WO2022185791A1 - 無電解ニッケルめっき浴および無電解ニッケル合金めっき浴 - Google Patents

無電解ニッケルめっき浴および無電解ニッケル合金めっき浴 Download PDF

Info

Publication number
WO2022185791A1
WO2022185791A1 PCT/JP2022/002769 JP2022002769W WO2022185791A1 WO 2022185791 A1 WO2022185791 A1 WO 2022185791A1 JP 2022002769 W JP2022002769 W JP 2022002769W WO 2022185791 A1 WO2022185791 A1 WO 2022185791A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroless nickel
plating bath
plating
phenolsulfonate
acid
Prior art date
Application number
PCT/JP2022/002769
Other languages
English (en)
French (fr)
Inventor
康輔 若田
千香子 横山
Original Assignee
株式会社Jcu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jcu filed Critical 株式会社Jcu
Priority to CN202280012896.8A priority Critical patent/CN117295847A/zh
Publication of WO2022185791A1 publication Critical patent/WO2022185791A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to an electroless nickel plating bath and an electroless nickel alloy plating bath (hereinafter abbreviated as "electroless nickel (alloy) plating bath”) that do not contain elements such as nitrogen that have a large environmental load and that have a small environmental load. More specifically, it relates to an electroless nickel plating bath and an electroless nickel alloy plating bath which are excellent in stability and plating deposition rate.
  • Electroless plating is a technology that obtains a metal film by reducing metal ions through a chemical reaction from a solution containing metal ions and a reducing agent.
  • electroless nickel plating or electroless nickel alloy plating (hereinafter collectively referred to as “electroless nickel (alloy) plating”) is a conductive treatment when plating on plastic.
  • electroless nickel (alloy) plating is a conductive treatment when plating on plastic.
  • electroless nickel (alloy) plating is a conductive treatment when plating on plastic.
  • electroless nickel (alloy) plating is a conductive treatment when plating on plastic.
  • There are applications such as rust prevention, hardness improvement, solderability improvement, solder wettability improvement, etc.
  • base plating of design parts such as automobile parts and faucet fittings
  • It is also used as
  • ammonia has been added to the electroless nickel (alloy) plating solution used for plating on plastics in order to improve the performance of the plating bath.
  • the presence of ammonia suppresses the random reduction reaction of nickel ions at the temperature and pH required for the reduction reaction of nickel ions to metal, that is, the reaction generally referred to as self-decomposition.
  • a good deposition rate could be obtained, and good formation of a nickel (alloy) plating film and good continuous use of the plating bath were possible.
  • An object of the present invention is to provide an electroless nickel (alloy) plating bath that can be used continuously.
  • the present invention is an electroless nickel salt containing one or more selected from the group consisting of a water-soluble nickel salt, a reducing agent, phenolsulfonic acid, phenolsulfonates, and hydrates thereof. It is a nickel plating bath.
  • the present invention also provides an electroless nickel plating method characterized by treating an object to be plated with the electroless nickel plating bath.
  • the present invention is an electroless nickel alloy plating bath characterized by further containing an alloying metal salt in the above electroless nickel plating bath.
  • the present invention is an electroless nickel alloy plating method characterized by treating an object to be plated with the above electroless nickel alloy plating bath.
  • an electroless nickel (alloy) plating bath that is excellent in plating film appearance, plating deposition rate, and plating bath stability without substantially containing nitrogen compounds such as ammonia, which is a regulated substance. can do.
  • the above performance is less likely to deteriorate, so the plating bath need not be replaced less often, and the working efficiency can be improved.
  • the present invention provides an electroless nickel plating bath containing one or more selected from the group consisting of a water-soluble nickel salt, a reducing agent, phenolsulfonic acid, phenolsulfonates, and phenolsulfonate hydrates, and The present invention relates to an electroless nickel alloy plating bath in which an alloying metal salt is further added to this electroless nickel plating bath.
  • the water-soluble nickel salt used in the electroless nickel (alloy) plating bath of the present invention is not particularly limited, and generally used water-soluble nickel salts such as nickel sulfate, nickel chloride, nickel acetate, nickel nitrate, and nickel phosphite. One or more of these water-soluble nickel salts can be used.
  • the content of these water-soluble nickel salts in the electroless nickel (alloy) plating bath is not particularly limited, but for example, the nickel ion concentration is 0.1 g / L to 100 g / L. 1 g/L to 50 g/L is particularly preferred. If it is less than 0.1 g/L, there may be no reaction, and if it is more than 100 g/L, decomposition due to overreaction may occur.
  • the reducing agent used in the electroless nickel (alloy) plating bath of the present invention is not particularly limited, and commonly used reducing agents such as hypophosphorous acid, sodium hypophosphite, hypophosphorous acid Examples include hypophosphorous acids (salts) such as potassium, sodium borohydride, and the like. One or more of these reducing agents can be used.
  • amine boranes such as dimethylamine borane and trimethylamine borane
  • hydrazines (salts) such as hydrazine, which are generally used reducing agents, can also be used. , preferably not used in order to make the electroless nickel (alloy) plating bath nitrogen-free.
  • the content of these reducing agents in the electroless nickel (alloy) plating bath varies depending on the type of reducing agent used and the required deposition rate. ⁇ 50 g/L is particularly preferred. If the amount is less than 1 g/L, there may be no reaction, and if it is more than 100 g/L, decomposition may occur due to overreaction.
  • Phenolsulfonic acid, phenolsulfonate, and hydrates thereof used in the electroless nickel (alloy) plating bath of the present invention include, for example, phenol Phenolsulfonates such as sulfonic acid, phenolsulfonic acid hydrate, sodium phenolsulfonate, potassium phenolsulfonate, lithium phenolsulfonate, zinc phenolsulfonate, tin phenolsulfonate, copper phenolsulfonate, and nickel phenolsulfonate , hydrates of the above phenolsulfonates, and the like.
