WO2022196164A1 - 静電容量式タッチパネル - Google Patents

静電容量式タッチパネル Download PDF

Info

Publication number
WO2022196164A1
WO2022196164A1 PCT/JP2022/004393 JP2022004393W WO2022196164A1 WO 2022196164 A1 WO2022196164 A1 WO 2022196164A1 JP 2022004393 W JP2022004393 W JP 2022004393W WO 2022196164 A1 WO2022196164 A1 WO 2022196164A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode pattern
electrode
dummy
pattern
touch panel
Prior art date
Application number
PCT/JP2022/004393
Other languages
English (en)
French (fr)
Inventor
友貴 内藤
剛 西村
Original Assignee
Nissha株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissha株式会社 filed Critical Nissha株式会社
Priority to KR1020237031046A priority Critical patent/KR20230156064A/ko
Priority to US18/281,425 priority patent/US20240168596A1/en
Priority to CN202280021230.9A priority patent/CN116982022A/zh
Publication of WO2022196164A1 publication Critical patent/WO2022196164A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to capacitive touch panels.
  • a capacitive touch panel generally has a plurality of first transparent electrodes and a plurality of second transparent electrodes arranged to face each other, each transparent electrode on both sides of a sheet of transparent film. Alternatively, it is formed on each one side of two transparent films.
  • Conventionally known materials for transparent electrodes include tin oxide (SnO 2 ), indium tin oxide (ITO), and zinc oxide (ZnO).
  • Metal nanowires such as silver nanowires (AgNW) are also used as materials for transparent electrodes.
  • a touch panel in which dummy electrodes are provided between a plurality of transparent electrodes of the same type in the planar direction (see Patent Document 1).
  • the dummy electrode reduces the difference in light transmittance between the portion where the transparent electrode is arranged and the other portion, and thus the transparent electrode becomes less visible.
  • the dummy electrode is generally divided into a plurality of fine regions in order to reduce parasitic capacitance.
  • the sense electrode is branched into a plurality of electrodes, and a dummy pattern is arranged between the branched electrodes.
  • each drive electrode has a wide solid shape. In particular, in a large screen size that requires a faster touch detection speed, in the above configuration, the overlapping area between the sense electrodes and the drive electrodes is large, so the touch sensitivity may not be very high.
  • An object of the present invention is to improve the touch sensitivity of a capacitive touch panel.
  • a capacitive touch panel includes a transparent insulating substrate, a first electrode pattern, a first dummy electrode pattern, a second electrode pattern, and a second dummy electrode pattern.
  • the first electrode pattern is formed on the first surface of the transparent insulating substrate and has a plurality of first branch electrodes.
  • the first dummy electrode pattern is formed in a region of the first surface of the transparent insulating substrate where the first electrodes are not formed, and has a plurality of first dummy electrodes.
  • the second electrode pattern is formed on the second surface of the transparent insulating substrate and has a plurality of second branch electrodes.
  • the second dummy electrode pattern is formed in a region on the second surface of the transparent insulating substrate where the second electrode pattern is not formed, and has a plurality of second dummy electrodes.
  • both the first electrode pattern and the second electrode pattern have branched electrodes. Therefore, the area where the first electrode pattern and the second electrode pattern overlap each other is reduced compared to the conventional case where one of the electrode patterns is solid. This improves the touch sensitivity of the touch panel.
  • a slit may be formed in at least part of the first dummy electrode and the second dummy electrode.
  • the uniformity of the pattern distribution in the plane can be increased by the slits, for example, at the locations where the dummy electrodes and the electrode patterns overlap, and as a result, the pattern visibility is reduced.
  • the first dummy electrode pattern and the second dummy electrode pattern are used. Pattern visibility reduction techniques are effective.
  • the slit extends inward from the outer edge of the first dummy electrode or the second dummy electrode at a portion where a portion of one of the first dummy electrode or the second dummy electrode overlaps the second electrode pattern or the first electrode pattern.
  • the slits can increase the uniformity of the pattern distribution in the plane, for example, at a portion where the first dummy electrode partially overlaps the second electrode pattern, and as a result, the pattern is less visible. .
  • the slit divides the first dummy electrode or the second dummy electrode into a plurality of parts. may extend to In this touch panel, the slits can increase the uniformity of the pattern distribution in the plane, for example, at a portion where the entire first dummy electrode overlaps the second electrode pattern, and as a result, the pattern is less visible. .
  • one of the first dummy electrode and the second dummy electrode corresponds to a plurality of the other of the first dummy electrode and the second dummy electrode. They may overlap.
  • a plurality of second dummy electrodes overlap one of the first dummy electrodes. Therefore, the plurality of dummy electrodes can increase the uniformity of pattern distribution in the plane, resulting in less pattern visibility.
  • a plurality of electrode slits extending in the electrode extension direction may be formed in the first electrode pattern and the second electrode pattern at locations where the first electrode pattern and the second electrode pattern overlap.
  • the plurality of electrode slits can increase the uniformity of the in-plane pattern distribution at locations where the first electrode pattern and the second electrode pattern overlap, resulting in less pattern visibility.
  • both electrode patterns have branched electrodes, a pattern visibility reduction technique using electrode patterns on both sides in the stacking direction is effective.
  • the overlapping portions of the second electrode pattern and the first electrode pattern or the first dummy electrode pattern may have a plurality of identical shapes partitioned by slit-shaped portions.
  • the overlapping portions of the two electrode patterns have a plurality of identical shapes partitioned by slit-shaped portions. Therefore, pattern visibility is reduced.
  • the width of the first dummy electrode may be x.
  • the distance between the first branched electrodes of the first electrode pattern is may be the sum of an integer multiple of x and an integer multiple of y.
  • the width z of the second branch electrodes of the second electrode pattern may be nx+(n ⁇ 1)y (n is a positive integer).
  • the width of the second dummy electrode may be x.
  • the distance between the second branched electrodes of the second electrode pattern is the sum of an integer multiple of x and an integer multiple of y, whereby the plurality of identical shapes partitioned by the slit-shaped portions are squares. good too.
  • the overlapping portions of the two electrode patterns form a plurality of squares partitioned by slit-shaped portions. Therefore, pattern visibility is reduced.
  • FIG. 2 is a schematic cross-sectional view of the touch panel of the first embodiment;
  • FIG. 2 is a schematic plan view of a first electrode pattern;
  • FIG. 4 is a schematic partial plan view of a first electrode pattern and a first dummy electrode pattern;
  • FIG. 4 is a schematic partial plan view of a second electrode pattern and a second dummy electrode pattern;
  • FIG. 6 is a schematic partial plan view in which FIGS. 4 and 5 are superimposed, showing the overall pattern when the touch panel is viewed from above;
  • FIG. 7 is a partially enlarged view of FIG. 6;
  • FIG. 8 is a schematic partial plan view of a first electrode pattern and a first dummy electrode pattern according to the second embodiment;
  • FIG. 4 is a schematic partial plan view of a second electrode pattern and a second dummy electrode pattern
  • FIG. 10 is a schematic partial plan view in which FIGS. 8 and 9 are superimposed, showing the overall pattern when the touch panel is viewed from above
  • FIG. 11 is a schematic partial plan view of a first electrode pattern and a first dummy electrode pattern according to a third embodiment
  • FIG. 4 is a schematic partial plan view of a second electrode pattern and a second dummy electrode pattern
  • FIG. 13 is a schematic partial plan view of FIG. 11 and FIG. 12 superimposed on each other, showing the overall pattern when the touch panel is viewed from above.
  • FIG. 11 is a schematic partial plan view of a first electrode pattern and a first dummy electrode pattern according to a fourth embodiment
  • FIG. 4 is a schematic partial plan view of a second electrode pattern and a second dummy electrode pattern
  • FIG. 16 is a schematic partial plan view in which FIGS. 14 and 15 are superimposed, showing the overall pattern when the touch panel is viewed from above
  • FIG. 11 is a schematic partial plan view of a first electrode pattern and a first dummy electrode pattern according to a fifth embodiment
  • FIG. 4 is a schematic partial plan view of a second electrode pattern and a second dummy electrode pattern
  • FIG. 19 is a schematic partial plan view of FIG. 17 and FIG. 18 superimposed on each other, showing the overall pattern when the touch panel is viewed from above;
  • Typical sectional drawing of the touch panel of 6th Embodiment. Typical sectional drawing of the touch panel of 7th Embodiment.
  • FIG. 1 is a schematic cross-sectional view of the touch panel of the first embodiment.
  • FIG. 2 is a schematic plan view of the first electrode pattern.
  • FIG. 3 is a schematic plan view of the second electrode pattern.
  • the touch panel 1 employs a strip-shaped electrode pattern and a substrate single-layer structure as a basic structure.
  • the touch panel 1 is provided in electronic devices such as multifunctional mobile phones (smartphones) and portable game machines, and functions as a touch input device. In these electronic devices, the touch panel 1 is used overlapping with a display device such as a liquid crystal display panel or an organic EL display panel.
  • the touch panel 1 has a substrate 3 as one transparent insulating base material.
  • the touch panel 1 has a first electrode pattern 9 .
  • the first electrode pattern 9 is formed on the first surface 3 a of the substrate 3 .
  • the touch panel 1 has a second electrode pattern 17 .
  • the second electrode pattern 17 is formed on the second surface 3b of the substrate 3.
  • the touch panel 1 further includes a first protective layer 19, a first lead wire 21, a second protective layer 23, and a second lead wire. 25 and .
  • a first electrode pattern 9, a first protective layer 19, and a first routing wiring 21 are provided on the first surface 3a of the substrate 3.
  • a second electrode pattern 17 , a second protective layer 23 and a second lead-out wiring 25 are provided on the second surface 3 b of the substrate 3 .
  • the substrate 3 is a base member for forming the first electrode pattern 9 .
  • the substrate 3 is preferably made of a material having excellent transparency, flexibility, insulating properties, and the like. Examples of materials that satisfy such requirements include general-purpose resins such as polyethylene terephthalate and acrylic resins, general-purpose engineering resins such as polyacetal-based resins and polycarbonate-based resins, and super engineering resins such as polysulfone-based resins and polyphenylene sulfide-based resins. are exemplified. A cycloolefin resin may be used.
