WO2022186062A1 - 液晶素子及びエマルジョン組成物 - Google Patents

液晶素子及びエマルジョン組成物 Download PDF

Info

Publication number
WO2022186062A1
WO2022186062A1 PCT/JP2022/007810 JP2022007810W WO2022186062A1 WO 2022186062 A1 WO2022186062 A1 WO 2022186062A1 JP 2022007810 W JP2022007810 W JP 2022007810W WO 2022186062 A1 WO2022186062 A1 WO 2022186062A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
less
composition
mass
emulsion composition
Prior art date
Application number
PCT/JP2022/007810
Other languages
English (en)
French (fr)
Inventor
秀樹 佐藤
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2023503775A priority Critical patent/JPWO2022186062A1/ja
Priority to CN202280017083.8A priority patent/CN116981988A/zh
Priority to EP22763118.1A priority patent/EP4303648A1/en
Priority to KR1020237026482A priority patent/KR20230150949A/ko
Publication of WO2022186062A1 publication Critical patent/WO2022186062A1/ja
Priority to US18/239,906 priority patent/US20230399567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • C09K19/601Azoic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • C09K19/603Anthroquinonic
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/15Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used used as a medium, in which chemical reactions take place
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/17Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used used as a medium, in which detection of chemical compounds takes place

Definitions

  • the present invention relates to liquid crystal elements and emulsion compositions. More specifically, the present invention relates to a liquid crystal device capable of switching between a transparent state and a colored state, and an emulsion composition that can be used in the liquid crystal device.
  • liquid crystal method an electrochromic method, an SPD (Suspend Particle Device) method, and the like have been proposed as light control materials used in smart glass.
  • the liquid crystal system is attracting attention because it has an overwhelmingly short response time and does not make the user feel stressed.
  • Non-Patent Document 1 PDLC (Polymer Dispersed Liquid Crystals) is widely known (Non-Patent Document 1).
  • PDLC Polymer Dispersed Liquid Crystals
  • Non-Patent Document 1 PDLC has a structure in which a liquid crystal-polymer composite film in which liquid crystal particles are dispersed in a polymer matrix is sandwiched between two transparent conductive substrates.
  • Normal mode driving is the most common among PDLCs.
  • a normal-mode PDLC when no voltage is applied, the liquid crystal molecules are aligned along the walls of the polymer matrix, causing a refractive index mismatch between the liquid crystal region and the polymer matrix. This mismatch causes light scattering and white turbidity, which functions as a blindfold.
  • the liquid crystal molecules when a voltage is applied to the PDLC, the liquid crystal molecules are oriented in the direction of the electric field, so that the liquid crystal regions and the polymer matrix have the same refractive index and become transparent by transmitting light.
  • PDLC has been put to practical use as a dimming shutter for the purpose of protecting design and privacy in windows, doors, partitions, etc. of vehicles such as trains and automobiles, business buildings, hospitals, etc. It is also used as a display device for displaying characters and graphics.
  • PDLC can be used as a film element because it has flexibility due to the liquid crystal-polymer composite film structure described above. Additionally, it is possible to cut and shape the film element. Taking advantage of such features, the user can easily attach it to the glass for construction.
  • Patent Documents 1 to 3 disclose guest-host liquid crystal (GH liquid crystal) type smart glass in which a dichroic dye is added to the liquid crystal. Since the guest-host liquid crystal method is a method of switching between a transparent state and a colored state by electrically switching the absorbance of a liquid crystal element, it is possible to control the amount of transmitted light. However, in order to make the guest-host liquid crystal into a film element that can be cut and shaped, a matrix that surrounds the liquid crystal and supports the film structure like PDLC is required.
  • Patent Documents 4 to 6 disclose guest-host PDLC, which is a combination of PDLC and guest-host liquid crystal, and a film element capable of controlling the amount of transmitted light is expected.
  • Patent Document 4 a liquid crystal-polymer composite film is produced by polymerization-induced phase separation by photopolymerization.
  • the dichroic dye in the liquid crystal absorbs light and inhibits photopolymerization, resulting in poor curing of the polymer matrix, which poses a problem in the reliability of the liquid crystal element. This problem becomes a serious problem especially when the light shielding property of the liquid crystal element is to be improved.
  • Patent Document 5 a liquid crystal-polymer composite film is produced using an aqueous emulsion composition.
  • the production method using this emulsion composition makes it easier to obtain a desired film structure than the production method based on polymerization-induced phase separation in Patent Document 4, and is highly reliable due to poor curing of the polymer matrix. It has the advantage that no degradation occurs. Therefore, it is possible to obtain a liquid crystal element having a higher light-shielding property.
  • the change width of the visible light transmittance of the PDLC is 0.15 or less and the order parameter S of the dichroic dye is 0.75 or more. It is described that the haze is 30% or more and the haze in the transparent state is 10% or less.
  • the visible light transmittance here indicates the linear transmittance of straight light that does not include scattered light. There is a problem that the amount of solar radiation can hardly be controlled.
  • Patent Document 6 by controlling the refractive index anisotropy and the order parameter of the guest-host liquid crystal, a liquid crystal element with a wide change width (dynamic range) of visible light transmittance and low haze is obtained.
  • the liquid crystal element of Patent Document 6 has a problem that the dynamic range of visible light transmittance changes when driven at a high temperature for a long time, and the reliability is not always sufficient. In automobile applications, the temperature inside the vehicle may become high, and thus such a change in dynamic range is a barrier to the development of liquid crystal devices for automobile applications.
  • the present invention provides a liquid crystal element in which the amount of transmitted light can be electrically controlled and which can be cut and shaped, and which has a high dynamic range of visible light transmittance and little decrease in the dynamic range even after being driven at high temperatures.
  • the task is to provide
  • the present inventors used a liquid crystal component with a predetermined dielectric anisotropy and refractive index anisotropy as a liquid crystal component in a liquid crystal composition containing a liquid crystal component and a dichroic dye, and found that the NI point (nematic phase-isotropic phase By increasing the transition temperature), the change width (dynamic range) of the visible light transmittance of the liquid crystal element is increased, and the dynamic range is maintained even after driving at high temperature. . That is, the gist of the present invention resides in the following.
  • a liquid crystal device comprising: two substrates with transparent conductive films arranged so as to face each other; and a liquid crystal-polymer composite film sandwiched between the two substrates with transparent conductive films. and the liquid crystal-polymer composite film has a polymer matrix and a liquid crystal composition surrounded by the polymer matrix;
  • the liquid crystal composition contains a liquid crystal component and a dichroic dye, the dielectric anisotropy of the liquid crystal component is positive and the NI point is 110° C. or more and 150° C.
  • the refractive index anisotropy of the liquid crystal component is 0.01 or more and 0.1 or less, A liquid crystal device, wherein the liquid crystal-polymer composite film can be switched between a transparent state and a colored state by applying a voltage.
  • An emulsion composition in which a liquid crystal composition is dispersed in a medium containing water, The medium is a polymer dispersed or dissolved,
  • the liquid crystal composition contains a liquid crystal component and a dichroic dye, the liquid crystal component has a positive dielectric anisotropy and an NI point of 110° C. or more and 150° C. or less;
  • the emulsion composition, wherein the refractive index anisotropy of the liquid crystal component is 0.01 or more and 0.1 or less.
  • a liquid crystal element that can electrically control the amount of transmitted light and that can be cut and shaped.
  • the device achieves both high light-shielding properties and a wide dynamic range, and suppresses a decrease in the dynamic range even when driven at high temperatures.
  • the liquid crystal device of the present invention is useful for windows, screens, displays, etc. due to the above properties.
  • it can be used as a visual field blocking element for windows of buildings and vehicles, partitions, and the like. It can also be used as a display for billboards, show windows, computer terminals, projections, and the like. Since the liquid crystal device of the present invention has particularly high driving reliability at high temperatures, it is particularly useful in an environment where the temperature rises due to direct sunlight or the like, such as for automotive applications.
  • FIG. 1 is a chart showing haze (dynamic range ⁇ Haze) after 65 hours, 133 hours, and 228 hours from the start of continuous driving in Examples 3 and 4 and Comparative Example 2.
  • FIG. 2 is a chart showing the total light transmittance (dynamic range ⁇ TT) after 65 hours, 133 hours, and 228 hours from the start of continuous driving in Examples 3 and 4 and Comparative Example 2.
  • FIG. 3 is a chart showing the haze (dynamic range ⁇ Haze) after 65 hours, 133 hours, and 228 hours from the start of continuous driving in Examples 7 and 8 and Comparative Example 4.
  • FIG. 4 is a chart showing the total light transmittance (dynamic range ⁇ TT) after 65 hours, 133 hours, and 228 hours from the start of continuous driving in Examples 7 and 8 and Comparative Example 4.
  • the liquid crystal device of the present invention comprises two substrates with transparent conductive films arranged so that the transparent conductive films face each other, and a liquid crystal-polymer composite film sandwiched between the two substrates with transparent conductive films.
  • the liquid crystal-polymer composite film comprises a polymer matrix and a liquid crystal composition surrounded by the polymer matrix, the liquid crystal composition comprising a liquid crystal component and a dichroic
  • the liquid crystal component contains a dye, the dielectric anisotropy of the liquid crystal component is positive, the NI point is 110° C. or more and 150° C. or less, and the refractive index anisotropy of the liquid crystal component is 0.01 or more and 0.1 or less.
  • the liquid crystal-polymer composite film can be switched between a transparent state and a colored state by applying a voltage.
  • the liquid crystal-polymer composite film has a polymer matrix and a liquid crystal composition surrounded by the polymer matrix, so that the liquid crystal has flexibility and can be cut and shaped. element. Since the liquid crystal composition contains a liquid crystal component and a dichroic dye, it can exhibit sufficient light absorption ability in a colored state. In addition, since the NI point of the liquid crystal component is 110° C. or more and 150° C. or less, the dynamic range is wide, and the dynamic range can be kept long even when driving at high temperatures. One method for widening the dynamic range is to increase the degree of order (order parameter) of the liquid crystal, and there is a tendency that the higher the NI point, the higher the degree of order.
  • the NI point of the liquid crystal component used in the present invention is set to 150° C. or less.
  • the obtained liquid crystal-polymer composite film is transparent when a voltage is applied and is colored when no voltage is applied. It may have a memory property that requires voltage application only when switching between the transparent state and the colored state.
  • voltage represents DC voltage, AC voltage, pulse voltage, or a combination thereof having an effective value equal to or greater than a threshold.
  • the transparent state refers to the state of the liquid crystal-polymer composite film when the voltage is applied or when no voltage is applied. The one with the larger rate is set to the transparent state.
  • the colored state represents the state of the liquid crystal-polymer composite film when the voltage is applied or when no voltage is applied. The one with the smaller light transmittance is regarded as the colored state.
  • the liquid crystal-polymer composite film (hereinafter sometimes referred to as the "liquid crystal-polymer composite film of the present invention") contained in the liquid crystal element of the present invention comprises a polymer matrix (hereinafter referred to as the "polymer matrix of the present invention”). ”) and a liquid crystal composition surrounded by the polymer matrix (hereinafter sometimes referred to as “the liquid crystal composition of the present invention”).
  • Such liquid crystal-polymer composite films are commonly known as PDLCs.
  • the liquid crystal-polymer composite film has a polymer matrix and a liquid crystal composition surrounded by the polymer matrix, so that the liquid crystal element has flexibility.
  • the polymer matrix protects the liquid crystal composition from deterioration factors such as oxygen and moisture. Therefore, cutting and shaping becomes possible.
  • the liquid crystal composition of the present invention may be dispersed in a polymer matrix or arranged regularly.
  • the shape of the liquid crystal composition of the present invention may be a true sphere, a spheroid, a cylinder, a triangular prism, a quadrangular prism, a polygonal prism such as a hexagonal prism, or any of these shapes may be distorted.
  • regular polygonal prisms such as spheres, spheroids, cylinders, equilateral triangular prisms, equilateral square prisms, and equilateral hexagonal prisms weaken the light scattering of the liquid crystal-polymer composite film, and the light absorption of the dichroic dye during coloring. is preferred because the haze in the transparent state tends to decrease as the .
  • the average particle diameter when observed from the surface of the liquid crystal-polymer composite film is preferably 2 ⁇ m or more, and preferably 5 ⁇ m or more. is more preferred. Moreover, it is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less. When the average particle diameter is at least the above lower limit, the light scattering of the liquid crystal-polymer composite film tends to be weak, and the haze in the transparent state tends to be small.
  • the light scattering of the colored liquid crystal-polymer composite film is also weakened, so that the contribution of the dichroic dye to the light absorption is relatively improved, and it becomes possible to control the total light transmittance with a more transparent feeling.
  • the average particle diameter is equal to or less than the above upper limit, the graininess of the liquid crystal composition disappears, and the uniformity of the appearance of the liquid crystal element tends to be improved.
  • the average particle diameter when observed from the film surface of the liquid crystal-polymer composite film is preferably 0.01 ⁇ m or more, and preferably 0.1 ⁇ m. It is more preferable to be above. Moreover, it is preferably less than 2 ⁇ m, more preferably 1 ⁇ m or less. When the average particle size is less than the above upper limit, the liquid crystal-polymer composite film has strong light scattering, a large haze in a light-shielding state, and a large dynamic range (a difference in haze between a colored state and a transparent state). Tend.
  • the average particle size of the liquid crystal composition is preferably at least the above lower limit.
  • the average particle size of the above liquid crystal composition is the number-based median size.
  • the shape of the liquid crystal composition is not a circle but a polygon such as an ellipse, triangle, square, or hexagon, or if these shapes are distorted, the particle size should refer to the diameter of the minimum containing circle.
  • the liquid crystal composition of the present invention comprises a liquid crystal component (hereinafter sometimes referred to as “the liquid crystal component of the present invention”) and a dichroic dye (hereinafter sometimes referred to as “the dichroic dye of the present invention”). ).
  • the liquid crystal compositions are generally known as guest-host liquid crystals.
  • the content of the dichroic dye with respect to 100% by mass of the liquid crystal composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, and 3% by mass or more. is more preferred. Also, the content of the dichroic dye is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less based on 100% by mass of the liquid crystal composition.
  • the content of the dichroic dye is equal to or higher than the above lower limit, the liquid crystal element exhibits greater light absorption depending on the colored state, and the amount of transmitted light tends to decrease.
  • the content of the dichroic dye is equal to or less than the above upper limit, separation and precipitation of the dichroic dye are less likely to occur, and the reliability of the liquid crystal element tends to improve.
  • the liquid crystal composition may contain additives within a range that does not impair the performance of the liquid crystal element of the present invention. Specifically, it contains polymer precursors, polymerization initiators, light stabilizers, antioxidants, thickeners, polymerization inhibitors, photosensitizers, adhesives, antifoaming agents, surfactants, chiral agents, and the like. You may have
  • the chiral agent may be any chiral compound compatible with the liquid crystal component, and may be a synthetic product or a commercially available product. Further, it may itself exhibit liquid crystallinity, or may have a polymerizable functional group. Furthermore, it may be dextrorotatory or levorotatory, and a dextrorotatory chiral agent and a levorotatory chiral agent may be used in combination.
  • the chiral agent one having a large positive dielectric anisotropy and a low viscosity is preferable from the viewpoint of reducing the driving voltage of the liquid crystal element and the response speed. A larger helical twisting power is preferable.
  • chiral agents include, for example, CB15 (trade name: manufactured by Merck), C15 (trade name: manufactured by Merck), S-811 (trade name: manufactured by Merck), R-811 (trade name: manufactured by Merck), S- 1011 (trade name, manufactured by Merck), R-1011 (trade name, manufactured by Merck), and the like.
  • the content is not particularly limited. It is preferably 0.01 to 0.5 [/ ⁇ m], particularly preferably 0.01 to 0.3 [/ ⁇ m]. If the reciprocal of the chiral pitch (1/p) is at least the above lower limit, the light absorption efficiency of the dichroic dye is high, and the light-shielding property of the colored state can be improved. It is possible to suppress the increase.
  • the dielectric anisotropy ( ⁇ ) of the liquid crystal component of the present invention is positive. In this case, it becomes a normal mode in which a colored state is obtained when no voltage is applied and a transparent state is obtained when a voltage is applied.
  • the NI point (nematic phase-isotropic phase transition temperature) of the liquid crystal component of the present invention is 110°C or higher and 150°C or lower, preferably 120°C or higher and 140°C or lower.
  • the NI point is equal to or higher than the above lower limit, there is a tendency that the dynamic range of change in transmittance can be maintained even in continuous driving at a high temperature of about 90°C.
  • the higher the NI point the wider the dynamic range of transmittance change.
  • the NI point is preferably equal to or lower than the upper limit.
  • the method for measuring the NI point of the liquid crystal component is not particularly limited, it can be obtained by once compatibilizing the liquid crystal composition and observing phase transition or phase separation due to temperature rise with a polarizing microscope.
  • the refractive index anisotropy ( ⁇ n) of the liquid crystal component of the present invention is 0.01 or more, preferably 0.02 or more, and more preferably 0.03 or more. Moreover, it is 0.1 or less, and preferably 0.10 or less.
  • ⁇ n is equal to or less than the upper limit, light scattering at the interface between the polymer matrix and the liquid crystal composition is reduced, and haze in the transparent state tends to be reduced.
  • ⁇ n is equal to or greater than the above lower limit, the order parameter of the liquid crystal composition tends to increase.
  • nematic liquid crystal As the liquid crystal contained in the liquid crystal component, nematic liquid crystal, cholesteric liquid crystal, smectic liquid crystal, etc. can be used. Nematic liquid crystals or cholesteric liquid crystals are preferred because they are available at low cost. Further, a chiral agent may be added to the nematic liquid crystal to form a cholesteric liquid crystal (chiral nematic liquid crystal).
  • Nematic liquid crystals and cholesteric liquid crystals having low viscosity and high dielectric anisotropy are preferable from the viewpoint of high-speed response of liquid crystal elements and ease of production of emulsions.
  • ⁇ Dichroic dye> As the dichroic dye contained in the liquid crystal composition of the present invention, any dichroic dye compound that is compatible with the liquid crystal component may be used, and ⁇ may be a positive dichroic dye or a negative dichroic dye. good. Alternatively, the material itself may exhibit liquid crystallinity.
  • dichroic dyes of the present invention include azo dyes, anthraquinone dyes, naphthoquinone dyes, perylene dyes, quinophthalone dyes, tetrazine dyes, and benzothiadiazole dyes.
  • azo dyes anthraquinone dyes or naphthoquinone dyes, perylene dyes, quinophthalone dyes, tetrazine dyes, and benzothiadiazole dyes.
  • anthraquinone dyes or mixtures thereof can be used.
  • anthraquinone dyes or azo dyes are preferable because they tend to have a large absorption coefficient, a high solubility in liquid crystal components, and high light resistance.
  • One type of dichroic dye may be used, or a plurality of types may be mixed and used. Although not particularly limited, it preferably contains 20% by mass or more of the anthraquinone and/or azo type, more preferably 50% by mass or
  • dichroic dye of the present invention include compounds represented by the following formulas.
  • each X independently represents -NH- or -S-, n represents 0 or 1, and Ar represents a phenylene group or a naphthylene group.
  • R represents a hydrogen atom, an alkyl group, an alkoxy group, a cyclohexyl group which may have these substituents, a phenyl group, a phenylcyclohexyl group or a cyclohexylcyclohexyl group.
  • Hydrophilic polymers are preferably used as the polymer matrix of the present invention.
  • it is not particularly limited as long as it is hydrophilic, but it is preferable to select such that the refractive index matches the ordinary refractive index (no) of the liquid crystal component. Since the no of the liquid crystal component is typically about 1.5, the refractive index of the polymer matrix is preferably 1.45 or more and 1.55 or less.
  • Polymers constituting the polymer matrix include natural polymers such as gelatin and gum arabic; synthetic polymers such as polyvinyl alcohol, polyurethane, polyurea, polyacryl, polyamine, polyamide, polyethylene, polypropylene, polystyrene, and polyacrylonitrile; Modified products of; copolymers such as methacrylate/acrylonitrile, urethane/acrylate, acrylate/acrylonitrile; and the like may be used. Also, a cross-linked structure may be introduced into the polymer using a cross-linking agent.
  • the polymer is preferably highly dispersible or soluble in water, and gelatin, polyvinyl alcohol, polyurethane, polyurea, polyacryl, polyamine, and modified products thereof are preferred. More preferably at least one selected from the group consisting of polyurethanes, polyacrylics, polyvinyl alcohols and modified products thereof, more preferably at least one selected from the group consisting of polyurethanes, polyacrylics and modified products thereof and particularly preferably polyacrylic. These polymers may be used alone or in combination of two or more.
  • Polyurethanes are classified according to their polyisocyanate and polyol skeletons.
  • polyisocyanate skeletons include aliphatic polyurethanes having an aliphatic carbon skeleton and aromatic polyurethanes containing aromatic rings in polyisocyanates. Among them, aliphatic polyurethane is preferable because of its high light resistance.
  • the polyol skeleton include polyether-based, polyester-based, and polycarbonate-based skeletons. Among them, polyether-based skeletons are preferred because of their excellent film adhesion.