  • phenol Phenolsulfonates such as sulfonic acid, phenolsulfonic acid hydrate, sodium phenolsulfonate, potassium phenolsulfonate, lithium phenolsulfonate, zinc phenolsulfonate, tin phenolsulfonate, copper phenolsulfonate, and nickel phenols
  • Phenolsulfonic acid has o (ortho), m (meta), and p (para) isomers, and the p (para) isomer is preferred.
  • the content of the phenolsulfonic acid, phenolsulfonate, and hydrates thereof in the electroless nickel (alloy) plating bath is not particularly limited, but is preferably 1 g/L to 50 g/L, for example. , more preferably 2 g/L to 30 g/L, particularly preferably 3 g/L to 20 g/L.
  • the content of the phenolsulfonic acid, phenolsulfonate, and hydrates thereof in the electroless nickel (alloy) plating bath is preferably 7.5 g/L to 20 g/L, particularly 12 g/L, in terms of deposition rate. .5 g/L to 17.5 g/L is preferred. If it is less than 1 g/L, there is a possibility that a sufficient effect of improving the plating deposition property cannot be obtained, and if it is more than 50 g/L, decomposition may occur due to overreaction.
  • the electroless nickel (alloy) plating bath of the present invention is an electroless nickel alloy plating bath
  • This alloying metal salt improves physical properties such as hardness, magnetism, ductility, electrical resistance and toughness of the plating film.
  • Metals of such alloying metal salts are not particularly limited, but examples include iron, copper, tin, cobalt, tungsten, rhenium, manganese, palladium, vanadium, zinc, chromium, gold, silver, and platinum. is mentioned.
  • One or two or more metals can be used in these alloying metal salts.
  • the content of the alloying metal salt in the electroless nickel alloy plating bath is not particularly limited, but for example, it is preferably 0.1 g/L to 100 g/L as the alloying metal salt, and 1 g/L. ⁇ 50 g/L is particularly preferred.
  • the electroless nickel (alloy) plating bath of the present invention preferably contains a complexing agent in addition to the above essential components.
  • the complexing agent is not particularly limited, but various inorganic acids and organic acids are preferably used. Specific inorganic acids and organic acids include boron compounds such as boric acid and borax; acetic acid, propionic acid, malic acid, lactic acid, succinic acid, malonic acid, adipic acid, citric acid, fumaric acid, maleic acid , gluconic acid, glycolic acid, benzoic acid, hydroxybenzoic acid, and other monocarboxylic acid compounds, dicarboxylic acid compounds, hydroxycarboxylic acid compounds, and salts thereof. One or more of these complexing agents can be used.
  • citric acid, malic acid, succinic acid, malonic acid, fumaric acid, maleic acid and hydroxybenzoic acid are preferred, and citric acid, maleic acid, fumaric acid and hydroxybenzoic acid are more preferred.
  • the content of the complexing agent in the electroless nickel (alloy) plating bath is not particularly limited as long as it does not impair the effects of the present invention.
  • L to 50 g/L is particularly preferred. If it is less than 1 g/L, it may self-decompose or generate nickel hydroxide. On the other hand, when it is more than 100 g/L, there are cases where no reaction occurs or a sufficient reaction rate cannot be obtained.
  • the electroless nickel (alloy) plating bath of the present invention can further contain a stabilizer.
  • the stabilizer is not particularly limited, examples thereof include bismuth, molybdenum, antimony, and the like.
  • examples of bismuth include bismuth oxide and bismuth sulfate.
  • examples of molybdenum include molybdates such as sodium molybdate, potassium molybdate and ammonium molybdate, hydrates of the above molybdates such as disodium molybdate dihydrate, and molybdic acid.
  • antimony examples include antimonate salts such as sodium antimonate, potassium antimonate, and ammonium antimonate, antimonate hydrates thereof, antimonic acid, antimonyl-L-tartaric acid, and antimonyl potassium tartrate.
  • antimonate salts such as sodium antimonate, potassium antimonate, and ammonium antimonate, antimonate hydrates thereof, antimonic acid, antimonyl-L-tartaric acid, and antimonyl potassium tartrate.
  • antimonate salts such as sodium antimonate, potassium antimonate, and ammonium antimonate, antimonate hydrates thereof, antimonic acid, antimonyl-L-tartaric acid, and antimonyl potassium tartrate.
  • antimonyl potassium tartrate One or more of these stabilizers can be used.
  • the content of the stabilizer in the electroless nickel (alloy) plating bath is not particularly limited as long as it does not impair the effects of the present invention.
  • Molybdenum is 0.1 mg/L to 1 g/L, preferably 10 mg/L to 500 mg/L in terms of molybdenum metal.
  • L, and antimony is 0.1 mg/L to 1 g/L, preferably 0.5 mg/L to 200 mg/L in terms of antimony metal.
  • the electroless nickel (alloy) plating bath of the present invention can further contain a reaction accelerator/stress reliever.
  • a reaction accelerator/stress-relieving agent examples thereof include organic sulfur compounds and inorganic sulfur compounds. Specifically, thiosulfates, thionates, polythionates, thioureas, thiocyanates, thiosulfonates, thiocarbonates, thiocarbamates, thiosemicarbazides, sulfides, disulfides, thiols, mercaptans, thioglycols acid, thiodiglycolic acid, or derivatives thereof; One or more of these reaction accelerators and stress relievers can be used.
  • the content of the reaction accelerator/stress reducing agent in the electroless nickel (alloy) plating bath is not particularly limited as long as it does not impair the effects of the present invention, but for example, 0.001 mg / L to 1000 mg / L , preferably 0.01 mg/L to 100 mg/L.
  • the electroless nickel (alloy) plating bath of the present invention can further contain a film property improving agent.
  • the film property improving agent is not particularly limited, but for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), fluororesins or fluorinated compounds such as pitch fluoride; nylon , organic polymers such as polyethylene; inorganic substances such as graphite, graphite fluoride, molybdenum disulfide, silicon carbide, titanium oxide, and diamond; 1 type(s) or 2 or more types can be used.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • fluororesins or fluorinated compounds such as pitch fluoride
  • nylon organic polymers
  • inorganic substances such as graphite, graphite fluoride, molybdenum disulfide
  • the content of the film physical property improving agent in the electroless nickel (alloy) plating bath is not particularly limited as long as it does not impair the effects of the present invention, but for example, 0 to 500 g / L is preferable, and 1 g / L ⁇ 10 g/L is particularly preferred. If it is more than 500 g/L, good deposition of the plating film may not be obtained, and uniform dispersion of the film physical property improving agent in the film may not be obtained.