  • the thickness of the substrate 3 can be, for example, 25 ⁇ m to 100 ⁇ m. Note that the substrate 3 may be configured using a glass substrate or the like. Also, the substrate 3 may be a single layer or a plurality of resin films, or a coated resin layer.
  • the first electrode pattern 9 has a plurality of first electrodes 31, as shown in FIG.
  • the multiple first electrodes 31 are strip-shaped electrodes extending in the X-axis direction and arranged side by side in the Y-axis direction.
  • Each first electrode 31 has three first branched electrodes 33a, 33b, and 33c extending parallel to each other, and a terminal 33d having one ends thereof connected to each other.
  • the first protective layer 19 covers the entire surface of the first electrode pattern 9 and functions as an insulating antirust layer that protects the material of the first electrode pattern 9 .
  • the first protective layer 19 is mainly composed of a general photosensitive resin composition.
  • the protective layer may function as an adhesive layer.
  • the first electrode pattern 9 is a transparent conductive film.
  • the first electrode pattern 9 is made of, for example, tin oxide, indium oxide, antimony oxide, zinc oxide, cadmium oxide, and metal oxides such as ITO (Indium Tin Oxide), silver nanowires, carbon nanotubes, PEDOT, and graphene. , metal mesh, conductive polymer.
  • PEDOT PEDOT
  • carbon nanotubes carbon nanotubes
  • silver nanowires are particularly required for the present invention.
  • the first electrode 31 is connected to the first routing wiring 21 .
  • the first routing wiring 21 is mainly composed of conductive ink containing conductive particles such as metals such as gold, silver, copper, nickel, and palladium or carbon.
  • the material of the conductive particles constituting the conductive ink may be of a single type or a combination of multiple types.
  • the second protective layer 23, the second lead-out wiring 25, and the second electrode pattern 17 are the same as the first protective layer 19 and the first lead-out wiring 21, except for the specific configuration regarding the shape and arrangement of the second electrode pattern 17. It has configuration.
  • the second electrode pattern 17 has a plurality of second electrodes 41 as shown in FIG.
  • the plurality of second electrodes 41 are strip-shaped electrodes that extend along the Y-axis direction and are arranged parallel to each other so as to line up in the X-axis direction.
  • Each second electrode 41 has three second branched electrodes 43a, 43b and 43c extending parallel to each other, and a terminal 43d having one ends thereof connected to each other.
  • the second electrode 41 is connected to the second routing wiring 25 .
  • both the first electrode pattern 9 and the second electrode pattern 17 have branched electrodes. Therefore, the area where the first electrode pattern 9 and the second electrode pattern 17 overlap each other is reduced compared to the conventional case where one of them is solid. Thereby, the touch sensitivity of the touch panel 1 is improved.
  • the first lead-out wiring 21 is provided on the peripheral portion of the first surface 3a of the substrate 3 in plan view.
  • the second lead-out wiring 25 is provided on the peripheral portion of the second surface 3b of the substrate 3 in plan view.
  • the first routing wiring 21 and the second routing wiring 25 are connected to a controller (not shown).
  • the first electrode pattern 9 is a sense electrode and the second electrode pattern 17 is a drive electrode.
  • the controller scans the second electrode pattern 17 by sequentially applying a predetermined voltage to the second lead-out wiring 25, and the first electrode pattern 9 is applied with a predetermined potential (bias potential) at a predetermined timing via the first lead-out wiring 21. Control so that When the user's finger or the like touches the display surface, an electric signal (hereinafter referred to as a sense signal) corresponding to the change in the electric field generated between the first electrode pattern 9 and the second electrode pattern 17 is transmitted through the first lead-out wiring 21. input to the controller. This allows the controller to detect the user's touch operation and touch position.
  • FIG. 4 is a schematic partial plan view of the first electrode pattern and the first dummy electrode pattern.
  • FIG. 5 is a schematic partial plan view of the second electrode pattern and the second dummy electrode pattern.
  • the first dummy electrode pattern 51 is formed in a region where the first electrode pattern 9 is not formed on the first surface 3a of the substrate 3, as shown in FIG.
  • the first dummy electrode pattern 51 has fine island-like first dummy electrodes 55 and is electrically insulated from the first electrode pattern 9 .
  • the entire first surface 3 a of the substrate 3 is covered with the first electrode pattern 9 and the first dummy electrode pattern 51 .
  • the first dummy electrode pattern 51 reduces the difference in light transmittance and makes the electrodes difficult to see from the outside. Therefore, pattern visibility of the first electrode pattern 9 can be reduced.
  • the first dummy electrode pattern 51 is preferably made of the same material as the first electrode pattern 9 .
  • the shape of the first dummy electrode 55 is square. In this embodiment, "square" refers to a shape in which four sides having approximately the same length can be seen.
  • the second dummy electrode pattern 53 is formed in a region of the second surface 3b of the substrate 3 where the second electrode pattern 17 is not formed.
  • the second dummy electrode pattern 53 has a plurality of second dummy electrodes 57 and is electrically insulated from the second electrode pattern 17 . Since the entire second surface 3b of the substrate 3 is covered with the second electrode pattern 17 and the second dummy electrode pattern 53, pattern visibility of the second electrode pattern 17 can be reduced.
  • the second dummy electrode pattern 53 is preferably made of the same material as the second electrode pattern 17 .
  • the shape of the second dummy electrode 57 is square and has the same dimensions as the first dummy electrode 55 .
  • first dummy electrodes 55 of the first dummy electrode pattern 51 there are three types of first dummy electrodes 55 of the first dummy electrode pattern 51, as shown in FIG. , those in which no slits are formed, those in which the first slits 55a1 are formed, and those in which the second slits 55a2 are formed.
  • second dummy electrodes 57 of the second dummy electrode pattern 53 As shown in FIG. 5, one without slits and one with third slits 57a1 are included.
  • the first slit 55a1 extends in the X-axis direction
  • the second slit 55a2 extends so as to divide the first dummy electrode 55 into a plurality of parts. More specifically, the second slit 55a2 has a cross shape extending from the center of the first dummy electrode 55 to the edge.
  • the first dummy electrode 55 is formed on the first surface 3a of the substrate 3 and the second dummy electrode 57 is formed on the second surface 3b of the substrate 3, the first dummy electrode 55 and the second dummy electrode A pattern visibility reduction technique using both of 57 is effective.
  • FIGS. 6 and 7 First Mode of Slits Provided in Dummy Electrodes
  • first electrode pattern 9, first dummy electrode pattern 51, second electrode pattern 17 and second dummy electrode pattern 53 We describe the pattern that occurs when FIG. 6 is a schematic partial plan view in which FIGS. 4 and 5 are superimposed, and is a diagram showing the overall pattern when the touch panel is viewed from above. 7 is a partially enlarged view of FIG. 6.
  • FIG. 6 and 7 the first electrode pattern 9 and the first dummy electrode pattern 51 are drawn with solid lines, and the second electrode pattern 17 and the second dummy electrode pattern 53 are drawn with broken lines.
  • the first slit 55a1 extends inward from the outer edge of the first dummy electrode 55 at a portion where one part of the first dummy electrode 55 overlaps the second electrode pattern 17.
  • the third slit 57a1 is formed inward from the outer edge of the second dummy electrode 57 at a portion where one part of the second dummy electrode 57 overlaps the first electrode pattern 9.
  • the slit extends linearly from the center to the edge of the dummy electrode, and the slit width is the same as the distance between the electrode patterns and the dummy electrode patterns. In this way, as shown in FIG.
  • the uniformity of the in-plane pattern distribution is achieved by the first slit 55a1.
  • the above configuration can also be realized by combining the second dummy electrode 57 and the first electrode pattern 9 . Since the first dummy electrode 55 is formed on the first surface 3a of the substrate 3 and the second dummy electrode 57 is formed on the second surface 3b in this way, both the first dummy electrode 55 and the second dummy electrode 57 are formed.
  • the pattern visibility reduction technique used is effective.
  • the gaps between the electrodes 57 form vertical slits in the drawing, and the gaps between the second branched electrode 43a and the two second dummy electrodes 57 form horizontal slits, which form a small square pattern. are divided as follows:
  • the second slit 55a2 is, as shown in FIG. , it extends so as to divide the first dummy electrode 55 into a plurality of parts. More specifically, the slit has a cross shape extending from the center to the edge of the first dummy electrode 55, and the slit width is the same as the distance between the electrode patterns and the dummy electrode patterns. In this way, as shown in FIG. 7, for example, the uniformity of the in-plane pattern distribution is achieved by the second slits 55a2 at the locations where the entire first dummy electrodes 55 (cross hatching) overlap the second electrode patterns 17. can be increased, resulting in less pattern visibility.
  • the above configuration can also be realized by combining the second dummy electrode 57 and the first electrode pattern 9 .
  • the pattern visibility reduction technique using both the first dummy electrode 55 and the second dummy electrode 57 is effective.
  • the cross-hatched first dummy electrode 55 in FIG. 7 overlaps the second branched electrode 43a, and is divided into a small square pattern by cross-shaped slits made up of the second slits 55a2. It is
  • FIGS. A plurality of first electrode slits 9a extending in the electrode extension direction (X-axis direction) are formed in one electrode pattern 9 .
  • a plurality of first electrode slits 9a are arranged side by side in the X-axis direction.
  • the length of the first electrode slit 9 a is half of one side of the first dummy electrode 55 .
  • the second electrode pattern 17 is formed with a plurality of second electrode slits 17a extending in the electrode extending direction (Y-axis direction).
  • a plurality of second electrode slits 17a are arranged side by side in the X-axis direction.
  • the length of the second electrode slit 17 a is the same as one side of the second dummy electrode 57 .
  • the portion of the second electrode slit 17a (only the first electrode 31 as the conductive film) is formed in the portion where the first electrode pattern 9 and the second electrode pattern 17 overlap.
  • a cross-shaped slit shape is realized by a combination of the portion of the first electrode slit 9a (where only the second electrode 41 exists as a conductive film).
  • the first electrode slit 9a and the second electrode slit 17a can increase the uniformity of the in-plane pattern distribution at the portion where the first electrode pattern 9 and the second electrode pattern 17 overlap each other.
  • the resulting pattern is less visible.
  • both electrode patterns have branched electrodes.
