester resin particles, and , the aromatic polyester resin may be crosslinked with a crosslinking agent.
  • the amount of the cross-linking agent supplied to the extruder is preferably 0.01 parts by mass to 5 parts by mass with respect to 100 parts by mass of the aromatic polyester resin from the viewpoint of performing extrusion foaming well, and 0.1 parts by mass to 1 part by mass is more preferred.
  • the mass-average molecular weight of the aromatic polyester resin that constitutes the expanded beads of the present invention is preferably 45,000 to 100,000, because the obtained expanded beads have excellent secondary foamability as well as excellent extrusion foamability. 60,000 to 90,000 is more preferable.
  • the aromatic polyester resin that constitutes the expanded beads is a modified aromatic polyester resin
  • the weight average molecular weight of the aromatic polyester resin means the weight average molecular weight of the modified aromatic polyester resin.
  • the mass average molecular weight (Mw) of the aromatic polyester resin that constitutes the foamed beads of the present invention means the polystyrene (PS) equivalent mass average molecular weight measured using gel permeation chromatography (GPC). Specifically, the mass average molecular weight is measured as follows. 0.5 mL of hexafluoroisopropanol (HFIP) and 0.5 mL of chloroform are added to 5 mg of the sample in this order and dissolved (immersion time: 6.0 ⁇ 1.0 hr (complete dissolution)) to obtain a sample solution. After confirming that the sample is completely dissolved in the solution, chloroform is added to the sample solution to dilute the sample solution to a volume of 10 mL, followed by shaking and mixing.
  • PS polystyrene
  • GPC gel permeation chromatography
  • the sample solution is filtered through a non-aqueous 0.45 ⁇ m syringe filter manufactured by Shimadzu GLC to obtain a filtrate. Measure the filtrate using a chromatograph under the following measurement conditions.
  • the mass average molecular weight (Mw) is obtained from a standard polystyrene calibration curve prepared in advance. Apparatus used: Tosoh Corporation "HLC-8320GPC EcoSEC” gel permeation chromatograph (RI detector/UV detector built-in) (GPC measurement conditions)
  • Column Sample side Guard column TSK guard column HXL-H (6.0 mm ⁇ 4.0 cm) ⁇ 1 manufactured by Tosoh Corporation
  • Measurement column TSKgel GMHXL (7.8 mm I.D.
  • the standard polystyrene for the calibration curve was A (5,620,000, 1,250,000, 151,000, 17,000, 2,900) and B (3,120,000, 442,000, 53,500, 7,660, 1,320), after weighing A (2 mg, 3 mg, 4 mg, 4 mg, 4 mg), dissolve in 30 mL of chloroform, and B (3 mg, 4 mg, 4 mg, 4 mg, 4 mg) after weighing Dissolve in 30 mL of chloroform.
  • a standard polystyrene calibration curve is obtained by injecting 50 ⁇ L of each prepared A and B solution and creating a calibration curve (cubic equation) from the retention times obtained after measurement. The mass average molecular weight is calculated using the calibration curve.
  • the foamed beads of the present invention can be obtained, for example, by supplying an aromatic polyester resin to an extruder and melt-kneading it in the presence of a foaming agent, and transferring the melt-kneaded aromatic polyester resin to the front end of the extruder. It has a step of cutting while extruding and foaming from the attached nozzle mold to produce a particulate cut product, and a step of cooling the particulate cut product with cooling water, wherein the temperature of the cooling water is high. It can be produced by a production method at 23°C to 55°C. Such a manufacturing method is also one aspect of the present invention. Although the present production method will be described below, the method for producing the expanded aromatic polyester resin particles of the present invention is not limited to the following method.
  • a nozzle die 1 is attached to the front end of the extruder.
  • the nozzle mold 1 is preferable because it can extrude and foam an aromatic polyester resin to form uniform and fine cells.
  • a plurality of nozzle outlets 11 are formed on the same imaginary circle A on the front end face 1a of the nozzle mold 2 at regular intervals.
  • the nozzle mold attached to the front end of the extruder is not particularly limited as long as the aromatic polyester resin does not foam in the nozzle.
  • the number of nozzles in the nozzle mold 1 is preferably 2 to 80, more preferably 5 to 60, and particularly preferably 8 to 50, from the viewpoint of production efficiency and the ability to suppress coalescence of cut products on particles. .
  • the diameter of the outlet portion 11 of the nozzle in the nozzle mold 1 is preferably 0.2 to 2 mm, more preferably 0.3 to 1.6 mm, in that the extrusion pressure and the diameter of the foamed particles can be set in an appropriate range. 0.4 to 1.2 mm is particularly preferred.
  • the length of the land portion of the nozzle mold 1 is preferably 4 to 30 times the diameter of the outlet portion 11 of the nozzle of the nozzle mold 1, and 5 to 20 times the diameter of the outlet portion 11 of the nozzle of the nozzle mold 1. more preferred. This is advantageous in that when the length of the land portion of the nozzle mold is within the above range, the occurrence of fractures is suppressed and extrusion foaming can be stably performed.
  • a rotating shaft 2 is arranged in a state of protruding forward in a portion of the front end face 1a of the nozzle mold 1 surrounded by the nozzle outlet portion 11.
  • the rotating shaft 2 will be described later.
  • the front portion 41a of the cooling drum 41 constituting the cooling member 4 is penetrated and connected to the driving member 3 such as a motor.
  • one or a plurality of rotating blades 5 are integrally provided on the outer peripheral surface of the rear end portion of the rotating shaft 2, and all the rotating blades 5 rotate at the front end of the nozzle mold 1. It will always be in contact with the surface 1a.
  • the plurality of rotary blades 5 are arranged in the circumferential direction of the rotary shaft 2 at regular intervals.
  • FIG. 2 as an example, the case where four rotary blades 5 are integrally provided on the outer peripheral surface of the rotary shaft 2 is shown.
  • the rotary blade 5 moves on the virtual circle A on which the outlet 11 of the nozzle is formed while constantly contacting the front end face 1a of the nozzle mold 1, thereby moving the nozzle.
  • the aromatic polyester-based resin extruded product extruded from the exit portion 11 is configured to be continuously cut in order.
  • a cooling member 4 is arranged so as to surround at least the front end of the nozzle mold 1 and the rotating shaft 2 .
  • the cooling member 4 has a circular front portion 41a larger in diameter than the nozzle mold 1 and a cylindrical peripheral wall portion 41b extending rearward from the outer peripheral edge of the front portion 41a. and a bottom cylindrical cooling drum 41 .
  • a supply port 41c for supplying cooling water 42 is formed in a portion of the peripheral wall portion 41b of the cooling drum 41 corresponding to the outside of the nozzle mold 1 so as to extend through the inner and outer peripheral surfaces.
  • a supply pipe 41d for supplying cooling water 42 into the cooling drum 41 is connected to the outer opening of the supply port 41c of the cooling drum 41. As shown in FIG.
  • the cooling water 42 is configured to be supplied obliquely forward along the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 through the supply pipe 41d.
  • the cooling water 42 spirals along the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 due to the centrifugal force associated with the flow velocity when it is supplied from the supply pipe 41d to the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41. Go forward as if drawing
  • the cooling water 42 gradually spreads in a direction orthogonal to the traveling direction while traveling along the inner peripheral surface of the peripheral wall portion 41b.
  • the peripheral surface is configured to be entirely covered with cooling water 42 .
  • the temperature of the cooling water is 23° C. to 55° C., more preferably 24° C. to 50° C., more preferably 25° C., from the point that the crystallinity of the foamed particles, the cell diameter size, or the thickness of the surface resin layer can be appropriately adjusted.
  • C. to 45.degree. C. is particularly preferred.
  • a discharge port 41e is formed in the lower surface of the front end portion of the peripheral wall portion 41b of the cooling drum 41 so as to extend through the inner and outer peripheral surfaces thereof.
  • a discharge pipe 41f is connected to the outer opening of the discharge port 41e. It is configured such that the foamed aromatic polyester resin particles and the cooling water 42 are continuously discharged through the discharge port 41e.
  • the expanded aromatic polyester resin particles are preferably produced by extrusion foaming.
  • extrusion foaming After supplying an aromatic polyester resin to an extruder and melt-kneading it in the presence of a foaming agent, the aromatic polyester resin extrudate is extruded and foamed from a nozzle mold 1 attached to the front end of the extruder. It is cut by a rotary blade 5 to produce foamed aromatic polyester resin particles.
  • the extruder is not particularly limited as long as it is an extruder that has been widely used in the past. Examples include a single screw extruder, a twin screw extruder, and a tandem extruder in which multiple extruders are connected. be done.
  • the foaming agent one that has been widely used in the past is used.
  • the foaming agent include chemical foaming agents such as azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoyldicarbonamide, and sodium bicarbonate; saturated aliphatics such as propane, normal butane, isobutane, normal pentane, isopentane, and hexane; Hydrocarbon foaming agents, ether foaming agents such as dimethyl ether, chlorofluorocarbon foaming agents such as methyl chloride, 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, monochlorodifluoromethane, carbon dioxide, nitrogen, etc.
  • chemical foaming agents such as azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoyldicarbonamide, and sodium bicarbonate
  • saturated aliphatics such as propane, normal butane, isobutane, normal pentane, isopen
  • propane, normal butane, isobutane and carbon dioxide are preferred, propane, normal butane, isobutane and carbon dioxide are more preferred, and normal butane, isobutane and carbon dioxide are particularly preferred.
  • a foaming agent may be used individually or 2 or more types may be used together.
  • the amount of the foaming agent supplied to the extruder is preferably 0.1 parts by mass to 5 parts by mass with respect to 100 parts by mass of the aromatic polyester resin, and 0.1 part by mass to 5 parts by mass with respect to 100 parts by mass of the aromatic polyester resin, in order to easily adjust the expansion ratio of the foamed particles to an appropriate range. 2 to 4 parts by mass is more preferable, and 0.2 to 3 parts by mass is particularly preferable.
  • the extruder is preferably supplied with a cell control agent.
  • a cell control agent Polytetrafluoroethylene powder, acrylic resin-modified polytetrafluoroethylene powder, talc, and the like are preferable as such a cell control agent.
  • the amount of the cell adjustment agent supplied to the extruder is preferably 0.01 parts by mass to 5 parts by mass with respect to 100 parts by mass of the aromatic polyester resin, in order to keep the cell diameter of the expanded particles within an appropriate range. 0.05 to 3 parts by mass is more preferable, and 0.1 to 2 parts by mass is particularly preferable.
  • the aromatic polyester resin extrudate extruded and foamed from the nozzle mold 1 continues to enter the cutting process.
  • Cutting of the aromatic polyester-based resin extrudate is performed by rotating the rotary blade 5 arranged on the front end face 1a of the nozzle mold 1 by rotating the rotating shaft 2.
  • the rotation speed of the rotary blade 5 is preferably 2000 rpm to 10000 rpm. It is preferable to rotate the rotary blade at a constant number of revolutions.
  • All the rotary blades 5 are rotating while constantly contacting the front end surface 1a of the nozzle mold 1, and the aromatic polyester resin extrudate extruded and foamed from the nozzle mold 1 is formed by the rotary blades 5 and the nozzle metal. Due to the shear stress generated between the mold 1 and the edge of the outlet 11 of the nozzle, it is cut in the air at regular time intervals to form particulate cut products.
  • the aromatic polyester resin is prevented from foaming inside the nozzle of the nozzle mold 1.
  • the aromatic polyester-based resin is not yet foamed, and starts foaming after a short time has passed since being discharged. Therefore, the aromatic polyester resin extrudate consists of an unfoamed portion immediately after being discharged from the nozzle outlet portion 11 of the nozzle mold 1, and a foamed portion that is continuous with this unfoamed portion and extruded prior to the unfoamed portion. It consists of a foamed part on the way.
  • the unfoamed portion maintains its state from the time when it is discharged from the outlet portion 11 of the nozzle of the nozzle mold 1 until it starts foaming.
  • the time during which this unfoamed portion is maintained can be adjusted by the resin pressure at the outlet 11 of the nozzle of the nozzle mold 1, the amount of foaming agent, and the like.
  • the resin pressure at the outlet 11 of the nozzle of the nozzle mold 1 is high, the aromatic polyester resin extrudate does not foam immediately after being extruded from the nozzle mold 1 and maintains an unfoamed state.
  • the resin pressure at the outlet 11 of the nozzle of the nozzle mold 1 can be adjusted by adjusting the diameter of the nozzle, the extrusion rate, and the melt viscosity and melt tension of the aromatic polyester resin. By adjusting the amount of the foaming agent to an appropriate amount, it is possible to prevent the aromatic polyester resin from foaming inside the mold, and to reliably form an unfoamed portion.
  • the rotary blade 5 rotates at a constant number of revolutions, and the number of revolutions of the rotary blade 5 is preferably 2000 rpm to 10000 rpm, more preferably 2000 rpm to 9000 rpm, and particularly preferably 2000 rpm to 8000 rpm.
  • the number of revolutions is within the above range, it is advantageous in that the certainty of cutting can be improved, or coalescence of cut objects on particles can be suppressed.
  • the particulate cut material obtained as described above is scattered toward the cooling drum 41 at the same time as it is cut by the cutting stress of the rotary blade 5, and the cooling water 42 that coats the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41. immediately collide with The cut particulate material continues to foam until it collides with the cooling water 42, and the cut particulate material grows into a substantially spherical shape due to the foaming. Therefore, the obtained expanded aromatic polyester-based resin particles are substantially spherical.
  • the foamed aromatic polyester resin particles are excellent in filling into the mold, and the foamed aromatic polyester resin is placed in the mold.
  • the particles can be uniformly filled, and a homogeneous in-mold foamed article can be obtained.