  • the pH of the electroless nickel (alloy) plating bath of the present invention is not particularly limited; By setting the pH of the electroless plating bath within this range, the reduction reaction of metal ions proceeds efficiently, and the effect of improving the deposition rate of the electroless plating film is obtained. Acids such as hydrochloric acid and sulfuric acid, and alkalis such as sodium hydroxide, potassium hydroxide and lithium hydroxide, preferably diluted with water, can be appropriately added to adjust the pH of the plating bath.
  • the electroless nickel (alloy) plating bath of the present invention does not substantially contain nitrogen (nitrogen-free).
  • substantially not contained means that the total nitrogen analysis (JIS K0102 45.1) is 5 ppm or less in consideration of ammonia, etc. in the atmosphere.
  • the electroless nickel (alloy) plating bath of the present invention can be prepared without using mercury, arsenic, cadmium, or lead, it does not substantially contain mercury, arsenic, cadmium, or lead (regulated substance-free).
  • the electroless nickel (alloy) plating bath of the present invention has little possibility of affecting the environment and the human body, and is not subject to regulations, guidelines, and the like.
  • substantially not contained means that the content is 0.1 ppm or less when measured by ICP-MS or the like.
  • a preferred embodiment of the electroless nickel (alloy) plating bath of the present invention has the following composition.
  • the pH was not adjusted with nitrogen-containing substances such as ammonia. , arsenic, cadmium, and lead-containing compounds are not intentionally included.
  • the electroless nickel (alloy) plating bath of the present invention can be prepared by mixing and dissolving the above components.
  • the temperature of the electroless nickel (alloy) plating bath of the present invention during plating is not particularly limited as long as it is a temperature at which the reduction reaction of nickel ions is performed. C., preferably 15 to 98.degree. C., particularly preferably 25 to 60.degree.
  • the plating method using the electroless nickel (alloy) plating bath of the present invention obtained as described above may be the same as the plating method using a normal electroless plating bath, and is not particularly limited.
  • the object to be plated may be treated with the electroless nickel (alloy) plating bath of the present invention.
  • the method of treating the object to be plated with the electroless nickel (alloy) plating bath of the present invention is not particularly limited, but for example, the object to be plated is immersed in the electroless nickel (alloy) plating bath of the present invention that has been prepared. and a method of spraying the prepared electroless nickel (alloy) plating bath of the present invention onto an object to be plated.
  • the object to be plated that can be plated with the electroless nickel (alloy) plating bath of the present invention is not particularly limited as long as it can be plated with electroless nickel.
  • Examples include acrylonitrile-butadiene-styrene copolymer (ABS) and acrylonitrile.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • AS styrene copolymer
  • PC polycarbonate
  • PC/ABS polypropylene
  • PA polyamide
  • CFRP carbon fiber reinforced plastic
  • the electroless nickel (alloy) plating bath of the present invention when plating is performed using the electroless nickel (alloy) plating bath of the present invention, as the plating progresses, metal ions are reduced to metal by a reducing agent. The concentration will drop and the pH will also drop. Therefore, a water-soluble nickel salt, a reducing agent, a complexing agent, a p-phenolsulfonate, a stabilizer, a pH adjuster, etc. are added to the electroless nickel (alloy) plating bath continuously or at appropriate intervals. It is preferable to replenish to restore their concentration to the original concentration. It is also preferable to measure the metal ion concentration, reducing agent concentration and pH in the plating solution continuously or at appropriate time intervals and replenish them according to the measurement results.
  • the electroless nickel (alloy) plating of the present invention provides electroless nickel plated products and electroless nickel alloy plating. These plated products differ from conventional plated products in the phosphorus content of the film. Conventional plating films have a phosphorus content of about 1-5 wt %, whereas the plating film of the present invention has a phosphorus content of 7-12 wt %. In addition, the plating film of the present invention has a physical property that it is difficult to dissolve in nitric acid as compared with the conventional plating film.
  • These plated products are used for base plating of design parts such as automotive parts and faucet fittings, base plating for printed circuit boards and ITO boards, resistors, magnetic disks, electromagnetic wave shields, metal matrix of composite plating films containing fine particles, etc. can be used in a wide range of applications.
  • Example 1 Electroless nickel plating An ABS resin test piece (size: 2 mm ⁇ 60 mm ⁇ 80 mm) was degreased by immersing it in a degreasing solution (EBAPREP SK-144: manufactured by JCU Co., Ltd.) at 50° C. for 5 minutes. This test piece was etched by immersing it in an aqueous solution containing 380 g/L of CrO 3 and 380 g/L of concentrated sulfuric acid heated to 68° C. for 10 minutes. After washing with water, neutralization (ENILEX RD: manufactured by JCU Co., Ltd.) was performed at room temperature for 1 minute.
  • EBAPREP SK-144 manufactured by JCU Co., Ltd.
  • An electroless nickel plating bath of the present invention containing p-phenolsulfonate was prepared according to a conventional method with the following composition. In addition, for comparison, one containing no p-phenolsulfonate and one containing ammonia were used.
  • ⁇ Electroless nickel plating bath composition (nitrogen-free, regulated substance-free)> Nickel sulfate hexahydrate 22g/L Sodium hypophosphite monohydrate 18g/L Bismuth oxide 6mg/L Complexing agent * As appropriate Sodium p-phenolsulfonate dihydrate Amount shown in Table 1 pH of plating solution ** 8.8 Ammonia Amount shown in Table 1 Sodium hydroxide As appropriate *Combining two or more of citric acid, malic acid, succinic acid, malonic acid, fumaric acid, maleic acid, hydroxybenzoic acid, and their salts as a complexing agent , was added so that the total amount of the complexing agent was 50 g/L or less. ** Plating baths (1) to (3) of the present invention and comparative bath (1) were adjusted with sodium hydroxide, and comparative bath (2) was adjusted with ammonia.