  • a pattern visibility reduction technique using the second electrode pattern 17 is effective. More specifically, in the hatched portion in FIG. 7, a small square pattern is formed by combining the first electrode slits 9a and the second electrode slits 17a in the first branched electrode 33c.
  • overlapping portions of the second electrode pattern 17 and the first electrode pattern 9 or the first dummy electrode pattern 51 have a plurality of identical shapes partitioned by slit-shaped portions. Specifically, as shown in FIGS. 6 and 7, a plurality of squares. As described above, in the entire view area of the touch panel 1, the entire pattern is a uniform pattern in which a plurality of identical shapes (squares) are laid out, which makes it difficult to be visually recognized from the outside. That is, pattern visibility is reduced.
  • the width (length in the Y-axis direction) of the plurality of first branch electrodes 33a, 33b, and 33c of the first electrode pattern 9 is x
  • the width (length in the Y-axis direction) of the first dummy electrode 55 is x. be. That is, they are the same.
  • the distance between the first branch electrodes 33a, 33b, and 33c of the first electrode pattern 9 and the first dummy electrode 55 (length in the Y-axis direction) and the distance between the first dummy electrodes 55 (length in the Y-axis direction) is y
  • the distance between the first branched electrodes 33a, 33b, and 33c of the first electrode pattern 9 is the sum of an integer multiple of x and an integer multiple of y. be.
  • the distance between the first branched electrodes 33a and 33b is 4x+4y.
  • the distance between the first branched electrodes 33a and 33c is 8x+8y.
  • the width (the length in the X-axis direction) of the second branched electrodes 43a, 43b, and 43c of the second electrode pattern 17 is z
  • z is nx+(n ⁇ 1)y (n is a positive integer).
  • z 2x+y. That is, in this embodiment, the widths of the second branched electrodes 43a, 43b and 43c are longer than the widths of the first branched electrodes 33a, 33b and 33c.
  • the width (length in the X-axis direction) of the second dummy electrode 57 is x.
  • the distance between the second branched electrodes 43a, 43b and 43c of the second electrode pattern 17 is the sum of an integer multiple of x and an integer multiple of y.
  • the distance between the second branched electrodes 43a and 43b is 4x+4y
  • the distance between the second branched electrodes 43b and 43c is 4x+4y.
  • the distance between the second branched electrodes 43a and 43c is 8x+8y.
  • FIG. 8 is a schematic partial plan view of the first electrode pattern and the first dummy electrode pattern of the second embodiment.
  • FIG. 9 is a schematic partial plan view of the second electrode pattern and the second dummy electrode pattern.
  • FIG. 10 is a schematic partial plan view in which FIGS. 8 and 9 are superimposed, showing the overall pattern when the touch panel is viewed from above.
  • the first electrode 31A has two branches, and the second electrode 41A has two branches.
  • a first electrode slit 9a is formed in the first electrode pattern 9A.
  • the first dummy electrodes 55A of the first dummy electrode pattern 51A include those without slits, those with first slits 55a1, and those with second slits 55a2.
  • second electrode slits 17a are formed in the second electrode pattern 17A.
  • the second dummy electrodes 57A of the second dummy electrode pattern 53A include those without slits and those with third slits 57a1. Therefore, as shown in FIG. 10, the entire pattern of the touch panel is a pattern in which a plurality of identical shapes (squares) partitioned by slit-shaped portions are laid out in the same manner as in the first embodiment. The result is less pattern visibility.
  • FIG. 11 is a schematic partial plan view of the first electrode pattern and the first dummy electrode pattern of the third embodiment.
  • FIG. 12 is a schematic partial plan view of the second electrode pattern and the second dummy electrode pattern.
  • FIG. 13 is a schematic partial plan view in which FIGS. 11 and 12 are superimposed, and is a diagram showing the overall pattern when the touch panel is viewed from above.
  • the first electrode 31B has three branches, and the second electrode 41B has two branches.
  • first electrode slits 9a are formed in the first electrode pattern 9B.
  • the first dummy electrodes 55B of the first dummy electrode pattern 51B include those without slits, those with first slits 55a1, and those with second slits 55a2.
  • second electrode slits 17a are formed in the second electrode pattern 17B.
  • the second dummy electrodes 57B of the second dummy electrode pattern 53B include those without slits and those with third slits 57a1. Therefore, as shown in FIG. 13, the entire pattern of the touch panel is a pattern in which a plurality of identical shapes (squares) partitioned by slit-shaped portions are laid out, as in the first embodiment. The result is less pattern visibility.
  • FIG. 14 is a schematic partial plan view of the first electrode pattern and the first dummy electrode pattern of the fourth embodiment.
  • FIG. 15 is a schematic partial plan view of the second electrode pattern and the second dummy electrode pattern.
  • FIG. 16 is a schematic partial plan view in which FIGS. 14 and 15 are superimposed, showing the overall pattern when the touch panel is viewed from above.
  • the first electrode 31C has four branches, and the second electrode 41C has four branches.
  • first electrode slits 9a are formed in the first electrode pattern 9C.
  • the first dummy electrodes 55C of the first dummy electrode pattern 51C include those without slits, those with first slits 55a1, and those with second slits 55a2.
  • second electrode slits 17a are formed in the second electrode pattern 17C.
  • a third slit 57a1 is formed in the second dummy electrode 57C of the second dummy electrode pattern 53C. Therefore, as shown in FIG. 16, the entire pattern of the touch panel is a pattern in which a plurality of identical shapes (squares) partitioned by slit-shaped portions are laid out, as in the first embodiment. The result is less pattern visibility.
  • the width of the first electrode of the first electrode pattern is shorter than the width of the second electrode of the second electrode pattern, but both may be the same.
  • FIG. 17 is a schematic partial plan view of the first electrode pattern and the first dummy electrode pattern of the fifth embodiment.
  • FIG. 18 is a schematic partial plan view of the second electrode pattern and the second dummy electrode pattern.
  • FIG. 19 is a schematic partial plan view in which FIGS. 17 and 18 are superimposed, and shows the overall pattern when the touch panel is viewed from above.
  • the first electrode 31D has three branches, and the second electrode 41D has three branches.
  • the widths of the second branched electrodes 43a, 43b, 43c of the second electrode pattern 17D are the same as the widths of the first branched electrodes 33a, 33b, 33c of the first electrode pattern 9D.
  • first electrode slits 9a are formed in the first electrode pattern 9D.
  • the first dummy electrodes 55D of the first dummy electrode pattern 51D include those without slits and those with first slits 55a1.
  • second electrode slits 17a are formed in the second electrode pattern 17D.
  • the second dummy electrodes 57D of the second dummy electrode pattern 53D include those without slits and those with third slits 57a1. Therefore, as shown in FIG. 19, the entire pattern of the touch panel has a pattern in which a plurality of identical shapes (squares) partitioned by slit-shaped portions are laid out in the same manner as in the first embodiment. The result is less pattern visibility.
  • first electrode pattern and the first dummy electrode pattern and the second electrode pattern and the second electrode pattern may be provided in separate layers with an insulating layer interposed therebetween, this is a modification of the arrangement.
  • first to third embodiments a touch panel in which each electrode pattern is formed on each of two substrates was described, but the present invention also applies to a touch panel in which each electrode pattern is formed on both sides of one substrate. Applicable.
  • the laminated structure of the touch panel is not limited to that of the first embodiment. Modifications of the laminated structure of the touch panel will be described below using the seventh to ninth embodiments. Although the first dummy electrode and the second dummy electrode are not specified in the seventh to ninth embodiments, the same first dummy electrode pattern and second dummy electrode pattern as in the first to sixth embodiments are provided. and achieves the same effect.
  • a touch panel 1A according to the seventh embodiment will be described with reference to FIG.
  • FIG. 20 is a schematic cross-sectional view of the touch panel of the seventh embodiment.
  • the touch panel 1A has a first substrate 3A1 and a second substrate 3A2 bonded together as transparent insulating substrates.
  • the touch panel 1A has a first electrode pattern 9A.
  • the first electrode pattern 9A is formed on the surface of the first substrate 3A1 opposite to the second substrate 3A2.
  • the touch panel 1A has a second electrode pattern 17A.
  • the second electrode pattern 17A is formed on the surface of the second substrate 3A2 opposite to the first substrate 3A1.
  • a first electrode pattern 9A, a first protective layer 19A and a first routing wiring (not shown) are provided on the first substrate 3A1.
  • a second electrode pattern 17A, a second protective layer 23A and a second routing wiring (not shown) are provided on the second substrate 3A2.
  • FIG. 21 is a schematic cross-sectional view of the touch panel of the eighth embodiment.
  • the touch panel 1B has a sheet material 27B.
  • the touch panel 1B has a resin layer 3B formed by coating as a transparent insulating base material.
  • the resin layer 3B is provided on the upper side of the sheet material 27B.
  • the touch panel 1B has a first electrode pattern 9B.
  • the first electrode pattern 9A is formed on the surface of the resin layer 3B on the sheet material 27B side.
  • the touch panel 1B has a second electrode pattern 17B.
  • the second electrode pattern 17B is formed on the surface of the resin layer 3B opposite to the sheet material 27B.
  • a protective layer 19B is provided on the sheet material 27B to cover the first electrode pattern 9B, the insulating layer 11B, and the second electrode pattern 17B.
  • FIG. 22 is a schematic cross-sectional view of the touch panel of the ninth embodiment.
  • the touch panel 1C has a sheet material 27C.
  • the touch panel 1C has a resin film 3C as a transparent insulating base material.
  • the resin film 3C is provided on the upper side of the sheet material 27C.
  • the touch panel 1C has a first electrode pattern 9C.
  • the first electrode pattern 9C is formed on the sheet material 27C side surface of the resin film 3C.
  • the touch panel 1C has a second electrode pattern 17C.
  • the second electrode pattern 17C is formed on the surface of the second substrate 3C2 on the first substrate 3C1 side.
  • a protective layer 19C is provided on the first substrate 3C1 so as to cover the second electrode pattern 17C.
  • the shape of the branched electrodes is not limited to a belt shape.
  • the shape of the dummy electrode is not limited to a square.
  • the sides of the dummy electrode may be dashed lines or zigzag lines.
  • the shape of the slit is not limited to linear.
  • the slits may be dashed or zigzag.
  • the present invention can be widely applied to capacitive touch panels.
  • first electrode pattern 9a first electrode slit 17: second electrode pattern 17a: second electrode slit 31: first electrode 41: second electrode 51: first dummy electrode pattern 53: second 2 dummy electrode pattern 55: first dummy electrode 55a1: first slit 55a2: second slit 57: second dummy electrode 57a1: third slit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