  • the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 is entirely covered with cooling water 42 (23° C. to 55° C.). is supplied obliquely forward along the inner peripheral surface of the cooling drum 41, and the centrifugal force accompanying the flow velocity when supplied from the supply pipe 41d to the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 causes the peripheral wall portion 41b of the cooling drum 41
  • the cooling water 42 advances forward in a spiral along the inner peripheral surface, and while traveling along the inner peripheral surface of the peripheral wall portion 41b, the cooling water 42 gradually spreads in a direction orthogonal to the traveling direction, As a result, the inner peripheral surface of the peripheral wall portion 41b in front of the supply port 41c of the cooling drum 41 is entirely covered with the cooling water .
  • the particulate cut product is immediately cooled with cooling water 42 (23 ° C. to 55 ° C.), so the aromatic polyester resin It prevents the expanded particles from expanding excessively.
  • the particulate cut products obtained by cutting the aromatic polyester resin extrudate with the rotating blade 5 are scattered toward the cooling water 42 .
  • the cooling water 42 flowing along the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 spirally swirls. Therefore, the particulate cut material P is made to collide with the cooling water 42 from the upstream side to the downstream side of the flow of the cooling water 42 obliquely to the surface of the cooling water 42 and enter the cooling water 42 . is preferred (see FIG. 3).
  • the flow direction of the cooling water is shown as "F".
  • the particulate cut materials when the particulate cut materials enter the cooling water 42, the particulate cut materials are allowed to enter the cooling water 42 in the direction following the flow of the cooling water 42, so the particulate cut materials are cooled.
  • the cut particles smoothly and reliably enter the cooling water 42 without being repelled by the surface of the water 42, and are cooled by the cooling water 42 to produce foamed aromatic polyester resin particles.
  • the expanded aromatic polyester resin particles have a substantially spherical shape without uneven cooling or shrinkage, and exhibit excellent foamability during in-mold foam molding.
  • the cut particulate product is cooled with cooling water 42 at 23° C. to 55° C. after cutting the extruded aromatic polyester resin, so the degree of crystallinity and the cell diameter , and the thickness of the resin layer on the surface are suitable for producing a foam molded article having excellent mechanical properties.
  • the bulk density of the expanded aromatic polyester resin particles is preferably 0.05 g/cm 3 to 0.7 g/cm 3 from the viewpoint of improving the foaming power and improving the fusion strength of the secondary expanded particles, and is preferably 0.07 g/cm 3 . cm 3 to 0.6 g/cm 3 is more preferred, and 0.08 g/cm 3 to 0.5 g/cm 3 is particularly preferred.
  • the bulk density of the foamed aromatic polyester-based resin particles can be adjusted by the resin pressure at the outlet 11 of the nozzle of the nozzle mold 1, the amount of foaming agent, or the like.
  • the resin pressure at the outlet 11 of the nozzle of the nozzle mold 1 can be adjusted by adjusting the diameter of the nozzle, the extrusion rate, and the melt viscosity of the aromatic polyester resin.
  • the bulk density of the foamed aromatic polyester resin particles refers to the one measured in accordance with JIS K6911: 1995 "General Test Methods for Thermosetting Plastics". Specifically, it is determined by the method described in Examples.
  • the crystallinity (A) at the grain center and the crystallinity (B) at the grain surface are both preferably 10% or less, more preferably 1 to 10%, and 2 to 8. % is particularly preferred.
  • the central portion and surface portion of the expanded beads are determined as follows. Using a razor blade, the expanded bead is cut into approximately two halves at the center, and the portion in the range of 20% in the radial direction of the expanded bead from the grain center in the exposed cross section is taken as the central part, and foaming is performed from the bead surface in the exposed cross section. The part in the range of 20% in the radial direction of the particle is defined as the surface layer part.
  • the crystallinity of the expanded beads is determined by the method described in JIS K7122:1987 and JIS K7122:2012, and more specifically by the method described in Examples.
  • the ratio (B/A) of the degree of crystallinity (B) in the surface layer to the degree of crystallinity (A) in the central portion of the foamed aromatic polyester resin beads improves the foaming power or the fusion strength of the secondary expanded beads. from the point of view, it is preferably 0.30 to 1.30, more preferably 0.35 to 1.25, and particularly preferably 0.40 to 1.20.
  • the resin layer on the surface of the aromatic polyester-based resin foamed particles preferably has a thickness of 5 ⁇ m to 40 ⁇ m, more preferably 7 ⁇ m to 37 ⁇ m, from the viewpoint of improving the foaming power or improving the fusion strength of the secondary foamed particles. is more preferable.
  • the thickness of the resin layer on the surface of the foamed bead is determined from an image of the surface layer portion of the cross section of the foamed bead divided into two at the center, which is magnified 500 times using a scanning electron microscope. Determined by the method described in the Examples.
  • the average cell diameter (C) at the particle center and the average cell diameter (D) at the particle surface layer of the expanded aromatic polyester resin particles are both 50 ⁇ m to 300 ⁇ m. It is preferable from the viewpoint of improving the fusion bonding strength.
  • the foamed aromatic polyester resin particles have a slightly smaller cell diameter in the surface layer than in the central part, because the foaming will be good and the fusion bond strength of the secondary foamed particles will also be high. Therefore, the ratio (D/C) of the average cell diameter (D) in the surface layer to the average cell diameter (C) in the center of the expanded bead is preferably 0.75 to 0.95, and preferably 0.80. ⁇ 0.95 is more preferred, and 0.80 to 0.90 is particularly preferred.
  • the expanded aromatic polyester resin particles of the present invention are filled in the cavity of the mold and heated to expand the expanded aromatic polyester resin particles, thereby expanding the expanded aromatic polyester resin particles.
  • the heating medium for heating the foamed aromatic polyester resin particles filled in the mold is not particularly limited, and includes hot air, hot water, etc., in addition to water vapor.
  • the expanded molded product of the foamed aromatic polyester-based resin particles of the present invention is also one of the present invention.
  • This foam molded article is obtained by in-mold foam molding of the foamed particles of the present invention.
  • the density of the aromatic polyester resin foam molded product is preferably 0.05 g/cm 3 to 0.7 g/cm 3 and more preferably 0.07 g/cm 3 to 0.6 g/cm 3 from the viewpoint of lightness and mechanical strength. 3 is more preferred, and 0.08 g/cm 3 to 0.5 g/cm 3 is particularly preferred.
  • the foamed aromatic polyester resin particles may be further impregnated with an inert gas to improve the foaming power of the foamed aromatic polyester resin particles.
  • an inert gas By improving the foaming power of the foamed aromatic polyester resin particles in this way, the heat fusion between the foamed aromatic polyester resin particles during in-mold foam molding is improved, and the resulting in-mold foam molded product is further improved.
  • the inert gas include carbon dioxide, nitrogen, helium, and argon, with carbon dioxide being preferred.
  • the foamed aromatic polyester resin particles are placed in an inert gas atmosphere having a pressure higher than normal pressure to expand the aromatic polyester resin.
  • a method of impregnating particles with an inert gas may be mentioned.
  • the foamed aromatic polyester resin particles may be impregnated with an inert gas before filling the mold.
  • the foamed aromatic polyester resin particles may be impregnated with the inert gas by placing them in an inert gas atmosphere.
  • the temperature at which the foamed aromatic polyester resin particles are impregnated with the inert gas is preferably 5°C to 40°C, more preferably 10°C to 30°C.
  • the pressure when impregnating the foamed aromatic polyester resin particles with the inert gas is preferably 0.2 to 2.0 MPa, more preferably 0.25 MPa to 1.5 MPa.
  • the inert gas is carbon dioxide, it is preferably 0.2 MPa to 1.5 MPa, more preferably 0.25 MPa to 1.2 MPa.
  • the time for impregnating the foamed aromatic polyester resin particles with the inert gas is preferably 10 minutes to 72 hours, more preferably 15 minutes to 64 hours, and particularly preferably 20 minutes to 48 hours.
  • the foamed aromatic polyester resin particles impregnated with an inert gas are expanded (pre-expanded) by being heated to, for example, 55°C to 90°C to produce pre-expanded particles.
  • a composite structural member can be obtained by using a foam molded body as a core material and laminating and integrating a skin material on the surface of the foam molded body.
  • a composite structural member including a foam molded body and a skin material laminated and integrated on the surface of the foam molded body can also be one aspect of the present invention.
  • the thickness of the foamed molded body used as the core material for the composite structural member is preferably 1 mm to 40 mm from the viewpoint of strength, weight and impact resistance.
  • the skin material is not particularly limited, and examples include fiber-reinforced synthetic resin sheets, metal sheets, and synthetic resin sheets.
  • a fiber-reinforced synthetic resin is preferable for the skin material because it has excellent mechanical strength and lightness.
  • a fiber-reinforced synthetic resin sheet is a sheet made by binding fibers together with a matrix resin.
  • the fibers constituting the fiber-reinforced synthetic resin sheet are not particularly limited, and examples thereof include carbon fibers, glass fibers, aramid fibers, boron fibers, and metal fibers. Carbon fiber, glass fiber, and aramid fiber are preferable, and carbon fiber is more preferable, because the fiber has excellent mechanical strength and heat resistance.
  • thermosetting resins and thermoplastic resins as matrix resins that make up fiber-reinforced synthetic resins.
  • thermosetting resins include epoxy resins, unsaturated polyester resins, and phenol resins.
  • the thermosetting resin may be used alone or in combination of two or more.
  • thermoplastic resins include polyamides (nylon 6, nylon 66, etc.), polyolefins (polyethylene, polypropylene, etc.), polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polystyrene, ABS, and copolymers of acrylonitrile and styrene. Amalgamation etc. are mentioned.
  • the thermoplastic resin may be used alone or in combination of two or more.
  • the thickness of the fiber-reinforced synthetic resin sheet is preferably 0.2 mm to 2.0 mm in terms of strength, weight and impact resistance.
  • the method of manufacturing the composite structural member is not particularly limited.
  • Applied methods include: Examples of methods used in molding fiber-reinforced synthetic resin sheets include autoclave method, hand lay-up method, spray-up method, PCM (Prepreg Compression Molding) method, RTM (Resin Transfer Molding) method, VaRTM (Vacuum assisted Resin Transfer Molding method, etc.
  • Such composite structural members are useful for applications such as automobile members, aircraft members, railway vehicle members, and building materials.
  • Automotive members include, for example, door panels, door inners, bumpers, fenders, fender supports, engine covers, roof panels, trunk lids, floor panels, center tunnels, and crash boxes.
  • a composite structural member is used for a door panel that has conventionally been made of steel plate, the weight of the door panel, which has almost the same rigidity as that of the steel door panel, can be significantly reduced, which is highly effective in reducing the weight of automobiles.
  • the bulk density was measured according to JIS K6911:1995 "General test methods for thermosetting plastics". That is, it was measured using an apparent density measuring instrument conforming to JIS K6911.
  • Crystallinity was measured by the method described in JIS K7122:1987 and JIS K7122:2012. However, the sampling method and temperature conditions were as follows. Samples were taken from the foam bead surface and center. A sample of the surface layer portion was obtained by cutting the foamed bead into approximately two halves using a razor blade at the center of the foamed bead, and collecting a portion within a range of 20% in the radial direction of the foamed bead from the surface of the foamed bead. Similarly, a center sample was taken at a section within 20% of the radius of the foam bead from the center of the bisecting foam bead.
  • a sample of 5.5 ⁇ 0.5 mg was filled in the bottom of an aluminum measurement container without any gaps, and then an aluminum lid was placed on the container.
  • differential scanning calorimetry was performed using a differential scanning calorimeter "DSC7000X, AS-3" manufactured by Hitachi High-Tech Science Co., Ltd.
  • a sample was heated in the following steps under a nitrogen gas flow rate of 20 mL/min to obtain a DSC curve.
  • Step 1) Hold at 30°C for 2 minutes.
  • Step 2 The temperature was raised from 30°C to 290°C at a rate of 10°C/min.
  • Alumina was used as the reference material at that time.
  • the difference between the heat of fusion (J/g) determined from the area of the melting peak and the heat of crystallization (J/g) determined from the area of the crystallization peak was determined.
  • the crystallinity was obtained by dividing this difference by the theoretical heat of fusion of 140.1 J/g of the polyethylene terephthalate perfect crystal.
  • the heat of fusion and the heat of crystallization were calculated using analysis software attached to the apparatus. Specifically, the heat of fusion was calculated from a straight line that connects the point where the DSC curve departs from the baseline on the low temperature side and the point on which the DSC curve returns to the baseline on the high temperature side, and the portion surrounded by the DSC curve.
  • Crystallinity (%) (heat of fusion (J/g) - heat of crystallization (J/g))/140.1 (J/g) x 100
  • Crystallinity ratio crystallinity (%) at the surface of the foamed bead / crystallinity (%) at the center of the foamed bead
  • the surface layer portion and the central portion of the cross section obtained by dividing the foamed bead into two at the central portion were photographed at a magnification of 100 using a scanning electron microscope "SU1510" manufactured by Hitachi High-Technologies Corporation.
  • a portion within a range of 20% in the radial direction from the surface of the expanded bead was defined as a surface layer portion, and a portion within a range of 20% in the radial direction from the center of the expanded bead was defined as the central portion.
  • the photographed microscopic images were arranged so that two images were arranged side by side on one sheet of A4 paper in landscape orientation, and printed on the A4 paper.