  • Polyacryl consists of polymers of various acrylate monomers.
  • acrylic monomers include compounds represented by the following formulas.
  • X 1 represents a hydrogen atom or a methyl group
  • R 1 represents a hydrogen atom, a halogen atom, a hydroxy group, or a linear or branched chain optionally having substituents having 1 to 20 carbon atoms.
  • Polyacryl may be copolymerized with monomers other than acrylate, and examples of copolymers include acrylate-styrene, acrylate-vinyl acetate, acrylate-acrylonitrile, acrylate-urethane, acrylate-ester, and acrylate-silicone.
  • the backbone may be composed of copolymers of acrylate and other monomers, or other polymers may be grafted onto the polyacrylic backbone.
  • the polymer matrix may contain low-molecular weight substances within a range that does not impair the performance of the liquid crystal element of the present invention.
  • specific examples of the low molecular weight include light stabilizers, antioxidants, thickeners, polymerization inhibitors, photosensitizers, adhesives, defoamers, surfactants, water-soluble dyes, and the like.
  • the ratio of the total mass of the liquid crystal composition to the total mass of the polymer matrix is 0.5 or more when the total mass of the polymer matrix is 1. is preferred, and 1 or more is more preferred. Moreover, it is preferably 4 or less, more preferably 3 or less.
  • the ratio of the total mass of the liquid crystal composition to the total mass of the polymer matrix is at least the above lower limit, the haze in the transparent state tends to be low and the driving voltage tends to be low.
  • the ratio of the total mass of the liquid crystal composition to the total mass of the polymer matrix is equal to or less than the above upper limit, the impact resistance and adhesion of the liquid crystal-polymer composite film tend to be improved.
  • Materials for the substrate include, for example, inorganic transparent materials such as glass and quartz, and colorless and transparent materials such as metals, metal oxides, semiconductors, ceramics, plastic plates, and plastic films.
  • a single plate of these substrates may be used, or a plurality of substrates may be laminated.
  • the substrate may be provided with a hard coat layer for the purpose of protecting it from scratches and stains, or a sharp cut layer or bandpass layer for blocking light in a specific wavelength range.
  • the transparent conductive film that constitutes the electrode is formed on the substrate by applying a thin film of metal oxide, metal, semiconductor, organic conductive material, or the like on the entire surface or part of the substrate by a known coating method, printing method, sputtering, or the like. It is formed by a vapor deposition method or the like. Also, it may be partially etched after forming a conductive thin film.
  • an ITO (mixture of indium oxide and tin oxide) electrode is deposited on a transparent polymer film such as PET by a vapor deposition method such as sputtering or a printing method. It is desirable to use an electrode substrate formed using
  • Wiring may be provided on the substrate to connect between the electrodes or between the electrodes and the outside.
  • it may be an electrode substrate for segment driving, an electrode substrate for matrix driving, an electrode substrate for active matrix driving, or the like.
  • the electrode surface provided on the substrate is a protective film or an alignment film made of organic compounds such as polyimide, polyamide, silicone, and cyanide compounds, inorganic compounds such as SiO 2 , TiO 2 , and ZrO 2 , or mixtures thereof. may be entirely or partially covered with organic compounds such as polyimide, polyamide, silicone, and cyanide compounds, inorganic compounds such as SiO 2 , TiO 2 , and ZrO 2 , or mixtures thereof. may be entirely or partially covered with organic compounds such as polyimide, polyamide, silicone, and cyanide compounds, inorganic compounds such as SiO 2 , TiO 2 , and ZrO 2 , or mixtures thereof. may be entirely or partially covered with organic compounds such as polyimide, polyamide, silicone, and cyanide compounds, inorganic compounds such as SiO 2 , TiO 2 , and ZrO 2 , or mixtures thereof. may be entirely or partially covered with organic compounds such as polyimide, polyamide, silicone, and cyanide compounds, in
  • the substrates may be subjected to an alignment treatment so as to orient the liquid crystal with respect to the substrate surface. It may be a so-called hybrid in which the orientation is homogeneous and the other orientation is homeotropic.
  • the electrode surface may be directly rubbed, a normal alignment film such as polyimide used for TN liquid crystals, STN liquid crystals, or the like may be used, or photo-alignment treatment may be performed.
  • the opposing substrate may have an adhesive layer containing a resin body that adheres and supports the substrate in the peripheral portion as appropriate.
  • the end portion or cut surface of the liquid crystal element in the present invention may be treated with tapes such as adhesive tape, thermocompression tape, thermosetting tape, thermosetting resin, photo-setting resin, moisture-setting resin, room-temperature-setting adhesive, Seal with curable resins such as anaerobic adhesives, epoxy adhesives, silicone adhesives, fluorine resin adhesives, polyester adhesives, vinyl chloride adhesives, thermoplastic resins, etc. , it is possible to prevent the internal liquid crystal composition or the like from leaking out. In some cases, this sealing has the effect of preventing deterioration of the liquid crystal element.
  • tapes such as adhesive tape, thermocompression tape, thermosetting tape, thermosetting resin, photo-setting resin, moisture-setting resin, room-temperature-setting adhesive, Seal with curable resins such as anaerobic adhesives, epoxy adhesives, silicone adhesives, fluorine resin adhesives, polyester adhesives, vinyl chloride adhesives, thermoplastic resins, etc.
  • the end face may be entirely covered, or a curable resin or thermoplastic resin may be poured into the inside of the liquid crystal element from the end and allowed to harden, and then a tape or the like may be applied thereon. can be covered with
  • Spacers such as spherical or cylindrical glass, plastic, ceramic, or plastic films may be present between the substrates with transparent conductive films that are arranged facing each other.
  • the spacer may be present in the liquid crystal-polymer composite film between the substrates by being included as a component of the emulsion composition of the present invention, and may be dispersed on the substrate or mixed with an adhesive when assembling the liquid crystal element. and may be present in the adhesive layer.
  • the liquid crystal-polymer composite film of the present invention can be produced by applying the emulsion composition of the present invention, which will be described later, onto a substrate with a transparent conductive film, followed by drying.
  • a coating method known coating methods such as bar coating, blade coating, knife coating, die coating, screen coating, micro gravure roll coating, reverse roll coating, kiss roll coating, dip roll coating, spin coating, and spray coating can be used. .
  • the substrate may be washed as appropriate.
  • the wet film thickness during coating is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more. Moreover, 120 micrometers or less are preferable and 100 micrometers or less are more preferable.
  • the wet film thickness is equal to or more than the above lower limit, there is a tendency that the liquid crystal composition does not have unevenness and can be applied uniformly.
  • the wet film thickness is equal to or less than the above upper limit, the drive voltage tends to decrease to a practical value and the haze in the transparent state tends to decrease.
  • the drying temperature for applying and drying the emulsion composition is preferably 40° C. or higher, more preferably 50° C. or higher. Moreover, 100 degrees C or less is preferable and 80 degrees C or less is more preferable.
  • the drying temperature is equal to or higher than the above lower limit, the drying time is shortened to a practical time, and the amount of water remaining in the film is reduced, which tends to improve the reliability of the liquid crystal element.
  • the drying temperature is equal to or lower than the above upper limit, there is a tendency that structural destruction such as coalescence and reverse phase formation of the emulsion composition during drying hardly occurs.
  • Total light transmittance The total light transmittance in this specification is measured by the method specified in JIS K7136.
  • light means visible light (wavelength: 380 nm to 780 nm), and total light transmittance is measured in the visible light region.
  • the total light transmittance of the liquid crystal element of the present invention in the colored state is preferably 30% or less, more preferably 25% or less, and still more preferably 20% or less.
  • the total light transmittance in the colored state is equal to or less than the above upper limit, the amount of transmitted light in the colored state can be reduced, so there is a tendency that the light shielding property can be enhanced.
  • the total light transmittance in the colored state is preferably 0.1% or more, more preferably 0.3% or more, and still more preferably 0.5% or more.
  • the total light transmittance in the colored state is equal to or higher than the above lower limit, there is a tendency that a wide dynamic range can be maintained.
  • the total light transmittance in the transparent state of the liquid crystal element of the present invention is preferably greater than 30%, more preferably 50% or more, and still more preferably 55% or more. Further, the total light transmittance in the transparent state is preferably 80% or less, more preferably 70% or less. When the total light transmittance in the transparent state is within these ranges, the transparency of the element tends to be ensured.
  • the dynamic range of total light transmittance (the difference in total light transmittance between the colored state and the transparent state, ⁇ TT) of the liquid crystal element of the present invention is preferably 30 or more, preferably 35 or more. Within this range, the resulting device tends to be easily recognized.
  • the haze in the colored state of the liquid crystal element of the invention is preferably 90% or less, more preferably 80% or less, and still more preferably 70% or less.
  • the haze in the colored state is equal to or less than the above upper limit value, the light absorption of the dichroic dye in the colored state can be relatively increased, and a colored state with a more transparent feeling can be obtained.
  • the haze in the colored state is preferably 10% or more, more preferably 20% or more, still more preferably 30% or more.
  • the haze in the colored state is equal to or higher than the above lower limit, there is a tendency that the glare of external light can be further reduced.
  • the haze in the colored state of the liquid crystal element of the invention is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more.
  • the haze in the colored state is at least the above lower limit, the chances of light absorption by the dichroic dye due to multiple scattering increase, and the total light transmittance tends to be lower.
  • the haze in the colored state is preferably 99% or less. When the haze in the colored state is equal to or less than the above upper limit, there is a tendency that the haze in the transparent state can be reduced.
  • the haze in the transparent state of the liquid crystal element of the present invention is preferably 16% or less, more preferably 10% or less, and still more preferably 6% or less. Further, the haze in the transparent state is preferably 0% or more, more preferably 1% or more. When the haze in the transparent state is within these ranges, there is a tendency to obtain a transparent film with good visibility.
  • the haze dynamic range (difference in haze between the colored state and the transparent state, ⁇ Haze) of the liquid crystal element of the present invention is preferably 45 or more, preferably 50 or more. Within this range, the contrast between light shielding and transparency tends to be clear, and the difference between whether the scenery seen through the film is visible/not visible tends to be clear.
  • the emulsion composition of the present invention is an emulsion composition in which a liquid crystal composition is dispersed in a medium containing water, the medium contains a polymer dispersed or dissolved therein, and the liquid crystal composition comprises a liquid crystal component. and a dichroic dye, the liquid crystal component has a positive dielectric anisotropy, an NI point of 110° C. or more and 150° C. or less, and a refractive index anisotropy of 0.01 or more and 0 .1 or less.
  • liquid crystal composition contained in the emulsion composition of the present invention is not particularly limited, examples thereof include the liquid crystal composition used in the liquid crystal element of the present invention described above.
  • medium containing water contained in the emulsion composition is not particularly limited, and examples include pure water or a mixture of water and an organic solvent.
  • organic solvents examples include alcohols, ketones, ethers, esters, carboxylic acids, and amines.
  • the organic solvent may be water-soluble or oil-soluble to the extent that it is slightly soluble in water, but it is preferable to mix an amount that dissolves uniformly in water.
  • Polymers dispersed or dissolved in the medium include natural polymers such as gelatin and gum arabic; synthetic polymers such as polyvinyl alcohol, polyurethane, polyurea, polyacryl, polyamine, polyamide, polyethylene, polypropylene, polystyrene, and polyacrylonitrile; modified products thereof; copolymers such as methacrylate/acrylonitrile, urethane/acrylate, acrylate/acrylonitrile;
  • the polymer is preferably highly dispersible or soluble in water, and gelatin, polyvinyl alcohol, polyurethane, polyurea, polyacryl, polyamine, and modified products thereof are preferred. More preferably at least one selected from the group consisting of polyurethanes, polyacrylics, polyvinyl alcohols and modified products thereof, more preferably at least one selected from the group consisting of polyurethanes, polyacrylics and modified products thereof and particularly preferably polyacrylic. In addition, only one type of polymer may be used, or two or more types may be mixed and used.
  • polymer dispersion is a state in which polymer particles are suspended in a medium
  • polymer dissolution is a state in which the polymer is dissociated to a sufficiently small size by solvation to form a homogeneous system.
  • the liquid crystal composition is dispersed in a medium containing water, but it may be dispersed in a liquid state. It may also be dispersed in the form of microcapsule liquid crystals encapsulated with, for example.
  • Macromolecules that can be used as microcapsule liquid crystal capsules include natural polymers such as gelatin and gum arabic; synthetic polymers such as polyvinyl alcohol, polyurethane, polyurea, polyacryl, polyamine, polyamide, polyethylene, polypropylene, polystyrene, and polyacrylonitrile; modified products thereof; copolymers such as methacrylate/acrylonitrile, urethane/acrylate, acrylate/acrylonitrile;
  • the emulsion composition of the present invention may contain additives within a range that does not impair the performance of the liquid crystal element produced using it.
  • additives include surfactants, emulsifiers, dispersants, anti-settling agents, film-forming aids, leveling agents, light stabilizers, antioxidants, thickeners, polymerization inhibitors, photosensitizers, Adhesives, antifoaming agents, water-soluble dyes, chiral agents and the like can be mentioned.
  • the average particle size is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, from the viewpoint of the transparency of the resulting liquid crystal element. Moreover, it is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the average particle diameter is at least the above lower limit, light scattering of the obtained liquid crystal-polymer composite film tends to be weak, and the haze in the transparent state tends to be small. At the same time, the light scattering of the colored liquid crystal-polymer composite film is also weakened, so that the contribution of the dichroic dye to the light absorption is relatively improved, and it becomes possible to control the total light transmittance with a more transparent feeling.
  • the average particle size is equal to or less than the above upper limit, the grainy feeling of the liquid crystal composition disappears, and the obtained liquid crystal element tends to have good appearance uniformity.
  • the average particle diameter of the liquid crystal composition is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more. Moreover, it is preferably less than 2 ⁇ m, more preferably 1 ⁇ m or less.
  • the average particle diameter is less than the above upper limit, the obtained liquid crystal-polymer composite film has strong light scattering, has a large haze in a light-shielding state, and has a wide dynamic range (a difference in haze between a colored state and a transparent state). tend to be large.
  • the average particle size of the liquid crystal composition is preferably at least the above lower limit.
  • the above average particle diameter is the number-based median diameter.
  • the shape and average particle size of the liquid crystal composition are as described above for the liquid crystal composition of the present invention.
  • the total mass of the liquid crystal composition when the total mass of the polymer dispersed or dissolved in the medium is 1, the total mass of the liquid crystal composition is preferably 0.5 or more, more preferably 1 or more. more preferred. Moreover, it is preferably 4 or less, more preferably 3 or less.
  • the liquid crystal element obtained by using the emulsion composition of the present invention has a low haze in a transparent state and a low driving voltage.
  • the liquid crystal component contained in the liquid crystal composition is not particularly limited, and examples thereof include the liquid crystal component used in the liquid crystal element of the present invention described above.
  • the dielectric anisotropy ( ⁇ ) of the liquid crystal component is positive. In this case, it becomes a normal mode in which a colored state is obtained when no voltage is applied and a transparent state is obtained when a voltage is applied.
  • the NI point (nematic phase-isotropic phase transition temperature) of the liquid crystal component is 110° C. or higher and 150° C. or lower, preferably 120° C. or higher and 140° C. or lower.
  • the NI point is equal to or higher than the above lower limit, there is a tendency that the dynamic range of change in transmittance can be maintained even in continuous driving at a high temperature of about 90°C.
  • the higher the NI point the wider the dynamic range of transmittance change.
  • the NI point is preferably equal to or lower than the upper limit.
  • the method for measuring the NI point of the liquid crystal composition is as described above.
  • the refractive index anisotropy ( ⁇ n) of the liquid crystal component is 0.01 or more, preferably 0.02 or more, and more preferably 0.03 or more. Moreover, it is 0.1 or less, and preferably 0.10 or less.
  • ⁇ n is equal to or less than the upper limit, light scattering at the interface between the polymer matrix and the liquid crystal composition is reduced, and haze in the transparent state tends to be reduced.
  • ⁇ n is equal to or greater than the above lower limit, the order parameter of the liquid crystal composition tends to increase.
  • the method for measuring the refractive index anisotropy of the liquid crystal component is as described above.
  • nematic liquid crystal, cholesteric liquid crystal, smectic liquid crystal, etc. can be used as the liquid crystal contained in the liquid crystal component. Nematic liquid crystals or cholesteric liquid crystals are preferred because they are available at low cost. Further, a chiral agent may be added to the nematic liquid crystal to form a cholesteric liquid crystal (chiral nematic liquid crystal).
  • a chiral agent may be added to the nematic liquid crystal to form a cholesteric liquid crystal (chiral nematic liquid crystal).
  • the reciprocal (1/p) of the chiral pitch p [ ⁇ m] is preferably 0.01 to 0.5 [/ ⁇ m], particularly 0.01 to 0.01. It is preferably 3[/ ⁇ m].
  • the reciprocal of the chiral pitch is at least the above lower limit, the light absorption efficiency of the dichroic dye is high, and the light-shielding property of the colored state can be improved. It is possible.
  • the dichroic dye contained in the liquid crystal composition is not particularly limited, and examples thereof include the dichroic dye used in the liquid crystal element of the present invention described above. Among them, an anthraquinone-based dye and/or an azo-based dye are preferable because they tend to have a large absorption coefficient, high solubility in liquid crystals, and high light resistance.
  • One type of dichroic dye may be used, or a plurality of types may be mixed and used. Although not particularly limited, it preferably contains 20% by mass or more of the anthraquinone and/or azo type, more preferably 50% by mass or more, of the dichroic dye.
  • the content of the dichroic dye with respect to 100% by mass of the liquid crystal composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, and 3% by mass or more. is more preferred. Also, the content of the dichroic dye is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less based on 100% by mass of the liquid crystal composition.
  • the content of the dichroic dye is at least the above lower limit, the liquid crystal element obtained using the emulsion composition of the present invention tends to exhibit greater light absorption depending on the colored state, resulting in a smaller amount of transmitted light.
  • the content of the dichroic dye is equal to or less than the above upper limit, separation and precipitation of the dichroic dye are less likely to occur, and the reliability of the liquid crystal element tends to improve.
  • Method for producing emulsion composition is not particularly limited, it can be produced, for example, by the following method.
  • Production method (1) A liquid crystal composition, which is an oil phase, and a medium containing water, which is an aqueous phase, are mixed, and after an emulsification step, a liquid in which a polymer is dispersed or dissolved in a medium containing water is added. do.
  • Manufacturing method (2) A liquid in which a polymer is dispersed or dissolved in a medium containing a liquid crystal composition as an oil phase and water as an aqueous phase is mixed to carry out an emulsification step.
  • Manufacturing method (3) A microcapsule liquid crystal powder or slurry in which the peripheral portion of the liquid crystal composition is encapsulated with a polymer, a silica compound, inorganic nanoparticles, etc. is mixed with a medium containing water, and after a dispersion step, A liquid in which a polymer is dispersed or dissolved in a medium containing water is added.
  • Manufacturing method (4) A dispersion step is carried out by mixing the powder or slurry of the microcapsule liquid crystal and a liquid in which a polymer is dispersed or dissolved in a medium containing water.
  • the production method (1) and the production method (3) can perform the emulsification step or the dispersion step while the mixture is in a state of low viscosity, so that it can be produced with low energy and the particle size of the liquid crystal composition can be controlled. It is preferable because it is easy to
  • a commercially available aqueous resin emulsion can be used as the liquid in which the polymer is dispersed or dissolved in the medium containing water. Specific examples are shown below.
  • Aqueous urethane emulsion DSM NeoRez R-9660, NeoRez R-972, NeoRez R-9637, NeoRez R-9679, NeoRez R-960, NeoRez R-2170, NeoRez R-966, NeoRez R-967, NeoRez 986, NeoRez R-9603, NeoRez R-4000, NeoRez R-9404, NeoRez R-600, NeoRez R-650, NeoRez R-1010; Daiichi Kogyo Seiyaku Co., Ltd.
  • the surfactant is not particularly limited, and may be ionic or nonionic, may be low-molecular-weight or high-molecular-weight, and may be non-reactive or reactive.
  • the amount of the surfactant added is not particularly limited, it is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, relative to the liquid crystal composition. Moreover, 20 mass % or less is preferable and 10 mass % or less is more preferable. When the amount of the surfactant added is within the above range, the dispersion of the emulsion tends to be stabilized and the particle size of the liquid crystal composition can be controlled within the desired range.
  • the surfactant may be added to the liquid crystal composition or added to a medium containing water, depending on the solubility.