  • the plating bath of the present invention containing sodium p-phenolsulfonate dihydrate provides a deposition rate sufficient for use.
  • a precipitation rate equivalent to that of blending ammonia can be obtained.
  • the plating bath of the present invention does not have the irritating odor peculiar to ammonia and is easy to use.
  • Example 2 Phosphorus content of electroless nickel plating film: After electroless plating was performed by the method described in Example 1, the film was dissolved using 35% nitric acid, and the nickel concentration and phosphorus concentration contained in the solution were measured by ICP emission spectrometry. Content was evaluated.
  • a film with a phosphorus content of 8.9 wt% was obtained from the plating bath (2) of the present invention. Also, a coating with a phosphorus content of 3.8 wt % was obtained from the comparative bath (2). Furthermore, the coating obtained from the plating bath (2) of the present invention was less soluble in nitric acid than the coating obtained from the comparative bath (2).
  • Example 3 Continuous use test of electroless nickel plating bath: From the results in Table 2, a continuous use test was conducted on the plating bath (2) of the present invention, which was confirmed to have excellent plating deposition properties. In the continuous use test, the electroless nickel plating bath was continuously used for 1, 2, and 3 turns to perform electroless plating, and evaluation was made under the following criteria.
  • ⁇ Relative deposition rate> The deposition rate during continuous use of each turn was measured in the same manner as in Example 1, and the measured value was compared to the initial deposition rate obtained in Example 1 using the following criteria. The rate of decrease in deposition rate was evaluated.
  • Judgment Precipitation rate ⁇ Decreased by 0% to 10%
  • Decreased by 10% to 20%
  • Decreased by 20% to 25%
  • Decreased by 25% or more
  • the stability of the plating bath was evaluated using the following criteria. ⁇ Evaluation method for plating bath stability> Deposits on the bottom surface of the plating bath at the end of plating were visually confirmed.
  • continuous use for one turn means plating continuously until nickel metal is plated in an amount corresponding to the initial nickel ion concentration in the electroless nickel plating bath.
  • the initial nickel ion concentration in the electroless nickel plating bath is M [g/L]
  • one turn is defined as the time when M [g/L] of nickel is deposited by plating. Therefore, in this case, continuous use of 3 turns means continuous plating until nickel plating of 3 ⁇ M [g/L] is achieved.
  • the plating bath (2) of the present invention evaluated in Example 3 can continue electroless nickel plating well up to 3 turns, and even if it is used continuously, there is little decrease in the deposition rate, and the bath stability is good. It was excellent. In addition, no plating was not deposited.
  • the plating bath (2) of the present invention was superior to the comparative plating bath (2) using ammonia, with less decrease in deposition rate during turn progression.
  • plating bath stability it was confirmed that there was little formation of deposits in the plating bath, and that the performance was comparable to baths using ammonia.
  • the plating bath of the present invention does not have the irritating odor peculiar to ammonia and is easy to use.
  • Example 4 Electroless nickel plating: An electroless nickel plating bath of the present invention containing p-phenolsulfonate was prepared according to a conventional method with the following composition.
  • ⁇ Electroless nickel plating bath composition (nitrogen-free, regulated substance-free)> Nickel sulfate hexahydrate 20g/L Sodium hypophosphite monohydrate 20g/L Bismuth oxide 4.8mg/L Complexing agent * As appropriate Sodium p-phenolsulfonate dihydrate 10g/L Thiodiglycolic acid 95mg/L pH of plating solution (adjusted with sodium hydroxide) 8.6 * The complexing agent is a combination of two or more of citric acid, malic acid, succinic acid, malonic acid, gluconic acid, glycolic acid, hydroxybenzoic acid, and their salts, and the total amount of the complexing agent is 50 g/L or less. was added so as to be
  • the electroless nickel plating bath of the present invention can perform electroless nickel plating in the same manner as in Examples 1 and 3.
  • Electroless nickel plating An electroless nickel plating bath of the present invention containing p-phenolsulfonate was prepared according to a conventional method with the following composition.
  • ⁇ Electroless nickel plating bath composition (nitrogen-free, regulated substance-free)> Nickel sulfate hexahydrate 24g/L Sodium hypophosphite monohydrate 20g/L Disodium molybdate dihydrate 126mg/L Complexing agent * As appropriate Sodium p-phenolsulfonate dihydrate 20g/L pH of plating solution (adjusted with sodium hydroxide) 9.2 * A complexing agent is a combination of two or more of citric acid, succinic acid, acetic acid, lactic acid, malonic acid, hydroxybenzoic acid, and their salts, and is added so that the total amount of the complexing agent is 50 g/L or less. did.
  • the electroless nickel plating bath of the present invention can perform electroless nickel plating in the same manner as in Examples 1 and 3.
  • Electroless nickel alloy plating An electroless nickel alloy plating bath of the present invention containing p-phenolsulfonate was prepared according to a conventional method with the following composition.
  • ⁇ Electroless nickel alloy plating bath composition (nitrogen-free, regulated substance-free)> Nickel sulfate hexahydrate 19g/L Copper sulfate pentahydrate 0.75g/L Sodium hypophosphite monohydrate 20g/L Bismuth oxide 3.6mg/L Complexing agent * As appropriate Sodium p-phenolsulfonate dihydrate 15g/L pH of plating solution (adjusted with sodium hydroxide) 9.4 * The complexing agent is a combination of two or more of citric acid, malic acid, succinic acid, malonic acid, fumaric acid, maleic acid, hydroxybenzoic acid and their salts, and the total amount of the complexing agent is 50g/L or less. was added so as to be
  • the electroless nickel alloy plating bath of the present invention can perform electroless nickel alloy plating in the same manner as in Examples 1 and 3.