  • Three arbitrary straight lines (60 mm in length) parallel to the vertical and horizontal directions were drawn for each printed image of the cross section of the expanded beads. That is, six arbitrary straight lines were drawn in the vertical direction and six straight lines were drawn in the horizontal direction for two microscopic images. In addition, the lines were drawn so as not to touch the bubbles only at points of contact as much as possible. Then, the number of bubbles through which this straight line passes was counted. If the bubble touched the straight line only at a point of contact, this bubble was also added to the count. The number of bubbles counted for six arbitrary straight lines in each direction of the vertical direction and the horizontal direction was arithmetically averaged to obtain the number of bubbles in each direction.
  • the average chord length t of bubbles was calculated by the following equation from the magnification of the image in which the number of bubbles was counted and the number of bubbles.
  • Average chord length t (mm) 60/(number of bubbles x image magnification)
  • the image magnification was obtained by measuring the scale bar on the image to 1/100 mm using "Digimatic Caliper" manufactured by Mitutoyo Corporation and using the following formula.
  • Image magnification measured value of scale bar (mm) / displayed value of scale bar (mm) Then, the cell diameters in the vertical direction and the horizontal direction were calculated by the following equations.
  • Bubble diameter ( ⁇ m) 1000 x (D vertical x D horizontal) 1/2
  • Average cell diameter ratio Average cell diameter at surface layer of expanded bead ( ⁇ m)/Average cell diameter at center of expanded bead ( ⁇ m)
  • the surface layer of the cross section of the foamed bead divided into two at the center was photographed by using a scanning electron microscope "SU1510" manufactured by Hitachi High-Technologies Corporation at a magnification of 500 times.
  • Five straight lines perpendicular to the tangential line were drawn in the radial direction of the expanded bead at arbitrary positions on the surface of the expanded bead in the microscope image, and the distance from the surface to the first contacting bubble was measured for each straight line. That is, five relevant distances were measured for one cross-sectional image.
  • Each of the above operations was performed with an N number of 10, and the average value was taken as the thickness ( ⁇ m) of the surface resin.
  • Moldability evaluation Moldability was evaluated according to the following criteria. ⁇ : The expanded particles were thermally fused to each other and strongly adhered and integrated. ⁇ : The expanded particles were not adhered to each other, and the expanded particles easily fell off.
  • the mass (a) and volume (b) of a rectangular parallelepiped test piece (e.g., 75 mm ⁇ 300 mm ⁇ 30 mm) cut out from a foamed molded product (dried at 55 ° C. for 20 hours or more after molding) are 3 significant figures.
  • the density was measured so as to be at least an order of magnitude, and the density (g/cm 3 ) of the foamed molded product was obtained from the formula (a)/(b).
  • the test piece is JIS K 7100: 1999 symbol "23/50" (temperature 23 ° C, relative humidity 50%), after conditioning for 16 hours under a standard atmosphere of class 2, measurement under the same standard atmosphere Using.
  • the test speed was 10 mm/min.
  • the radius of the tip of the pressure wedge and the fulcrum was 5R, and the distance between the fulcrums was 100 mm.
  • From the obtained graph a load region with the maximum slope was set, and the apparent flexural modulus was determined by the universal testing machine data processing. The point of intersection of this straight line of elastic modulus and the stroke was taken as the origin of elongation, and the corresponding maximum bending strength was automatically calculated.
  • compression test 5% compression strength and compression modulus
  • the 5% compression strength and compression modulus were measured according to JIS K6767:1999. That is, the 5% compressive strength was measured using a universal testing machine manufactured by Shimadzu Corporation "Autograph AG-X plus 100 kN” and universal testing machine data processing software manufactured by Shimadzu Corporation "TRAPEZIUM X".
  • the test piece size was 50 mm ⁇ 50 mm ⁇ thickness 25 mm, and the number of test pieces was three.
  • the test piece is JIS K 7100: 1999 symbol "23/50" (temperature 23 ° C, relative humidity 50%), after conditioning for 16 hours under a standard atmosphere of class 2, measurement under the same standard atmosphere used for The compression speed was 2.5 mm/min.
  • the evaluation of mechanical physical properties of molded articles was made according to the following criteria. ⁇ : The maximum bending strength is 1.20 MPa or more, and the 5% compressive strength is 0.70 MPa or more. x: The maximum bending strength is less than 1.20 MPa, or the 5% compressive strength is less than 0.70 MPa.
  • Example 1 Expanded bead manufacturing process Expanded beads were manufactured using the manufacturing apparatus shown in FIGS. 1 and 2 .
  • plant-derived polyethylene terephthalate (intrinsic viscosity: 0.80, density: 1400 kg/m 3 , melting point: 247.2°C, glass transition temperature: 78.7°C, mass average molecular weight: 74,000, vegetable content: 30%) 100 parts by mass, 1.8 parts by mass of a masterbatch containing talc in polyethylene terephthalate (polyethylene terephthalate content: 60% by weight, talc content: 40% by weight, intrinsic viscosity of polyethylene terephthalate: 0.82), and A polyethylene terephthalate composition containing 0.22 parts by mass of pyromellitic anhydride was supplied to a single-screw extruder having a caliber of 65 mm and an L/D ratio of 34 and melt-kneaded at 300°C.
  • butane composed of 35% by weight of isobutane and 65% by weight of normal butane as a foaming agent was added in an amount of 1.15 parts by weight per 100 parts by weight of polyethylene terephthalate to form a molten polyethylene terephthalate composition. It was pressed into the material and dispersed uniformly in the polyethylene terephthalate.
  • the molten polyethylene terephthalate composition was cooled to 280° C. at the front end of the extruder, and the polyethylene terephthalate composition was extruded and foamed from each nozzle of the multi-nozzle mold 1 attached to the front end of the extruder. .
  • the extrusion rate of the polyethylene terephthalate composition was 30 kg/h.
  • the multi-nozzle mold 1 has 20 nozzles each having an exit portion 11 with a diameter of 1 mm. They were arranged at regular intervals on a virtual circle A of 0.5 mm.
  • the cooling member 4 comprises a cooling drum 41 comprising a circular front portion 41a and a cylindrical peripheral wall portion 41b extending rearward from the outer peripheral edge of the front portion 41a and having an inner diameter of 320 mm.
  • Cooling water 42 at 25° C. is supplied into the cooling drum 41 through the supply pipe 41 d and the supply port 41 c of the cooling drum 41 .
  • the volume inside the cooling drum 41 was 17684 cm 3 .
  • the cooling water 42 spirals along the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41 due to the centrifugal force associated with the flow velocity when it is supplied from the supply pipe 41d to the inner peripheral surface of the peripheral wall portion 41b of the cooling drum 41.
  • the cooling water 42 advances forward along the inner peripheral surface of the peripheral wall portion 41b, the cooling water 42 gradually spreads in a direction perpendicular to the direction of travel, and as a result, the cooling water 41 flows into the supply port 41c of the cooling drum 41.
  • the inner peripheral surface of the more forward peripheral wall portion 41b was entirely covered with the cooling water .
  • the polyethylene terephthalate extrudate consisted of an unfoamed portion immediately after being extruded from the nozzles of the multi-nozzle mold 1 and a foamed portion continuing from the unfoamed portion.
  • the polyethylene terephthalate extrudate was cut at the opening end of the outlet portion 11 of the nozzle, and the cutting of the polyethylene terephthalate extrudate was performed at the unfoamed portion.
  • the rotating shaft 2 was not attached to the multi-nozzle mold 1 and the cooling member 4 was retracted from the multi-nozzle mold 1 .
  • the polyethylene terephthalate extrudate is extruded and foamed from the extruder, and the polyethylene terephthalate extrudate has an unfoamed portion immediately after being extruded from the nozzle of the multi-nozzle mold 1 and an unfoamed portion continuing to the unfoamed portion. It was confirmed that it consisted of a foamed part.
  • the rotating shaft 2 is rotated to feed the polyethylene terephthalate extrudate to the rotary blade at the open end of the exit portion 11 of the nozzle. 5 to produce particulate cuts.
  • the cut particles are flung outward or forward by the cutting stress of the rotary blade 5, and the cooling water 42 flowing along the inner surface of the cooling drum 41 of the cooling member 4 passes through the flow of the cooling water 42. It collides with the surface of the cooling water 42 from an oblique direction so as to follow the cooling water 42 from the upstream side to the downstream side.
  • Polyethylene terephthalate foam particles for foam molding were produced.
  • the obtained expanded polyethylene terephthalate particles were discharged together with the cooling water 42 through the discharge port 41e of the cooling drum 41, and then separated from the cooling water 42 by the dehydrator.
  • the polyethylene terephthalate foamed particles thus obtained were allowed to stand at 23° C. under atmospheric pressure for 30 days immediately after production. After that, it is filled into a molding die of 30 mm ⁇ 300 mm ⁇ 400 mm, heated with steam of 0.05 MPa for 180 seconds and steamed with 0.10 MPa for 30 seconds, and then the maximum surface pressure of the foamed molded product is 0. A foam molded article was obtained by cooling until the pressure decreased to 0.01 MPa.
  • Example 2 Polyethylene terephthalate (intrinsic viscosity: 0.82, density: 1400 kg/m 3 , melting point: 248.0°C, glass transition temperature: 78.7°C, mass average molecular weight: 72,000) 95% by weight, polyethylene naphthalate (density: 1330 kg/m 3 , melting point: 264.2° C., glass transition temperature: 119.8° C.) 100 parts by mass of thermoplastic polyester resin containing 5% by weight; : 60% by weight, talc content: 40% by weight, intrinsic viscosity of polyethylene terephthalate: 0.82) 1.8 parts by weight, and 0.24 parts by weight of pyromellitic anhydride. Expanded beads and an expanded molded article were obtained in the same manner as in Example 1 except that the above was done.
  • Example 3 Recovered polyethylene terephthalate (intrinsic viscosity: 0.80, density: 1,400 kg/m 3 , melting point: 248.3°C, glass transition temperature: 78.9°C, mass average molecular weight: 78,000) 95% by weight, polyethylene naphthalate (density: : 1330 kg/m 3 , melting point: 264.2° C., glass transition temperature: 119.8° C.) 100 parts by mass of thermoplastic polyester resin containing 5% by weight, a masterbatch containing talc in polyethylene terephthalate (polyethylene terephthalate-containing Amount: 60% by weight, Talc content: 40% by weight, Intrinsic viscosity of polyethylene terephthalate: 0.82) 0.5 parts by mass, Masterbatch containing carbon black in polyethylene terephthalate (Polyethylene terephthalate content: 70% by weight %, carbon black content: 30% by weight, intrinsic viscosity of polyethylene terephthalate
  • Example 4 (Expanded bead manufacturing process) From the middle of the extruder, carbon dioxide was injected into the molten polyethylene terephthalate composition in an amount of 0.3 parts by mass with respect to 100 parts by mass of polyethylene terephthalate, and was uniformly dispersed in the polyethylene terephthalate. Expanded beads were obtained in the same manner as in Example 1.
  • Example 5 Expanded beads and an expanded molded article were obtained in the same manner as in Example 1, except that the temperature of the cooling water was 45°C.
  • the temperature of the extruder was adjusted along with the temperature adjustment by the heater so that the temperature of the die hole portion of the die was 300°C.
  • the upstream extruder is set to a higher temperature than the downstream extruder to increase the solubility of the foaming agent, and finally the molten resin is injected into the die at a resin temperature of 290 ° C.
  • the temperature setting of the extruder was set to feed.
  • the same polyethylene terephthalate composition as used in Example 1 was supplied to this extruder at a rate of 30 kg/h and melt-kneaded.
  • butane composed of 35% by weight of isobutane and 65% by weight of normal butane as a foaming agent was pressurized into the extruder in an amount of 3.0 parts by mass with respect to 100 parts by mass of polyethylene terephthalate to obtain a polyethylene terephthalate composition in a molten state.
  • the resin was melt-kneaded, supplied to the die, and discharged out of the machine through the resin channel of the diverter valve.
  • the cutter When the temperature of the extruder, the pressure of the foaming agent, etc. are stabilized, the cutter is operated in the chamber attached to the front of the die, and the flow path of the molten polyethylene terephthalate composition is switched by the diverter valve, and the pressure of the molten polyethylene terephthalate composition is changed to zero.
  • Granulation was started by circulating circulating water at 80° C. with a water pressure of 3 MPa at 12 m 3 /h.
  • a molten polyethylene terephthalate extrudate extruded while foaming in circulating water was cut with a rotating blade to produce foamed particles.
  • the cut particles were expanded in circulating water to produce expanded polyethylene terephthalate particles.
  • the circulating water containing the foamed particles was conveyed from the chamber to a centrifugal dryer where the water was removed from the foamed particles.
  • the resin layer on the surface of the expanded beads of Comparative Example 1 was thin (cross-sectional photograph). It was presumed that this was because the cooling water temperature was as high as 60°C.
  • the resin layer on the surface of the expanded beads of Comparative Examples 2 and 3 was thick (cross-sectional photographs). It was presumed that this was because the cooling water temperatures were as low as 10°C and 20°C, respectively.
  • the resin layer on the surface of the expanded beads of Comparative Examples 4 and 5 was thick (cross-sectional photographs). This is presumed to be due to rapid cooling of the expanded particles in the underwater cutting method.
  • the expanded molded articles obtained from the expanded particles of Examples 1 to 5 showed better physical properties than the comparative examples in both bending test and compression test. This is because in the water ring hot cut method, the crystallinity of the center and surface layers of the foamed particles can be adjusted to an appropriate range by setting the cooling water temperature to an appropriate range, and/or the thickness of the resin layer on the surface was presumed to have been properly adjusted.
  • Example 1 the expanded particles and expanded molded articles of the present invention were obtained even when the aromatic polyester resin was a plant-derived product, a petroleum-derived product, or a recycled product.
  • Example 4 even if the foaming agent was an inorganic gas, the expanded beads and foamed molded article of the present invention were obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