  • surfactants include the following. anionic surfactants such as carboxylates, sulfonates, sulfates, and phosphates; Cationic surfactants such as amine salts and quaternary ammonium salts; Amphoteric surfactants such as alkylamino fatty acid salts, alkylamine oxides, betaines, sulfobetaines, amidosulfobetaines, carbobetaines, imidazolines; Ether type such as polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene aralkyl ether, polyoxyethylene aralkyl aryl ether, polyoxyethylene polyoxypropylene block adduct, alkyl glucoside, polyether-modified silicone, glycerin fatty acid Ester types such as esters, sorbitan fatty acid esters, and sucrose fatty acid esters Ester-ether types such as polyoxyethylene fatty acid esters, polyoxyethylene
  • anionic surfactants are preferable because of their high water solubility and dispersion stability, and sulfonates are particularly preferable.
  • Nonionic surfactants are preferred because they tend to increase the electrical reliability of liquid crystal elements.
  • ether type or ester type is preferable, and polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene aralkyl ether, polyoxyethylene aralkyl aryl ether, polyoxyethylene polyoxypropylene block adduct and the like are particularly preferable.
  • the dispersion stabilizer is not particularly limited, but examples thereof include the following. Polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyethylene glycol, polyacrylic acid, polymethacrylic acid, polyurethane, polyamine, polyamide, polyether, maleic acid copolymer, gelatin, starch, chitosan , polymers such as cornstarch and modified products thereof; Copolymers such as methacrylate/acrylonitrile, urethane/acrylate, acrylate/acrylonitrile; Inorganic oxide fine particles such as silica fine particles, titania fine particles, and alumina fine particles: Among these, polyvinyl alcohol and modified products thereof, polyurethane, polyamide and the like are preferable because of their high dispersion stability. Examples of dispersion stabilizers include those exemplified as polymers constituting the polymer matrix. contained as a molecule.
  • the degree of saponification of polyvinyl alcohol is preferably 80 mol % or more, more preferably 85 mol % or more. Also, it is preferably 95 mol % or less, more preferably 91 mol % or less. When the degree of saponification is within these ranges, the solubility in a medium containing water tends to be high.
  • the degree of polymerization of polyvinyl alcohol is preferably 100 or more, more preferably 300 or more. Moreover, 2500 or less are preferable and 1000 or less are more preferable. When the degree of polymerization is within these ranges, the film tends to be excellent in flexibility.
  • polyvinyl alcohol examples include Gohsenol GL-03, Gohsenol GL-05, Gohsenol GM-14L, Gohsenol GM14, Gohsenol GH-17, Gohsenol GH-17R, Gohsenol GH-20, and Gohsenol GH-23 manufactured by Nippon Synthetic Chemical Co., Ltd. , Gohsenol AL-06, Gohsenol P-610, Gohsenol C-500; Kuraray Co., Ltd.
  • the emulsification method and the dispersion method are not particularly limited. a method of crushing; a method of extruding a liquid through pores using a porous membrane, microchannel, inkjet, or the like; and the like.
  • a method in which a liquid is extruded through pores using a porous membrane is used to obtain a precise particle size distribution. It is preferable because it can be controlled to a certain value and is easy to manufacture.
  • the porous film is not particularly limited, but Shirasu porous glass or the like can be used.
  • an emulsion composition having an average particle size of the liquid crystal composition of 0.01 ⁇ m or more and less than 2 ⁇ m an emulsion composition having an average particle size of the liquid crystal composition of 2 ⁇ m or more and 50 ⁇ m or less is first produced by a film emulsification method or the like.
  • a uniform emulsion composition can be easily produced by mechanically pulverizing the particles using a high-pressure emulsifier or an ultrasonic disperser.
  • a cross-linking agent may be used as appropriate in the emulsion composition.
  • the use of a cross-linking agent tends to improve the water resistance and impact resistance of the liquid crystal-polymer composite film.
  • the cross-linking agent is not particularly limited, and examples thereof include the following.
  • Epoxy compounds such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycerol diglycidyl ether, polyglycerin polyglycidyl ether, diglycidylaniline; ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyldimethoxymethylsilane, ⁇ -glycidoxypropyldiethoxymethylsilane, ⁇ -(3,4-epoxycyclohexyl ) epoxysilane compounds such as ethyltrimethoxysilane and ⁇ -(3,4-epoxycyclohexyl)ethyltriethoxysilane; 3-amin
  • catalysts such as imidazole-based compounds, amine-based compounds, and phosphorus-based compounds may be added.
  • hydrazide compounds oxazoline group-containing compounds, carbodiimide group-containing compounds, and blocked isocyanates are preferred because of their high cross-linking speed and low toxicity.
  • any combination of the polymer and the cross-linking agent can be used. high and desirable. Moreover, from the viewpoint of the stability of the resulting emulsion composition, a combination of polyacryl and a carbodiimide group-containing compound is preferred.
  • the amount of the cross-linking agent to be added is not particularly limited, but it is preferably 0.1 mass % or more, more preferably 1 mass % or more, relative to the polymer to be cross-linked. Moreover, it is preferably 20% by mass or less, more preferably 10% by mass or less. When the amount of the cross-linking agent added is within the above range, the liquid crystal-polymer composite film tends to be improved in water resistance and impact resistance and retain flexibility.
  • the timing of addition of the cross-linking agent may be a one-component type in which it is added to the emulsion composition from the beginning, or a two-component type in which it is added immediately before application to the substrate.
  • the viscosity of the emulsion composition of the present invention is preferably 10 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more. Moreover, it is preferably 10000 mPa ⁇ s or less, more preferably 2000 mPa ⁇ s or less. When the viscosity is within the above range, it becomes easy to apply a liquid crystal-polymer composite film with a uniform film thickness, and the coating speed can be increased, which tends to increase productivity.
  • a viscosity modifier such as a thickening agent, a thixotropic agent, or a viscosity reducing agent may be used.
  • the viscosity modifier is not particularly limited, but includes those exemplified as the dispersion stabilizer.
  • the content of the liquid crystal composition in the emulsion composition is preferably 20% by mass or more, more preferably 30% by mass or more. Moreover, 70 mass % or less is preferable, and 65 mass % or less is more preferable.
  • repelling that occurs when the emulsion composition is applied to a substrate is suppressed, and the particle diameter of the liquid crystal composition and the viscosity of the emulsion composition are within the above ranges. tends to be easier.
  • the particle size of the polymer used in the emulsion composition is preferably 1 nm or more, more preferably 10 nm or more. Also, it is preferably 1000 nm or less, more preferably 200 nm or less. Within the above range, it tends to be easier to keep the viscosity of the emulsion composition within the above range.
  • the molecular weight of the polymer is preferably 1.0 ⁇ 10 3 or more, more preferably 1.0 ⁇ 10 4 or more. Also, it is preferably 1.0 ⁇ 10 6 or less, more preferably 1.0 ⁇ 10 5 or less. When the molecular weight of the polymer is within the above range, it tends to be easier to keep the viscosity of the emulsion composition within the above range.
  • the azo-yellow dichroic dye, and the azo-magenta dichroic dye NKX-3739 manufactured by Hayashibara Co., Ltd. and the chiral agent (CB-15) are mixed in the following formulation, and the dichroic dye is dissolved. to obtain a black liquid crystal composition (L-1).
  • Nematic liquid crystal 92.0% by mass D-1: 3.4% by mass D-2: 0.6% by mass NKX-3739: 1.0% by mass CB-15: 3.0% by mass Content of dichroic dye with respect to 100% by mass of liquid crystal composition: 5% by mass
  • the average particle size of the liquid crystal composition in the emulsion composition (I-1) was 10 ⁇ m. Assuming that the mass of the polymer (P-1) dispersed or dissolved in the aqueous phase in the emulsion composition (I-1) is 1, the mass of the liquid crystal composition (L-1) is 1.14. there were.
  • a film obtained by forming a transparent ITO electrode on a PET film substrate having a thickness of 125 ⁇ m was used as the substrate.
  • the emulsion composition (I-1) was applied on the ITO film of this substrate by bar coating and dried at 50° C. to obtain a liquid crystal-polymer composite film with a thickness of 30 ⁇ m.
  • a liquid crystal composition having an average particle size of 10 ⁇ m was dispersed in the polymer matrix.
  • the film substrate on which the liquid crystal-polymer composite film was formed and another substrate were laminated face to face at 80° C. to obtain a liquid crystal element (F-1).
  • the liquid crystal element (F-1) was flexible and could be cut and shaped with scissors. That is, this liquid crystal element (F-1) could be cut and shaped.
  • the liquid crystal element (F-1) exhibits normal mode driving, in which it turns black when the voltage is off and becomes transparent when the voltage is on (rectangular wave with a frequency of 100 Hz and 50 Vrms).
  • the haze was 70.3% and the total light transmittance was 23.9%.
  • the haze was 9.6% and the total light transmittance was 54.5%.
  • the average particle size of the liquid crystal composition in the emulsion composition (I-2) was 10 ⁇ m. Assuming that the mass of the polymer (P-1) dispersed or dissolved in the aqueous phase in the emulsion composition (I-2) is 1, the mass of the liquid crystal composition (L-2) is 1.15. there were.
  • a liquid crystal device (F-2) was obtained in the same manner as in Example 1 using the emulsion composition (I-2).
  • the liquid crystal element (F-2) had flexibility and could be cut and shaped with scissors. That is, this liquid crystal element (F-2) could be cut and shaped.
  • the liquid crystal element (F-2) exhibits a normal mode drive in which the liquid crystal element (F-2) turns black when the voltage is off and becomes transparent when the voltage is on (rectangular wave with a frequency of 100 Hz and 50 Vrms).
  • the haze was 72.8% and the total light transmittance was 25.2%.
  • the haze was 15.8% and the total light transmittance was 55.2%.
  • 50% by mass of a 1.5% by mass sodium dodecylbenzenesulfonate aqueous solution was added to 50% by mass of the liquid crystal composition (L-3), emulsified through Shirasu porous glass, and an o/w emulsion (E-3 ).
  • E-3 o/w emulsion
  • To 55 parts by mass of o/w emulsion (E-3) was added 45 parts by mass of white latex (W-1), and the mixture was stirred until uniform to obtain emulsion composition (I-3).
  • the average particle size of the liquid crystal composition in the emulsion composition (I-3) was 10 ⁇ m. Assuming that the mass of the polymer (P-1) dispersed or dissolved in the aqueous phase in the emulsion composition (I-3) is 1, the mass of the liquid crystal composition (L-3) is 1.14. there were.
  • a black liquid crystal element (F-3) was obtained in the same manner as in Example 1 using the emulsion composition (I-3).
  • a liquid crystal composition having an average particle size of 10 ⁇ m was dispersed in the polymer matrix.
  • the liquid crystal element (F-3) was flexible and could be cut and shaped with scissors. That is, this liquid crystal element (F-3) could be cut and shaped.
  • the liquid crystal element (F-3) exhibits a normal mode drive in which the liquid crystal element (F-3) turns black when the voltage is off and becomes transparent when the voltage is on (rectangular wave with a frequency of 100 Hz and 50 Vrms).
  • the haze was 72.0% and the total light transmittance was 19.1%.
  • the haze was 9.5% and the total light transmittance was 46.7%.
  • Example 3 The liquid crystal element (F-1) obtained in Example 1 was placed in a constant temperature bath at a temperature of 90° C. and continuously driven by applying a rectangular wave with a frequency of 100 Hz and 50 Vrms. Continuous driving was started, and after 65 hours, 133 hours, and 228 hours, the sample was taken out, returned to room temperature, and haze and total light transmittance were measured in the same manner as in Example 1. Assuming that the respective differences (dynamic ranges) at the time of ON and OFF are ⁇ Haze and ⁇ TT, no significant change from the initial value was observed. The results are shown in Table 1 below.
  • Example 4 The liquid crystal element (F-2) obtained in Example 2 was placed in a constant temperature bath at a temperature of 90° C., and continuously driven in the same manner as in Example 3 by applying a rectangular wave with a frequency of 100 Hz and 50 Vrms. Continuous driving was started, and after 65 hours, 133 hours, and 228 hours, the device was taken out, returned to room temperature, and haze and total light transmittance were measured. Assuming that the difference between ON and OFF is ⁇ Haze and ⁇ TT, no significant change from the initial value was observed. The results are shown in Table 2 below.
  • Comparative Example 2 The liquid crystal element (F-3) obtained in Comparative Example 1 was placed in a constant temperature bath at a temperature of 90° C., and continuously driven in the same manner as in Example 3 by applying a rectangular wave with a frequency of 100 Hz and 50 Vrms. Continuous driving was started, and after 65 hours, 133 hours, and 228 hours, the device was taken out, returned to room temperature, and haze and total light transmittance were measured. Assuming that the difference between ON and OFF is ⁇ Haze and ⁇ TT, a large decrease was observed after 65 hours. The results are shown in Table 3 below.
  • the haze (dynamic range ⁇ Haze) and total light transmittance (dynamic range ⁇ TT) after 65 hours, 133 hours and 228 hours from the start of continuous driving of Examples 3 and 4 and Comparative Example 2 are shown in FIGS. 2.
  • the change width (dynamic range) of the visible light transmittance of the liquid crystal element is high, and the dynamic range is high even after driving at high temperature. shown to be maintained.
  • Example 5 The o/w emulsion (E-1) prepared in Example 1 was subjected to ultrasonic dispersion for 10 minutes using an ultrasonic dispersion machine (UH-600) manufactured by SMTE to obtain an o/w emulsion (E-5). rice field. To 55 parts by weight of o/w emulsion (E-5) was added 45 parts by weight of white latex (W-1), and the mixture was stirred until uniform to obtain emulsion composition (I-5). The average particle size of the liquid crystal composition in the emulsion composition (I-5) was 0.2 ⁇ m. Assuming that the mass of the polymer (P-1) dispersed or dissolved in the aqueous phase in the emulsion composition (I-5) is 1, the mass of the liquid crystal composition (L-1) is 1.14. there were.
  • a liquid crystal device (F-5) was obtained in the same manner as in Example 1 using the emulsion composition (I-5).
  • a liquid crystal composition having an average particle size of 0.2 ⁇ m was dispersed in the polymer matrix.
  • the liquid crystal element (F-5) was flexible and could be cut and shaped with scissors. That is, this liquid crystal element (F-5) could be cut and shaped.
  • the liquid crystal element (F-5) exhibits a normal mode drive in which the liquid crystal element (F-5) turns black when the voltage is off and becomes transparent when the voltage is on (rectangular wave with a frequency of 100 Hz and 50 Vrms).
  • the haze was 74.0% and the total light transmittance was 22.7%.
  • the haze was 5.7% and the total light transmittance was 66.3%.
  • Example 6 The o/w emulsion (E-2) prepared in Example 2 was subjected to ultrasonic dispersion for 10 minutes using an ultrasonic dispersion machine (UH-600) manufactured by SMTE to obtain an o/w emulsion (E-6). rice field. To 55 parts by weight of o/w emulsion (E-6) was added 45 parts by weight of white latex (W-1), and the mixture was stirred until uniform to obtain emulsion composition (I-6). The average particle size of the liquid crystal composition in the emulsion composition (I-6) was 0.2 ⁇ m. Assuming that the mass of the polymer (P-1) dispersed or dissolved in the aqueous phase in the emulsion composition (I-6) is 1, the mass of the liquid crystal composition (L-2) is 1.16. there were.
  • a liquid crystal device (F-6) was obtained in the same manner as in Example 1 using the emulsion composition (I-6).
  • a liquid crystal composition having an average particle size of 0.2 ⁇ m was dispersed in the polymer matrix.
  • the liquid crystal element (F-6) was flexible and could be cut and shaped with scissors. That is, this liquid crystal element (F-6) could be cut and shaped.
  • the liquid crystal element (F-6) exhibited normal mode driving in which the liquid crystal element (F-6) was colored black when the voltage was off and became transparent when the voltage was on (rectangular wave with a frequency of 100 Hz and 50 Vrms). When the voltage was off, the haze was 67.7% and the total light transmittance was 25.8%. When a voltage of 100 Vrms was applied, the haze was 8.8% and the total light transmittance was 59.8%.
  • a black liquid crystal element (F-7) was obtained in the same manner as in Example 1 using the emulsion composition (I-7).
  • a liquid crystal composition having an average particle size of 0.2 ⁇ m was dispersed in the polymer matrix.
  • the liquid crystal element (F-7) was flexible and could be cut and shaped with scissors. That is, this liquid crystal element (F-7) could be cut and shaped.
  • the liquid crystal element (F-7) exhibits a normal mode drive in which the liquid crystal element (F-7) turns black when the voltage is off and becomes transparent when the voltage is on (rectangular wave with a frequency of 100 Hz and 50 Vrms).
  • the haze was 59.6% and the total light transmittance was 27.1%.
  • the haze was 8.4% and the total light transmittance was 54.4%.
  • Example 7 The liquid crystal element (F-5) obtained in Example 5 was placed in a constant temperature bath at a temperature of 90° C. and continuously driven by applying a rectangular wave with a frequency of 100 Hz and 50 Vrms. Continuous driving was started, and after 65 hours, 133 hours, and 228 hours, the sample was taken out, returned to room temperature, and haze and total light transmittance were measured in the same manner as in Example 1. Assuming that the respective differences (dynamic ranges) at the time of ON and OFF are ⁇ Haze and ⁇ TT, no significant change from the initial value was observed. The results are shown in Table 4 below.
  • Example 8 The liquid crystal element (F-6) obtained in Example 6 was placed in a constant temperature bath at a temperature of 90° C., and continuously driven in the same manner as in Example 7 by applying a rectangular wave with a frequency of 100 Hz and 50 Vrms. Continuous driving was started, and after 65 hours, 133 hours, and 228 hours, the device was taken out, returned to room temperature, and haze and total light transmittance were measured. Assuming that the difference between ON and OFF is ⁇ Haze and ⁇ TT, no significant change from the initial value was observed. The results are shown in Table 5 below.
  • Comparative Example 4 The liquid crystal element (F-7) obtained in Comparative Example 3 was placed in a constant temperature bath at a temperature of 90° C., and continuously driven in the same manner as in Example 7 by applying a rectangular wave with a frequency of 100 Hz and 50 Vrms. Continuous driving was started, and after 65 hours, 133 hours, and 228 hours, the device was taken out, returned to room temperature, and haze and total light transmittance were measured. Assuming that the difference between ON and OFF is ⁇ Haze and ⁇ TT, a large decrease was observed after 65 hours. The results are shown in Table 6 below.
  • the haze (dynamic range ⁇ Haze) and total light transmittance (dynamic range ⁇ TT) after 65 hours, 133 hours and 228 hours from the start of continuous driving of Examples 7 and 8 and Comparative Example 4 are shown in FIGS. 4.
  • the change width (dynamic range) of the visible light transmittance of the liquid crystal element is high, and the dynamic range is high even after driving at high temperatures. shown to be maintained.
  • 50% by mass of a 1.5% by mass sodium dodecylbenzenesulfonate aqueous solution was added to 50% by mass of the liquid crystal composition (L-8), emulsified through Shirasu porous glass, and an o/w emulsion (E-8 ).
  • E-8 o/w emulsion
  • E-8 white latex
  • the average particle size of the liquid crystal composition in the emulsion composition (I-8) was 10 ⁇ m. Assuming that the mass of the polymer (P-1) dispersed or dissolved in the aqueous phase in the emulsion composition (I-8) is 1, the mass of the liquid crystal composition (L-8) is 1.17. there were.
  • a liquid crystal device (F-8) was obtained in the same manner as in Example 1 using the emulsion composition (I-8).
  • a liquid crystal composition having an average particle size of 10 ⁇ m was dispersed in the polymer matrix.
  • the liquid crystal element (F-8) was flexible and could be cut and shaped with scissors. That is, this liquid crystal element (F-8) could be cut and shaped.
  • the liquid crystal element (F-8) exhibited normal mode driving in which the liquid crystal element (F-8) was colored black when the voltage was off and became transparent when the voltage was on (rectangular wave with a frequency of 100 Hz and 50 Vrms). When the voltage was off, the haze was 73.1% and the total light transmittance was 23.7%. When a voltage of 100 Vrms was applied, the haze was 7.2% and the total light transmittance was 56.3%.
  • the average particle size of the liquid crystal composition in emulsion composition (I-9) was 10 ⁇ m. Assuming that the mass of the polymer (P-1) dispersed or dissolved in the aqueous phase in the emulsion composition (I-9) is 1, the mass of the liquid crystal composition (L-9) is 1.25. there were.
  • a liquid crystal device (F-9) was obtained in the same manner as in Example 1 using the emulsion composition (I-9).
  • a liquid crystal composition having an average particle size of 10 ⁇ m was dispersed in the polymer matrix.
  • the liquid crystal element (F-9) was flexible and could be cut and shaped with scissors. That is, this liquid crystal element (F-9) could be cut and shaped.
  • the liquid crystal element (F-9) exhibits a normal mode drive in which the liquid crystal element (F-9) turns black when the voltage is off and becomes transparent when the voltage is on (rectangular wave with a frequency of 100 Hz and 50 Vrms).
  • the haze was 72.5% and the total light transmittance was 24.4%.
  • the haze was 7.6% and the total light transmittance was 57.3%.
  • To 50% by mass of the liquid crystal composition (L-10) 50% by mass of a 1.5% by mass sodium dodecylbenzenesulfonate aqueous solution was added, emulsified through Shirasu porous glass, and an o/w emulsion (E-10 ).
  • E-10 white latex
  • W-1 white latex
  • the average particle size of the liquid crystal composition in the emulsion composition (I-10) was 10 ⁇ m. Assuming that the mass of the polymer (P-1) dispersed or dissolved in the aqueous phase in the emulsion composition (I-10) is 1, the mass of the liquid crystal composition (L-10) is 1.17. there were.
  • a liquid crystal device (F-10) was obtained in the same manner as in Example 1 using the emulsion composition (I-10).
  • a liquid crystal composition having an average particle size of 10 ⁇ m was dispersed in the polymer matrix.
  • the liquid crystal element (F-10) was flexible and could be cut and shaped with scissors. That is, this liquid crystal element (F-10) could be cut and shaped.
  • the liquid crystal element (F-10) exhibits a normal mode drive in which the liquid crystal element (F-10) turns black when the voltage is off and becomes transparent when the voltage is on (rectangular wave with a frequency of 100 Hz and 50 Vrms).
  • the haze was 83.3% and the total light transmittance was 24.7%.
  • the haze was 18.2% and the total light transmittance was 58.0%.
  • To 55 parts by weight of o/w emulsion (E-11) was added 45 parts by weight of white latex (W-1), and the mixture was stirred until uniform to obtain emulsion composition (I-11).
  • the average particle size of the liquid crystal composition in the emulsion composition (I-11) was 10 ⁇ m. Assuming that the mass of the polymer (P-1) dispersed or dissolved in the aqueous phase in the emulsion composition (I-11) is 1, the mass of the liquid crystal composition (L-11) is 1.17. there were.
  • a liquid crystal device (F-11) was obtained in the same manner as in Example 1 using the emulsion composition (I-11).
  • a liquid crystal composition having an average particle size of 10 ⁇ m was dispersed in the polymer matrix.
  • the liquid crystal element (F-11) was flexible and could be cut and shaped with scissors. That is, this liquid crystal element (F-11) could be cut and shaped.
  • the liquid crystal element (F-11) exhibits a normal mode drive in which the liquid crystal element (F-11) turns black when the voltage is off and becomes transparent when the voltage is on (rectangular wave with a frequency of 100 Hz and 50 Vrms).
  • the haze was 84.3% and the total light transmittance was 26.6%.
  • the haze was 22.2% and the total light transmittance was 60.1%.
  • the dynamic ranges of the haze and total light transmittance of the liquid crystal elements (F-10) and (F-11) produced in Comparative Examples 5 and 6 are about the same as those of Examples 9 and 10. It had a high haze and lacked transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