  • the electroless nickel (alloy) plating bath of the present invention can be used for electroless nickel (alloy) plating. That's all

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

水溶性ニッケル塩、還元剤、フェノールスルホン酸ならびにフェノールスルホン酸塩およびこれらの水和物からなる群から選ばれる1種または2種以上を含有することを特徴とする無電解ニッケルめっき浴およびこれに更に合金化金属塩を含有する無電解ニッケル合金めっき浴により、規制対象物質であるアンモニア等の窒素化合物を実質的に含有させずに、めっき皮膜の良好な生成とめっき浴の良好な連続使用を達成できるものとなる。

Description

無電解ニッケルめっき浴および無電解ニッケル合金めっき浴
 本発明は、窒素等の環境負荷の大きい元素を含まず、環境負荷の小さい無電解ニッケルめっき浴および無電解ニッケル合金めっき浴(以下、「無電解ニッケル(合金)めっき浴」と略記する)に関するものであり、更に詳細には、安定性やめっき析出速度の優れた無電解ニッケルめっき浴および無電解ニッケル合金めっき浴に関するものである。
 無電解めっきとは、金属イオンと還元剤が存在する溶液から、化学反応により金属イオンを還元して金属皮膜を得る技術である。そしてその中でも、無電解ニッケルめっきあるいは無電解ニッケル合金めっき(以下、これらを総称して「無電解ニッケル(合金)めっき」という)は、プラスチック上へめっきを施す際の導電化処理をはじめとし、防錆、硬さ向上、はんだ付け性向上、はんだ濡れ性向上等の用途があり、自動車部品や水栓金具といった意匠部品の下地めっきのほか、プリント基板やITO基板の下地めっき、抵抗体、磁気ディスク、電磁波シールド等に工業的に広範囲に使用されている。また、ポリテトラフルオロエチレン等の微粒子を金属皮膜に均一に分散させた複合めっき皮膜を得る為の金属マトリックスとしても使用されている(特許文献1)。
 従来より、特にプラスチック上へのめっきに用いられる無電解ニッケル(合金)めっき液には、めっき浴の性能向上のために、アンモニアが添加されてきた。アンモニアの存在により、ニッケルイオンの金属への還元反応に必要な温度、pHにおけるニッケルイオンの無作為な還元反応、すなわち一般には自己分解と称される反応が抑制されるとともに、無電解めっき皮膜の良好な析出速度を得られることができ、ニッケル(合金)めっき皮膜の良好な生成とめっき浴の良好な連続使用が可能だった。
 一方、アンモニアの放出による環境への影響が以前から指摘されていたが、更に近年、環境意識の高まりと共に、特に中国において厳しい排水規制が設けられている。この規制対象の中には、無電解めっき浴で従来から使用されてきたアンモニアの規制のみならず、窒素としての規制が含まれている(非特許文献1)。
特開2006-257460号公報
石油化学産業の汚染物質排出基準、GB 31571-2015
 本発明はかかる技術背景に鑑みてなされたものであり、その課題は、規制対象物質であるアンモニア等の窒素化合物を実質的に含有させずに、めっき皮膜の良好な生成とめっき浴の良好な連続使用を達成できる無電解ニッケル(合金)めっき浴を提供することにある。
 本発明者らは上記の課題を解決すべく鋭意検討を重ねた結果、特定の化合物を無電解ニッケルめっき浴に添加することで、かかる課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は、水溶性ニッケル塩、還元剤、フェノールスルホン酸ならびにフェノールスルホン酸塩およびこれらの水和物からなる群から選ばれる1種または2種以上を含有することを特徴とする無電解ニッケルめっき浴である。
 また、本発明は、被めっき物を上記無電解ニッケルめっき浴で処理することを特徴とする無電解ニッケルめっき方法である。
 更に、本発明は、上記無電解ニッケルめっき浴に、更に、合金化金属塩を含有させたことを特徴とする無電解ニッケル合金めっき浴である。
 また更に、本発明は、被めっき物を上記無電解ニッケル合金めっき浴で処理することを特徴とする無電解ニッケル合金めっき方法である。
 本発明によれば、規制物質であるアンモニア等の窒素化合物を実質的に含有させなくても、めっき皮膜外観、めっき析出速度、めっき浴安定性に優れた無電解ニッケル(合金)めっき浴を提供することができる。また、めっき浴の連続使用時においても、上記性能が低下しにくいので、めっき浴の更新が少なくて済み、作業効率の向上を図ることができるものである。
 本発明は、水溶性ニッケル塩、還元剤、フェノールスルホン酸ならびにフェノールスルホン酸塩およびフェノールスルホン酸塩の水和物からなる群から選ばれる1種または2種以上を含有する無電解ニッケルめっき浴およびこの無電解ニッケルめっき浴に更に合金化金属塩を加えた無電解ニッケル合金めっき浴に関するものである。
 本発明の無電解ニッケル(合金)めっき浴に使用される水溶性ニッケル塩は、特に限定はなく、一般に使用される水溶性ニッケル塩、例えば、硫酸ニッケル、塩化ニッケル、酢酸ニッケル、硝酸ニッケル、次亜リン酸ニッケル等が挙げられる。これら水溶性ニッケル塩は1種または2種以上を用いることができる。
 これら水溶性ニッケル塩の無電解ニッケル(合金)めっき浴中の含有量は、特に限定されるものではないが、例えば、ニッケルイオンの濃度として、0.1g/L~100g/Lであることが好ましく、1g/L~50g/Lであることが特に好ましい。0.1g/L未満だと未反応の場合があり、100g/Lより多い場合は、過反応による分解が起こる場合がある。
 また、本発明の無電解ニッケル(合金)めっき浴に使用される還元剤は、特に限定はなく、一般に使用される還元剤、例えば、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム等の次亜リン酸(塩)類、水素化ホウ素ナトリウム等が挙げられる。これら還元剤は1種または2種以上を用いることができる。なお、本発明の無電解ニッケル(合金)めっき浴には、一般に使用される還元剤であるジメチルアミンボラン、トリメチルアミンボラン等のアミンボラン類、ヒドラジン等のヒドラジン(塩)類も使用することができるが、無電解ニッケル(合金)めっき浴を窒素フリーとするために、これらを使用しないことが好ましい。