本発明は、機械的物性に優れた芳香族ポリエステル系樹脂発泡成形体の提供、当該発泡成形体を製造するための芳香族ポリエステル系樹脂発泡粒子の提供、又は当該発泡粒子の製造方法の提供を目的とする。 本発明は、粒子中心部における結晶化度(A)及び粒子表層部における結晶化度(B)がいずれも10%以下であり、中心部における結晶化度に対する表層部における結晶化度の比(B/A)が0.3~1.4である、芳香族ポリエステル系樹脂発泡粒子に関する。

Description

芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材
 本発明は、型内発泡成形用の芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材に関する。
 芳香族ポリエステル系樹脂製の発泡粒子を発泡させて芳香族ポリエステル系樹脂発泡成形体を製造する方法として型内発泡成形が従来から汎用されている。型内発泡成形とは、樹脂発泡粒子を金型内に充填する工程と、熱水や水蒸気などの熱媒体によって金型内に充填された樹脂発泡粒子を加熱して二次発泡させて、二次発泡粒子同士を熱融着一体化させて所望形状を有する型内発泡成形体を製造する工程とを有する成形方法である。
 芳香族ポリエステル系樹脂製の発泡粒子は、発泡剤の存在下、押出機内で溶融混練された基材樹脂を押し出すと同時に発泡させて製造される。この際、ホットカット法、アンダーウォーターカット法(水中カット法)等が使用されている。
 特許文献1では、ウォーターリングホットカット法、つまり気体下で押出された溶融混練樹脂を切断し、切断粒子を冷却水で冷却する方法で芳香族ポリエステル系樹脂発泡粒子を製造している。
 また特許文献2では、アンダーウォーターカット法、つまり押出された溶融混練樹脂を水中で切断及び冷却する方法で芳香族ポリエステル系樹脂発泡粒子を製造している。
特許第5974010号公報 欧州特許出願公開第2564799号明細書
 特許文献1の発泡粒子の製造方法では、製造後の保管可能期間が長い発泡粒子を製造できる。しかし、この製造方法で得られる発泡粒子から得られる発泡成形体の機械的強度をより高くすることは難しかった。
 特許文献2の発泡粒子の製造方法では、切断された樹脂粒子は発泡粒子になるとともに直ちに80℃程度の水中に放たれて冷却される。しかし、本発明者らによれば、この方法で製造された発泡粒子は二次発泡性が悪く成形性において改善が必要であった。
 本発明は、機械的物性に優れた芳香族ポリエステル系樹脂発泡成形体の提供を一つの目的とする。本発明は、当該発泡成形体を製造するための芳香族ポリエステル系樹脂発泡粒子の提供を一つの目的とする。本発明は、当該発泡粒子の製造方法の提供を一つの目的とする。
 本発明者らは、特許文献1の製造方法で得られる発泡粒子の表面樹脂の厚みが著しく大きく、これによって発泡粒子の二次発泡性が悪いことを見出した。さらに、本発明者らは、特許文献2の製造方法で得られる発泡粒子では、発泡粒子の表面樹脂の厚みが著しく大きいこと、発泡粒子中心部樹脂の結晶化度と比較して表層部樹脂の結晶化度がかなり大きいこと、発泡粒子中心部の平均気泡径が大きく表層部の平均気泡径との差が大きいことによって、発泡粒子の二次発泡性が悪いことを見出した。
 より詳細には、本発明者らは、芳香族ポリエステル系樹脂は結晶性樹脂であるが故に、発泡粒子の結晶化度が高すぎると二次発泡粒子を熱融着一体化させる際に融着性を低下させることがあることを見出した。また、本発明者らは、発泡粒子表面の樹脂層の厚みが厚すぎると二次発泡性が低下し、成形品の表面伸び、及び発泡成形体における二次発泡粒子の融着性が悪くなることを見出した。更に、本発明者らは、発泡粒子の中心部における平均気泡径と表層部における平均気泡径の差が大きすぎると、発泡成形体の圧縮時に気泡への応力集中が起こりやすくなり、発泡成形体の機械的物性が低下することを見出した。
 そして、本発明者らは、発泡粒子表面の樹脂の厚み、発泡粒子の結晶化度、発泡粒子の気泡径等に着目し、ウォーターリングホットカット法において冷却水温を特定の範囲に調整することによって得られる発泡粒子の表面樹脂の厚みと結晶化度と気泡径を所定の範囲とできること、この発泡粒子は二次発泡性に優れ、この発泡粒子を発泡成形した発泡成形体が機械的物性、例えば圧縮強度、曲げ強度等に優れることを見出し、本発明を完成させた。
 本発明は、代表的には以下の態様を包含する。
 項1.
 粒子中心部における結晶化度(A)及び粒子表層部における結晶化度(B)がいずれも10%以下であり、中心部における結晶化度に対する表層部における結晶化度の比(B/A)が0.30~1.40である、芳香族ポリエステル系樹脂発泡粒子。
 項2.
 粒子表面の樹脂層の厚みが5μm~40μmである、項1に記載の芳香族ポリエステル系樹脂発泡粒子。
 項3.
 粒子中心部における平均気泡径(C)及び粒子表層部における平均気泡径(D)がいずれも50μm~300μmであり、中心部における平均気泡径に対する表層部における平均気泡径の比(D/C)が0.75~0.95である、項1又は2に記載の芳香族ポリエステル系樹脂発泡粒子。
 項4.
 粒子中心部における結晶化度に対する表層部における結晶化度の比(B/A)が0.30~1.30である、項1~3のいずれかに記載の芳香族ポリエステル系樹脂発泡粒子。
 項5.
 粒子中心部における結晶化度(A)及び粒子表層部における結晶化度(B)がいずれも1~10%である、項1~4のいずれかに記載の芳香族ポリエステル系樹脂発泡粒子。
 項6.
 項1~5のいずれかに記載の芳香族ポリエステル系樹脂発泡粒子の発泡成形体。
 項7.
 密度が0.05g/cm~0.7g/cmである、項6に記載の発泡成形体。
 項8.
 項6又は7に記載の発泡成形体を含有する自動車用部材。
 項9.
 芳香族ポリエステル系樹脂を押出機に供給して発泡剤の存在下にて溶融混練する工程と、溶融混練された芳香族ポリエステル系樹脂を前記押出機の前端に取り付けたノズル金型から気体条件下で押出発泡させながら切断して粒子状切断物を製造する工程と、前記粒子状切断物を冷却水で冷却する工程とを有し、前記冷却水の温度が23℃~55℃である、芳香族ポリエステル系樹脂発泡粒子の製造方法。
 本発明によれば、機械的物性に優れた発泡成形体を製造できる芳香族ポリエステル系樹脂発泡粒子とその製造方法を提供できる。本発明によれば、機械的物性、例えば圧縮強度、曲げ強度等に優れた発泡成形体とこれを含有する自動車用部材を提供できる。
芳香族ポリエステル系樹脂発泡粒子の製造装置の一例を示した模式断面図である。 マルチノズル金型を正面から見た模式図である。 芳香族ポリエステル系樹脂発泡粒子が冷却水に進入する状況を示した模式図である。 実施例1~3で製造した発泡粒子の中心部(100倍)及び表層部(100倍及び500倍)の断面のSEM撮影画像である。 実施例4及び5で製造した発泡粒子の中心部(100倍)及び表層部(100倍及び500倍)の断面のSEM撮影画像である。 比較例1~3で製造した発泡粒子の中心部(100倍)及び表層部(100倍及び500倍)の断面のSEM撮影画像である。 比較例4及び5で製造した発泡粒子の中心部(100倍)及び表層部(100倍及び500倍)の断面のSEM撮影画像である。
 本明細書中、語句「含有する」は、語句「から本質的になる」、及び語句「からなる」を包含することを意図して用いられる。
(芳香族ポリエステル系樹脂発泡粒子)
 芳香族ポリエステル系樹脂発泡粒子は、芳香族ポリエステル系樹脂を主成分として含んでいる。ここで、「主成分」とは、芳香族ポリエステル系樹脂発泡粒子を構成している樹脂中、80~100質量%、好ましくは90~100質量%の芳香族ポリエステル系樹脂を含有していることを意味する。
(芳香族ポリエステル系樹脂)
 芳香族ポリエステル系樹脂は、芳香族ジカルボン酸成分とジオール成分とを含むポリエステルであり、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートなどが挙げられ、ポリエチレンテレフタレートが好ましい。芳香族ポリエステル系樹脂は、単独で用いられても二種以上が併用されてもよい。
 芳香族ポリエステル系樹脂は、芳香族ジカルボン酸成分及びジオール成分以外に、例えば、トリメリット酸などのトリカルボン酸、ピロメリット酸などのテトラカルボン酸などの三価以上の多価カルボン酸やその無水物、グリセリンなどのトリオール、ペンタエリスリトールなどのテトラオールなどの三価以上の多価アルコールなどを構成成分として含有していてもよい。
 芳香族ポリエステル系樹脂は、石油由来品だけでなく、植物由来品、使用済のペットボトルなどから回収、再生したリサイクル品を用いることもできる。
 芳香族ポリエステル系樹脂の固有粘度(IV値)は、押出発泡性に優れると共に、得られる発泡粒子の二次発泡性に優れることから、0.7~1.1が好ましく、0.75~1.05がより好ましい。
 芳香族ポリエステル系樹脂の固有粘度(IV値)は、JIS K7367-5(2000)に準拠して測定された値をいう。具体的には、芳香族ポリエステル系樹脂を133Paの真空度で40℃にて15時間に亘って乾燥させる。
 芳香族ポリエステル系樹脂から0.1000gを試料として取り出して20mLのメスフラスコに入れ、メスフラスコに混合溶媒(フェノール50重量%、1,1,2,2-テトラクロロエタン50重量%)約15mLを添加する。メスフラスコ内の試料をホットプレート上に載置して約130℃に加熱して溶融させる。試料を溶融させた後に室温まで冷却し、体積が20mLとなるように調製し試料溶液(試料濃度:0.500g/100mL)を作製する。
 試料溶液8mLをホールピペットで粘度計に供給し、25℃の水が入れられた水槽を用いて試料の温度を安定させた後、試料の流下時間を測定する。試料溶液の濃度変更は、順次、粘度計内に混合溶媒8mLを添加して混合し希釈して希釈試料溶液を作製する。そして、希釈試料溶液の流下時間を測定した。試料溶液とは別に上記混合溶媒の流下時間を測定する。
 下記の計算式に基づいて芳香族ポリエステル系樹脂の固有粘度を算出する。混合溶媒の流下時間(t)と試料溶液の流下時間(t)から以下を算出した。
  相対粘度(η) =t/t
  比粘度 (ηsp)=(t-t)/t=η-1
  還元粘度=ηsp/C
 試料溶液の濃度C(g/100mL)を種々、変更した希釈試料溶液の測定結果から、縦軸を還元粘度とし横軸を試料溶液の濃度Cとしてグラフを作成し、得られた直線関係をC=0に外挿した縦軸切片から固有粘度[η]を求めた。
Figure JPOXMLDOC01-appb-M000001
 芳香族ポリエステル系樹脂発泡粒子を構成している芳香族ポリエステル系樹脂は、架橋剤によって架橋された改質芳香族ポリエステル系樹脂であってもよい。架橋剤としては、公知のものが用いられ、例えば、無水ピロメリット酸などの酸二無水物、多官能エポキシ化合物、オキサゾリン化合物、オキサジン化合物などが挙げられる。なお、架橋剤は、単独で用いられても二種以上が併用されてもよい。
 芳香族ポリエステル系樹脂を架橋剤によって架橋して改質する場合には、芳香族ポリエステル系樹脂発泡粒子の製造時に、押出機に芳香族ポリエステル系樹脂と架橋剤とを供給し、押出機中において、芳香族ポリエステル系樹脂を架橋剤によって架橋すればよい。押出機に供給する架橋剤の量は、押出発泡を良好に実施する点から、芳香族ポリエステル系樹脂100質量部に対して0.01質量部~5質量部が好ましく、0.1質量部~1質量部がより好ましい。
 本発明の発泡粒子を構成する芳香族ポリエステル系樹脂の質量平均分子量は、押出発泡性に優れると共に、得られる発泡粒子の二次発泡性に優れることから、4.5万~10万が好ましく、6万~9万がより好ましい。
 発泡粒子を構成する芳香族ポリエステル系樹脂が改質芳香族ポリエステル系樹脂である場合、芳香族ポリエステル系樹脂の質量平均分子量は、改質芳香族ポリエステル系樹脂の質量平均分子量を意味する。
 本発明の発泡粒子を構成する芳香族ポリエステル系樹脂の質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)を用いて測定したポリスチレン(PS)換算質量平均分子量を意味する。
 質量平均分子量は、具体的には、次のようにして測定する。試料5mgにヘキサフルオロイソプロパノール(HFIP)0.5mLと、クロロホルム0.5mLとをこの順で添加し溶解させ(浸漬時間:6.0±1.0hr(完全溶解))、試料溶液を得る。試料が溶液中に完全に溶解したことを確認した後、この試料溶液にクロロホルムを添加して体積が10mLとなるように希釈して振とう混合する。試料溶液を(株)島津ジーエルシー製非水系0.45μmシリンジフィルターにて濾過してろ液を得る。次の測定条件にてクロマトグラフを用いてろ液を測定する。質量平均分子量(Mw)は、予め作成しておいた標準ポリスチレン検量線から求める。
 使用装置=東ソー(株)製 「HLC-8320GPC EcoSEC」 ゲル浸透クロマトグラフ(RI検出器・UV検出器内蔵)
 