透明導電膜が対向するように配置された2枚の透明導電膜付き基板と、前記2枚の透明導電膜付き基板の間に挟持された液晶-高分子複合膜とを備える液晶素子であって、前記液晶-高分子複合膜が、高分子マトリクスと、前記高分子マトリクスに囲まれた液晶組成物とを有し、前記液晶組成物は、液晶成分及び二色性色素を含有し、前記液晶成分の誘電率異方性は正で、NI点が110℃以上150℃以下であり、前記液晶成分の屈折率異方性が0.01以上0.1以下であり、前記液晶-高分子複合膜は電圧の印加により透明状態と着色状態を切り替えることができるものである、液晶素子。

Description

液晶素子及びエマルジョン組成物
 本発明は、液晶素子及びエマルジョン組成物に関する。詳しくは、透明状態と着色状態の切り替えができる液晶素子及び該液晶素子に用いることのできるエマルジョン組成物に関する。
 近年、ガラスの透明度を電気的に切り替えることができるスマートガラスの需要が大きくなってきている。スマートガラスに用いられる調光材としては、液晶方式、エレクトロクロミック方式、SPD(Suspend Particle Device)方式等が提案されている。この中でも、液晶方式は応答時間が圧倒的に短く、利用者にストレスを感じさせないために注目されている。
 液晶方式の中でも、PDLC(Polymer Dispersed Liquid Crystals)が広く知られている(非特許文献1)。PDLCは粒子状の液晶が高分子マトリクスに分散した液晶-高分子複合膜が、2枚の透明導電基板に挟まれた構造を持つ。
 PDLCの中でもノーマルモード駆動が最も一般的である。ノーマルモード駆動のPDLCに対して、電圧を印加していない状態では、液晶分子が高分子マトリクスの壁面に沿って配向し、液晶領域と高分子マトリクスとで屈折率の不一致が生じる。この不一致により光散乱を起こして白濁することで、目隠しとして機能する。一方、PDLCに電圧を印加した場合、液晶分子が電界方向へ配向することにより、液晶領域と高分子マトリクスとで屈折率が一致し、光を透過して透明になる。
 PDLCは、電車、自動車等の車両、ビジネスビル、病院等の建物の窓、扉、間仕切り等において、意匠性やプライバシーの保護等を目的とした調光シャッターとして実用化されている。また、文字や図形を表示する表示装置としても用いられている。
 PDLCは前述の液晶-高分子複合膜の構造により可撓性を持つために、フィルム素子にすることができる。加えて、フィルム素子を切断整形することが可能である。このような特徴を生かし、利用者が簡単にガラスに貼りつけ施工することができる。
 近年、省エネ志向の高まりから、スマートガラスを窓に活用し、室内に入る日射量を制御することで冷暖房負荷を減らす試みがなされている。ところがPDLCの場合、光散乱の有無を切り替えることができるものの、散乱はほとんどが前方散乱であるため光が素子を透過してしまう。そのため、透過光量をほとんど制御できず、省エネに寄与できない。
 特許文献1~3には、二色性色素を液晶中に添加したゲストホスト液晶(GH液晶)方式のスマートガラスが開示されている。ゲストホスト液晶方式は液晶素子の吸光度を電気的に切り替えることにより透明状態と着色状態を切り替える方式であるため、透過光量を制御することができる。
 しかし、ゲストホスト液晶を切断整形可能なフィルム素子にするためには、PDLCのように、液晶を囲み、かつ膜構造を支持するマトリクスが必要となる。
 特許文献4~6には、PDLCとゲストホスト液晶を組み合わせたゲストホストPDLCが開示されており、透過光量を制御可能なフィルム素子が期待されている。
 特許文献4では、液晶-高分子複合膜を光重合による重合誘起相分離により製造している。特許文献4の方法では、液晶中の二色性色素が光を吸収することで光重合を阻害する結果、高分子マトリクスの硬化不良が起こるため、液晶素子の信頼性に問題がある。この問題は、特に液晶素子の遮光性を高くしようとする場合に大きな問題となる。
 特許文献5では、液晶-高分子複合膜を水系のエマルジョン組成物を用いて製造している。このエマルジョン組成物を用いた製造法は、特許文献4の重合誘起相分離による製造法と比べ、所望の膜構造を得ることが容易であり、かつ高分子マトリクスの硬化不良に由来する信頼性の低下が生じない利点がある。そのため、より遮光性を高くした液晶素子を得ることができる。
 特許文献5によると、液晶の複屈折率(Δn)が0.15以下であり、かつ二色性色素のオーダーパラメータSが0.75以上であれば、PDLCの可視光透過率の変化幅が30%以上で、かつ透明状態のヘーズが10%以下になると記載されている。
 しかしながら、ここでの可視光透過率は散乱光が含まれていない直線光による直線透過率を示しており、前方散乱された光を含めると、透過光量の変化幅はなおも非常に小さいため、日射量がほとんど制御できない課題がある。
 特許文献6では、ゲストホスト液晶の屈折率異方性とオーダーパラメータを制御することで、可視光透過率の変化幅(ダイナミックレンジ)が広くヘーズの低い液晶素子を得ている。
 しかし、特許文献6の液晶素子は、高温で長時間駆動した場合、可視光透過率のダイナミックレンジが変化するという課題があり、信頼性は必ずしも十分ではなかった。自動車用途にでは車内温度が高温になることがあるため、このようなダイナミックレンジの変化は、液晶素子を自動車用途に展開する上での障壁となる。
特表2016-510907号公報 特表2016-536634号公報 特表2017-511895号公報 特開2011-190314号公報 特開昭60-252687号公報 特開2000-347223号公報
D.A.Higgins,Advanced Materials 2000,12,No.4
 本発明は、透過光量を電気的に制御することができ、かつ、切断整形可能な液晶素子において、可視光透過率のダイナミックレンジが高く、高温下の駆動後もダイナミックレンジの低下の少ない液晶素子を提供することを課題とする。
 本発明者は、液晶成分及び二色性色素を含む液晶組成物中の液晶成分として所定の誘電率異方性及び屈折率異方性のものを用い、そのNI点(ネマチック相-等方相転移温度)を高めることにより、液晶素子の、可視光透過率の変化幅(ダイナミックレンジ)が高く、高温下での駆動後においてもダイナミックレンジが維持されることを見出し、本発明を完成させた。即ち、本発明の要旨は、以下に存する。
[1] 透明導電膜が対向するように配置された2枚の透明導電膜付き基板と、前記2枚の透明導電膜付き基板の間に挟持された液晶-高分子複合膜とを備える液晶素子であって、
 前記液晶-高分子複合膜が、高分子マトリクスと、前記高分子マトリクスに囲まれた液晶組成物とを有し、
 前記液晶組成物は、液晶成分及び二色性色素を含有し、
 前記液晶成分の誘電率異方性は正で、NI点が110℃以上150℃以下であり、
 前記液晶成分の屈折率異方性が0.01以上0.1以下であり、
 前記液晶-高分子複合膜は電圧の印加により透明状態と着色状態を切り替えることができるものである、液晶素子。
[2] 前記液晶組成物の平均粒径が2μm以上50μm以下である、[1]に記載の液晶素子。
[3] 前記液晶組成物の平均粒径が0.01μm以上2μm未満である、[1]に記載の液晶素子。
[4] 前記二色性色素がアントラキノン色素及び/またはアゾ色素を含有するものである、[1]~[3]のいずれかに記載の液晶素子。
[5] 前記液晶組成物100質量%に対する前記二色性色素の含有量が、0.1質量%以上20質量%以下である、[1]~[4]のいずれかに記載の液晶素子。
[6] 前記液晶成分がネマチック液晶またはカイラルネマチック液晶である、[1]~[5]のいずれかに記載の液晶素子。
[7] 前記高分子マトリクスを構成する高分子がポリウレタン、ポリアクリル、ポリビニルアルコール及びこれらの変性体からなる群より選択される少なくとも1つを含有するものである、[1]~[6]のいずれかに記載の液晶素子。
[8] 前記着色状態の全光線透過率が0.1%以上30%以下である、[1]~[7]のいずれかに記載の液晶素子。
[9] 前記透明状態の全光線透過率が30%より大きく80%以下である、[1]~[8]のいずれかに記載の液晶素子。
[10] 水を含有する媒体に液晶組成物が分散したエマルジョン組成物であって、
 前記媒体は、高分子が分散又は溶解したものであり、
 前記液晶組成物は、液晶成分及び二色性色素を含有し、
 前記液晶成分は誘電率異方性が正であり、NI点が110℃以上150℃以下であり、
 前記液晶成分の屈折率異方性が0.01以上0.1以下である、エマルジョン組成物。
[11] 前記エマルジョン組成物中の前記液晶組成物の平均粒径が2μm以上50μm以下である、[10]に記載のエマルジョン組成物。
[12] 前記エマルジョン組成物中の前記液晶組成物の平均粒径が0.01μm以上2μm未満である、[10]に記載のエマルジョン組成物。
[13] 前記二色性色素がアントラキノン色素及び/またはアゾ色素を含有するものである、[10]~[12]のいずれかに記載のエマルジョン組成物。
[14] 前記液晶組成物100質量%に対する前記二色性色素の含有量が、0.1質量%以上20質量%以下である、[10]~[13]のいずれかに記載のエマルジョン組成物。
[15] 前記液晶成分がネマチック液晶またはカイラルネマチック液晶である、[10]~[14]のいずれかに記載のエマルジョン組成物。
[16] 前記高分子がポリウレタン、ポリアクリル、ポリビニルアルコール及びこれらの変性体からなる群より選択される少なくとも1つを含有するものである、[10]~[15]のいずれかに記載のエマルジョン組成物。
 本発明によれば、透過光量を電気的に制御することができ、かつ、切断整形可能な液晶素子が提供される。また、当該素子において、高い遮光性と広いダイナミックレンジを両立し、更には高温下で駆動してもダイナミックレンジの低下が抑えられる。
 本発明の液晶素子は、上記の特性から、窓、スクリーン、ディスプレイ等に有用である。例えば、建物及び乗り物の窓、パーテーション等に視野遮断素子として用いることができる。また、広告板、ショーウインドウ、コンピューター端末、プロジェクション等のディスプレイとして利用することができる。
 本発明の液晶素子は、特に高温での駆動信頼性が高いことから、直射日光等で温度の上昇する環境、例えば自動車用途において特に有用である。
図1は、実施例3、4及び比較例2において、連続駆動を開始してから、65時間後、133時間後、228時間後のヘーズ(ダイナミックレンジ ΔHaze)を示すチャートである。 図2は、実施例3、4及び比較例2において、連続駆動を開始してから、65時間後、133時間後、228時間後の全光線透過率(ダイナミックレンジ ΔTT)を示すチャートである。 図3は、実施例7、8及び比較例4において、連続駆動を開始してから、65時間後、133時間後、228時間後のヘーズ(ダイナミックレンジ ΔHaze)を示すチャートである。 図4は、実施例7、8及び比較例4において、連続駆動を開始してから、65時間後、133時間後、228時間後の全光線透過率(ダイナミックレンジ ΔTT)を示すチャートである。
 以下に本発明について詳細に説明する。以下の説明は、本発明の実施の形態の一例であり、本発明はその要旨を超えない限り、以下の記載内容に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
〔液晶素子〕
 本発明の液晶素子は、透明導電膜が対向するように配置された2枚の透明導電膜付き基板と、前記2枚の透明導電膜付き基板の間に挟持された液晶-高分子複合膜とを備える液晶素子であって、前記液晶-高分子複合膜が、高分子マトリクスと、前記高分子マトリクスに囲まれた液晶組成物とを有し、前記液晶組成物は、液晶成分及び二色性色素を含有し、前記液晶成分の誘電率異方性は正で、NI点が110℃以上150℃以下であり、前記液晶成分の屈折率異方性が0.01以上0.1以下であり、前記液晶-高分子複合膜は電圧の印加により透明状態と着色状態を切り替えることができるものである。
[メカニズム]
 本発明の液晶素子においては、前記液晶-高分子複合膜が、高分子マトリクスと前記高分子マトリクスに囲まれた液晶組成物とを有することで、可撓性を有し、切断整形可能な液晶素子となる。前記液晶組成物は液晶成分と二色性色素を含有することから着色状態において十分な光吸収能を示すことができる。また、液晶成分のNI点が110℃以上150℃以下であることで、ダイナミックレンジが広く、高温下での駆動においてもそのダイナミックレンジを長く保つことができる。ダイナミックレンジを広くするためには液晶の秩序度(オーダーパラメーター)を高くすることが一つの方法であるが、NI点が高い方が、秩序度が高い傾向にある。但し、NI点が高すぎるとネマチック相として動作する下限温度が上昇し、実用的な温度範囲から外れてしまう。具体的にはNI点が150℃を超えるとネマチック相として動作する下限が0℃を超えてしまう場合が多い。このため、本発明で用いる液晶成分のNI点は150℃以下とする。
 本発明で用いる液晶成分の誘電率異方性(Δε)は正であることから、得られる液晶-高分子複合膜は、電圧印加時に透明状態であり、電圧無印加時に着色状態となるが、透明状態と着色状態を切り替えるときにだけ電圧印加を必要とするメモリ性を有していてもよい。
 本発明において電圧とは、閾値以上の実効値を持つ、直流電圧、交流電圧、パルス電圧又はそれらの組み合わせを表す。
 本発明において、透明状態とは、上記電圧印加時又は電圧無印加時の液晶-高分子複合膜の状態を表し、電圧印加時と電圧無印加時において、液晶-高分子複合膜の全光線透過率が大きい方を透明状態とする。
 また、本発明において、着色状態とは、上記電圧印加時又は電圧無印加時の液晶-高分子複合膜の状態を表し、電圧印加時と電圧無印加時において、液晶-高分子複合膜の全光線透過率が小さい方を着色状態とする。
[液晶-高分子複合膜]
 本発明の液晶素子に含まれる液晶-高分子複合膜(以下、「本発明の液晶-高分子複合膜」と称す場合がある。)は、高分子マトリクス(以下、「本発明の高分子マトリクス」と称す場合がある。)と、前記高分子マトリクスに囲まれた液晶組成物(以下、「本発明の液晶組成物」と称す場合がある。)とを有する。このような液晶-高分子複合膜は、一般にPDLCとして知られている。
 液晶-高分子複合膜は、高分子マトリクスと、前記高分子マトリクスに囲まれた液晶組成物とを有することで、液晶素子が可撓性を有する。また、このような構造を持つことで、液晶素子を切断しても液晶組成物の漏洩が最小限に留められ、加えて高分子マトリクスが酸素や水分等の劣化要因から液晶組成物を保護するため、切断整形が可能となる。
<液晶組成物>
 本発明の液晶組成物は高分子マトリクス中に分散していてもよく、規則的に配列していてもよい。
 本発明の液晶組成物の形状としては、真球、回転楕円体、円柱、三角柱、四角柱、六角柱等の多角柱のいずれでもよく、またこれらの形状が歪であってもよい。これらの中でも、真球、回転楕円体、円柱、正三角柱、正四角柱、正六角柱等の正多角柱が液晶-高分子複合膜の光散乱が弱くなり、着色時の二色性色素の光吸収が大きくなるとともに、透明状態のヘーズが小さくなる傾向があるため好ましい。
 液晶組成物のサイズは、得られる素子の透明性の観点からは、液晶-高分子複合膜の膜面から観察した際に、平均粒径が2μm以上であることが好ましく、5μm以上であることがより好ましい。また、50μm以下であることが好ましく、30μm以下であることがより好ましい。平均粒径が上記下限値以上であることで、液晶-高分子複合膜の光散乱が弱くなり、透明状態のヘーズが小さくなる傾向がある。同時に着色状態の液晶-高分子複合膜の光散乱も弱くなることで、相対的に二色性色素の光吸収に対する寄与が向上し、より透明感のある全光線透過率制御が可能となる。平均粒径が上記上限値以下であることで、液晶組成物の粒状感が無くなってゆき、液晶素子の外観の均一性が良好になる傾向がある。
 液晶組成物のサイズは、得られる素子の遮光性の観点からは、液晶-高分子複合膜の膜面から観察した際に、平均粒径が0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。また、2μm未満であることが好ましく、1μm以下であることがより好ましい。平均粒径が上記上限値未満であることで、液晶-高分子複合膜の光散乱が強くなり、遮光状態のヘーズが大きく、また、ダイナミックレンジ(着色状態と透明状態のヘーズ差)が大きくなる傾向がある。同時に多重散乱による二色性色素の光吸収機会が増加し、より全光線透過率が低く、また、ダイナミックレンジ(着色状態と透明状態の全光線透過率差)が大きくなる傾向がある。しかし平均粒径が上記下限値より小さい(可視光波長よりもかなり小さい)とその効果が薄れてしまうので、液晶組成物の平均粒径は上記下限値以上であることが好ましい。
 上記の液晶組成物の平均粒径は個数基準のメディアン径とする。
 液晶-高分子複合膜の膜面から観察した際に、液晶組成物の形状が円ではなく、楕円、三角形、四角形、六角形等の多角形、又はこれらの形状が歪である場合、粒径は最小包含円の直径を参照すればよい。
 本発明の液晶組成物は、液晶成分(以下、「本発明の液晶成分」と称す場合がある。)及び二色性色素(以下、「本発明の二色性色素」と称す場合がある。)を含有する。このような液晶組成物は、一般的にゲストホスト液晶として知られている。
 特に限定はされないが、液晶組成物100質量%に対する二色性色素の含有量は0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。また、液晶組成物100質量%に対する二色性色素の含有量は20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 二色性色素の含有量が上記下限値以上であることで、液晶素子が着色状態により大きな光吸収を示し、透過光量が小さくなる傾向にある。二色性色素の含有量が上記上限値以下であることで、二色性色素の分離や析出が生じにくくなり、液晶素子の信頼性が向上する傾向にある。
 液晶組成物には、本発明の液晶素子の性能を損なわない範囲で、添加剤を含有していてもよい。具体的には高分子前駆体、重合開始剤、光安定剤、抗酸化剤、増粘剤、重合禁止剤、光増感剤、接着剤、消泡剤、界面活性剤、カイラル剤等を有していてもよい。
 カイラル剤は、液晶成分へ相溶するカイラル化合物であればいずれでもよく、合成品でも市販品でよい。また、それ自体が液晶性を示すものでもよいし、重合性の官能基を有していてもよい。さらに、右旋性でも左旋性でもよく、右旋性のカイラル剤と左旋性のカイラル剤を併用してもよい。
 また、カイラル剤としては、それ自体の誘電異方性が正に大きく、粘度の低いものが液晶素子の駆動電圧低減及び応答速度の観点から好ましく、カイラル剤が液晶をねじる力の指標とされるHelical Twisting Powerが大きいほうが好ましい。
 市販のカイラル剤としては、例えばCB15(商品名 メルク社製)、C15(商品名 メルク社製)、S-811(商品名 メルク社製)、R-811(商品名 メルク社製)、S-1011(商品名 メルク社製)、R-1011(商品名 メルク社製)等が挙げられる。
 本発明の液晶組成物がカイラル剤を含有する場合、その含有量については特に制限はないが、用いる液晶成分とカイラル剤の量比で決まるカイラルピッチp[μm]の逆数(1/p)が0.01~0.5[/μm]であることが好ましく、特に0.01~0.3[/μm]であることが好ましい。カイラルピッチの逆数(1/p)が上記下限値以上であれば二色性色素の光吸収の効率が高くなり、着色状態の遮光性を向上することができ、上記上限値以下であれば電圧上昇を抑えることが可能である。
<液晶成分>
 本発明の液晶成分の誘電率異方性(Δε)は正である。この場合、電圧無印加時に着色状態で電圧印加時に透明状態のノーマルモードとなる。
 本発明の液晶成分のNI点(ネマチック相―等方相転移温度)は110℃以上150℃以下であり、好ましくは120℃以上140℃以下である。NI点が上記下限以上であると90℃程度の高温下での連続駆動においても透過率変化のダイナミックレンジを維持できる傾向がある。また、NI点が高いほうが透過率変化のダイナミックレンジが広い傾向がある。一方、NI点が上昇するとネマチック相の温度下限も上昇する傾向があるため、低温での動作の観点から、NI点は上記上限以下であることが好ましい。
 液晶成分のNI点の測定方法は特に限定されないが、液晶組成物を一旦相溶させ、温度上昇による相転移または相分離を、偏光顕微鏡によって観察することにより得られる。
 本発明の液晶成分の屈折率異方性(Δn)は、0.01以上であり、0.02以上であることが好ましく、0.03以上であることがより好ましい。また、0.1以下であり、0.10以下であることが好ましい。Δnが上記上限値以下であることで、高分子マトリクスと液晶組成物との界面での光散乱が低減され、透明状態のヘーズを低減できる傾向にある。一方、Δnが上記下限値以上であることで、液晶組成物のオーダーパラメータが大きくなる傾向がある。