 これら還元剤の無電解ニッケル(合金)めっき浴中の含有量は、使用する還元剤の種類や必要とする析出速度により相違するが、例えば、1g/L~100g/Lが好ましく、2g/L~50g/Lが特に好ましい。1g/L未満だと未反応の場合があり、100g/Lより多い場合は、過反応による分解が起こる場合がある。
 本発明の無電解ニッケル(合金)めっき浴に使用されるフェノールスルホン酸ならびにフェノールスルホン酸塩およびこれらの水和物(以下、これらを「フェノールスルホン酸類」ということもある)としては、例えば、フェノールスルホン酸、フェノールスルホン酸水和物、フェノールスルホン酸ナトリウム、フェノールスルホン酸カリウム、フェノールスルホン酸リチウム、フェノールスルホン酸亜鉛、フェノールスルホン酸すず、フェノールスルホン酸銅、フェノールスルホン酸ニッケル等のフェノールスルホン酸塩、前記フェノールスルホン酸塩の水和物等が挙げられる。これらフェノールスルホン酸ならびにフェノールスルホン酸塩およびこれらの水和物は1種または2種以上を用いることができる。なお、フェノールスルホン酸には、o(オルト)、m(メタ)、p(パラ)の異性体があるが、p(パラ)体が好ましい。
 上記フェノールスルホン酸ならびにフェノールスルホン酸塩およびこれらの水和物の無電解ニッケル(合金)めっき浴中の含有量は、特に限定はないが、例えば、1g/L~50g/Lであることが好ましく、2g/L~30g/Lであることがより好ましく、3g/L~20g/Lであることが特に好ましい。上記フェノールスルホン酸ならびにフェノールスルホン酸塩およびこれらの水和物の無電解ニッケル(合金)めっき浴中の含有量は、析出速度の点からは7.5g/L~20g/Lが好ましく、特に12.5g/L~17.5g/Lが好ましい。1g/L未満だと十分なめっき析出性向上の効果が得られない可能性があり、50g/Lより多い場合は、過反応による分解が起こる場合がある。
 本発明の無電解ニッケル(合金)めっき浴が、無電解ニッケル合金めっき浴である場合は、更に、公知の合金化金属塩を含有させることが必要である。この合金化金属塩は、めっき皮膜の硬さ、磁性、延展性、電気抵抗、靭性等の物性を改善させる。このような合金化金属塩の金属は、特に限定されるものではないが、例えば、鉄、銅、スズ、コバルト、タングステン、レニウム、マンガン、パラジウム、バナジウム、亜鉛、クロム、金、銀、白金等が挙げられる。これら合金化金属塩の金属は1種または2種以上を用いることができる。
 上記合金化金属塩の無電解ニッケル合金めっき浴中の含有量は、特に限定はないが、例えば、合金化金属塩として、0.1g/L~100g/Lであることが好ましく、1g/L~50g/Lであることが特に好ましい。
 本発明の無電解ニッケル(合金)めっき浴には、上記各必須成分の他、錯化剤を含有させることが好ましい。錯化剤としては、特に限定されないが、種々の無機酸および有機酸が好ましく使用される。具体的な無機酸および有機酸としては、例えば、ホウ酸、ホウ砂等のホウ素化合物;酢酸、プロピオン酸、リンゴ酸、乳酸、コハク酸、マロン酸、アジピン酸、クエン酸、フマル酸、マレイン酸、グルコン酸、グリコール酸、安息香酸、ヒドロキシ安息香酸等のモノカルボン酸化合物、ジカルボン酸化合物またはヒドロキシカルボン酸化合物およびこれらの塩等が挙げられる。これら錯化剤は1種または2種以上を用いることができる。これらの錯化剤の中でもクエン酸、リンゴ酸、コハク酸、マロン酸、フマル酸、マレイン酸、ヒドロキシ安息香酸が好ましく、クエン酸、マレイン酸、フマル酸 、ヒドロキシ安息香酸がより好ましい。
 上記錯化剤の無電解ニッケル(合金)めっき浴中の含有量は、本発明の効果を損なわない範囲であれば特に限定はないが、例えば、1g/L~100g/Lが好ましく、10g/L~50g/Lが特に好ましい。1g/L未満だと、自己分解をしたり、水酸化ニッケルが生成したりする場合がある。また、100g/Lより多い場合は、未反応や充分な反応速度が得られない場合がある。
 本発明の無電解ニッケル(合金)めっき浴には、更に、安定剤を含有させることができる。安定剤としては特に限定はないが、例えば、ビスマス、モリブデン、アンチモン等が挙げられる。ビスマスとしては、例えば、酸化ビスマス、硫酸ビスマス等が挙げられる。モリブデンとしては、例えば、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸アンモン等のモリブデン酸塩、モリブデン酸二ナトリウム二水和物等の前記モリブデン酸塩の水和物、モリブデン酸等が挙げられる。アンチモンとしては、例えば、アンチモン酸ナトリウム、アンチモン酸カリウム、アンチモン酸アンモン等のアンチモン酸塩、それらアンチモン酸塩水和物、アンチモン酸、アンチモニル-L-酒石酸、酒石酸アンチモニルカリウム等が挙げられる。これら安定剤は1種または2種以上を用いることができる。
 上記安定剤の無電解ニッケル(合金)めっき浴中の含有量は、本発明の効果を損なわない範囲であれば特に限定はないが、例えば、ビスマスであれば、ビスマス金属に換算して、0.1mg/L~1g/L、好ましくは0.5mg/L~200mg/Lであり、モリブデンはモリブデン金属に換算して、0.1mg/L~1g/L、好ましくは10mg/L~500mg/Lであり、アンチモンはアンチモン金属に換算して、0.1mg/L~1g/L、好ましくは0.5mg/L~200mg/Lである。
 本発明の無電解ニッケル(合金)めっき浴には、更に、反応促進・応力軽減剤を含有させることができる。反応促進・応力軽減剤としては特に限定はないが、例えば、有機硫黄化合物、無機硫黄化合物等が挙げられる。具体的には、チオ硫酸塩、チオン酸塩、ポリチオン酸塩、チオ尿素、チオシアン酸塩、チオスルホン酸塩、チオ炭酸塩、チオカルバミン酸塩、チオセミカルバジド、スルフィド、ジスルフィド、チオール、メルカプタン、チオグリコール酸、チオジグリコール酸等またはこれらの誘導体等が挙げられる。これら反応促進・応力軽減剤は1種または2種以上を用いることができる。