(GPC測定条件)
 カラム
 サンプル側
 ガードカラム=東ソー(株)製 TSK guardcolumn HXL-H(6.0mm×4.0cm)×1本
 測定カラム=東ソー(株)製 TSKgel GMHXL(7.8mmI.D.×30cm)×2本直列
 リファレンス側
 抵抗管(内径0.1mm×2m)×2本直列
 
 カラム温度=40℃
 移動相=クロロホルム
 移動相流量
 サンプル側ポンプ=1.0mL/min
 リファレンス側ポンプ=0.5mL/min
 検出器:UV検出器
 波長:254nm
 注入量:15μL
 測定時間:10分-32min
 ランタイム:20min
 サンプリングピッチ:500msec
 
 検量線用標準ポリスチレン試料は、昭和電工(株)製の製品名「STANDARD SM-105」および「STANDARD SH-75」で質量平均分子量が5,620,000、3,120,000、1,250,000、442,000、151,000、53,500、17,000、7,660、2,900、1,320のものを用いた。
 上記検量線用標準ポリスチレンをA(5,620,000、1,250,000、151,000、17,000、2,900)およびB(3,120,000、442,000、53,500、7,660、1,320)にグループ分けした後、Aを(2mg、3mg、4mg、4mg、4mg)秤量後クロロホルム30mLに溶解し、Bも(3mg、4mg、4mg、4mg、4mg)秤量後クロロホルム30mLに溶解する。標準ポリスチレン検量線は、作製した各AおよびB溶解液を50μL注入して測定後に得られた保持時間から較正曲線(三次式)を作成することにより得る。その検量線を用いて質量平均分子量を算出する。
(芳香族ポリエステル系樹脂発泡粒子の製造方法)
 本発明の発泡粒子は、例えば、芳香族ポリエステル系樹脂を押出機に供給して発泡剤の存在下にて溶融混練する工程と、溶融混練された芳香族ポリエステル系樹脂を前記押出機の前端に取り付けたノズル金型から気体条件下で押出発泡させながら切断して粒子状切断物を製造する工程と、前記粒子状切断物を冷却水で冷却する工程とを有し、前記冷却水の温度が23℃~55℃である、製造方法により製造することができる。このような製造方法もまた、本発明の1つである。なお、以下に本製造方法について説明をするが、本発明の芳香族ポリエステル系樹脂発泡粒子の製造方法は、以下の方法に限定されるものではない。
 先ず、芳香族ポリエステル系樹脂発泡粒子の製造に用いられる製造装置の一例について説明する。図1中、押出機の前端にはノズル金型1が取り付けられている。ノズル金型1は、芳香族ポリエステル系樹脂を押出発泡させて均一微細な気泡を形成できることから好ましい。そして、図2に示したように、ノズル金型2の前端面1aには、ノズルの出口部11が複数個、同一仮想円A上に等間隔毎に形成されている。なお、押出機の前端に取り付けるノズル金型は、ノズル内において芳香族ポリエステル系樹脂が発泡しないものであれば、特に限定されない。
 ノズル金型1のノズルの数は、製造効率の点及び粒子上切断物同士の合体を抑制できる点から、2~80個が好ましく、5~60個がより好ましく、8~50個が特に好ましい。
 ノズル金型1におけるノズルの出口部11の直径は、押出圧力と発泡粒子の径を適切な範囲とできる点で、0.2~2mmが好ましく、0.3~1.6mmがより好ましく、0.4~1.2mmが特に好ましい。
 ノズル金型1のランド部の長さは、ノズル金型1のノズルにおける出口部11の直径の4~30倍が好ましく、ノズル金型1のノズルにおける出口部11の直径の5~20倍がより好ましい。これは、ノズル金型のランド部の長さが前記範囲内であると、フラクチャーの発生が抑制されて安定的に押出発泡できる点で有利である。
 そして、ノズル金型1の前端面1aにおけるノズルの出口部11で囲まれた部分には、回転軸2が前方に向かって突出した状態に配設されており、この回転軸2は、後述する冷却部材4を構成する冷却ドラム41の前部41aを貫通してモータなどの駆動部材3に連結されている。
 更に、上記回転軸2の後端部の外周面には一枚又は複数枚の回転刃5が一体的に設けられており、全ての回転刃5は、その回転時には、ノズル金型1の前端面1aに常時、接触した状態となる。なお、回転軸2に複数枚の回転刃5が一体的に設けられている場合には、複数枚の回転刃5は回転軸2の周方向に等間隔毎に配列されている。又、図2では、一例として、四個の回転刃5を回転軸2の外周面に一体的に設けた場合を示した。
 そして、回転軸2が回転することによって回転刃5は、ノズル金型1の前端面1aに常時、接触しながら、ノズルの出口部11が形成されている仮想円A上を移動し、ノズルの出口部11から押出された芳香族ポリエステル系樹脂押出物を順次、連続的に切断可能に構成されている。
 ノズル金型1の少なくとも前端部と、回転軸2とを包囲するように冷却部材4が配設されている。この冷却部材4は、ノズル金型1よりも大径な正面円形状の前部41aと、この前部41aの外周縁から後方に向かって延設された円筒状の周壁部41bとを有する有底円筒状の冷却ドラム41とを備えている。
 更に、冷却ドラム41の周壁部41bにおけるノズル金型1の外方に対応する部分には、冷却水42を供給するための供給口41cが内外周面間に亘って貫通した状態に形成されている。冷却ドラム41の供給口41cの外側開口部には冷却水42を冷却ドラム41内に供給するための供給管41dが接続されている。
 冷却水42は、供給管41dを通じて、冷却ドラム41の周壁部41bの内周面に沿って斜め前方に向かって供給されるように構成されている。そして、冷却水42は、供給管41dから冷却ドラム41の周壁部41bの内周面に供給される際の流速に伴う遠心力によって、冷却ドラム41の周壁部41b内周面に沿って螺旋状を描くように前方に向かって進む。そして、冷却水42は、周壁部41bの内周面に沿って進行中に、徐々に進行方向に直交する方向に広がり、その結果、冷却ドラム41の供給口41cより前方の周壁部41bの内周面は冷却水42によって全面的に被覆された状態となるように構成されている。
 冷却水の温度は、発泡粒子の結晶化度、気泡径サイズ、又は表面の樹脂層の厚みを適切に調製できる点から、23℃~55℃であり、24℃~50℃がより好ましく、25℃~45℃が特に好ましい。
 そして、冷却ドラム41の周壁部41bの前端部下面には、その内外周面間に亘って貫通した状態に排出口41eが形成されている。排出口41eの外側開口部には排出管41fが接続されている。芳香族ポリエステル系樹脂発泡粒子及び冷却水42が排出口41eを通じて連続的に排出されるように構成されている。
 芳香族ポリエステル系樹脂発泡粒子は押出発泡によって製造されることが好ましい。例えば、芳香族ポリエステル系樹脂を押出機に供給して発泡剤の存在下にて溶融混練した後、押出機の前端に取り付けたノズル金型1から芳香族ポリエステル系樹脂押出物を押出発泡させながら回転刃5によって切断し芳香族ポリエステル系樹脂発泡粒子を製造する。
 前記押出機としては、従来から汎用されている押出機であれば、特に限定されず、例えば、単軸押出機、二軸押出機、複数の押出機を連結させたタンデム型の押出機が挙げられる。
 前記発泡剤としては、従来から汎用されているものが用いられる。前記発泡剤としては、例えば、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、ヒドラゾイルジカルボンアミド、重炭酸ナトリウムなどの化学発泡剤、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサンなどの飽和脂肪族炭化水素系発泡剤、ジメチルエーテルなどのエーテル系発泡剤、塩化メチル、1,1,1,2-テトラフルオロエタン、1,1-ジフルオロエタン、モノクロロジフルオロメタンなどのフロン系発泡剤、二酸化炭素、窒素などの無機系発泡剤などが挙げられ、ジメチルエーテル、プロパン、ノルマルブタン、イソブタン、二酸化炭素が好ましく、プロパン、ノルマルブタン、イソブタン、二酸化炭素がより好ましく、ノルマルブタン、イソブタン、二酸化炭素が特に好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。
 押出機に供給される発泡剤量は、発泡粒子の発泡倍率を適切な範囲とし易い点から、芳香族ポリエステル系樹脂100質量部に対して0.1質量部~5質量部が好ましく、0.2質量部~4質量部がより好ましく、0.2質量部~3質量部が特に好ましい。
 押出機には気泡調整剤が供給されることが好ましい。このような気泡調整剤としては、ポリテトラフルオロエチレン粉末、アクリル樹脂で変性されたポリテトラフルオロエチレン粉末、タルクなどが好ましい。
 押出機に供給される気泡調整剤の量は、発泡粒子の気泡径を適切な範囲とできる点から、芳香族ポリエステル系樹脂100質量部に対して0.01質量部~5質量部が好ましく、0.05質量部~3質量部がより好ましく、0.1質量部~2質量部が特に好ましい。
 ノズル金型1から押出発泡された芳香族ポリエステル系樹脂押出物は引き続き切断工程に入る。芳香族ポリエステル系樹脂押出物の切断は、回転軸2を回転させることによって、ノズル金型1の前端面1aに配設された回転刃5を回転させて行われる。回転刃5の回転数は2000rpm~10000rpmが好ましい。回転刃は、一定の回転数で回転させることが好ましい。
 全ての回転刃5はノズル金型1の前端面1aに常時、接触しながら回転しており、ノズル金型1から押出発泡された芳香族ポリエステル系樹脂押出物は、回転刃5と、ノズル金型1におけるノズルの出口部11端縁との間に生じる剪断応力によって、一定の時間間隔毎に大気中において切断されて粒子状切断物とされる。
 本発明では、ノズル金型1のノズル内において芳香族ポリエステル系樹脂が発泡しないようにしている。そして、芳香族ポリエステル系樹脂は、ノズル金型1のノズルの出口部11から吐出された直後は、未だに発泡しておらず、吐出されてから僅かな時間が経過した後に発泡を始める。従って、芳香族ポリエステル系樹脂押出物は、ノズル金型1のノズルの出口部11から吐出された直後の未発泡部と、この未発泡部に連続する、未発泡部に先んじて押出された発泡途上の発泡部とからなる。
 ノズル金型1のノズルの出口部11から吐出されてから発泡を開始するまでの間、未発泡部はその状態を維持する。この未発泡部が維持される時間は、ノズル金型1のノズルの出口部11における樹脂圧力や、発泡剤量などによって調整することができる。ノズル金型1のノズルの出口部11における樹脂圧力が高いと、芳香族ポリエステル系樹脂押出物はノズル金型1から押出されてから直ぐに発泡することはなく未発泡の状態を維持する。ノズル金型1のノズルの出口部11における樹脂圧力の調整は、ノズルの直径、押出量、芳香族ポリエステル系樹脂の溶融粘度及び溶融張力によって調整することができる。発泡剤量を適正な量に調整することによって金型内部において芳香族ポリエステル系樹脂が発泡することを防止し、未発泡部を確実に形成することができる。
 そして、全ての回転刃5はノズル金型1の前端面1aに常時、接触した状態で芳香族ポリエステル系樹脂押出物を切断していることから、芳香族ポリエステル系樹脂押出物は、ノズル金型1のノズルの出口部11から吐出された直後の未発泡部において切断されて粒子状切断物が製造される。
 上述したように、回転刃5は一定の回転数で回転しているが、回転刃5の回転数は、2000rpm~10000rpmが好ましく、2000rpm~9000rpmがより好ましく、2000rpm~8000rpmが特に好ましい。回転数が前記範囲内であると、切断の確実性が向上する点、又は、粒子上切断物同士の合着を抑制できる点で有利である。
 上述のようにして得られた粒子状切断物は、回転刃5による切断応力によって切断と同時に冷却ドラム41に向かって飛散され、冷却ドラム41の周壁部41bの内周面を被覆する冷却水42に直ちに衝突する。粒子状切断物は、冷却水42に衝突するまでの間も発泡をし続けており、粒子状切断物は発泡によって略球状に成長している。従って、得られる芳香族ポリエステル系樹脂発泡粒子は略球状である。芳香族ポリエステル系樹脂発泡粒子を金型内に充填して型内発泡を行うにあたって、芳香族ポリエステル系樹脂発泡粒子は金型内への充填性に優れ、金型内に芳香族ポリエステル系樹脂発泡粒子を均一に充填することができ、均質な型内発泡成形体を得ることができる。
 冷却ドラム41の周壁部41bの内周面は全面的に冷却水42(23℃~55℃)で被覆されているが、この冷却水42は、供給管41dを通じて、冷却ドラム41の周壁部41bの内周面に沿って斜め前方に向かって供給され、供給管41dから冷却ドラム41の周壁部41bの内周面に供給される際の流速に伴う遠心力によって、冷却ドラム41の周壁部41b内周面に沿って螺旋状を描くように前方に向かって進み、そして、冷却水42は、周壁部41bの内周面に沿って進行中に、徐々に進行方向に直交する方向に広がり、その結果、冷却ドラム41の供給口41cより前方の周壁部41bの内周面は冷却水42によって全面的に被覆された状態となっている。
 上述のように、芳香族ポリエステル系樹脂押出物を回転刃5によって切断した後に、粒子状切断物を直ちに冷却水42(23℃~55℃)によって冷却していることから、芳香族ポリエステル系樹脂発泡粒子が過度に発泡するのを防止している。
 更に、芳香族ポリエステル系樹脂押出物を回転刃5によって切断して得られた粒子状切断物は冷却水42に向かって飛散させられる。上述の通り、冷却ドラム41の周壁部41bの内周面に沿って流れている冷却水42は螺旋状に旋回しながら流れている。従って、冷却水42の表面に対して斜交し且つ冷却水42の流れの上流側から下流側に向かって粒子状切断物Pを冷却水42に衝突させて冷却水42に進入させるようにすることが好ましい(図3参照)。なお、図3において、冷却水の流れ方向を「F」として示した。