 液晶成分の屈折率異方性は、液晶成分の常光屈折率(no)と異常光屈折率(ne)を直接求めることにより、その差(Δn=ne-no)として得られる。直接求めることが困難な場合は、厚さdの試料中を通過したときの位相差(リタデーション:R)を求め、これを厚さdで割って求めることも可能である(R=Δnd)。
 液晶成分に含まれる液晶としては、ネマチック液晶、コレステリック液晶、スメクチック液晶等が使用できる。安価に利用できることを鑑みると、ネマチック液晶又はコレステリック液晶が好ましい。また、ネマチック液晶にカイラル剤を添加してコレステリック液晶(カイラルネマチック液晶)にしてもよい。
 液晶成分として公知の液晶性物質を用いる場合、具体的には日本学術振興会第142委員会編;「液晶デバイスハンドブック」日本工業新聞社(1989年)、第152頁~第192頁及び液晶便覧編集委員会編;「液晶便覧」丸善株式会社(2000年)、第260頁~第330頁に記載されているようなビフェニル系、フェニルシクロヘキサン系、シクロヘキシルシクロヘキサン系等の各種低分子系の化合物又は混合物を使用することができる。また、液晶便覧編集委員会編;「液晶便覧」丸善株式会社(2000年)、第365頁~第415頁に記載されているような高分子系化合物又は混合物を使用することもできる。ネマチック液晶を構成する化合物としては例えば、以下の化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 ネマチック液晶及びコレステリック液晶(カイラルネマチック液晶)としては粘度が低く、誘電率異方性の高いものが、液晶素子の高速応答性やエマルジョンの製造性の点で好ましい。
<二色性色素>
 本発明の液晶組成物に含まれる二色性色素としては、液晶成分へ相溶する二色性色素化合物であればいずれでもよく、Δεが正の二色性色素でも負の二色性色素でもよい。また、それ自体が液晶性を示すものでもよい。
 本発明の二色性色素としては、具体的にはアゾ系染料、アントラキノン系染料、ナフトキノン系染料、ペリレン系染料、キノフタロン系染料、テトラジン系染料、ベンゾチアジアゾール系染料等が挙げられる。公知の二色性色素を用いる場合、日本学術振興会第142委員会編;「液晶デバイスハンドブック」日本工業新聞社(1989年)、第192頁~第196頁及び第724頁~第730頁に記載されているようなアゾ系染料、アントラキノン系染料又はこれらの混合物を使用することができる。これらのなかでも、アントラキノン系染料またはアゾ系染料を含むことが、吸光係数が大きく、液晶成分への溶解度が大きくなり、耐光性が高くなる傾向になるため好ましい。
 二色性色素は1種類でもよく、複数種を混合して用いてもよい。特に限定はないが、好ましくは二色性色素のうち、アントラキノン系及び/又はアゾ系を20質量%以上含むことが好ましく、50質量%以上含むことが好ましい。
 本発明の二色性色素の具体例としては、例えば以下の式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 上記式中、Xは各々独立に、-NH-又は-S-を示し、nは0又は1を示し、Arは、フェニレン基又はナフチレン基を示す。
 Rは、水素原子、アルキル基、アルコキシ基、これらの置換基を有していてもよいシクロヘキシル基、フェニル基、フェニルシクロヘキシル基又はシクロヘキシルシクロヘキシル基を示す。
<高分子マトリクス>
 本発明の高分子マトリクスとしては、好ましくは親水性の高分子を使用する。この場合、親水性であれば特に限定されないが、屈折率が液晶成分の常光屈折率(no)と一致するように選択することが好ましい。典型的には液晶成分のnoは1.5前後であるので、高分子マトリクスの屈折率は1.45以上1.55以下が好ましい。
 高分子マトリクスを構成する高分子としては、ゼラチン、アラビアゴム等の天然高分子;ポリビニルアルコール、ポリウレタン、ポリウレア、ポリアクリル、ポリアミン、ポリアミド、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル等の合成高分子及びそれらの変性体;メタクリレート/アクリロニトリル、ウレタン/アクリレート、アクリレート/アクリロニトリル等の共重合体;等を用いてもよい。また、架橋剤を用いて高分子に架橋構造を導入してもよい。
 該高分子は水への分散性又は溶解性が高いことが好ましく、ゼラチン、ポリビニルアルコール、ポリウレタン、ポリウレア、ポリアクリル、ポリアミン及びそれらの変性体が好ましい。より好ましくは、ポリウレタン、ポリアクリル、ポリビニルアルコール及びこれらの変性体からなる群より選択される少なくとも1つであり、更に好ましくはポリウレタン、ポリアクリル及びこれらの変性体からなる群より選択される少なくとも1つであり、特に好ましくはポリアクリルである。
 これらの高分子は1種類のみでもよいし、2種類以上を混合して用いてもよい。
 ポリウレタンはポリイソシアネートとポリオールのそれぞれの骨格により分類されている。ポリイソシアネート骨格としては、脂肪族炭素骨格からなる脂肪族系ポリウレタンや、ポリイソシアネートに芳香環を含有する芳香族系ポリウレタンが挙げられる。中でも脂肪族系ポリウレタンが、耐光性が高い点で好ましい。ポリオール骨格としては、ポリエーテル系、ポリエステル系、ポリカーボネート系が挙げられ、中でもポリエーテル系が、膜の密着性が良好であり好ましい。
 ポリアクリルは種々のアクリレートモノマーの重合体から成る。アクリルモノマーとしては、以下式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記式中、Xは水素原子またはメチル基を示し、Rは水素原子、ハロゲン原子、ヒドロキシ基、炭素数1以上20以下の置換基を有していてもよい直鎖状もしくは分枝状アルキル基、炭素数1以上20以下の置換基を有していてもよい直鎖状もしくは分枝状アルコキシ基、炭素数1以上10以下の置換基を有していてもよい環状炭化水素基を示す。
 ポリアクリルはアクリレート以外のモノマーと共重合してもよく、共重合体としては、アクリレート-スチレン、アクリレート-酢酸ビニル、アクリレート-アクリロニトリル、アクリレート-ウレタン、アクリレート-エステル、アクリレート-シリコーン等が挙げられる。主鎖をアクリレートと他のモノマーとの共重合体で構成してもよいし、ポリアクリル主鎖に他のポリマーをグラフトさせてもよい。
 高分子マトリクスには、本発明の液晶素子の性能を損なわない範囲で、低分子を含有していてもよい。該低分子としては具体的には光安定剤、抗酸化剤、増粘剤、重合禁止剤、光増感剤、接着剤、消泡剤、界面活性剤、水溶性色素等が挙げられる。
<液晶組成物と高分子マトリクスの比>
 本発明の液晶-高分子複合膜において、高分子マトリクスの全質量に対する液晶組成物の全質量の割合は、高分子マトリクスの全質量を1とすると、液晶組成物が0.5以上であることが好ましく、1以上であることがより好ましい。また、4以下であることが好ましく、3以下であることがより好ましい。高分子マトリクスの全質量に対し、液晶組成物の全質量の割合が上記下限値以上であることで、透明状態のヘーズが低く、かつ駆動電圧が低くなる傾向がある。高分子マトリクスの全質量に対し、液晶組成物の全質量の割合が上記上限値以下であることで、液晶-高分子複合膜の耐衝撃性及び密着性が向上する傾向がある。
[透明導電膜付き基板]
 本発明に係る透明導電膜付き基板の代表的な構成を以下に説明するが、これらに限定されるものではない。
 基板の材質としては、例えば、ガラスや石英等の無機透明物質、金属、金属酸化物、半導体、セラミック、プラスチック板、プラスチックフィルム等の無色透明のものが挙げられる。これらの基板を単板で用いても、複数積層して用いてもよい。
 基板にはキズや汚れから守る目的でハードコート層や特定波長域の光線を遮断するシャープカット層やバンドパス層を付与してもよい。
 電極を構成する透明導電膜は、上記基板の上に、例えば、金属酸化物、金属、半導体、有機導電物質等の薄膜を基板全面或いは部分的に、既知の塗布法や印刷法やスパッタ等の蒸着法等により形成される。また、導電性の薄膜形成後に部分的にエッチングしたものでもよい。特に大面積の液晶素子を得るためには、生産性及び加工性の面からPET等の透明高分子フィルム上にITO(酸化インジウムと酸化スズの混合物)電極をスパッタ等の蒸着法や印刷法等を用いて形成した電極基板を用いることが望ましい。
 基板上に電極間或いは電極と外部を結ぶための配線が設けられていてもよい。例えば、セグメント駆動用電極基板やマトリックス駆動用電極基板、アクティブマトリックス駆動用電極基板等であってもよい。
 更に、基板上に設けられた電極面上が、ポリイミドやポリアミド、シリコーン、シアン化合物等の有機化合物、SiO、TiO、ZrO等の無機化合物、又はこれらの混合物よりなる保護膜や配向膜で全面或いは一部が覆われていてもよい。
 基板は、液晶を基板面に対して配向させるよう配向処理されていてもよく、配向処理されている場合、例えば、2枚の基板ともホモジニアス配向又はホメオトロピック配向であってもよいし、一方がホモジニアス配向で、他方がホメオトロピック配向である、いわゆるハイブリッドであってもよい。これらの配向処理には、電極表面を直接ラビングしてもよく、TN液晶、STN液晶等に用いられるポリイミド等の通常の配向膜を使用してもよいし、光配向処理を施してもよい。
 対向する基板は、周辺部に適宜、基板を接着支持する樹脂体を含む接着層を有していてもよい。
 本発明における液晶素子の端部あるいは切断面を、粘着テープ、熱圧着テープ、熱硬化性テープ等のテープ類、熱硬化性樹脂、光硬化性樹脂、湿気硬化型樹脂、室温硬化型接着剤、嫌気性接着剤、エポキシ系接着剤、シリコ-ン系接着剤、フッ素樹脂系接着剤、ポリエステル系接着剤、塩化ビニル系接着剤等の硬化性樹脂類や熱可塑性樹脂類等で封止することで、内部の液晶組成物等の染み出しを防ぐことができる。また、この封止により、液晶素子の劣化を防ぐ効果が得られる場合もある。その際の端面の保護法としては、端面を全体に覆ってもよいし、端部から液晶素子内部に硬化性樹脂類や熱可塑性樹脂類を流し込み固化させてもよく、更にこの上をテープ類で覆ってもよい。
 対向配置される透明導電膜付き基板間には、球状又は筒状のガラス、プラスチック、セラミック、あるいはプラスチックフィルム等のスペーサーを存在させてもよい。スペーサーは、本発明のエマルジョン組成物の成分として含有させることで、基板間の液晶-高分子複合膜に存在させてもよく、液晶素子組み立ての際に基板上に散布したり、接着剤と混合して接着層の中に存在させたりしてもよい。
[液晶-高分子複合膜の製造方法]
 本発明の液晶-高分子複合膜は、透明導電膜付き基板上に後述の本発明のエマルジョン組成物を塗布し、乾燥させることで製造することができる。塗布方法としては、バーコート、ブレードコート、ナイフコート、ダイコート、スクリーンコート、マイクログラビアロールコート、リバースロールコート、キスロールコート、ディップロールコート、スピンコート、スプレーコート等、公知の塗布方法が使用できる。基板の性状に応じ、適宜基板洗浄をしてもよい。
 塗布時のウェット膜厚は10μm以上が好ましく、20μm以上がより好ましい。また、120μm以下が好ましく、100μm以下がより好ましい。ウェット膜厚が上記下限値以上であることで、液晶組成物の粗密が無くなり、均一に塗布できる傾向がある。ウェット膜厚が上記上限値以下であることで、駆動電圧が実用的な値まで下がり、かつ透明状態のヘーズが低くなる傾向がある。
 エマルジョン組成物を塗布し、乾燥する際の乾燥温度は、40℃以上が好ましく、50℃以上がより好ましい。また、100℃以下が好ましく、80℃以下がより好ましい。
 乾燥温度が上記下限値以上であることで、乾燥時間が実用的な時間に短縮されるとともに、膜中に残留する水分量が少なくなることで液晶素子の信頼性が向上する傾向にある。乾燥温度が上記上限値以下であることで、乾燥中のエマルジョン組成物の合一や逆相化等の構造破壊が生じにくくなる傾向がある。
[全光線透過率]
 本明細書における全光線透過率は、JIS K7136で規定された方法で測定される。
 また本明細書において、光とは可視光(波長380nm~780nm)を示すものとし、全光線透過率は可視光領域で測定されるものとする。
 本発明の液晶素子の着色状態の全光線透過率は30%以下が好ましく、より好ましくは25%以下、さらに好ましくは20%以下である。着色状態の全光線透過率が上記上限値以下であることで、着色状態の透過光量を小さくできるために遮光性を高くできる傾向がある。一方、着色状態の全光線透過率は0.1%以上が好ましく、より好ましくは0.3%以上、さらに好ましくは0.5%以上である。着色状態の全光線透過率が上記下限値以上であることで、ダイナミックレンジを広く保てる傾向がある。
 本発明の液晶素子の透明状態の全光線透過率は30%より大きいことが好ましく、より好ましくは50%以上であり、さらに好ましくは55%以上である。また、透明状態の全光線透過率は80%以下が好ましく、より好ましくは70%以下である。透明状態の全光線透過率がこれらの範囲であることで、素子の透明性を担保できる傾向にある。
 本発明の液晶素子の全光線透過率のダイナミックレンジ(着色状態と透明状態の全光線透過率差、ΔTT)は、30以上であることが好ましく、35以上であることが好ましい。この範囲であることで、得られる素子の認識が容易となる傾向にある。
[ヘーズ]
 本明細書におけるヘーズは、JIS K7136の方法で測定される。
 透明性の観点から、本発明の液晶素子の着色状態のヘーズは90%以下が好ましく、より好ましくは80%以下、さらに好ましくは70%以下である。着色状態のヘーズが上記上限値以下であることで、着色状態の二色性色素の光吸収を相対的に大きくすることができ、より透明感のある着色状態が得られる。一方、着色状態のヘーズは10%以上が好ましく、より好ましくは20%以上、さらに好ましくは30%以上である。着色状態のヘーズが上記下限値以上であることで、外光のまぶしさをより低減できる傾向がある。
 また遮光性の観点から、本発明の液晶素子の着色状態のヘーズは80%以上が好ましく、より好ましくは90%以上であり、更に好ましくは95%以上である。着色状態のヘーズが上記下限値以上であることで、多重散乱による二色性色素による光吸収機会が増加し、より全光線透過率が低くなる傾向がある。一方、着色状態のヘーズは99%以下が好ましい。着色状態のヘーズが上記上限値以下であることで、透明時のヘーズを低減できる傾向がある。
 本発明の液晶素子の透明状態のヘーズは16%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは6%以下である。また、透明状態のヘーズは0%以上が好ましく、より好ましくは1%以上である。透明状態のヘーズがこれらの範囲であることで、透明感があり視認性の良好なフィルムが得られる傾向にある。
 本発明の液晶素子のヘーズのダイナミックレンジ(着色状態と透明状態のヘーズ差、ΔHaze)は、45以上であることが好ましく、50以上であることが好ましい。この範囲であることで、遮光/透明のコントラストが明瞭となり、フィルム越しに見える景色が見える/見えないの差が明確となる傾向にある。
〔エマルジョン組成物〕
 本発明のエマルジョン組成物は、水を含有する媒体に液晶組成物が分散したエマルジョン組成物であって、前記媒体は、高分子が分散又は溶解したものであり、前記液晶組成物は、液晶成分及び二色性色素を含有し、前記液晶成分は誘電率異方性が正であり、NI点が110℃以上150℃以下であり、前記液晶成分の屈折率異方性が0.01以上0.1以下である。
 本発明のエマルジョン組成物に含まれる液晶組成物は特に限定されないが、上述した本発明の液晶素子に用いられる液晶組成物が挙げられる。また、エマルジョン組成物に含まれる水を含む媒体も特には限定されず、純水又は水と有機溶媒の混合物が挙げられる。
 有機溶媒の例としては、アルコール、ケトン、エーテル、エステル、カルボン酸、アミン等が挙げられる。有機溶媒は水溶性でもよいし、水にわずかに溶ける程度の油溶性でもよいが、水と均一に溶解する量を混合することが好ましい。
 媒体に分散又は溶解している高分子は、ゼラチン、アラビアゴム等の天然高分子;ポリビニルアルコール、ポリウレタン、ポリウレア、ポリアクリル、ポリアミン、ポリアミド、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル等の合成高分子及びそれらの変性体;メタクリレート/アクリロニトリル、ウレタン/アクリレート、アクリレート/アクリロニトリル等の共重合体;等が挙げられる。
 該高分子は水への分散性又は溶解性が高いことが好ましく、ゼラチン、ポリビニルアルコール、ポリウレタン、ポリウレア、ポリアクリル、ポリアミン及びそれらの変性体が好ましい。より好ましくは、ポリウレタン、ポリアクリル、ポリビニルアルコール及びこれらの変性体からなる群より選択される少なくとも1つであり、更に好ましくはポリウレタン、ポリアクリル及びこれらの変性体からなる群より選択される少なくとも1つであり、特に好ましくはポリアクリルである。
 なお、高分子は1種類のみでもよいし、2種類以上を混合して用いてもよい。
 本発明において、高分子の分散とは、媒体中に高分子の粒子が懸濁している状態であり、高分子の溶解とは高分子が溶媒和により十分小さく解離され、均一系をなす状態のことを示す。高分子の分散及び溶解に関しては、「色材」一般社団法人色材協会(2004年),77巻4号,169~176頁に詳しい。
 本発明のエマルジョン組成物中で液晶組成物は水を含む媒体に分散しているが、液状のままで分散していてもよく、液晶組成物の周辺部を高分子、シリカ化合物、無機ナノ粒子等でカプセル化したマイクロカプセル液晶の形で分散していてもよい。
 マイクロカプセル液晶のカプセルとなる高分子としては、ゼラチン、アラビアゴム等の天然高分子;ポリビニルアルコール、ポリウレタン、ポリウレア、ポリアクリル、ポリアミン、ポリアミド、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル等の合成高分子及びそれらの変性体;メタクリレート/アクリロニトリル、ウレタン/アクリレート、アクリレート/アクリロニトリル等の共重合体;等が挙げられる。
 本発明のエマルジョン組成物には、これを用いて製造される液晶素子の性能を損なわない範囲で、添加剤を含有していてもよい。添加剤としては具体的には界面活性剤、乳化剤、分散剤、沈降防止剤、造膜助剤、レベリング剤、光安定剤、抗酸化剤、増粘剤、重合禁止剤、光増感剤、接着剤、消泡剤、水溶性染料、カイラル剤等が挙げられる。
 液晶組成物のサイズとしては、得られる液晶素子の透明性の観点から、平均粒径が2μm以上であることが好ましく、5μm以上であることがより好ましい。また、50μm以下であることが好ましく、30μm以下であることがより好ましい。平均粒径が上記下限値以上であることで、得られる液晶-高分子複合膜の光散乱が弱くなり、透明状態のヘーズが小さくなる傾向がある。同時に着色状態の液晶-高分子複合膜の光散乱も弱くなることで、相対的に二色性色素の光吸収に対する寄与が向上し、より透明感のある全光線透過率制御が可能となる。平均粒径が上記上限値以下であることで、液晶組成物の粒状感が無くなってゆき、得られる液晶素子の外観の均一性が良好になる傾向がある。
 一方、得られる液晶素子の遮光性の観点からは、液晶組成物の平均粒径は0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。また、2μm未満であることが好ましく、1μm以下であることがより好ましい。平均粒径は上記上限値未満であることで、得られる液晶-高分子複合膜の光散乱が強くなり、遮光状態のヘーズが大きく、また、ダイナミックレンジ(着色状態と透明状態のヘーズ差)が大きくなる傾向がある。同時に多重散乱による二色性色素の光吸収機会が増加し、より全光線透過率が低く、また、ダイナミックレンジ(着色状態と透明状態の全光線透過率差)が大きくなる傾向がある。しかし平均粒径が上記下限値より小さい(可視光波長よりもかなり小さい)とその効果が薄れてしまうので、液晶組成物の平均粒径は、上記下限値以上であることが好ましい。
 上記の平均粒径は個数基準のメディアン径とする。液晶組成物の形状と平均粒径については、本発明の液晶組成物について前述した通りである。
 本発明のエマルジョン組成物において、媒体に分散又は溶解している高分子の全質量を1とした場合、液晶組成物の全質量が0.5以上であることが好ましく、1以上であることがより好ましい。また、4以下であることが好ましく、3以下であることがより好ましい。高分子の全質量に対し、液晶組成物の全質量が上記下限値以上であることで、本発明のエマルジョン組成物を用いて得られる液晶素子の透明状態のヘーズが低く、かつ駆動電圧が低くなる傾向がある。高分子の全質量に対し、液晶組成物の全質量が上記上限値以下であることで、本発明のエマルジョン組成物を用いて得られる液晶素子の耐衝撃性及び密着性が向上する傾向がある。