 上記反応促進・応力軽減剤の無電解ニッケル(合金)めっき浴中の含有量は、本発明の効果を損なわない範囲であれば特に限定はないが、例えば、0.001mg/L~1000mg/L、好ましくは0.01mg/L~100mg/Lである。
 本発明の無電解ニッケル(合金)めっき浴には、更に、皮膜物性改善剤を含有させることができる。皮膜物性改善剤としては特に限定はないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ピッチ等のフッ素樹脂若しくはフッ化化合物;ナイロン、ポリエチレン等の有機ポリマー;黒鉛、フッ化黒鉛、二硫化モリブデン、炭化ケイ素、酸化チタン、ダイヤモンド等の無機物;カーボンナノチューブ等、一般に無電解複合めっき浴に用いられる水不溶性の微粒子や短繊維を、1種または2種以上用いることができる。
 上記皮膜物性改善剤の無電解ニッケル(合金)めっき浴中の含有量は、本発明の効果を損なわない範囲であれば特に限定はないが、例えば、0~500g/Lが好ましく、1g/L~10g/Lが特に好ましい。500g/Lより多い場合は、めっき皮膜の良好な析出が得られない場合があり、また皮膜物性改善剤の皮膜中での均一な分散が得られない場合がある。
 本発明の無電解ニッケル(合金)めっき浴のpHは特に限定はないが、めっき時にpH3~11となるようにすることが好ましく、pH4~10とすることが特に好ましい。無電解めっき浴のpHをこの範囲とすることにより、効率的な金属イオンの還元反応が進行し、無電解めっき皮膜の析出速度が良好となる効果が得られる。めっき浴のpH調整には、塩酸、硫酸等の酸や、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリを、好ましくは水で希釈して適宜添加することができる。
 なお、本発明においては、アンモニア等の窒素を含有する化合物でpH調整は行わないことが好ましい。また、還元剤等の成分にも窒素を含むアミンボラン類のようなものを使用しないことが好ましい。そうすると、本発明の無電解ニッケル(合金)めっき浴は窒素を実質的に含有しない(窒素フリー)ものとなる。なお、ここで実質的に含有しないとは、全窒素分析(JIS K0102 45.1)で大気中のアンモニア等を考慮して5ppm以下となることをいう。
 また、本発明の無電解ニッケル(合金)めっき浴は、水銀、ヒ素、カドミウム、鉛を使用しないで建浴できるため、実質的に水銀、ヒ素、カドミウム、鉛を含有しない(規制物質フリー)。本発明の無電解ニッケル(合金)めっき浴は、環境や人体にほとんど影響を及ぼす可能性がなく、規制、ガイドライン等の対象とならない。なお、ここで実質的に含有しないとは、ICP-MS等で測定した場合に、0.1ppm以下となることをいう。
 本発明の無電解ニッケル(合金)めっき浴の好ましい態様としては以下の組成からなるものが挙げられる。なお、両方のめっき浴は共に、pH調整をアンモニア等の窒素を含有するもので行わず、還元剤、その他の成分にも窒素を含むアミンボラン類のようなものを意図的に使用せず、水銀、ヒ素、カドミウム、鉛を含有する化合物も意図的に含有させない。
<無電解ニッケルめっき浴>
水溶性ニッケル塩             0.1g/L~100g/L
還元剤                    1g/L~100g/L
フェノールスルホン酸類            1g/L~50g/L
(必要により)錯化剤             1g/L~100g/L
(必要により)安定剤           0.1mg/L~1g/L
(必要により)反応促進・応力軽減剤
                 0.001mg/L~1000mg/L
pH3~11
<無電解ニッケル合金めっき浴>
水溶性ニッケル塩             0.1g/L~100g/L
還元剤                    1g/L~100g/L
フェノールスルホン酸類            1g/L~50g/L
合金化金属塩               0.1g/L~100g/L
(必要により)錯化剤             1g/L~100g/L
(必要により)安定剤           0.1mg/L~1g/L
(必要により)反応促進・応力軽減剤
                 0.001mg/L~1000mg/L
pH3~11
 本発明の無電解ニッケル(合金)めっき浴は、上記成分を混合、溶解することにより建浴することができる。
 また、本発明の無電解ニッケル(合金)めっき浴のめっき時の浴の温度については、ニッケルイオンの還元反応が行なわれる温度であれば特に限定はないが、効率の良い還元反応を起こさせるために、15~98℃が好ましく、25~60℃が特に好ましい。
 以上のようにして得られる本発明の無電解ニッケル(合金)めっき浴を用いためっき方法は、通常の無電解めっき浴を用いためっき方法と同様であれば良く、特に限定はされず、例えば、被めっき物を本発明の無電解ニッケル(合金)めっき浴で処理すればよい。また、本発明の無電解ニッケル(合金)めっき浴で処理する前には、被めっき物を脱脂、水洗、触媒付与、触媒の活性化等を行うことが好ましい。被めっき物を本発明の無電解ニッケル(合金)めっき浴で処理する方法としては特に限定されないが、例えば、建浴した本発明の無電解ニッケル(合金)めっき浴の中に被めっき物を浸漬する方法、建浴した本発明の無電解ニッケル(合金)めっき浴を被めっき物に噴霧する方法等が挙げられる。
 本発明の無電解ニッケル(合金)めっき浴でめっきできる被めっき物としては、無電解ニッケルがめっきできるものであれば特に限定されないが、例えば、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、アクリロニトリル・スチレン共重合体(AS)、ポリカーボネート(PC)、PC/ABS、ポリプロピレン(PP)、ポリアミド(PA)、炭素繊維強化プラスチック(CFRP)等の樹脂が挙げられる。