 このように、粒子状切断物を冷却水42内に進入させるにときに、粒子状切断物を冷却水42の流れを追う方向から冷却水42に進入させているので、粒子状切断物は冷却水42の表面に弾かれることなく、粒子状切断物は冷却水42内に円滑に且つ確実に進入して冷却水42によって冷却されて芳香族ポリエステル系樹脂発泡粒子が製造される。
 従って、芳香族ポリエステル系樹脂発泡粒子は、冷却ムラや収縮のない略球状の形態を有し、型内発泡成形時に優れた発泡性を発揮する。そして、ポリエチレンテレフタレートのような結晶性樹脂の場合、粒子状切断物は、芳香族ポリエステル系樹脂押出物の切断後に23℃~55℃の冷却水42で冷却されているので結晶化度、気泡径、及び表面の樹脂層の厚みが、機械的物性に優れた発泡成形体の製造に適したものとなる。
 芳香族ポリエステル系樹脂発泡粒子の嵩密度は、発泡力の向上及び二次発泡粒子の融着力の向上の点から、0.05g/cm~0.7g/cmが好ましく、0.07g/cm~0.6g/cmがより好ましく、0.08g/cm~0.5g/cmが特に好ましい。なお、芳香族ポリエステル系樹脂発泡粒子の嵩密度は、ノズル金型1のノズルの出口部11における樹脂圧力、又は、発泡剤量などによって調整することができる。ノズル金型1のノズルの出口部11における樹脂圧力の調整は、ノズルの直径、押出量及び芳香族ポリエステル系樹脂の溶融粘度によって調整することができる。
 なお、芳香族ポリエステル系樹脂発泡粒子の嵩密度は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に準拠して測定されたものをいう。詳細には実施例に記載された方法で決定される。
 芳香族ポリエステル系樹脂発泡粒子は、結晶化度が高いと発泡成形体の耐熱性が向上するものの、二次発泡粒子の融着力が大きくならず、その結果、発泡成形体の機械的強度が向上し辛い。このため、粒子中心部における結晶化度(A)及び粒子表層部における結晶化度(B)がいずれも10%以下であることが好ましく、1~10%であることがより好ましく、2~8%であることが特に好ましい。
 発泡粒子の中心部及び表層部は次のようにして決定される。
 発泡粒子を剃刀刃を用いて中心で略二等分に切断し、露出した断面における粒子中心から発泡粒子半径方向の20%までの範囲における部分を中心部とし、露出した断面における粒子表面から発泡粒子半径方向の20%の範囲における部分を表層部とする。
 発泡粒子の結晶化度は、JIS K7122:1987、JIS K7122:2012に記載されている方法で決定され、詳細には実施例に記載された方法で決定される。
 芳香族ポリエステル系樹脂発泡粒子の中心部における結晶化度(A)に対する表層部における結晶化度(B)の比(B/A)は、発泡力の向上又は二次発泡粒子の融着力の向上の点から、0.30~1.30であることが好ましく、0.35~1.25であることがより好ましく、0.40~1.20であることが特に好ましい。
 芳香族ポリエステル系樹脂発泡粒子は、発泡力の向上又は二次発泡粒子の融着力の向上の点から、その表面の樹脂層の厚みが5μm~40μmであることが好ましく、7μm~、37μmであることがより好ましい。ここで、発泡粒子表面の樹脂層の厚みは、発泡粒子の中心で略二分割した断面の表層部を走査電子顕微鏡を用いて、500倍に拡大して撮影した画像から決定され、詳細には実施例に記載された方法で決定される。
 芳香族ポリエステル系樹脂発泡粒子の粒子中心部における平均気泡径(C)及び粒子表層部における平均気泡径(D)がいずれも50μm~300μmであることが、発泡力の向上又は二次発泡粒子の融着力の向上の点から好ましい。
 芳香族ポリエステル系樹脂発泡粒子は、中心部の気泡径より表層部の気泡径がやや小さいと、発泡が良好となり、二次発泡粒子の融着力も高くなるため、好ましい。このため、発泡粒子の中心部における平均気泡径(C)に対する表層部における平均気泡径(D)の比(D/C)は、0.75~0.95であることが好ましく、0.80~0.95であることがより好ましく、0.80~0.90であることが特に好ましい。
 本発明の芳香族ポリエステル系樹脂発泡粒子を金型のキャビティ内に充填して加熱し、芳香族ポリエステル系樹脂発泡粒子を発泡させることによって、芳香族ポリエステル系樹脂発泡粒子を発泡させて得られた二次発泡粒子同士をそれらの発泡圧によって互いに熱融着一体化させることで、機械的物性に優れた所望形状を有する型内発泡成形体を得ることができる。金型内に充填した芳香族ポリエステル系樹脂発泡粒子の加熱媒体としては、特に限定されず、水蒸気の他に、熱風、温水などが挙げられる。
 本発明の芳香族ポリエステル系樹脂発泡粒子の発泡成形体も本発明の一つである。この発泡成形体は、本発明の発泡粒子を型内発泡成形して得られる。
 芳香族ポリエステル系樹脂発泡成形体の密度は、軽量性と機械的強度の点から、0.05g/cm~0.7g/cmが好ましく、0.07g/cm~0.6g/cmがより好ましく、0.08g/cm~0.5g/cmが特に好ましい。
 更に、型内発泡成形直前に、芳香族ポリエステル系樹脂発泡粒子に更に不活性ガスを含浸させて、芳香族ポリエステル系樹脂発泡粒子の発泡力を向上させてもよい。このように芳香族ポリエステル系樹脂発泡粒子の発泡力を向上させることにより、型内発泡成形時に芳香族ポリエステル系樹脂発泡粒子同士の熱融着性が向上し、得られる型内発泡成形体は更に優れた機械的強度を有する。なお、前記不活性ガスとしては、例えば、二酸化炭素、窒素、ヘリウム、アルゴンなどが挙げられ、二酸化炭素が好ましい。
 芳香族ポリエステル系樹脂発泡粒子に不活性ガスを含浸させる方法としては、例えば、常圧以上の圧力を有する不活性ガス雰囲気下に芳香族ポリエステル系樹脂発泡粒子を置くことによって芳香族ポリエステル系樹脂発泡粒子中に不活性ガスを含浸させる方法が挙げられる。このような場合、芳香族ポリエステル系樹脂発泡粒子を金型内に充填する前に不活性ガスを含浸させてもよいが、芳香族ポリエステル系樹脂発泡粒子を金型内に充填した後に金型ごと不活性ガス雰囲気下に置き、芳香族ポリエステル系樹脂発泡粒子に不活性ガスを含浸させてもよい。
 芳香族ポリエステル系樹脂発泡粒子に不活性ガスを含浸させる時の温度は5℃~40℃が好ましく、10℃~30℃がより好ましい。
 芳香族ポリエステル系樹脂発泡粒子に不活性ガスを含浸させる時の圧力は0.2~2.0MPaが好ましく、0.25MPa~1.5MPaがより好ましい。不活性ガスが二酸化炭素である場合には、0.2MPa~1.5MPaが好ましく、0.25MPa~1.2MPaがより好ましい。
 芳香族ポリエステル系樹脂発泡粒子に不活性ガスを含浸させる時間は、10分~72時間が好ましく、15分~64時間がより好ましく、20分~48時間が特に好ましい。
 不活性ガスを含浸させた芳香族ポリエステル系樹脂発泡粒子は、例えば55℃~90℃に加熱されることによって発泡(予備発泡)し、予備発泡粒子が製造される。
 発泡成形体を芯材とし、発泡成形体の表面に表皮材を積層一体化させて複合構造部材とすることができる。発泡成形体と、発泡成形体の表面に積層一体化された表皮材とを含む複合構造部材も本発明の一つとできる。複合構造部材に芯材として用いられる発泡成形体の厚みは、強度、重量、耐衝撃性の点から、1mm~40mmが好ましい。
 表皮材としては特に限定されず、例えば、繊維強化合成樹脂シート、金属シート、合成樹脂シートなどが挙げられる。表皮材は、優れた機械的強度及び軽量性を有していることから、繊維強化合成樹脂が好ましい。
 繊維強化合成樹脂シートは、繊維をマトリックス樹脂によって互いに結着してなるシートである。繊維強化合成樹脂シートを構成している繊維としては特に限定されず、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維などが挙げられる。繊維は、優れた機械的強度及び耐熱性を有していることから、炭素繊維、ガラス繊維、アラミド繊維が好ましく、炭素繊維がより好ましい。
 繊維強化合成樹脂を構成しているマトリックス樹脂としては、熱硬化性樹脂と熱可塑性樹脂がある。熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂などが挙げられる。なお、熱硬化性樹脂は、単独で用いられても二種以上が併用されてもよい。熱可塑性樹脂としては、例えば、ポリアミド(ナイロン6、ナイロン66等)、ポリオレフィン(ポリエチレン、ポリプロピレンなど)、ポリフェニレンサルファイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリスチレン、ABSや、アクリロニトリルとスチレンとの共重合体などが挙げられる。なお、熱可塑性樹脂は、単独で用いられても二種以上が併用されてもよい。
 繊維強化合成樹脂シートの厚みは、強度、重量及び耐衝撃性の点から0.2mm~2.0mmが好ましい。
 複合構造部材の製造方法は、特に限定されず、例えば、芯材となる発泡成形体の表面に表皮材を接着剤を用いて積層一体化する方法、繊維強化合成樹脂シートの成形で一般的に適用される方法が挙げられる。繊維強化合成樹脂シートの成形で用いられる方法としては、例えば、オートクレーブ法、ハンドレイアップ法、スプレーアップ法、PCM(Prepreg Compression Molding)法、RTM(Resin Transfer Molding)法、VaRTM(Vacuum assisted Resin Transfer Molding)法などが挙げられる。
 このような複合構造部材は、自動車用部材、航空機用部材、鉄道車両用部材、建築資材などの用途に有用である。自動車用部材としては、例えば、ドアパネル、ドアインナー、バンパー、フェンダー、フェンダーサポート、エンジンカバー、ルーフパネル、トランクリッド、フロアパネル、センタートンネル、クラッシュボックスなどが挙げられる。例えば、従来、鋼板で作製されていたドアパネルに複合構造部材を用いると、鋼板製ドアパネルと略同一の剛性を有するドアパネルを大きく軽量化できるため、自動車の軽量化において高い効果が得られる。
 以下、実施例等によって本発明の一実施態様を更に詳細に説明するが、本発明はこれらに限定されない。
 実施例等における各種物性等の特定方法を下記する。
(嵩密度)
 嵩密度は、JIS K6911:1995「熱硬化性プラスチック一般試験方法」に準拠して測定した。即ち、JIS K6911に準拠した見掛け密度測定器を用いて測定した。
  発泡粒子の嵩密度(g/cm)=〔試料を入れたメスシリンダーの質量(g)-メスシリンダーの質量(g)〕/〔メスシリンダーの容量(cm)〕
(結晶化度)
 結晶化度はJIS K7122:1987、JIS K7122:2012に記載されている方法で測定した。但し、サンプリング方法及び温度条件に関しては以下のように行った。試料は発泡粒子表層と中心から採取した。表層部の試料は、発泡粒子の中心で剃刀刃を用いて略二等分に切断し、発泡粒子表面から発泡粒子半径方向の20%の範囲における部分で採取した。同様に、中心部の試料は二等分に切断した発泡粒子中心から発泡粒子半径方向の20%の範囲における部分で採取した。
 5.5±0.5mgの試料をアルミニウム製測定容器の底にすきまのないよう充てん後、アルミニウム製の蓋をした。次いで(株)日立ハイテクサイエンス製「DSC7000X、AS-3」示差走査熱量計を用い、示差走査熱量分析を実施した。窒素ガス流量20mL/分のもと以下のようなステップで試料を加熱しDSC曲線を得た。
 (ステップ1)
 30℃で2分間保持。
 (ステップ2)
 速度10℃/分で30℃から290℃まで昇温。その時の基準物質はアルミナを用いた。融解ピークの面積から求められる融解熱量(J/g)と結晶化ピークの面積から求められる結晶化熱量(J/g)の差を求めた。この差をポリエチレンテレフタレート完全結晶の理論融解熱量140.1J/gで除して求められる割合を結晶化度とした。融解熱量及び結晶化熱量は装置付属の解析ソフトを用いて算出した。具体的には、融解熱量は低温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び高温側のベースラインへ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分から算出した。結晶化熱量は低温側のベースラインからDSC曲線が離れる点と、そのDSC曲線が再び高温側へ戻る点とを結ぶ直線と、DSC曲線に囲まれる部分の面積から算出した。つまり、結晶化度は次式より求めた。
  結晶化度(%)=(融解熱量(J/g)-結晶化熱量(J/g))/140.1(J/g)×100
(結晶化度比)
 結晶化度比は次式により求めた。
  結晶化度比=発泡粒子表層部の結晶化度(%)/発泡粒子中心部の結晶化度(%)
(平均気泡径)
 発泡粒子の中心部で略二分割した断面の表層部と中心部を、(株)日立ハイテクノロジーズ製「SU1510」走査電子顕微鏡を用いて、100倍に拡大して撮影した。発泡粒子表面から発泡粒子半径方向の20%の範囲における部分を表層部、同様に発泡粒子中心から発泡粒子半径方向の20%の範囲における部分を中心部とした。
 撮影された顕微鏡画像は、横向きのA4用紙1枚に2画像並んだ状態になるように配置し、A4用紙に印刷した。
 印刷された発泡粒子断面の画像1つにつき、タテ方向およびヨコ方向に平行な3本の任意の直線(長さ60mm)を描いた。即ち、顕微鏡画像2つにつき、描いた任意の直線はタテ方向に6本、ヨコ方向に6本とした。なお、できる限り直線が気泡と接点でのみ接することのないように描いた。そしてこの直線が通過する気泡の数を数えた。気泡が直線と接点のみで接する場合には、この気泡も数に加えた。タテ方向、ヨコ方向の各方向の6本の任意の直線について数えた気泡数を算術平均し、各方向の気泡数とした。気泡数を数えた画像の倍率とこの気泡数から気泡の平均弦長tを次式により算出した。
  平均弦長 t(mm)=60/(気泡数×画像倍率)
 