【課題】静電容量式タッチパネルにおいて、タッチ感度を向上させる。 【解決手段】静電容量式タッチパネル1において、第1電極パターン9は、第1基板3の第1面3aに形成され、複数の第1分岐電極33a~33cを有する。第1ダミー電極パターン51は、第1基板3の第1面3aに形成され、複数の第1ダミー電極55を有する。第2電極パターン17は、第1基板3の第2面3bに形成され、複数の第2分岐電極43a~43cを有する。第2ダミー電極パターン53は、第2基板11の第2面3bに形成され、複数の第2ダミー電極57を有する。

Description

静電容量式タッチパネル
 本発明は、静電容量式タッチパネルに関する。
 静電容量式タッチパネルは、一般的に、互いに対向して配置された複数の第1透明電極と複数の第2透明電極とを有しており、各透明電極は1枚の透明フィルムの両面に又は2枚の透明フィルムの各片面に形成されている。透明電極の材料としては、酸化スズ(SnO)、酸化インジウムスズ(ITO)や酸化亜鉛(ZnO)が従来知られている。また、透明電極の材料としては、銀ナノワイヤ(AgNW)といった金属ナノワイヤも利用されている。
 さらに、同じ種類の複数の透明電極同士の平面方向間にダミー電極を設けたタッチパネルが知られている(特許文献1を参照)。ダミー電極により、透明電極が配置された部分と他の部分との光透過率の差が小さくなり、したがって透明電極が視認されにくくなる。なお、ダミー電極は、一般的に、寄生容量の低減を図るために、複数の微細領域に分割されている。
特開2008-129708号公報
 また、静電容量式タッチパネルでは、一般的に、第1透明電極及び第2透明電極のうち、センス電極は各電極が複数に分岐しており、分岐電極の間にはダミーパターンが配置されている。また、ドライブ電極は各電極が幅広のベタ状である。
 特に、より速いタッチ検出速度が求められる大きな画面サイズにおいて、上記の構成ではセンス電極とドライブ電極の重なり面積が大きいので、タッチ感度があまり高くならない場合がある。
 本発明の目的は、静電容量式タッチパネルにおいて、タッチ感度を向上させることにある。
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係る静電容量式タッチパネルは、透明絶縁基材と、第1電極パターンと、第1ダミー電極パターンと、第2電極パターンと、第2ダミー電極パターンとを備えている。
 第1電極パターンは、透明絶縁基材の第1面に形成され、複数の第1分岐電極を有する。
 第1ダミー電極パターンは、透明絶縁基材の第1面の第1電極が形成されていない領域に形成され、複数の第1ダミー電極を有する。
 第2電極パターンは、透明絶縁基材の第2面に形成され、複数の第2分岐電極を有する。
 第2ダミー電極パターンは、透明絶縁基材の第2面の第2電極パターンが形成されていない領域に形成され、複数の第2ダミー電極を有する。
 このタッチパネルでは、第1電極パターン及び第2電極パターンが共に分岐電極を有している。したがって、従来の一方がベタ状である場合に比べて、第1電極パターン及び第2電極パターンが互いに重なっている面積が少なくなる。これにより、タッチパネルのタッチ感度が向上する。
 第1ダミー電極及び第2ダミー電極の少なくとも一部には、スリットが形成されていてもよい。
 このタッチパネルでは、スリットを設けることで、例えばダミー電極と電極パターンが重なる箇所において、スリットによって面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。なお、このタッチパネルでは、第1ダミー電極が基板の第1面に形成され第2ダミー電極が基板の第2面に形成されているので、第1ダミー電極パターンと第2ダミー電極パターンを用いたパターン見え低減技術が効果的である。
 第1ダミー電極又は第2ダミー電極の1個の一部が第2電極パターン又は第1電極パターンに重なっている箇所では、スリットは第1ダミー電極又は第2ダミー電極の外側縁から内側に延びていてもよい。
 このタッチパネルでは、スリットによって、例えば第1ダミー電極の一部が第2電極パターンに重なっている箇所において、スリットによって面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。
 第1ダミー電極パターン又は第2ダミー電極パターンの1個の全体が第2電極パターン又は第1電極パターンに重なっている箇所では、スリットは第1ダミー電極又は第2ダミー電極を複数に分割するように延びていてもよい。
 このタッチパネルでは、スリットによって、例えば、第1ダミー電極の全体が第2電極パターンに重なっている箇所において、スリットによって面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。
 第1ダミー電極及び第2ダミー電極が互いに重なっている箇所では、第1ダミー電極及び第2ダミー電極の一方の1個に対して、第1ダミー電極及び第2ダミー電極の他方の複数個が重なっていてもよい。
 このタッチパネルでは、上記配置によって、例えば第1ダミー電極の1個に対して、第2ダミー電極の複数個が重なっている。したがって、複数個のダミー電極によって面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。
 第1電極パターンと第2電極パターンが重なっている箇所では、第1電極パターン及び第2電極パターンには電極延び方向に延びる複数の電極スリットが形成されていてもよい。
 このタッチパネルでは、複数の電極スリットによって、第1電極パターンと第2電極パターンが重なっている箇所において、面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。なお、このタッチパネルでは両電極パターンが分岐電極を有しているので、積層方向両側の電極パターンを用いたパターン見え低減技術が効果的である。
 第1電極パターン、第2電極パターン、電極スリット、第1ダミー電極パターン、第2ダミー電極パターン、及びスリットによって、第1電極パターンと第2電極パターン又は第2ダミー電極パターンとが重なった部分及び第2電極パターンと第1電極パターン又は第1ダミー電極パターンとが重なった部分が、スリット形状部分によって区画された複数の同一形状となっていてもよい。
 このタッチパネルでは、電極パターンの2個が重なった部分が、スリット形状部分によって区画された複数の同一形状となっている。したがって、パターン見えが少なくなる。
 第1電極パターンの第1分岐電極の幅をxとしたときに、第1ダミー電極の幅はxであってもよい。
 第1電極パターンの第1分岐電極と第1ダミー電極の隙間の幅及び第1ダミー電極同士の隙間の幅の各々をyとしたときに、第1電極パターンの第1分岐電極同士間の距離は、xの整数倍とyの整数倍の和であってもよい。
 第2電極パターンの第2分岐電極の幅zは、nx+(n-1)y(nは正の整数)であってもよい。
 第2ダミー電極の幅は、xであってもよい。
 第2電極パターンの第2分岐電極同士の間の距離は、xの整数倍とyの整数倍の和であり、これにより、スリット形状部分によって区画された複数の同一形状が正方形になっていてもよい。
 このタッチパネルでは、電極パターンの2個が重なった部分が、スリット形状部分によって区画された複数の正方形になっている。したがって、パターン見えが少なくなる。
 本発明に係る静電容量式タッチパネルでは、パターン見えが少なくなる。
第1実施形態のタッチパネルの模式的断面図。 第1電極パターンの模式的平面図。 第2電極パターンの模式的平面図。 第1電極パターン及び第1ダミー電極パターンの模式的部分平面図。 第2電極パターン及び第2ダミー電極パターンの模式的部分平面図。 図4と図5を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図。 図6の部分拡大図。 第2実施形態の第1電極パターン及び第1ダミー電極パターンの模式的部分平面図。 第2電極パターン及び第2ダミー電極パターンの模式的部分平面図。 図8と図9を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図。 第3実施形態の第1電極パターン及び第1ダミー電極パターンの模式的部分平面図。 第2電極パターン及び第2ダミー電極パターンの模式的部分平面図。 図11と図12を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図。 第4実施形態の第1電極パターン及び第1ダミー電極パターンの模式的部分平面図。 第2電極パターン及び第2ダミー電極パターンの模式的部分平面図。 図14と図15を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図。 第5実施形態の第1電極パターン及び第1ダミー電極パターンの模式的部分平面図。 第2電極パターン及び第2ダミー電極パターンの模式的部分平面図。 図17と図18を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図。 第6実施形態のタッチパネルの模式的断面図。 第7実施形態のタッチパネルの模式的断面図。 第8実施形態のタッチパネルの模式的断面図。
1.第1実施形態
(1)タッチパネルの基本構成