[液晶成分]
 液晶組成物に含まれる液晶成分は特に限定されず、上述した本発明の液晶素子に用いられる液晶成分が挙げられる。
 液晶成分の誘電率異方性(Δε)は正である。この場合、電圧無印加時に着色状態で電圧印加時に透明状態のノーマルモードとなる。
 また、液晶成分のNI点(ネマチック相―等方相転移温度)は110℃以上150℃以下であり、好ましくは120℃以上140℃以下である。NI点が上記下限以上であると90℃程度の高温下での連続駆動においても透過率変化のダイナミックレンジを維持できる傾向がある。また、NI点が高いほうが透過率変化のダイナミックレンジが広い傾向がある。一方、NI点が上昇するとネマチック相の温度下限も上昇する傾向があるため、低温での動作の観点から、NI点は上記上限以下であることが好ましい。
 液晶組成物のNI点の測定方法については前述の通りである。
 液晶成分の屈折率異方性(Δn)は、0.01以上であり、0.02以上であることが好ましく、0.03以上であることがより好ましい。また、0.1以下であり、0.10以下であることが好ましい。Δnが上記上限値以下であることで、高分子マトリクスと液晶組成物との界面での光散乱が低減され、透明状態のヘーズを低減できる傾向にある。一方、Δnが上記下限値以上であることで、液晶組成物のオーダーパラメータが大きくなる傾向がある。
 液晶成分の屈折率異方性の測定方法については前述の通りである。
 液晶成分に含まれる液晶としては、ネマチック液晶、コレステリック液晶、スメクチック液晶等が使用できる。安価に利用できることを鑑みると、ネマチック液晶又はコレステリック液晶が好ましい。また、ネマチック液晶にカイラル剤を添加してコレステリック液晶(カイラルネマチック液晶)にしてもよい。コレステリック液晶(カイラルネマチック液晶)を使用する場合、カイラルピッチp[μm]の逆数(1/p)が0.01~0.5[/μm]であることが好ましく、特に0.01~0.3[/μm]であることが好ましい。カイラルピッチの逆数が上記下限値以上であれば二色性色素の光吸収の効率が高くなり、着色状態の遮光性を向上することができ、上記上限値以下であれば電圧上昇を抑えることが可能である。
 液晶成分として公知の液晶性物質を用いる場合の具体例については、前述の本発明の液晶成分の説明において記載した通りであり、その具体的な例示化合物についても前述の通りである。
[二色性色素]
 液晶組成物に含まれる二色性色素は特に限定されず、上述した本発明の液晶素子に用いられる二色性色素が挙げられる。そのなかでも、アントラキノン系染料及び/またはアゾ系染料を含むことが、吸光係数が大きく、液晶への溶解度が大きくなり、耐光性が高くなる傾向になるため好ましい。
 二色性色素は1種類でもよく、複数種を混合して用いてもよい。特に限定はないが、好ましくは二色性色素のうち、アントラキノン系及び/またはアゾ系を20質量%以上含むことが好ましく、50質量%以上含むことが好ましい。
 特に限定はされないが、液晶組成物100質量%に対する二色性色素の含有量は0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。また、液晶組成物100質量%に対する二色性色素の含有量は20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。
 二色性色素の含有量が上記下限値以上であることで、本発明のエマルジョン組成物を用いて得られる液晶素子が着色状態により大きな光吸収を示し、透過光量が小さくなる傾向にある。二色性色素の含有量が上記上限値以下であることで、二色性色素の分離や析出が生じにくくなり、液晶素子の信頼性が向上する傾向にある。
[エマルジョン組成物の製造法]
 本発明のエマルジョン組成物の製造法は特に限定されないが、例えば以下のような方法で製造することができる。
 製造方法(1) 油相である液晶組成物と水相である水を含有する媒体を混合し、乳化工程を経た後に、水を含有する媒体に高分子が分散又は溶解している液を添加する。
 製造方法(2) 油相である液晶組成物と水相である水を含有する媒体に高分子が分散又は溶解している液を混合し、乳化工程を行う。
 製造方法(3) 液晶組成物の周辺部を高分子、シリカ化合物、無機ナノ粒子等でカプセル化したマイクロカプセル液晶の粉体又はスラリーと水を含有する媒体を混合し、分散工程を経た後に、水を含有する媒体に高分子が分散又は溶解している液を添加する。
 製造方法(4) 前記マイクロカプセル液晶の粉体又はスラリーと水を含有する媒体に高分子が分散又は溶解している液を混合し、分散工程を行う。
 この中でも製造方法(1)及び製造方法(3)は、混合物が低粘度の状態で乳化工程又は分散工程を行うことができるため、低エネルギーで製造でき、さらに、液晶組成物の粒径を制御しやすいので好ましい。
 水を含有する媒体に高分子が分散又は溶解している液としては、市販の水性樹脂エマルジョンが使用できる。以下にその具体例を示す。
 水性ウレタンエマルジョン: DSM社製 NeoRez R-9660、NeoRez R-972、NeoRez R-9637、NeoRez R-9679、NeoRez R-960、NeoRez R-2170、NeoRez R-966、NeoRez R-967、NeoRez R-986、NeoRez R-9603、NeoRez R-4000、NeoRez R-9404、NeoRez R-600、NeoRez R-650、NeoRez R-1010;第一工業製薬社製 スーパーフレックス 126、スーパーフレックス 130、スーパーフレックス 150、スーパーフレックス 150HS、スーパーフレックス 170、スーパーフレックス 210、スーパーフレックス 300、スーパーフレックス 420、スーパーフレックス 420NS、スーパーフレックス 460、スーパーフレックス 460S、スーパーフレックス 470、スーパーフレックス 500M、スーパーフレックス 620、スーパーフレックス 650、スーパーフレックス 740、スーパーフレックス 820、スーパーフレックス 830HS、スーパーフレックス 860、スーパーフレックス 870、スーパーフレックス E-2000、スーパーフレックス E-4800;日華化学社製 ネオステッカー 200、ネオステッカー 400、ネオステッカー 700、ネオステッカー 1200、ネオステッカー X-7096、エバファノール HA-107C、エバファノール HA-50C、エバファノール HA-170、エバファノール HA-560、エバファノール HA-15、エバファノール AP-12、エバファノール APC-55。
 水性アクリルエマルジョン:DSM社製 NeoCryl A-633、NeoCryl A-639、NeoCryl A-655、NeoCryl A-662、NeoCryl A-1091、NeoCryl A-1092、NeoCryl A-1093、NeoCryl A-1094、NeoCryl A-2091、NeoCryl A-2092、NeoCryl A-6016、NeoCryl A-6057、NeoCryl A-6069、NeoCryl A-6092、NeoCryl A-614、NeoCryl A-550、NeoCryl A-1105、NeoCryl A-1125、NeoCryl A-1127、NeoCryl XK-12、NeoCryl XK-16、NeoCryl XK-30、NeoCryl XK-36、NeoCryl XK-52、NeoCryl XK-190、NeoCryl XK-188、NeoCryl XK-240;ジャパンコーティングレジン社製 リカボンド 702、リカボンド 727、リカボンド 743N、リカボンド 745、リカボンド 752、リカボンド 801、リカボンド 940、リカボンド 972、リカボンド 1711、リカボンド 1752、リカボンド 6520、リカボンド 6720、リカボンド 7110、リカボンド 7180、リカボンド 7525、リカボンド 7820、リカボンド 8020、リカボンド 8030、リカボンド DM60、リカボンド DM772、リカボンド DM774、リカボンド LDM6740、リカボンド LDM7522、リカボンド LDM7523、リカボンド ES-65、リカボンド ES-90、リカボンド ES-620、リカボンド ET-700、リカボンド ET-831、リカボンド HS-5、リカボンド HS-531、リカボンド AP-601、リカボンド AP-96、リカボンド AP-620、リカボンド AP-700、リカボンド AP-80、リカボンド 710A、リカボンド 730L、リカボンド 731L、リカボンド 952B、リカボンド 966A、リカボンド 7320、リカボンド 7400、リカボンド FK-420、リカボンド FK-64S、リカボンド FK-66IS、FK-66N、FK-68H、リカボンド FK-471、リカボンド FK-475、リカボンド FK-489、リカボンド FK-284、リカボンド FK-600S、リカボンド FK-3830、リカボンド FK-3840、リカボンド FK-6100、モビニール VDM7410、モビニール 4061、モビニール 4080、モビニール 4090、モビニール 4050、モビニール S-71、モビニール 461、モビニール 650、モビニール AP-60L、モビニール 490;スリーボンド社製 ThreeBond 1549、ThreeBond 1549B、ThreeBond 1555C、ThreeBond 1555D。
 中でもNeoRez R-966、NeoRez R-967、NeoCryl A-1125、NeoCryl A-1127、リカボンド FK-471、リカボンド ES-620、リカボンド LDM7522、モビニール 4061、モビニール 4080、モビニール 4090、ThreeBond 1549が油相の分散安定性に優れ、好ましい。
 安定的なエマルジョンを得るために、乳化工程又は分散工程の前の段階で界面活性剤又は分散安定剤を添加することが好ましい。界面活性剤としては特に限定はなく、イオン性でも非イオン性でもよく、低分子でも高分子でもよく、非反応性でも反応性でもよい。
 界面活性剤の添加量は特に限定されないが、液晶組成物に対し、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。また、20質量%以下が好ましく、10質量%以下がより好ましい。界面活性剤の添加量が上記の範囲にあることで、エマルジョンの分散が安定化するとともに、液晶組成物の粒径を所望の範囲に制御することができる傾向にある。
 上記界面活性剤は溶解性に応じて液晶組成物へ添加してもよいし、水を含有する媒体へ添加してもよい。
 界面活性剤の例としては、以下のものなどが挙げられる。
 カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩等のアニオン性界面活性剤;
 アミン塩、4級アンモニウム塩等のカチオン性界面活性剤;
 アルキルアミノ脂肪酸塩、アルキルアミンオキサイド、ベタイン、スルホベタイン、アミドスルホベタイン、カルボベタイン、イミダゾリン等の両性界面活性剤;
 ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンアラルキルエーテル、ポリオキシエチレンアラルキルアリールエーテル、ポリオキシエチレンポリオキシプロピレンブロック付加物、アルキルグルコシド、ポリエーテル変性シリコーン等のエーテル型、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル等のエステル型、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンショ糖脂肪酸エステル等のエステル・エーテル型、アセチル変性ポリビニルアルコール等のアセチル型、脂肪酸アルカノールアミド等の非イオン性界面活性剤:
 この中でもアニオン性界面活性剤は水溶性と分散安定性が高い点で好ましく、特に、スルホン酸塩が好ましい。また、非イオン性界面活性剤は液晶素子の電気的な信頼性を高くできる傾向があり好ましい。中でもエーテル型又はエステル型が好ましく、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンアラルキルエーテル、ポリオキシエチレンアラルキルアリールエーテル、ポリオキシエチレンポリオキシプロピレンブロック付加物等が特に好ましい。
 分散安定剤としては特に限定はないが、以下のようなものなどが挙げられる。
 ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリエチレングリコール、ポリアクリル酸、ポリメタクリル酸、ポリウレタン、ポリアミン、ポリアミド、ポリエーテル、マレイン酸共重合物、ゼラチン、デンプン、キトサン、コーンスターチ等の高分子及びこれらの変性体;
 メタクリレート/アクリロニトリル、ウレタン/アクリレート、アクリレート/アクリロニトリル等の共重合体;
 シリカ微粒子、チタニア微粒子、アルミナ微粒子等の無機酸化物の微粒子:
 この中でもポリビニルアルコール及びこの変性体、ポリウレタン、ポリアミド等が、分散安定性が高く好ましい。
 分散安定剤の例示には高分子マトリクスを構成する高分子として例示したものが含まれており、それらがエマルジョン組成物や液晶-高分子複合膜に含まれる場合は、高分子マトリクスを構成する高分子として含まれる。
 ポリビニルアルコールのケン化度は、80mol%以上が好ましく、85mol%以上がより好ましい。また、95mol%以下が好ましく、91mol%以下がより好ましい。ケン化度がこれらの範囲であることで、水を含有する媒体への溶解度が高い傾向にある。
 ポリビニルアルコールの重合度は、100以上が好ましく、300以上がより好ましい。また、2500以下が好ましく、1000以下がより好ましい。重合度がこれらの範囲であることで、膜が可撓性に優れる傾向にある。
 ポリビニルアルコールの具体例としては、日本合成化学社製 ゴーセノール GL-03、ゴーセノール GL-05、ゴーセノール GM-14L、ゴーセノール GM14、ゴーセノール GH-17、ゴーセノール GH-17R、ゴーセノール GH-20、ゴーセノール GH-23、ゴーセノール AL-06、ゴーセノール P-610、ゴーセノール C-500;クラレ社製 クラレポバール 25-88KL、クラレポバール 32-97KL、クラレポバール 3-86SD、クラレポバール 105-88KX、クラレポバール 200-88KX;デンカ社製 デンカポバール H-12、デンカポバール H-17、デンカポバール H-24、デンカポバール B-05、デンカポバール B-17、デンカポバール B-20、デンカポバール B-24、デンカポバール B-33等が挙げられる。
 エマルジョン組成物の製造において、乳化法及び分散法は特に限定はなく、撹拌機、ホモジナイザー、ホモミキサー、ディスパーサー、高圧乳化機、ブレンダー、コロイドミル、超音波分散機等を用いた機械的に粒子を破砕する方法;多孔膜、マイクロチャネル、インクジェット等を用いて液を孔から押し出す方法;等が挙げられる。
 上記の中でも、液晶組成物の平均粒径が2μm以上50μm以下のエマルジョン組成物を製造する場合は、多孔膜を用いて液を孔から押し出す方法(膜乳化法)が、粒子の粒度分布を精密に制御でき、かつ製造が容易であるため好ましい。多孔膜としては特に制限はないが、シラス多孔ガラス等を用いることができる。
 液晶組成物の平均粒径が0.01μm以上2μm未満のエマルジョン組成物を製造する場合は、一旦、膜乳化法等で液晶組成物の平均粒径が2μm以上50μm以下のエマルジョン組成物を製造したものを、更に高圧乳化機、若しくは超音波分散機を用いて機械的に粒子を破砕すると、均一なエマルジョン組成物を簡便に製造することが可能である。
 エマルジョン組成物には適宜、架橋剤を用いてもよい。架橋剤を用いることで、液晶-高分子複合膜の耐水性及び耐衝撃性が向上する傾向がある。
 架橋剤としては、特に限定はないが、例えば、以下のようなものが挙げられる。
 エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、ポリグリセリンポリグリシジルエーテル、ジグリシジルアニリン等のエポキシ系化合物;
 γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルジメトキシメチルシラン、γ-グリシドキシプロピルジエトキシメチルシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシシラン系化合物;
 3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン等のアミノシラン系化合物;
 γ-メルカプトプロピルトリメトキシシラン等のメルカプトシラン系化合物;
 カルボジヒドラジド、シュウ酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド等のヒドラジド系化合物;
 セミカルバジド樹脂;
 ポリカルボジイミド系樹脂;
 テトラメチロールメタン-トリス(β-アジリジニルプロピオナート)、トリメチロールプロパン-トリス(β-アジリジニルプロピオナート)、メチレンビス[N-(1-アジリジニルカルボニル)-4-アニリン]、N,N’-ヘキサメチレンビス(1-アジリジンカルボアミド)、N,N’-ヘキサアミノエチレン-1,6-ビス(1-アジリジンカルボキシアミド)等のアジリジン系(エチレンイミノ基含有)化合物;
 アセトアセトキシ基含有化合物;オキサゾリン基含有化合物;
 ポリエチレンポリアミン;ポリエチレンイミン;ポリアミドポリアミン;ポリアミドポリ尿素;アルキル化ポリメチロールメラミン;グリオキザール;
 水分散イソシアネート;ブロックドイソシアネート;カルボジイミド基含有化合物;ビスビニルスルホン;乳酸チタネート: 
 エポキシ系化合物及びエポキシシラン系化合物を用いる場合には、イミダゾール系化合物、アミン系化合物、リン系化合物等の触媒を加えてもよい。
 上記の中でも、好ましくはヒドラジド系化合物、オキサゾリン基含有化合物、カルボジイミド基含有化合物、ブロックドイソシアネートが、架橋速度が速く、毒性が低いために好ましい。
 高分子と架橋剤は任意の組み合わせで使用することができるが、ポリウレタンとオキサゾリン基含有化合物、ポリウレタンとカルボジイミド基含有化合物、ポリウレタンとブロックドイソシアネート、ポリアクリルとヒドラジド系化合物の組み合わせが架橋反応性が高く、好ましい。また、得られたエマルジョン組成物の安定性の観点から、ポリアクリルとカルボジイミド基含有化合物の組み合わせが好ましい。
 架橋剤の添加量は特に限定はないが、架橋される高分子に対して0.1質量%以上であることが好ましく、1質量%以上であることがさらに好ましい。また、20質量%以下であることが好ましく、10質量%以下であることがさらに好ましい。架橋剤の添加量が上記の範囲にあることで、液晶-高分子複合膜の耐水性及び耐衝撃性が向上し、かつ可撓性が保持される傾向にある。
 架橋剤の添加タイミングは、初めからエマルジョン組成物に添加しておく1液型にしてもよく、基板への塗布直前に添加する2液型でもよい。
 本発明のエマルジョン組成物の粘度は10mPa・s以上が好ましく、100mPa・s以上がさらに好ましい。また、10000mPa・s以下が好ましく、2000mPa・s以下がさらに好ましい。粘度が上記の範囲にあることで、液晶-高分子複合膜の膜厚を均一に塗布することが容易になり、かつ塗布速度を速くすることができて生産性が高くなる傾向がある。
 本発明のエマルジョン組成物の粘度を上記の範囲に収めるために、増粘剤、チクソ剤、減粘剤等の粘度調整剤を用いてもよい。
 粘度調整剤としては特に限定はないが、分散安定剤として例示されたものが挙げられる。
 エマルジョン組成物中の液晶組成物の含有量は20質量%以上が好ましく、30質量%以上がさらに好ましい。また、70質量%以下が好ましく、65質量%以下がさらに好ましい。液晶組成物の含有量が上記範囲内にあることで、エマルジョン組成物を基板へ塗布した際に生じるハジキが抑制され、かつ液晶組成物の粒径とエマルジョン組成物の粘度を上記の範囲に収めることが容易になる傾向にある。
 エマルジョン組成物に用いる高分子の粒径は、1nm以上が好ましく、10nm以上がより好ましい。また、1000nm以下が好ましく、200nm以下がより好ましい。上記の範囲内にあることで、エマルジョン組成物の粘度を上記の範囲に収めることが容易になる傾向にある。
 また高分子の分子量は1.0×10以上が好ましく、1.0×10以上がより好ましい。また、1.0×10以下が好ましく、1.0×10以下がより好ましい。高分子の分子量が上記の範囲内にあることで、エマルジョン組成物の粘度を上記の範囲に収めることが容易になる傾向にある。