 画像倍率は画像上のスケールバーを(株)ミツトヨ製「デジマチックキャリパ」にて1/100mmまで計測し、次式により求めた。
  画像倍率=スケールバー実測値(mm)/スケールバーの表示値(mm)
 
 そして次式によりタテ方向及びヨコ方向における気泡径を算出した。
  タテ方向又はヨコ方向の気泡径D(mm)=t/0.616
 
 さらにタテ方向の気泡径D及びヨコ方向の気泡径Dの積の2乗根を気泡径とした。
  気泡径(μm)=1000×(Dタテ×Dヨコ)1/2
 
 以上の作業を表層部、中心部でそれぞれN数10で行い、平均値を平均気泡径とした。
(平均気泡径比)
 平均気泡径比は次式により求めた。
  平均気泡径比=発泡粒子表層部の平均気泡径(μm)/発泡粒子中心部の平均気泡径(μm)
(表面樹脂の厚み)
 発泡粒子の中心で略二分割した断面の表層部を、(株)日立ハイテクノロジーズ製「SU1510」走査電子顕微鏡を用いて、500倍に拡大して撮影した。顕微鏡画像の発泡粒子表面の任意の位置で、接線に直行する直線を発泡粒半径方向に5本描き、各直線ごとに表面から最初に接する気泡までの距離を測定した。即ち、一つの断面画像につき5つの当該距離を測定した。以上の作業をそれぞれN数10で行い、平均値を表面樹脂の厚み(μm)とした。
(成形性評価)
 成形性評価は以下の基準で行った。
  ○:発泡粒子同士が熱融着して強固に接着し、一体化していた
  ×:発泡粒子同士が接着しておらず、容易に発泡粒子が脱落する状態であった
(発泡成形体の密度)
 発泡成形体(成形後、55℃で20時間以上乾燥させたもの)から切り出した直方体状の試験片(例;75mm×300mm×30mm)の質量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(g/cm)を求めた。
(曲げ試験:最大曲げ強度及び曲げ弾性率)
 最大曲げ強度、曲げ弾性率はJIS K7221-1:2006に準拠し測定した。すなわち、最大曲げ強度は(株)島津製作所製「オートグラフAG-X plus 100kN」万能試験機、及び(株)島津製作所製「TRAPEZIUM X」万能試験機データ処理ソフトを用いて測定した。試験片として発泡成形体(成形後、55℃で20時間以上乾燥させたもの)から幅25mm×長さ130mm×厚さ20mmを切り出した。試験片の数は5個とした。試験片はJIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調節した後、同じ標準雰囲気下での測定に用いた。試験速度は10mm/分とした。加圧くさびおよび支点の先端部の半径は5Rとし、支点間距離は100mmとした。得られたグラフより、傾きが最大となる荷重領域を設定し、前記万能試験機データ処理にて見かけ曲げ弾性率を求めた。この弾性率の直線とストロークの交点を伸びの原点とし、対応する最大曲げ強度を自動算出した。
(圧縮試験:5%圧縮強度及び圧縮弾性率)
 5%圧縮強度及び圧縮弾性率は、JIS K6767:1999に準拠し測定した。すなわち5%圧縮強度は、(株)島津製作所製「オートグラフ AG-X plus 100kN」万能試験機、及び(株)島津製作所製「TRAPEZIUM X」万能試験機データ処理ソフトを用いて測定した。試験片サイズは50mm×50mm×厚み25mmとし、試験片の数は3個とした。試験片は、JIS K 7100:1999の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調節した後、同じ標準雰囲気下での測定に用いた。圧縮速度を2.5mm/分とした。得られたグラフより、傾きが最大となる荷重領域を設定し、前記万能試験機データ処理ソフトにて圧縮弾性率を求めた。この弾性率の直線とストロークの交点を伸びの原点とし、5%圧縮率における圧縮強度を自動算出した。
(成形品の機械的物性の評価)
 成形品の機械的物性評価は、下記の基準によって評価した。
  ○:曲げ最大強度が1.20MPa以上、且つ5%圧縮強度が0.70MPa以上。
  ×:曲げ最大強度が1.20MPa未満、又は5%圧縮強度が0.70MPa未満。
(実施例1)
 (発泡粒子製造工程)
 図1及び図2に示した製造装置を用いて発泡粒子を製造した。先ず、植物由来ポリエチレンテレフタレート(固有粘度:0.80、密度:1400kg/m、融点:247.2℃、ガラス転移温度78.7℃、質量平均分子量7.4万、植物度:30%)100質量部、ポリエチレンテレフタレートにタルクを含有させてなるマスターバッチ(ポリエチレンテレフタレート含有量:60重量%、タルク含有量:40重量%、ポリエチレンテレフタレートの固有粘度:0.82)1.8質量部、及び無水ピロメリット酸0.22質量部を含むポリエチレンテレフタレート組成物を口径が65mmで且つL/D比が34の単軸押出機に供給して300℃にて溶融混練した。
 続いて、この押出機の途中から、発泡剤としてイソブタン35重量%及びノルマルブタン65重量%からなるブタンをポリエチレンテレフタレート100質量部に対して1.15質量部となる量で溶融状態のポリエチレンテレフタレート組成物に圧入して、ポリエチレンテレフタレート中に均一に分散させた。
 しかる後、押出機の前端部において、溶融状態のポリエチレンテレフタレート組成物を280℃に冷却した後、押出機の前端に取り付けたマルチノズル金型1の各ノズルからポリエチレンテレフタレート組成物を押出発泡させた。ポリエチレンテレフタレート組成物の押出量を30kg/hとした。
 なお、マルチノズル金型1は、出口部11の直径が1mmのノズルを20個有しており、ノズルの出口部11は全て、マルチノズル金型1の前端面1aに想定した、直径が139.5mmの仮想円A上に等間隔毎に配設されていた。
 そして、回転軸2の後端部外周面には、2枚の回転刃5が回転軸2の周方向に180°の位相差でもって一体的に設けられており、各回転刃5はマルチノズル金型1の前端面1aに常時、接触した状態で仮想円A上を移動するように構成されていた。
 更に、冷却部材4は、正面円形状の前部41aと、この前部41aの外周縁から後方に向かって延設され且つ内径が320mmの円筒状の周壁部41bとからなる冷却ドラム41を備えていた。そして、供給管41d及び冷却ドラム41の供給口41cを通じて冷却ドラム41内に25℃の冷却水42が供給されていた。冷却ドラム41内の容積は17684cmであった。
 冷却水42は、供給管41dから冷却ドラム41の周壁部41bの内周面に供給される際の流速に伴う遠心力によって、冷却ドラム41の周壁部41b内周面に沿って螺旋状を描くように前方に向かって進んでおり、冷却水42は、周壁部41bの内周面に沿って進行中に、徐々に進行方向に直交する方向に広がり、その結果、冷却ドラム41の供給口41cより前方の周壁部41bの内周面は冷却水42によって全面的に被覆された状態となっていた。
 そして、マルチノズル金型1の前端面1aに配設した回転刃5を3200rpmの回転数で回転させてあり、マルチノズル金型1の各ノズルの出口部11から押出発泡されたポリエチレンテレフタレート押出物を回転刃5によって切断して略球状の粒子状切断物を製造した。ポリエチレンテレフタレート押出物は、マルチノズル金型1のノズルから押出された直後の未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなっていた。そして、ポリエチレンテレフタレート押出物は、ノズルの出口部11の開口端において切断されており、ポリエチレンテレフタレート押出物の切断は未発泡部において行われていた。
 なお、上述のポリエチレンテレフタレート発泡粒子の製造にあたっては、先ず、マルチノズル金型1に回転軸2を取り付けず且つ冷却部材4をマルチノズル金型1から退避させておいた。この状態で、押出機からポリエチレンテレフタレート押出物を押出発泡させ、ポリエチレンテレフタレート押出物が、マルチノズル金型1のノズルから押出された直後の未発泡部と、この未発泡部に連続する発泡途上の発泡部とからなることを確認した。次に、マルチノズル金型1に回転軸2を取り付け且つ冷却部材4を所定位置に配設した後、回転軸2を回転させ、ポリエチレンテレフタレート押出物をノズルの出口部11の開口端において回転刃5で切断して粒子状切断物を製造した。
 この粒子状切断物は、回転刃5による切断応力によって外方或いは前方に向かって飛ばされ、冷却部材4の冷却ドラム41の内面に沿って流れている冷却水42にこの冷却水42の流れの上流側から下流側に向かって冷却水42を追うように冷却水42の表面に対して斜交する方向から衝突し、粒子状切断物は冷却水42中に進入して直ちに冷却され、型内発泡成形用ポリエチレンテレフタレート発泡粒子が製造された。
 得られたポリエチレンテレフタレート発泡粒子は、冷却ドラム41の排出口41eを通じて冷却水42と共に排出された後、脱水機にて冷却水42と分離された。
 (成形工程)
 得られたポリエチレンテレフタレート発泡粒子を製造直後から23℃、大気圧下にて30日間に亘って放置した。その後、30mm×300mm×400mmの成形用金型に充填し、0.05MPaの水蒸気にて180秒間、0.10MPaの水蒸気にて30秒間加熱を行い、次いで、発泡成形体の最高面圧が0.01MPaに低下するまで冷却することで、発泡成形体を得た。
(実施例2)
 ポリエチレンテレフタレート(固有粘度:0.82、密度:1400kg/m、融点:248.0℃、ガラス転移温度78.7℃、質量平均分子量7.2万)95重量%、ポリエチレンナフタレート(密度:1330kg/m、融点:264.2℃、ガラス転移温度119.8℃)5重量%を含む熱可塑性ポリエステル系樹脂100質量部、ポリエチレンテレフタレートにタルクを含有させてなるマスターバッチ(ポリエチレンテレフタレート含有量:60重量%、タルク含有量:40重量%、ポリエチレンテレフタレートの固有粘度:0.82)1.8質量部、及び無水ピロメリット酸0.24質量部を含む熱可塑性ポリエステル系樹脂組成物を使用したこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た。
(実施例3)
 回収ポリエチレンテレフタレート(固有粘度:0.80、密度:1400kg/m、融点:248.3℃、ガラス転移温度78.9℃、質量平均分子量7.8万)95重量%、ポリエチレンナフタレート(密度:1330kg/m、融点:264.2℃、ガラス転移温度119.8℃)5重量%を含む熱可塑性ポリエステル系樹脂100質量部、ポリエチレンテレフタレートにタルクを含有させてなるマスターバッチ(ポリエチレンテレフタレート含有量:60重量%、タルク含有量:40重量%、ポリエチレンテレフタレートの固有粘度:0.82)0.5質量部、ポリエチレンテレフタレートにカーボンブラックを含有させてなるマスターバッチ(ポリエチレンテレフタレート含有量:70重量%、カーボンブラック含有量:30重量%、ポリエチレンテレフタレートの固有粘度:0.82)3.3質量部、及び無水ピロメリット酸0.26質量部を含む熱可塑性ポリエステル系樹脂組成物を使用したこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た。
(実施例4)
 (発泡粒子製造工程)
 押出機の途中から、二酸化炭素をポリエチレンテレフタレート100質量部に対して0.3質量部となる量で溶融状態のポリエチレンテレフタレート組成物に圧入して、ポリエチレンテレフタレート中に均一に分散させたこと以外は実施例1と同様にして発泡粒子を得た。
 (成形工程)
 得られたポリエチレンテレフタレート発泡粒子を製造直後から23℃、大気圧下にて1日間に亘って放置した後、圧力容器中に密閉し、圧力容器内に圧縮空気を0.5MPa(ゲージ圧)まで圧入した。圧力容器内温度を20℃として静置し、加圧養生を24時間実施した。取り出し後、30mm×300mm×400mmの成形用金型に充填し、0.05MPaの水蒸気にて180秒間、0.10MPaの水蒸気にて30秒間加熱を行い、次いで、発泡成形体の最高面圧が0.01MPaに低下するまで冷却することで、発泡成形体を得た。
(実施例5)
 冷却水の温度を45℃にしたこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た。
(比較例1)
 冷却水の温度を60℃にしたこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た。
(比較例2)
 冷却水の温度を10℃にしたこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た。
(比較例3)
 冷却水の温度を20℃にしたこと以外は実施例1と同様にして発泡粒子及び発泡成形体を得た。
(比較例4)
 (発泡粒子製造工程)
 ダイバータバルブを有し、直径2.0mm、ランド長2.0mmのダイス孔を5個備えたダイスを有し、前記ダイバータバルブの機外排出側の樹脂流路を通じて押出機からダイに供給される溶融ポリエチレンテレフタレート樹脂を機外に排出させるようにダイバータバルブをセットした水中カット式造粒機を用いた。また、前記ダイスを取り付ける押出機として、口径65mmで且つL/D比が34の単軸押出機が備えられた水中カット式造粒機を用いた。
 まず、前記ダイスのダイス孔部分の温度が300℃となるようにヒーターによる温度調整を実施するとともに押出機の温度調整を実施した。具体的には、上流側の押出機を下流側の押出機に比べて高温にセットして発泡剤の溶解性を高めた状態にし、最終的に前記ダイスに290℃の樹脂温度で溶融樹脂が供給されるように押出機の温度設定を行った。
 この押出機に、実施例1で使用したと同じポリエチレンテレフタレート組成物を、30kg/hの割合で供給し、溶融混練した。
 その後、発泡剤としてイソブタン35重量%及びノルマルブタン65重量%からなるブタンをポリエチレンテレフタレート100質量部に対して3.0質量部となる量で押出機に圧入し、溶融状態のポリエチレンテレフタレート組成物を溶融混練して前記ダイスに供給し、前記ダイバータバルブの樹脂流路を通じて機外に排出させた。
 押出機の温度、発泡剤の圧力等が安定した段階で、ダイスの前方に装着させたチャンバー内でカッターを運転させ、前記ダイバータバルブにより溶融ポリエチレンテレフタレート組成物の流路を切り替えるとともに前記チャンバーに0.3MPaの水圧を有する80℃の循環水を12m/hで循環させて造粒を開始した。
 循環水中に発泡しながら押し出された溶融ポリエチレンテレフタレート押出物を回転刃で切断して発泡粒子を製造した。この粒子状切断物は循環水中で発泡し、ポリエチレンテレフタレート発泡粒子が製造された。発泡粒子を含む循環水は、チャンバーから遠心乾燥機に運ばれ、そこで発泡粒子から水を除去した。
 (成形工程)
 得られたポリエチレンテレフタレート発泡粒子を製造直後から23℃、大気圧下にて30日間に亘って放置した。その後、30mm×300mm×400mmの成形用金型に充填し、0.05MPaの水蒸気にて180秒間、0.10MPaの水蒸気にて30秒間加熱を行ったが、成形不可であった。
(比較例5)
 (発泡粒子製造工程)
 発泡剤としてイソブタン35重量%及びノルマルブタン65重量%からなるブタンをポリエチレンテレフタレート100質量部に対して2.2質量部となる量で溶融状態のポリエチレンテレフタレート組成物に圧入して、ポリエチレンテレフタレート中に均一に分散させたこと以外は比較例4と同様にして発泡粒子を得た。
 (成形工程)
 比較例4と同様にして成形工程を行ったが、成形不可であった。
 上記実施例及び比較例で得られた発泡粒子の断面の走査電子顕微鏡(SEM)写真を図4~図7に示す。また、上記実施例及び比較例で得られた発泡粒子及び発泡成形体について測定された物性を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 比較例1の発泡粒子の結晶化度比が大きかったことにより二次発泡性が悪く、発泡成形体の機械的特性が低かったと推測された。また、比較例2及び3の発泡粒子の結晶化度比が小さかったことにより二次発泡性が悪く、発泡成形体の機械的特性が低かったと推測された。さらに、比較例4及び5の発泡粒子の中心部及び表層部の結晶化度が大きいこと、さらには、結晶化度比も大きかったことにより、二次発泡性が非常に悪く、発泡成形できなかったと推測された。
 さらに、比較例1の発泡粒子の表面の樹脂層が薄かった(断面写真)。これは冷却水温が60℃と高いためと推測された。比較例2、3の発泡粒子の表面の樹脂層が厚かった(断面写真)。これは冷却水温がそれぞれ10℃、20℃と低いためと推測された。比較例4及び5の発泡粒子の表面の樹脂層が厚かった(断面写真)。これは水中カット方式では発泡粒子が急速に冷却されるためと推測された。
 一方、実施例1~5の発泡粒子から得られた発泡成形体は曲げ試験及び圧縮試験のいずれでも比較例より優れた物性を示した。これはウォータリングホットカット方式において冷却水温を適度な範囲に設定することによって、発泡粒子の中心部と表層部の結晶化度を適切な範囲とできたため、及び/又は、表面の樹脂層の厚みが適切に調整されたためと推測された。
 実施例1~3では、芳香族ポリエステル系樹脂が植物由来品、石油由来品、リサイクル品であっても本発明の発泡粒子及び発泡成形体が得られた。実施例4では、発泡剤が無機系ガスであっても本発明の発泡粒子及び発泡成形体が得られた。
 1 ノズル金型
 2 回転軸
 3 駆動部材
 4 冷却部材
 41 冷却ドラム
 42 冷却水
 5 回転刃
 P 型内発泡成形用芳香族ポリエステル系樹脂発泡粒子