 図1~図3を用いて、第1実施形態のタッチパネル1を説明する。図1は、第1実施形態のタッチパネルの模式的断面図である。図2は、第1電極パターンの模式的平面図である。図3は、第2電極パターンの模式的平面図である。
 タッチパネル1は、基本構造として、帯状電極パターンと基板1層構造を採用している。
 タッチパネル1は、多機能携帯電話(スマートフォン)や携帯ゲーム機等の電子機器に備えられ、タッチ入力デバイスとして機能する。これらの電子機器において、タッチパネル1は、例えば液晶表示パネルや有機EL表示パネル等からなる表示装置と重ねて用いられる。
 タッチパネル1は、1つの透明絶縁基材として、基板3を有している。
 タッチパネル1は、第1電極パターン9を有している。第1電極パターン9は、基板3の第1面3aに形成されている。
 タッチパネル1は、第2電極パターン17を有している。第2電極パターン17は、基板3の第2面3bに形成されている
 タッチパネル1は、さらに、第1保護層19と、第1引き回し配線21と、第2保護層23と、第2引き回し配線25と、を有している。
 基板3の第1面3a上には、第1電極パターン9、第1保護層19及び第1引き回し配線21(図2)が設けられている。基板3の第2面3b上には、第2電極パターン17、第2保護層23及び第2引き回し配線25(図3)が設けられている。
 基板3は、第1電極パターン9を形成するためのベースとなる部材である。基板3は、透明性、柔軟性、及び絶縁性等に優れた材料を用いて構成されていることが好ましい。このような要求を満足する材料としては、例えばポリエチレンテレフタレートやアクリル系樹脂等の汎用樹脂、ポリアセタール系樹脂やポリカーボネート系樹脂等の汎用エンジニアリング樹脂、ポリスルホン系樹脂やポリフェニレンサルファイド系樹脂等のスーパーエンジニアリング樹脂等が例示される。シクロオレフィン系樹脂でもよい。基板3の厚みは、例えば、25μm~100μmとすることができる。なお、基板3は、ガラス基板等を用いて構成されてもよい。また、基板3は、単層又は複数の樹脂フィルム、コーティングした樹脂層でもよい。
 第1電極パターン9は、図2に示すように、複数の第1電極31を有している。複数の第1電極31は、X軸方向に延びており、Y軸方向に並んで配置された複数の短冊状の電極である。各第1電極31は、3本の互いに平行に延びる第1分岐電極33a、33b及び33cと、それらの一端が互いに接続される端子33dとを有している。
 第1保護層19は、第1電極パターン9を全面的に覆い、第1電極パターン9の材料を保護する絶縁性の防錆層として機能している。第1保護層19は、一般的な感光性樹脂組成物を主体として構成されている。なお、保護層は、粘着層として機能するものでもよい。
 第1電極パターン9は、透明導電膜である。具体的には、第1電極パターン9は、例えば酸化スズ、酸化インジウム、酸化アンチモン、酸化亜鉛、酸化カドミウム、及びITO(Indium Tin Oxide)等の金属酸化物、銀ナノワイヤ、カーボンナノチューブ、PEDOT、グラフェン、金属メッシュ、導電性ポリマーである。
 なお、本発明が解決しようとするパターン見えの問題の観点から本発明が特に必要とされるのはPEDOT、カーボンナノチューブ、銀ナノワイヤである。
 第1電極31は、第1引き回し配線21に接続されている。第1引き回し配線21は、金、銀、銅、ニッケル、及びパラジウム等の金属又はカーボン等の導電性粒子を含むインクからなる導電性インクを主体として構成されている。なお、導電性インクを構成する導電性粒子の材料は、単一種類であってもよいし、複数種類の組み合わせであってもよい。
 第2保護層23、第2引き回し配線25、及び第2電極パターン17は、第2電極パターン17の形状及び配置に関する具体的構成を除き、第1保護層19、第1引き回し配線21と同様の構成を備えている。
 第2電極パターン17は、図3に示すように、複数の第2電極41を有している。複数の第2電極41は、Y軸方向に沿って延在しており、X軸方向に並ぶように互いに平行に配置され短冊状の電極である。各第2電極41は、3本の互いに平行に延びる第2分岐電極43a、43b及び43cと、それらの一端が互いに接続される端子43dとを有している。
 第2電極41は、第2引き回し配線25に接続されている。
 このように、本実施形態では、第1電極パターン9及び第2電極パターン17が共に分岐電極を有している。したがって、従来の一方がベタ状である場合に比べて、第1電極パターン9及び第2電極パターン17が互いに重なっている面積が少なくなる。これにより、タッチパネル1のタッチ感度が向上する。
 第1引き回し配線21は、平面視で基板3の第1面3aにおける周縁部に設けられている。
 第2引き回し配線25は、平面視で基板3の第2面3bにおける周縁部に設けられている。第1引き回し配線21及び第2引き回し配線25は、コントローラ(図示せず)に接続されている。
 第1電極パターン9はセンス電極であり、第2電極パターン17はドライブ電極である。コントローラは、第2引き回し配線25に所定の電圧を順次印加して第2電極パターン17を走査し、第1引き回し配線21を介して第1電極パターン9が所定のタイミングで所定電位(バイアス電位)となるように制御する。
 表示面にユーザの指等が接触すると、第1電極パターン9及び第2電極パターン17との間に生じる電界の変化に対応した電気信号(以下、センス信号)が第1引き回し配線21を介してコントローラに入力される。これにより、コントローラは、ユーザによるタッチ操作及びタッチ位置を検出できる。
(2)ダミー電極パターン
 図4~図5を用いて、第1ダミー電極パターン51及び第2ダミー電極パターン53を説明する。図4は、第1電極パターン及び第1ダミー電極パターンの模式的部分平面図である。図5は、第2電極パターン及び第2ダミー電極パターンの模式的部分平面図である。
 第1ダミー電極パターン51は、図4に示すように、基板3の第1面3aにおける第1電極パターン9が形成されていない領域に形成されている。第1ダミー電極パターン51は、微細な島状の第1ダミー電極55を有しており、第1電極パターン9から電気的に絶縁されている。第1電極パターン9及び第1ダミー電極パターン51によって、基板3の第1面3aの全体が覆われる。第1ダミー電極パターン51は、光透過率の差を小さくし、外部から電極を見えにくくしている。したがって、第1電極パターン9のパターン見えを減らせる。パターン見えを減らすためには、第1ダミー電極パターン51は、第1電極パターン9と同じ材料であることが好ましい。
 なお、第1ダミー電極55の形状は、正方形である。なお、この実施形態では、「正方形」とは、概ね同じ長さの四辺が見える形状をいう。
 第2ダミー電極パターン53は、図5に示すように、基板3の第2面3bにおける第2電極パターン17が形成されていない領域に成されている。第2ダミー電極パターン53は、複数の第2ダミー電極57を有しており、第2電極パターン17から電気的に絶縁されている。第2電極パターン17及び第2ダミー電極パターン53によって基板3の第2面3bの全体が覆われるので、第2電極パターン17のパターン見えを減らせる。パターン見えを減らすためには、第2ダミー電極パターン53は第2電極パターン17と同じ材料であることが好ましい。
 なお、第2ダミー電極57の形状は、正方形であり、第1ダミー電極55と同じ寸法である。
(3)電極パターンとダミー電極パターンによるパターン見え低減技術
(3-1)ダミー電極に形成されたスリット
 第1ダミー電極パターン51の第1ダミー電極55は、3種類あり、図4に示すように、スリットが形成されていないもの、第1スリット55a1が形成されているもの、及び第2スリット55a2が形成されているものを含んでいる。第2ダミー電極パターン53の第2ダミー電極57は、2種類あり、図5に示すように、スリットが形成されていないもの、及び第3スリット57a1が形成されているものを含んでいる。なお、第1スリット55a1はX軸方向に延びており、第2スリット55a2は当該第1ダミー電極55を複数に分割するように延びている。さらに具体的には、第2スリット55a2は、第1ダミー電極55の中心から縁まで延びる十字形状である。
 このようにダミー電極にスリットを設けることで、例えばダミー電極パターンと電極パターンが重なる箇所において、ダミー電極に設けたスリットによって面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。なお、このタッチパネル1では、基板3の第1面3aに第1ダミー電極55が形成され第2面3bに第2ダミー電極57が形成されているので、第1ダミー電極55と第2ダミー電極57の両方を用いたパターン見え低減技術が効果的である。
(3-2)ダミー電極に設けられたスリットの第1形態
 図6及び図7を用いて、第1電極パターン9及び第1ダミー電極パターン51と第2電極パターン17及び第2ダミー電極パターン53とを重ねた場合に生じるパターンを説明する。図6は、図4と図5を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図である。図7は、図6の部分拡大図である。なお、図6及び図7において、第1電極パターン9及び第1ダミー電極パターン51は実線で描かれており、第2電極パターン17及び第2ダミー電極パターン53は破線で描かれている。