 以下、実施例により本発明を更に詳細に説明する。本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。
[実施例1]
 Δn=0.09、NI点=125℃のネマチック液晶を液晶成分とし、これに下記(D-1)で表されるアントラキノン系シアン色の二色性色素と下記(D-2)で表されるアゾ系イエロー色の二色性色素、及び株式会社林原製アゾ系マゼンタ色の二色性色素NKX-3739とカイラル剤(CB-15)を下記配合で混合し、二色性色素を溶解させて黒色の液晶組成物(L-1)を得た。
Figure JPOXMLDOC01-appb-C000004
<液晶組成物配合>
    ネマチック液晶    :92.0質量%
    D-1        : 3.4質量%
    D-2        : 0.6質量%
    NKX-3739   : 1.0質量%
    CB-15      : 3.0質量%
    液晶組成物100質量%に対する二色性色素の含有量:5質量%
 液晶組成物(L-1)50質量%に対し、1.5質量%のドデシルベンゼンスルホン酸ナトリウム水溶液を50質量%加え、シラス多孔質ガラスに通して乳化し、o/wエマルジョン(E-1)を得た。
 水性アクリルエマルジョンのリカボンド ES-620(ジャパンコーティングレジン社製)93質量%にポリビニルアルコールのゴーセノール GH-17R(三菱ケミカル社製)7質量%を加えて撹拌し、白色ラテックス(W-1)を得た。
 o/wエマルジョン(E-1)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-1)を得た。
 エマルジョン組成物(I-1)中の液晶組成物の平均粒径は10μmであった。エマルジョン組成物(I-1)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-1)の質量は、1.14であった。
 基板として、厚さ125μmのPETフィルム基板上に透明なITO電極を製膜したフィルムを用いた。この基板のITO膜上に、バーコートでエマルジョン組成物(I-1)を塗布し、50℃で乾燥して膜厚30μmの液晶-高分子複合膜を得た。
 この液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径10μmの液晶組成物が分散していた。
 液晶-高分子複合膜を形成したフィルム基板と、もう1枚の基板とを80℃で向い合せに貼り合わせ、液晶素子(F-1)を得た。液晶素子(F-1)は可撓性を有し、ハサミで切断して整形することができた。即ち、この液晶素子(F-1)は切断整形可能であった。
 液晶素子(F-1)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ70.3%、全光線透過率23.9%であった。電圧100Vrmsを印加すると、ヘーズ9.6%、全光線透過率54.5%となった。
[実施例2]
 液晶成分としてΔn=0.08、NI点=140℃のネマチック液晶を用いた他は、実施例1と同様に混合して黒色の液晶組成物(L-2)を得た。
 液晶組成物(L-2)50質量%に対し、1.5質量%のドデシルベンゼンスルホン酸ナトリウム水溶液を50質量%加え、シラス多孔質ガラスに通して乳化し、o/wエマルジョン(E-2)を得た。
 o/wエマルジョン(E-2)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-2)を得た。
 エマルジョン組成物(I-2)中の液晶組成物の平均粒径は10μmであった。エマルジョン組成物(I-2)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-2)の質量は、1.15であった。
 エマルジョン組成物(I-2)を用い、実施例1と同様にして液晶素子(F-2)を得た。液晶素子(F-2)の液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径10μmの液晶組成物が分散していた。液晶素子(F-2)は可撓性を持ち、ハサミで切断して整形することができた。即ち、この液晶素子(F-2)は切断整形可能であった。
 液晶素子(F-2)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ72.8%、全光線透過率25.2%であった。電圧100Vrmsを印加すると、ヘーズ15.8%、全光線透過率55.2%となった。
[比較例1]
 液晶成分としてΔn=0.08、NI点=96℃のネマチック液晶を用いた他は、実施例1と同様に黒色の液晶組成物(L-3)を得た。
 液晶組成物(L-3)50質量%に対し、1.5質量%のドデシルベンゼンスルホン酸ナトリウム水溶液を50質量%加え、シラス多孔質ガラスに通して乳化し、o/wエマルジョン(E-3)を得た。
 o/wエマルジョン(E-3)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-3)を得た。
 エマルジョン組成物(I-3)中の液晶組成物の平均粒径は10μmであった。エマルジョン組成物(I-3)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-3)の質量は、1.14であった。
 エマルジョン組成物(I-3)を用い、実施例1と同様にして黒色の液晶素子(F-3)を得た。液晶素子(F-3)の液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径10μmの液晶組成物が分散していた。液晶素子(F-3)は可撓性を持ち、ハサミで切断して整形することができた。即ち、この液晶素子(F-3)は切断整形可能であった。
 液晶素子(F-3)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ72.0%、全光線透過率19.1%であった。電圧100Vrmsを印加すると、ヘーズ9.5%、全光線透過率46.7%となった。
[実施例3]
 実施例1で得た液晶素子(F-1)を温度90℃の恒温槽へ入れ、周波数100Hz・50Vrmsの矩形波を印可して連続駆動を行った。連続駆動を開始し、65時間後、133時間後、228時間後に取り出して、室温に戻して実施例1と同様にヘーズおよび全光線透過率を測定した。ON・OFF時のそれぞれの差(ダイナミックレンジ)をΔHaze、ΔTTとすると、初期値と大きな変化は見られなかった。以下の表1に結果を示す。
Figure JPOXMLDOC01-appb-T000005
[実施例4]
 実施例2で得た液晶素子(F-2)を温度90℃の恒温槽へ入れ、周波数100Hz・50Vrmsの矩形波を印可して実施例3と同様に連続駆動を行った。
 連続駆動を開始し、65時間後、133時間後、228時間後に取り出して、室温に戻してヘーズおよび全光線透過率を測定した。ON・OFF時の差をΔHaze、ΔTTとすると、初期値と大きな変化は見られなかった。以下の表2に結果を示す。
Figure JPOXMLDOC01-appb-T000006
[比較例2]
 比較例1で得た液晶素子(F-3)を温度90℃の恒温槽へ入れ、周波数100Hz・50Vrmsの矩形波を印可して実施例3と同様に連続駆動を行った。
 連続駆動を開始し、65時間後、133時間後、228時間後に取り出して、室温に戻してヘーズおよび全光線透過率を測定した。ON・OFF時の差をΔHaze、ΔTTとすると、65時間後から大きな低下が見られた。以下の表3に結果を示す。
Figure JPOXMLDOC01-appb-T000007
 実施例3、4及び比較例2の連続駆動を開始してから、65時間後、133時間後、228時間後のヘーズ(ダイナミックレンジ ΔHaze)および全光線透過率(ダイナミックレンジ ΔTT)を図1及び2に表す。
 上記実施例及び比較例より液晶成分のNI点が特定の範囲であることで、液晶素子の、可視光透過率の変化幅(ダイナミックレンジ)が高く、高温下での駆動後においてもダイナミックレンジが維持されることが示された。
[実施例5]
 実施例1で作成したo/wエマルジョン(E-1)をエスエムテー社製超音波分散機(UH-600)を用いて10分間超音波分散を行い、o/wエマルジョン(E-5)を得た。
 o/wエマルジョン(E-5)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-5)を得た。
 エマルジョン組成物(I-5)中の液晶組成物の平均粒径は0.2μmであった。エマルジョン組成物(I-5)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-1)の質量は、1.14であった。
 エマルジョン組成物(I-5)を用い、実施例1と同様にして液晶素子(F-5)を得た。液晶素子(F-5)の液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径0.2μmの液晶組成物が分散していた。液晶素子(F-5)は可撓性を持ち、ハサミで切断して整形することができた。即ち、この液晶素子(F-5)は切断整形可能であった。
 液晶素子(F-5)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ74.0%、全光線透過率22.7%であった。電圧100Vrmsを印加すると、ヘーズ5.7%、全光線透過率66.3%となった。
[実施例6]
 実施例2で作成したo/wエマルジョン(E-2)をエスエムテー社製超音波分散機(UH-600)を用いて10分間超音波分散を行い、o/wエマルジョン(E-6)を得た。
 o/wエマルジョン(E-6)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-6)を得た。
 エマルジョン組成物(I-6)中の液晶組成物の平均粒径は0.2μmであった。エマルジョン組成物(I-6)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-2)の質量は、1.16であった。
 エマルジョン組成物(I-6)を用い、実施例1と同様にして液晶素子(F-6)を得た。液晶素子(F-6)の液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径0.2μmの液晶組成物が分散していた。液晶素子(F-6)は可撓性を持ち、ハサミで切断して整形することができた。即ち、この液晶素子(F-6)は切断整形可能であった。
 液晶素子(F-6)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ67.7%、全光線透過率25.8%であった。電圧100Vrmsを印加すると、ヘーズ8.8%、全光線透過率59.8%となった。
[比較例3]
 比較例1で作成したo/wエマルジョン(E-3)をエスエムテー社製超音波分散機(UH-600)を用いて10分間超音波分散を行い、o/wエマルジョン(E-7)を得た。
 o/wエマルジョン(E-7)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-7)を得た。
 エマルジョン組成物(I-7)中の液晶組成物の平均粒径は0.2μmであった。エマルジョン組成物(I-7)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-3)の質量は、1.14であった。
 エマルジョン組成物(I-7)を用い、実施例1と同様にして黒色の液晶素子(F-7)を得た。液晶素子(F-7)の液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径0.2μmの液晶組成物が分散していた。液晶素子(F-7)は可撓性を持ち、ハサミで切断して整形することができた。即ち、この液晶素子(F-7)は切断整形可能であった。
 液晶素子(F-7)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ59.6%、全光線透過率27.1%であった。電圧100Vrmsを印加すると、ヘーズ8.4%、全光線透過率54.4%となった。
[実施例7]
 実施例5で得た液晶素子(F-5)を温度90℃の恒温槽へ入れ、周波数100Hz・50Vrmsの矩形波を印可して連続駆動を行った。連続駆動を開始し、65時間後、133時間後、228時間後に取り出して、室温に戻して実施例1と同様にヘーズおよび全光線透過率を測定した。ON・OFF時のそれぞれの差(ダイナミックレンジ)をΔHaze、ΔTTとすると、初期値と大きな変化は見られなかった。以下の表4に結果を示す。
Figure JPOXMLDOC01-appb-T000008
[実施例8]
 実施例6で得た液晶素子(F-6)を温度90℃の恒温槽へ入れ、周波数100Hz・50Vrmsの矩形波を印可して実施例7と同様に連続駆動を行った。
 連続駆動を開始し、65時間後、133時間後、228時間後に取り出して、室温に戻してヘーズおよび全光線透過率を測定した。ON・OFF時の差をΔHaze、ΔTTとすると、初期値と大きな変化は見られなかった。以下の表5に結果を示す。
Figure JPOXMLDOC01-appb-T000009
[比較例4]
 比較例3で得た液晶素子(F-7)を温度90℃の恒温槽へ入れ、周波数100Hz・50Vrmsの矩形波を印可して実施例7と同様に連続駆動を行った。
 連続駆動を開始し、65時間後、133時間後、228時間後に取り出して、室温に戻してヘーズおよび全光線透過率を測定した。ON・OFF時の差をΔHaze、ΔTTとすると、65時間後から大きな低下が見られた。以下の表6に結果を示す。
Figure JPOXMLDOC01-appb-T000010
 実施例7、8及び比較例4の連続駆動を開始してから、65時間後、133時間後、228時間後のヘーズ(ダイナミックレンジ ΔHaze)および全光線透過率(ダイナミックレンジ ΔTT)を図3及び4に表す。
 上記実施例及び比較例より液晶成分のNI点が特定の範囲であることで、液晶素子の、可視光透過率の変化幅(ダイナミックレンジ)が高く、高温下での駆動後においてもダイナミックレンジが維持されることが示された。
[実施例9]
 液晶成分としてΔn=0.096、NI点=130.6℃のネマチック液晶を用いた他は、実施例1と同様に混合して黒色の液晶組成物(L-8)を得た。
 液晶組成物(L-8)50質量%に対し、1.5質量%のドデシルベンゼンスルホン酸ナトリウム水溶液を50質量%加え、シラス多孔質ガラスに通して乳化し、o/wエマルジョン(E-8)を得た。
 o/wエマルジョン(E-8)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-8)を得た。
 エマルジョン組成物(I-8)中の液晶組成物の平均粒径は10μmであった。エマルジョン組成物(I-8)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-8)の質量は、1.17であった。
 エマルジョン組成物(I-8)を用い、実施例1と同様にして液晶素子(F-8)を得た。液晶素子(F-8)の液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径10μmの液晶組成物が分散していた。液晶素子(F-8)は可撓性を持ち、ハサミで切断して整形することができた。即ち、この液晶素子(F-8)は切断整形可能であった。
 液晶素子(F-8)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ73.1%、全光線透過率23.7%であった。電圧100Vrmsを印加すると、ヘーズ7.2%、全光線透過率56.3%となった。
[実施例10]
 液晶成分としてΔn=0.095、NI点=129.5℃のネマチック液晶を用いた他は、実施例1と同様に混合して黒色の液晶組成物(L-9)を得た。
 液晶組成物(L-9)50質量%に対し、1.5質量%のドデシルベンゼンスルホン酸ナトリウム水溶液を50質量%加え、シラス多孔質ガラスに通して乳化し、o/wエマルジョン(E-9)を得た。
 o/wエマルジョン(E-9)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-9)を得た。
 エマルジョン組成物(I-9)中の液晶組成物の平均粒径は10μmであった。エマルジョン組成物(I-9)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-9)の質量は、1.25であった。
 エマルジョン組成物(I-9)を用い、実施例1と同様にして液晶素子(F-9)を得た。液晶素子(F-9)の液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径10μmの液晶組成物が分散していた。液晶素子(F-9)は可撓性を持ち、ハサミで切断して整形することができた。即ち、この液晶素子(F-9)は切断整形可能であった。
 液晶素子(F-9)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ72.5%、全光線透過率24.4%であった。電圧100Vrmsを印加すると、ヘーズ7.6%、全光線透過率57.3%となった。
[比較例5]
 液晶成分としてΔn=0.164、NI点=120.7℃のネマチック液晶を用いた他は、実施例1と同様に混合して黒色の液晶組成物(L-10)を得た。
 液晶組成物(L-10)50質量%に対し、1.5質量%のドデシルベンゼンスルホン酸ナトリウム水溶液を50質量%加え、シラス多孔質ガラスに通して乳化し、o/wエマルジョン(E-10)を得た。
 o/wエマルジョン(E-10)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-10)を得た。
 エマルジョン組成物(I-10)中の液晶組成物の平均粒径は10μmであった。エマルジョン組成物(I-10)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-10)の質量は、1.17であった。
 エマルジョン組成物(I-10)を用い、実施例1と同様にして液晶素子(F-10)を得た。液晶素子(F-10)の液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径10μmの液晶組成物が分散していた。液晶素子(F-10)は可撓性を持ち、ハサミで切断して整形することができた。即ち、この液晶素子(F-10)は切断整形可能であった。
 液晶素子(F-10)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ83.3%、全光線透過率24.7%であった。電圧100Vrmsを印加すると、ヘーズ18.2%、全光線透過率58.0%となった。
[比較例6]
 液晶成分としてΔn=0.195、NI点=129.9℃のネマチック液晶を用いた他は、実施例1と同様に混合して黒色の液晶組成物(L-11)を得た。
 液晶組成物(L-11)50質量%に対し、1.5質量%のドデシルベンゼンスルホン酸ナトリウム水溶液を50質量%加え、シラス多孔質ガラスに通して乳化し、o/wエマルジョン(E-11)を得た。
 o/wエマルジョン(E-11)55質量部に白色ラテックス(W-1)45質量部を加え、均一になるまで撹拌してエマルジョン組成物(I-11)を得た。
 エマルジョン組成物(I-11)中の液晶組成物の平均粒径は10μmであった。エマルジョン組成物(I-11)における、水相中に分散又溶解している高分子(P-1)の質量を1とすると、液晶組成物(L-11)の質量は、1.17であった。
 エマルジョン組成物(I-11)を用い、実施例1と同様にして液晶素子(F-11)を得た。液晶素子(F-11)の液晶-高分子複合膜を膜面上から顕微鏡で観察したところ、高分子マトリクス中に平均粒径10μmの液晶組成物が分散していた。液晶素子(F-11)は可撓性を持ち、ハサミで切断して整形することができた。即ち、この液晶素子(F-11)は切断整形可能であった。
 液晶素子(F-11)は電圧OFF時には黒色に着色し、電圧ON時(周波数100Hz・50Vrmsの矩形波)に透明になるノーマルモード駆動を示した。電圧OFF時はヘーズ84.3%、全光線透過率26.6%であった。電圧100Vrmsを印加すると、ヘーズ22.2%、全光線透過率60.1%となった。
 比較例5及び比較例6で作成した液晶素子(F-10)、(F-11)のヘーズ・全光線透過率のダイナミックレンジは実施例9および実施例10と同程度であるが、電圧印可時のヘーズが高く、透明感に欠けるものであった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年3月1日付で出願された日本特許出願2021-31559に基づいており、その全体が引用により援用される。