Claims (9)

  1.  粒子中心部における結晶化度(A)及び粒子表層部における結晶化度(B)がいずれも10%以下であり、中心部における結晶化度に対する表層部における結晶化度の比(B/A)が0.30~1.40である、芳香族ポリエステル系樹脂発泡粒子。
  2.  粒子表面の樹脂層の厚みが5μm~40μmである、請求項1に記載の芳香族ポリエステル系樹脂発泡粒子。
  3.  粒子中心部における平均気泡径(C)及び粒子表層部における平均気泡径(D)がいずれも50μm~300μmであり、中心部における平均気泡径に対する表層部における平均気泡径の比(D/C)が0.75~0.95である、請求項1又は2に記載の芳香族ポリエステル系樹脂発泡粒子。
  4.  粒子中心部における結晶化度に対する表層部における結晶化度の比(B/A)が0.30~1.30である、請求項1~3のいずれかに記載の芳香族ポリエステル系樹脂発泡粒子。
  5.  粒子中心部における結晶化度(A)及び粒子表層部における結晶化度(B)がいずれも1~10%である、請求項1~4のいずれかに記載の芳香族ポリエステル系樹脂発泡粒子。
  6.  請求項1~5のいずれかに記載の芳香族ポリエステル系樹脂発泡粒子の発泡成形体。
  7.  密度が0.05g/cm~0.7g/cmである、請求項6に記載の発泡成形体。
  8.  請求項6又は7に記載の発泡成形体を含有する自動車用部材。
  9.  芳香族ポリエステル系樹脂を押出機に供給して発泡剤の存在下にて溶融混練する工程と、溶融混練された芳香族ポリエステル系樹脂を前記押出機の前端に取り付けたノズル金型から気体条件下で押出発泡させながら切断して粒子状切断物を製造する工程と、前記粒子状切断物を冷却水で冷却する工程とを有し、前記冷却水の温度が23℃~55℃である、芳香族ポリエステル系樹脂発泡粒子の製造方法。
PCT/JP2022/010186 2021-03-17 2022-03-09 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材 WO2022196473A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280021425.3A CN116981724A (zh) 2021-03-17 2022-03-09 芳香族聚酯系树脂发泡颗粒及其制造方法、发泡成型体和汽车用构件
US18/281,897 US20240158598A1 (en) 2021-03-17 2022-03-09 Foamed particles of aromatic polyester resin, production method therefor, molded foam, and member for vehicle
KR1020237029575A KR20230141827A (ko) 2021-03-17 2022-03-09 방향족 폴리에스테르계 수지 발포 입자와 그 제조 방법, 발포 성형체, 및 자동차용 부재
EP22771225.4A EP4310136A1 (en) 2021-03-17 2022-03-09 Foamed particles of aromatic polyester resin, production method therefor, molded foam, and member for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-044095 2021-03-17
JP2021044095A JP2022143540A (ja) 2021-03-17 2021-03-17 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材

Publications (1)

Publication Number Publication Date
WO2022196473A1 true WO2022196473A1 (ja) 2022-09-22

Family

ID=83320536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010186 WO2022196473A1 (ja) 2021-03-17 2022-03-09 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材

Country Status (7)

Country Link
US (1) US20240158598A1 (ja)
EP (1) EP4310136A1 (ja)
JP (1) JP2022143540A (ja)
KR (1) KR20230141827A (ja)
CN (1) CN116981724A (ja)
TW (1) TW202248325A (ja)
WO (1) WO2022196473A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2564799A1 (de) 2011-08-31 2013-03-06 NORMED Medizin-Technik GmbH Chirurgischer Mittelfuß-Kompressionsnagel
JP2014043528A (ja) * 2012-08-28 2014-03-13 Sekisui Plastics Co Ltd 熱可塑性ポリエステル系樹脂発泡粒子及びこの製造方法、発泡成形体並びに複合成形体
JP5974010B2 (ja) * 2011-08-29 2016-08-23 積水化成品工業株式会社 型内発泡成形用芳香族ポリエステル系樹脂発泡粒子及びその製造方法、型内発泡成形体、複合構造部材、並びに、自動車用部材
JP2017043011A (ja) * 2015-08-27 2017-03-02 積水化成品工業株式会社 繊維強化複合発泡体の製造方法及びその方法に使用しうる熱可塑性樹脂発泡粒子
WO2020049802A1 (ja) * 2018-09-04 2020-03-12 株式会社ジェイエスピー ポリアミド系樹脂発泡粒子及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974010U (ja) 1982-11-05 1984-05-19 株式会社小松製作所 自動偏心チヤツク装置
KR102564799B1 (ko) 2022-06-14 2023-08-09 씨제이제일제당 (주) 기포 발생 장치 및 이를 포함하는 발효 탱크

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5974010B2 (ja) * 2011-08-29 2016-08-23 積水化成品工業株式会社 型内発泡成形用芳香族ポリエステル系樹脂発泡粒子及びその製造方法、型内発泡成形体、複合構造部材、並びに、自動車用部材
EP2564799A1 (de) 2011-08-31 2013-03-06 NORMED Medizin-Technik GmbH Chirurgischer Mittelfuß-Kompressionsnagel
JP2014043528A (ja) * 2012-08-28 2014-03-13 Sekisui Plastics Co Ltd 熱可塑性ポリエステル系樹脂発泡粒子及びこの製造方法、発泡成形体並びに複合成形体
JP2017043011A (ja) * 2015-08-27 2017-03-02 積水化成品工業株式会社 繊維強化複合発泡体の製造方法及びその方法に使用しうる熱可塑性樹脂発泡粒子
WO2020049802A1 (ja) * 2018-09-04 2020-03-12 株式会社ジェイエスピー ポリアミド系樹脂発泡粒子及びその製造方法

Also Published As

Publication number Publication date
KR20230141827A (ko) 2023-10-10
CN116981724A (zh) 2023-10-31
TW202248325A (zh) 2022-12-16
EP4310136A1 (en) 2024-01-24
US20240158598A1 (en) 2024-05-16
JP2022143540A (ja) 2022-10-03

Similar Documents

Publication Publication Date Title
JP5974010B2 (ja) 型内発泡成形用芳香族ポリエステル系樹脂発泡粒子及びその製造方法、型内発泡成形体、複合構造部材、並びに、自動車用部材
JP5960013B2 (ja) 熱可塑性ポリエステル系樹脂発泡粒子及びこれを用いた発泡成形体の製造方法、発泡成形体並びに複合発泡体
JP6129037B2 (ja) 複合体用発泡体、複合体及び輸送機器構成用部材
TWI700306B (zh) 發泡粒子、發泡成形體、其製造方法及樹脂複合體
JP3619154B2 (ja) 結晶性芳香族ポリエステル系樹脂予備発泡粒子とそれを用いた型内発泡成形体および発泡積層体
JP5890717B2 (ja) 複合体用発泡体及びその製造方法
JP6131232B2 (ja) 熱可塑性ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体及びその製造方法、並びに複合発泡体
JP5907847B2 (ja) 熱可塑性ポリエステル系樹脂発泡粒子の製造方法、熱可塑性ポリエステル系樹脂発泡粒子、熱可塑性ポリエステル系樹脂発泡粒子を用いた発泡成形体の製造方法、発泡成形体及び複合発泡体
JP2014043528A (ja) 熱可塑性ポリエステル系樹脂発泡粒子及びこの製造方法、発泡成形体並びに複合成形体
WO2022196473A1 (ja) 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材
JP2022057468A (ja) 熱可塑性樹脂発泡粒子、熱可塑性樹脂発泡粒子成形体、発泡樹脂複合体、熱可塑性樹脂発泡粒子の製造方法及び熱可塑性樹脂発泡粒子成形体の製造方法
JP6340306B2 (ja) 繊維強化複合体
JP2016128580A (ja) 複合体
JP2022143542A (ja) 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、並びに自動車用部材
WO2023145811A1 (ja) 芳香族ポリエステル系樹脂発泡粒子及びその製造方法、発泡成形体、複合構造部材、並びに自動車用部材
JP3704047B2 (ja) 熱可塑性ポリエステル系樹脂の予備発泡粒子及びその製造方法
JP2022129943A (ja) 発泡粒子、発泡成形体及び複合構造部材
JP6096564B2 (ja) 発泡成形体の製造方法及び発泡成形体
JP2019001980A (ja) 発泡粒子製造用の芳香族ビニル系樹脂組成物及びその用途
JP5498981B2 (ja) 複合構造部材、その製造方法、自動車用部材及び自動車ドアパネル
JP2023111039A (ja) 熱可塑性樹脂発泡粒子、熱可塑性樹脂発泡粒子成形体、発泡樹脂複合体、熱可塑性樹脂発泡粒子の製造方法及び熱可塑性樹脂発泡粒子成形体の製造方法
JP6077363B2 (ja) 繊維強化複合体の製造方法
JP2019001981A (ja) 発泡粒子製造用のポリ乳酸系樹脂組成物及びその用途
JP2001026217A (ja) サンバイザー
JP2012206330A (ja) 複合構造部材の製造方法および複合構造部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237029575

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18281897

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280021425.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022771225

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771225

Country of ref document: EP

Effective date: 20231017