 第1スリット55a1は、図7に示すように、第1ダミー電極55の1個の一部が第2電極パターン17に重なっている箇所において、当該第1ダミー電極55の外側縁から内側に延びている。また、第3スリット57a1は、図5に示すように、第2ダミー電極57の1個の一部が第1電極パターン9に重なっている箇所において、当該第2ダミー電極57の外側縁から内側に延びている。さらに具体的には、上記スリットはダミー電極の中心から縁まで直線状に延びており、スリット幅は、電極パターンとダミー電極パターン間の距離と同じである。
 このようにして例えば図7に示すように第1ダミー電極55(単純ハッチング)の一部が第2電極パターン17に重なっている箇所において、第1スリット55a1によって面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。上記の構成は、第2ダミー電極57と第1電極パターン9との組み合わせにおいても実現される。このように基板3の第1面3aに第1ダミー電極55が形成され第2面3bに第2ダミー電極57が形成されているので、第1ダミー電極55と第2ダミー電極57の両方を用いたパターン見え低減技術が効果的である。
 なお、さらに詳細には、図7における単純ハッチングの第1ダミー電極55は、第2分岐電極43aと2個の第2ダミー電極57にまたがっており、第1スリット55a1と2個の第2ダミー電極57の間の隙間とによって図における縦スリットが形成され、第2分岐電極43aと2個の第2ダミー電極57との間の隙間によって横スリットが形成され、それらにより小さな正方形模様を構成するように分割されている。
(3-3)ダミー電極に設けられたスリットの第2形態
 第2スリット55a2は、図4に示すように、第1ダミー電極55の1個の全体が第2電極パターン17に重なっている箇所において、当該第1ダミー電極55を複数に分割するように延びている。さらに具体的には、上記スリットは、第1ダミー電極55の中心から縁まで延びる十字形状であり、スリット幅は、電極パターンとダミー電極パターン間の距離と同じである。
 このようにして、例えば図7に示すように第1ダミー電極55(交差ハッチング)の全体が第2電極パターン17に重なっている箇所において、第2スリット55a2によって面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。上記の構成は、第2ダミー電極57と第1電極パターン9との組み合わせにおいても実現される。このように第1ダミー電極55と第2ダミー電極57の両方を用いたパターン見え低減技術が効果的である。
 なお、さらに詳細には、図7における交差ハッチングの第1ダミー電極55は、第2分岐電極43aに重なっており、第2スリット55a2からなる十字のスリットによって、小さな正方形模様を構成するように分割されている。
(3-4)第1ダミー電極パターンと第2ダミー電極パターンの重なり部分の第1形態
 第1ダミー電極パターン51及び第2ダミー電極パターン53が互いに重なっている箇所では、第1ダミー電極55の1個に対して、第2ダミー電極57の複数個が重なっている。また、第1ダミー電極パターン51及び第2ダミー電極パターン53が互いに重なっている箇所では、第2ダミー電極57の1個に対して、第1ダミー電極55の複数個が重なっている。
 このようにして例えば図7に示すように1個の第1ダミー電極55(太線と細線のハッチング)に対して、第2ダミー電極57の4個が均等に重なっている。したがって、複数個のダミー電極によって面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。
 なお、さらに詳細には、図7における太線と細線のハッチングの第1ダミー電極55は、4個の第2ダミー電極57にまたがっており、4個の第2ダミー電極57同士の間の隙間からなる十字のスリットによって、小さな正方形模様を構成するように分割されている。
(3-5)第1電極パターンと第2電極パターンの重なり部分の第2形態
 第1電極パターン9と第2電極パターン17が重なっている箇所では、図4及び図5に示すように、第1電極パターン9には、電極延び方向(X軸方向)に延びる複数の第1電極スリット9aが形成されている。第1電極スリット9aは、複数個ずつ、X軸方向に並んで配置されている。第1電極スリット9aの長さは、第1ダミー電極55の一辺の半分である。また、第2電極パターン17には、電極延び方向(Y軸方向)に延びる複数の第2電極スリット17aが形成されている。第2電極スリット17aは、複数個ずつ、X軸方向に並んで配置されている。第2電極スリット17aの長さは、第2ダミー電極57の一辺と同じである。
 これにより、例えば図7の網掛け部分に示すように、第1電極パターン9と第2電極パターン17が重なった箇所において、第2電極スリット17aの部分(導電膜としては第1電極31のみが存在する)と、第1電極スリット9aの部分(導電膜としては第2電極41のみが存在する)との組み合わせによって、十字形のスリット形状が実現されている。このように、第1電極スリット9aと第2電極スリット17aによって、第1電極パターン9と第2電極パターン17が重なっている箇所において、面内のパターン分布の均一性を増やすことができ、その結果パターン見えが少なくなる。なお、このタッチパネル1では両電極パターンが分岐電極を有しているので、上記のような基板3の第1面3aに形成された第1電極パターン9及び基板3の第2面3bに形成された第2電極パターン17を用いたパターン見え低減技術が効果的である。
 なお、さらに詳細には、図7における網掛け部分では、第1分岐電極33cにおいて、第1電極スリット9aと第2電極スリット17aの組み合わせによって、小さな正方形模様が形成されている。
(3-6)全体のパターン
 第1電極パターン9、第2電極パターン17、第1電極スリット9a、第2電極スリット17a、第1ダミー電極パターン51、第2ダミー電極パターン53、及び第1スリット55a1、第2スリット55a2、及び第3スリット57a1によって、下記のパターンが形成されている。
 第1に、第1電極パターン9と第2電極パターン17又は第2ダミー電極パターン53の一方とが重なった部分が、スリット形状部分によって区画された複数の同一形状となっている。具体的には、図6及び図7に示すように、複数の正方形である。
 第2に、第2電極パターン17と第1電極パターン9又は第1ダミー電極パターン51とが重なった部分が、スリット形状部分によって区画された複数の同一形状となっている。具体的には、図6及び図7に示すように、複数の正方形である。
 以上のように、タッチパネル1のビューエリア全体において、パターン全体が、複数の同一形状(正方形)が敷き詰められた均一模様となり、そのため外部から視認されにくい。つまり、パターン見えが少なくなる。
 以下に、スリット形状部分によって区画された複数の同一形状が正方形になる条件を説明する。なお、以下の条件は他の実施形態においても適用される。
 第1電極パターン9の複数の第1分岐電極33a、33b、33cの幅(Y軸方向長さ)をxとしたときに、第1ダミー電極55の幅(Y軸方向長さ)はxである。つまり、両者は同じである。
 第1電極パターン9の第1分岐電極33a、33b、33cと第1ダミー電極55の隙間の距離(Y軸方向長さ)及び第1ダミー電極55同士の隙間の距離(Y軸方向長さ)の各々をyとしたときに、第1電極パターン9の第1分岐電極33a、33b、33c同士間の距離(中心から中心までの距離)は、xの整数倍とyの整数倍の和である。この実施形態では、図4に示すように、第1分岐電極33aと第1分岐電極33bとの距離は、4x+4yとなっている。また、第1分岐電極33aと第1分岐電極33cとの距離は、8x+8yとなっている。
 第2電極パターン17の第2分岐電極43a、43b及び43cの幅(X軸方向長さ)をzとすると、zは、nx+(n-1)yである(nは正の整数)。この実施形態では、図5に示すように、z=2x+yとなっている。つまり、この実施形態では、第2分岐電極43a、43b及び43cの幅は、第1分岐電極33a、33b、33cの幅より長い。
 第2ダミー電極57の幅(X軸方向長さ)は、xである。
 第2電極パターン17の第2分岐電極43a、43b及び43c同士の間の距離(中心から中心までの距離)は、xの整数倍とyの整数倍の和である。この実施形態では、図5に示すように、第2分岐電極43aと第2分岐電極43bとの距離は4x+4yとなっており、第2分岐電極43bと第2分岐電極43cとの距離は4x+4yとなっており、第2分岐電極43aと第2分岐電極43cとの距離は8x+8yとなっている。
2.第2実施形態
 第1実施形態では第1電極パターンの第1電極の分岐数は3であり、第2電極パターンの第2電極の分岐数は3であった。しかし、分岐数は特に限定されず、そのため変形例が可能である。以下、そのような変形例を第2~第4実施形態として説明する。
 図8~図10を用いて、第2実施形態として説明する。図8は、第2実施形態の第1電極パターン及び第1ダミー電極パターンの模式的部分平面図である。図9は、第2電極パターン及び第2ダミー電極パターンの模式的部分平面図である。図10は、図8と図9を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図である。
 第1実施形態とは異なり、第1電極31Aの分岐数は2であり、第2電極41Aの分岐数は2である。