 

Claims (16)

  1.  透明導電膜が対向するように配置された2枚の透明導電膜付き基板と、前記2枚の透明導電膜付き基板の間に挟持された液晶-高分子複合膜とを備える液晶素子であって、
     前記液晶-高分子複合膜が、高分子マトリクスと、前記高分子マトリクスに囲まれた液晶組成物とを有し、
     前記液晶組成物は、液晶成分及び二色性色素を含有し、
     前記液晶成分の誘電率異方性は正で、NI点が110℃以上150℃以下であり、
     前記液晶成分の屈折率異方性が0.01以上0.1以下であり、
     前記液晶-高分子複合膜は電圧の印加により透明状態と着色状態を切り替えることができるものである、液晶素子。
  2.  前記液晶組成物の平均粒径が2μm以上50μm以下である、請求項1に記載の液晶素子。
  3.  前記液晶組成物の平均粒径が0.01μm以上2μm未満である、請求項1に記載の液晶素子。
  4.  前記二色性色素がアントラキノン色素及び/またはアゾ色素を含有するものである、請求項1~3のいずれか1項に記載の液晶素子。
  5.  前記液晶組成物100質量%に対する前記二色性色素の含有量が、0.1質量%以上20質量%以下である、請求項1~4のいずれか1項に記載の液晶素子。
  6.  前記液晶成分がネマチック液晶またはカイラルネマチック液晶である、請求項1~5のいずれか1項に記載の液晶素子。
  7.  前記高分子マトリクスを構成する高分子がポリウレタン、ポリアクリル、ポリビニルアルコール及びこれらの変性体からなる群より選択される少なくとも1つを含有するものである、請求項1~6のいずれか1項に記載の液晶素子。
  8.  前記着色状態の全光線透過率が0.1%以上30%以下である、請求項1~7のいずれか1項に記載の液晶素子。
  9.  前記透明状態の全光線透過率が30%より大きく80%以下である、請求項1~8のいずれか1項に記載の液晶素子。
  10.  水を含有する媒体に液晶組成物が分散したエマルジョン組成物であって、
     前記媒体は、高分子が分散又は溶解したものであり、
     前記液晶組成物は、液晶成分及び二色性色素を含有し、
     前記液晶成分は誘電率異方性が正であり、NI点が110℃以上150℃以下であり、
     前記液晶成分の屈折率異方性が0.01以上0.1以下である、エマルジョン組成物。
  11.  前記エマルジョン組成物中の前記液晶組成物の平均粒径が2μm以上50μm以下である、請求項10に記載のエマルジョン組成物。
  12.  前記エマルジョン組成物中の前記液晶組成物の平均粒径が0.01μm以上2μm未満である、請求項10に記載のエマルジョン組成物。
  13.  前記二色性色素がアントラキノン色素及び/またはアゾ色素を含有するものである、請求項10~12のいずれか1項に記載のエマルジョン組成物。
  14.  前記液晶組成物100質量%に対する前記二色性色素の含有量が、0.1質量%以上20質量%以下である、請求項10~13のいずれか1項に記載のエマルジョン組成物。
  15.  前記液晶成分がネマチック液晶またはカイラルネマチック液晶である、請求項10~14のいずれか1項に記載のエマルジョン組成物。
  16.  前記高分子がポリウレタン、ポリアクリル、ポリビニルアルコール及びこれらの変性体からなる群より選択される少なくとも1つを含有するものである、請求項10~15のいずれか1項に記載のエマルジョン組成物。
PCT/JP2022/007810 2021-03-01 2022-02-25 液晶素子及びエマルジョン組成物 WO2022186062A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023503775A JPWO2022186062A1 (ja) 2021-03-01 2022-02-25
CN202280017083.8A CN116981988A (zh) 2021-03-01 2022-02-25 液晶元件及乳液组合物
EP22763118.1A EP4303648A1 (en) 2021-03-01 2022-02-25 Liquid crystal element and emulsion composition
KR1020237026482A KR20230150949A (ko) 2021-03-01 2022-02-25 액정 소자 및 에멀션 조성물
US18/239,906 US20230399567A1 (en) 2021-03-01 2023-08-30 Liquid Crystal Element and Emulsion Composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021031559 2021-03-01
JP2021-031559 2021-03-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/239,906 Continuation US20230399567A1 (en) 2021-03-01 2023-08-30 Liquid Crystal Element and Emulsion Composition

Publications (1)

Publication Number Publication Date
WO2022186062A1 true WO2022186062A1 (ja) 2022-09-09

Family

ID=83155104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007810 WO2022186062A1 (ja) 2021-03-01 2022-02-25 液晶素子及びエマルジョン組成物

Country Status (6)

Country Link
US (1) US20230399567A1 (ja)
EP (1) EP4303648A1 (ja)
JP (1) JPWO2022186062A1 (ja)
KR (1) KR20230150949A (ja)
CN (1) CN116981988A (ja)
WO (1) WO2022186062A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042793A (ja) * 1999-07-27 2001-02-16 Dainippon Ink & Chem Inc ネマチック液晶組成物及びこれを用いた液晶表示装置
WO2004005426A1 (ja) * 2002-07-05 2004-01-15 Asahi Glass Company, Limited 調光素子およびその製造方法
JP2013152445A (ja) * 2011-12-27 2013-08-08 National Institute Of Advanced Industrial & Technology 液晶と高分子の配向相分離構造とその製造方法
WO2018159303A1 (ja) * 2017-03-01 2018-09-07 Dic株式会社 液晶組成物及び液晶表示素子
JP2019502958A (ja) * 2016-01-06 2019-01-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 光の進入を制御するためのデバイス
US20190278115A1 (en) * 2018-03-06 2019-09-12 Nitto Denko Corporation Liquid Crystal Composite, Liquid Crystal Element, and Associated Selectively Dimmable Device
JP2021031559A (ja) 2019-08-21 2021-03-01 ナミックス株式会社 エポキシ樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156615B1 (en) 1984-03-20 1990-05-23 Taliq Corporation Liquid crystal composition, method and apparatus
JP2000347223A (ja) 1999-04-02 2000-12-15 Nippon Sheet Glass Co Ltd 液晶調光体
JP5659512B2 (ja) 2010-03-12 2015-01-28 三菱化学株式会社 調光用液晶組成物、並びに、その光硬化物及び調光素子
CN112285980A (zh) 2013-03-05 2021-01-29 默克专利股份有限公司 用于调节光学能量穿透量的装置
CN105683822B (zh) 2013-10-17 2019-10-01 默克专利股份有限公司 用于调节光进入的装置
CN106030387B (zh) 2014-02-06 2021-09-14 默克专利股份有限公司 用于调节光透射的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042793A (ja) * 1999-07-27 2001-02-16 Dainippon Ink & Chem Inc ネマチック液晶組成物及びこれを用いた液晶表示装置
WO2004005426A1 (ja) * 2002-07-05 2004-01-15 Asahi Glass Company, Limited 調光素子およびその製造方法
JP2013152445A (ja) * 2011-12-27 2013-08-08 National Institute Of Advanced Industrial & Technology 液晶と高分子の配向相分離構造とその製造方法
JP2019502958A (ja) * 2016-01-06 2019-01-31 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 光の進入を制御するためのデバイス
WO2018159303A1 (ja) * 2017-03-01 2018-09-07 Dic株式会社 液晶組成物及び液晶表示素子
US20190278115A1 (en) * 2018-03-06 2019-09-12 Nitto Denko Corporation Liquid Crystal Composite, Liquid Crystal Element, and Associated Selectively Dimmable Device
JP2021031559A (ja) 2019-08-21 2021-03-01 ナミックス株式会社 エポキシ樹脂組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Shikizai", vol. 77, 2004, GENERAL INCORPORATED ASSOCIATION SHIKIZAI KYOKAI, pages: 169 - 176
D. A. HIGGINS, ADVANCED MATERIALS, vol. 12, no. 4, 2000
NIHON KOGYO SHIMBUN: "Liquid Crystal Handbook", 1989, COMMITTEE OF THE JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE, pages: 192 - 196,724-730

Also Published As

Publication number Publication date
EP4303648A1 (en) 2024-01-10
JPWO2022186062A1 (ja) 2022-09-09
KR20230150949A (ko) 2023-10-31
CN116981988A (zh) 2023-10-31
US20230399567A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
JP4027940B2 (ja) 表示素子および表示装置
KR100853069B1 (ko) 표시 소자 및 표시 장치
JP4937252B2 (ja) 二色性ゲスト−ホスト偏光子
EP3617781A1 (en) Optical modulation device
JP4027939B2 (ja) 表示素子および表示装置
KR101476899B1 (ko) 폴리머-안정화 열방성 액정 장치
US5200108A (en) Ferroelectric liquid crystal composition, liquid crystal optical device produced by using the ferroelectric liquid crystal composition, and method of producing the liquid crystal optical device
US7859638B2 (en) Method for driving liquid crystal light modulating device, and liquid crystal light modulating device
US7843530B2 (en) Liquid crystal-containing composition and liquid crystal display device using the same
KR20180130569A (ko) 나노캡슐화를 위한 조성물 및 액정 매질을 포함하는 나노캡슐
KR20190039639A (ko) 작용화된 폴리비닐 알콜을 포함하는 조성물 및 액정 매질을 함유하는 나노캡슐
KR20120099183A (ko) 액정 필름
JP3679869B2 (ja) 液晶マイクロカプセルおよびそれを用いた液晶表示素子
WO2022186062A1 (ja) 液晶素子及びエマルジョン組成物
JP2005133028A (ja) プラスチック複合透明シート及びそれを使用した表示素子
JP7322414B2 (ja) 液晶素子及びエマルジョン組成物
JP7383883B2 (ja) 液晶素子及びエマルジョン組成物
JP5204608B2 (ja) 偏光板、光学フィルムおよび画像表示装置
JP2024062552A (ja) 液晶素子及びエマルジョン組成物
WO2024090402A1 (ja) 液晶素子及びエマルジョン組成物
JP3532295B2 (ja) 液晶光学素子の製造方法
KR100257894B1 (ko) 고분자 액정 복합체
JP3714643B2 (ja) 液晶マイクロカプセルの製造方法
JP2958410B2 (ja) 液晶・高分子複合材料、電気光学素子およびそれらの製造方法
JP2009223162A (ja) 液晶含有組成物、液晶表示素子、及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503775

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280017083.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022763118

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022763118

Country of ref document: EP

Effective date: 20231002