 この実施形態では、図8に示すように、第1電極パターン9Aには、第1電極スリット9aが形成されている。第1ダミー電極パターン51Aの第1ダミー電極55Aは、スリットが形成されていないもの、第1スリット55a1が形成されたもの及び第2スリット55a2が形成されたものを含んでいる。さらに、図9に示すように、第2電極パターン17Aには、第2電極スリット17aが形成されている。第2ダミー電極パターン53Aの第2ダミー電極57Aは、スリットが形成されていないもの及び第3スリット57a1が形成されたものを含んでいる。したがって、図10に示すように、タッチパネルのパターン全体が、第1実施形態と同様に、スリット形状部分によって区画された複数の同一形状(正方形)が敷き詰められた模様になっている。その結果、パターン見えが少なくなる。
3.第3実施形態
 図11~図13を用いて、第3実施形態を説明する。図11は、第3実施形態の第1電極パターン及び第1ダミー電極パターンの模式的部分平面図である。図12は、第2電極パターン及び第2ダミー電極パターンの模式的部分平面図である。図13は、図11と図12を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図である。
 第1実施形態とは異なり、第1電極31Bの分岐数は3であり、第2電極41Bの分岐数は2である。
 この実施形態では、図11に示すように、第1電極パターン9Bには、第1電極スリット9aが形成されている。第1ダミー電極パターン51Bの第1ダミー電極55Bは、スリットが形成されていないもの、第1スリット55a1が形成されたもの及び第2スリット55a2が形成されたものを含んでいる。さらに、図12に示すように、第2電極パターン17Bには、第2電極スリット17aが形成されている。第2ダミー電極パターン53Bの第2ダミー電極57Bは、スリットが形成されていないもの、及び第3スリット57a1が形成されたものを含んでいる。したがって、図13に示すように、タッチパネルのパターン全体が、第1実施形態と同様に、スリット形状部分によって区画された複数の同一形状(正方形)が敷き詰められた模様になっている。その結果、パターン見えが少なくなる。
4.第4実施形態
 図14~図16を用いて、第3実施形態を説明する。図14は、第4実施形態の第1電極パターン及び第1ダミー電極パターンの模式的部分平面図である。図15は、第2電極パターン及び第2ダミー電極パターンの模式的部分平面図である。図16は、図14と図15を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図である。
 第1実施形態とは異なり、第1電極31Cの分岐数は4であり、第2電極41Cの分岐数は4である。
 この実施形態では、図14に示すように、第1電極パターン9Cには、第1電極スリット9aが形成されている。第1ダミー電極パターン51Cの第1ダミー電極55Cは、スリットが形成されていないもの、第1スリット55a1が形成されたもの及び第2スリット55a2が形成されたものを含んでいる。さらに、図15に示すように、第2電極パターン17Cには、第2電極スリット17aが形成されている。第2ダミー電極パターン53Cの第2ダミー電極57Cには、第3スリット57a1が形成されている。したがって、図16に示すように、タッチパネルのパターン全体が、第1実施形態と同様に、スリット形状部分によって区画された複数の同一形状(正方形)が敷き詰められた模様になっている。その結果、パターン見えが少なくなる。
5.第5実施形態
 第1実施形態では第1電極パターンの第1電極の幅は、第2電極パターンの第2電極の幅より短かったが、両者は同じであってもよい。
 図17~図19を用いて、そのような変形例を第5実施形態として説明する。図17は、第5実施形態の第1電極パターン及び第1ダミー電極パターンの模式的部分平面図である。図18は、第2電極パターン及び第2ダミー電極パターンの模式的部分平面図である。図19は、図17と図18を重ね合わせた模式的部分平面図であり、タッチパネルを上から見た場合の全体パターンを示す図である。
 第1実施形態と同様に、第1電極31Dの分岐数は3であり、第2電極41Dの分岐数は3である。
 第1実施形態とは異なり、第2電極パターン17Dの第2分岐電極43a、43b、43cの幅は、第1電極パターン9Dの第1分岐電極33a、33b、33cの幅と同じである。
 この実施形態では、図17に示すように、第1電極パターン9Dには、第1電極スリット9aが形成されている。第1ダミー電極パターン51Dの第1ダミー電極55Dは、スリットが形成されていないもの及び第1スリット55a1が形成されたものを含んでいる。さらに、図18に示すように、第2電極パターン17Dには、第2電極スリット17aが形成されている。第2ダミー電極パターン53Dの第2ダミー電極57Dは、スリットが形成されていないもの及び第3スリット57a1が形成されたものを含んでいる。したがって、図19に示すように、タッチパネルのパターン全体に、第1実施形態と同様に、スリット形状部分によって区画された複数の同一形状(正方形)が敷き詰められた模様になっている。その結果、パターン見えが少なくなる。
6.第6実施形態
 第1電極パターン及び第1ダミー電極パターンと、第2電極パターン及び第2電極パターンは、絶縁層を間に挟んだ別の層に設けられていればよいので、配置の変形例は複数ある。
 例えば、第1~第3実施形態では、各電極パターンが2枚の基板各々に形成されたタッチパネルを説明したが、本発明は各電極パターンが1枚の基板の両面に形成されたタッチパネルにも適用できる。
7.第7実施形態
 タッチパネルの積層構造は第1実施形態に限定されない。以下、第7~第9実施形態を用いて、タッチパネルの積層構造の変形例を説明する。なお、第7~第9実施形態では第1ダミー電極及び第2ダミー電極は明記していないが、第1~第6実施形態と同じ第1ダミー電極パターン及び第2ダミー電極パターンが設けられており、同じ効果を実現している。
 図20を用いて、第7実施形態のタッチパネル1Aを説明する。図20は、第7実施形態のタッチパネルの模式的断面図である。
 タッチパネル1Aは、透明絶縁基材として、互いに貼り合わされた第1基板3A1と第2基板3A2とを有している。
 タッチパネル1Aは、第1電極パターン9Aを有している。第1電極パターン9Aは、第1基板3A1の第2基板3A2と反対側の面に形成されている。
 タッチパネル1Aは、第2電極パターン17Aを有している。第2電極パターン17Aは、第2基板3A2の第1基板3A1と反対側の面に形成されている。
 第1基板3A1の上には、第1電極パターン9A、第1保護層19A及び第1引き回し配線(図示せず)が設けられている。第2基板3A2上には、第2電極パターン17A、第2保護層23A及び第2引き回し配線(図示せず)が設けられている。
8.第8実施形態
 図21を用いて、第8実施形態のタッチパネル1Bを説明する。図21は、第8実施形態のタッチパネルの模式的断面図である。
 タッチパネル1Bは、シート材27Bを有している。
 タッチパネル1Bは、透明絶縁基材として、コーティングにより形成された樹脂層3Bを有している。樹脂層3Bは、シート材27Bの上側に設けられている。
 タッチパネル1Bは、第1電極パターン9Bを有している。第1電極パターン9Aは、樹脂層3Bのシート材27B側の面に形成されている。
 タッチパネル1Bは、第2電極パターン17Bを有している。第2電極パターン17Bは、樹脂層3Bのシート材27Bと反対側の面に形成されている。
 シート材27Bの上には、第1電極パターン9B、絶縁層11B及び第2電極パターン17Bを覆う保護層19Bが設けられている。
9.第9実施形態
 図22を用いて、第9実施形態のタッチパネル1Cを説明する。図22は、第9実施形態のタッチパネルの模式的断面図である。
 タッチパネル1Cは、シート材27Cを有している。
 タッチパネル1Cは、透明絶縁基材として、樹脂フィルム3Cを有している。樹脂フィルム3Cは、シート材27Cの上側に設けられている。
 タッチパネル1Cは、第1電極パターン9Cを有している。第1電極パターン9Cは、樹脂フィルム3Cのシート材27C側の面に形成されている。
 タッチパネル1Cは、第2電極パターン17Cを有している。第2電極パターン17Cは、第2基板3C2の第1基板3C1側の面に形成されている。
 第1基板3C1の上には、第2電極パターン17Cを覆うように保護層19Cが設けられている。
10.他の実施形態
 以上、本発明の複数の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 分岐電極の形状は帯状に限定されない。
 ダミー電極の形状は正方形に限定されない。例えば、ダミー電極の辺は、破線やジグザグ線でもよい。
 スリットの形状は直線状に限定されない。例えば、スリットは、破線やジグザグ状でもよい。
 本発明は、静電容量式タッチパネルに広く適用できる。
1    :タッチパネル
3    :基板
9    :第1電極パターン
9a   :第1電極スリット
17   :第2電極パターン
17a  :第2電極スリット
31   :第1電極
41   :第2電極
51   :第1ダミー電極パターン
53   :第2ダミー電極パターン
55   :第1ダミー電極
55a1 :第1スリット
55a2 :第2スリット
57   :第2ダミー電極
57a1 :第3スリット

Claims (8)

  1.  透明絶縁基材と、
     前記透明絶縁基材の第1面に形成された、複数の第1分岐電極を有する第1電極パターンと、
     前記透明絶縁基材の前記第1面の前記第1電極パターンが形成されていない領域に形成された、複数の第1ダミー電極を有する第1ダミー電極パターンと、
     前記透明絶縁基材の第2面に形成された、複数の第2分岐電極を有する第2電極パターンと、
     前記透明絶縁基材の前記第2面の前記第2電極パターンが形成されていない領域に形成された、複数の第2ダミー電極を有する第2ダミー電極パターンと、
    を備えた静電容量式タッチパネル。
  2.  前記第1ダミー電極及び前記第2ダミー電極の少なくとも一部には、スリットが形成されている、請求項1に記載の静電容量式タッチパネル。
  3.  前記第1ダミー電極又は第2ダミー電極の1個の一部が前記第2電極パターン又は前記第1電極パターンに重なっている箇所では、前記スリットは前記第1ダミー電極又は第2ダミー電極の外側縁から内側に延びている、請求項2に記載の静電容量式タッチパネル。
  4.  前記第1ダミー電極パターン又は第2ダミー電極パターンの1個の全体が前記第2電極パターン又は前記第1電極パターンに重なっている箇所では、前記スリットは前記第1ダミー電極又は第2ダミー電極を複数に分割するように延びている、請求項2又は3に記載の静電容量式タッチパネル。
  5.  前記第1ダミー電極及び第2ダミー電極が互いに重なっている箇所では、前記第1ダミー電極及び第2ダミー電極の一方の1個に対して、前記第1ダミー電極及び第2ダミー電極の他方の複数個が重なっている、請求項2~4のいずれかに記載の静電容量式タッチパネル。
  6.  前記第1電極パターンと前記第2電極パターンが重なっている箇所では、前記第1電極パターン及び前記第2電極パターンには電極延び方向に延びる複数の電極スリットが形成されている、請求項2~5のいずれかに記載の静電容量式タッチパネル。
  7.  前記第1電極パターン、前記第2電極パターン、前記電極スリット、前記第1ダミー電極パターン、前記第2ダミー電極パターン、及び前記スリットによって、前記第1電極パターンと前記第2電極パターン又は前記第2ダミー電極パターンとが重なった部分及び前記第2電極パターンと前記第1電極パターン又は前記第1ダミー電極パターンとが重なった部分が、スリット形状部分によって区画された複数の同一形状となっている、請求項6に記載の静電容量式タッチパネル。
  8.  前記第1電極パターンの前記第1分岐電極の幅をxとしたときに、前記第1ダミー電極の幅はxであり、
     前記第1電極パターンの前記第1分岐電極と第1ダミー電極との隙間の幅及び前記第1ダミー電極同士の隙間の幅の各々をyとしたときに、前記第1電極パターンの第1分岐電極同士間の距離はxの整数倍とyの整数倍の和であり、
     前記第2電極パターンの前記第2分岐電極の幅zは、nx+(n-1)y(nは正の整数)であり、
     前記第2ダミー電極の幅は、xであり、
     前記第2電極パターンの前記第2分岐電極同士の間の距離は、xの整数倍とyの整数倍の和であり、これにより、前記スリット形状部分によって区画された前記複数の同一形状が正方形になっている、請求項7に記載の静電容量式タッチパネル。
PCT/JP2022/004393 2021-03-16 2022-02-04 静電容量式タッチパネル WO2022196164A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237031046A KR20230156064A (ko) 2021-03-16 2022-02-04 정전 용량식 터치 패널
US18/281,425 US20240168596A1 (en) 2021-03-16 2022-02-04 Capacitive touchscreen
CN202280021230.9A CN116982022A (zh) 2021-03-16 2022-02-04 电容式触摸面板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-042537 2021-03-16
JP2021042537A JP7282117B2 (ja) 2021-03-16 2021-03-16 静電容量式タッチパネル

Publications (1)

Publication Number Publication Date
WO2022196164A1 true WO2022196164A1 (ja) 2022-09-22

Family

ID=83322207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004393 WO2022196164A1 (ja) 2021-03-16 2022-02-04 静電容量式タッチパネル

Country Status (6)

Country Link
US (1) US20240168596A1 (ja)
JP (1) JP7282117B2 (ja)
KR (1) KR20230156064A (ja)
CN (1) CN116982022A (ja)
TW (1) TW202238349A (ja)
WO (1) WO2022196164A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039537A (ja) * 2008-07-31 2010-02-18 Gunze Ltd タッチパネル
JP2012079238A (ja) * 2010-10-05 2012-04-19 Fujifilm Corp センサー電極アレイ、センサー電極アレイの使用方法及び静電容量方式タッチパネル
JP2019003505A (ja) * 2017-06-16 2019-01-10 日立化成株式会社 静電容量型タッチパネル及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101196342B1 (ko) 2005-05-26 2012-11-01 군제 가부시키가이샤 투명 평면체 및 투명 터치스위치
JP2008129708A (ja) 2006-11-17 2008-06-05 Alps Electric Co Ltd 透明タッチパネル及びその製造方法
JP2012032955A (ja) 2010-07-29 2012-02-16 Alps Electric Co Ltd 電極パターン付基板およびタッチパネル
KR101224419B1 (ko) 2010-10-26 2013-01-22 (주)삼원에스티 터치패널센서

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010039537A (ja) * 2008-07-31 2010-02-18 Gunze Ltd タッチパネル
JP2012079238A (ja) * 2010-10-05 2012-04-19 Fujifilm Corp センサー電極アレイ、センサー電極アレイの使用方法及び静電容量方式タッチパネル
JP2019003505A (ja) * 2017-06-16 2019-01-10 日立化成株式会社 静電容量型タッチパネル及びその製造方法

Also Published As

Publication number Publication date
TW202238349A (zh) 2022-10-01
US20240168596A1 (en) 2024-05-23
JP7282117B2 (ja) 2023-05-26
CN116982022A (zh) 2023-10-31
JP2022142384A (ja) 2022-09-30
KR20230156064A (ko) 2023-11-13

Similar Documents

Publication Publication Date Title
KR101758756B1 (ko) 터치 센서, 내장형 터치 액정 디스플레이 패널 및 액정 디스플레이
US9007332B2 (en) Position sensing panel
TW201715365A (zh) 觸控顯示裝置及其驅動方法
US10496232B2 (en) Capacitive touch panel
JP2010182277A (ja) 入力装置
JP2011100438A (ja) 静電容量式入力装置
CN107037909B (zh) 触摸检测装置和带触摸检测功能的显示装置
CN110502152A (zh) 触控面板、触控显示面板及触控显示装置
JP6562720B2 (ja) タッチスクリーン、タッチパネル、表示装置及び電子機器
JP2014164327A (ja) タッチセンサ、タッチパネル、および、表示装置
JP7007258B2 (ja) タッチスクリーン、表示装置及びタッチパネル
CN110275650B (zh) 触摸感应装置、触控显示面板及触控显示面板母板
JP2015011493A (ja) 入力装置
JP2019008606A (ja) タッチパネル及び表示装置
JP5870945B2 (ja) タッチスクリーン、タッチパネル、表示装置および電子機器
JP7282117B2 (ja) 静電容量式タッチパネル
JP2016126730A (ja) タッチセンサ用電極、タッチパネル、および、表示装置
JP5461732B2 (ja) 静電容量結合方式のタッチパネル
JP2016045961A (ja) タッチパネルセンサおよびタッチ位置検出機能付き表示装置
JP2012032955A (ja) 電極パターン付基板およびタッチパネル
CN111596789B (zh) 触控面板、触控显示面板及触控显示装置
JP2012123850A (ja) 静電容量結合方式のタッチパネル
JP5290458B2 (ja) 静電容量結合方式のタッチパネル
WO2022244355A1 (ja) タッチセンサ
JP7043186B2 (ja) タッチセンサおよび表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18281425

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280021230.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770924

Country of ref document: EP

Kind code of ref document: A1