 更に、本発明の無電解ニッケル(合金)めっき浴を用いてめっきを行なうにあたっては、めっきの進行により、金属イオンが還元剤によって金属に還元される結果、めっき液中の金属イオン濃度、還元剤濃度が低下し、またpHも低下することになる。従って、連続的にまたは適当な時間ごとに、無電解ニッケル(合金)めっき浴中に、水溶性ニッケル塩、還元剤、錯化剤、p-フェノールスルホン酸塩、安定剤、pH調整剤等を補給して、それらの濃度をもとの濃度に戻すことが好ましい。連続的にまたは適当な時間ごとに、めっき液中の金属イオン濃度、還元剤濃度やpHを測定し、その測定結果に応じて、それらを補給することも好ましい。
 本発明の無電解ニッケル(合金)めっきにより無電解ニッケルめっき製品および無電解ニッケル合金めっきが得られる。これらめっき製品は、従来のめっき製品と、皮膜のリン含有量が異なるものである。従来のめっき皮膜はリン含有量が約1~5wt%であるのに対し、本発明のめっき皮膜は7~12wt%である。また、本発明のめっき皮膜は従来のめっき皮膜に比べて硝酸に溶解しにくいという物性を有する。これらのめっき製品は、自動車部品や水栓金具といった意匠部品の下地めっきのほか、プリント基板やITO基板の下地めっき、抵抗体、磁気ディスク、電磁波シールド、微粒子含有複合めっき皮膜の金属マトリックス等の用途に広範囲に使用できるものである。
 次に、実施例を挙げて本発明を更に説明するが、本発明はこれら実施例に限定されるものではない。
 実 施 例 1
   無電解ニッケルめっき:
 ABS樹脂の試験片(サイズ:2mm×60mm×80mm)を、50℃の脱脂液(EBAPREP SK-144:株式会社JCU製)に5分間浸漬して脱脂を行った。この試験片を、68℃に加温された380g/LのCrOおよび380g/Lの濃硫酸を含有する水溶液に10分間浸漬してエッチングした。これを水洗した後、室温で中和(ENILEX RD:株式会社JCU製)を1分間行った。中和後に水洗し、室温で80mL/Lの塩酸に約15秒浸漬した後、35℃の触媒付与(ENILEX CT-806:株式会社JCU製)に3分間浸漬した。これを水で濯ぎ、35℃の80mL/Lの塩酸溶液に3分間浸漬し触媒の活性化を行い、再度水洗を行った。最後に、これを無電解ニッケルめっき浴に浸漬して無電解ニッケルめっきを行った。
[無電解ニッケルめっき浴の初期性能の評価]
 下記組成で、p-フェノールスルホン酸塩を含む本発明の無電解ニッケルめっき浴を常法に従って調製した。また、比較としてp-フェノールスルホン酸塩を含まないもの及びアンモニアを含有するものを用いた。
<無電解ニッケルめっき浴組成(窒素フリー、規制物質フリー)>
 硫酸ニッケル六水和物               22g/L
 次亜リン酸ナトリウム一水和物           18g/L
 酸化ビスマス                   6mg/L
 錯化剤                      適宜
 p-フェノールスルホン酸ナトリウム二水和物     表1に記載の量
 めっき液のpH**                  8.8
 アンモニア                     表1に記載の量
 水酸化ナトリウム                  適宜
 * 錯化剤はクエン酸、リンゴ酸、コハク酸、マロン酸、フマル酸、マレイン酸、ヒドロキシ安息香酸及びそれらの塩の中から二種以上を組み合わせて、錯化剤の総量が50g/L以下となるように添加した。
 **本発明めっき浴(1)~(3)および比較浴(1)は水酸化ナトリウムで調整、比較浴(2)はアンモニアで調整
Figure JPOXMLDOC01-appb-T000001
<めっき条件>
 浴温       42℃
 攪拌       スターラー攪拌
 めっき時間    7分
 得られた無電解ニッケルめっき皮膜について、蛍光X線膜厚計にて析出速度を測定した。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、p-フェノールスルホン酸ナトリウム二水和物を含有する本発明めっき浴は、十分使用に耐えうる析出速度が得られることが分かった。特にp-フェノールスルホン酸ナトリウム二水和物を多く配合することにより、アンモニアを配合したものと同等の析出速度を得ることができることが確認された。また、本発明めっき浴はアンモニア特有の刺激臭もなく、使用性もよいことが分かった。
 実 施 例 2
   無電解ニッケルめっき皮膜のリン含有量:
 実施例1に記載の方法にて無電解めっきを行った後に、35%硝酸を用いてその皮膜を溶解させ、その溶解液に含まれるニッケル濃度とリン濃度をICP発光分析法で測定し、リン含有量を評価した。
 本発明めっき浴(2)からはリン含有量8.9wt%の皮膜が得られた。また、比較浴(2)からはリン含有量は3.8wt%の皮膜が得られた。更に、本発明めっき浴(2)から得られた皮膜は、比較浴(2)から得られた皮膜と比べて硝酸に溶解しにくかった。
 実 施 例 3 
   無電解ニッケルめっき浴の連続使用試験:
 表2の結果から、優れためっき析出性が確認された本発明めっき浴(2)について、連続使用試験を行なった。連続使用試験は、無電解ニッケルめっき浴を、1、2、3ターン連続使用して無電解めっきを行い、下記の判定条件で評価した。
<相対析出速度>
 各ターン連続使用時の析出速度を、実施例1と同様の方法でそれぞれ測定し、この測定値を下記の判定基準を用いて、実施例1で得られた初期の析出速度に対する各ターン時の析出速度の低下割合を評価した。
 判 定       析出速度
  ◎  :    0%~10%低下した
  ○  :   10%~20%低下した
  △  :   20%~25%低下した
  ×  :   25%以上低下した
 めっき浴の安定性を以下の判定条件を用いて評価した。
<めっき浴安定性の評価方法>
 めっき終了時のめっき槽底面の析出物を目視で確認した。
 判 定      析出物目視確認
  ◎  :   析出物なし 
  ○  :   直径5mm以下の析出物が確認できた
  △  :   直径5mm以上の析出物が確認できた
  ×  :   めっき浴が自己分解した
 なおここで1ターン連続使用とは、無電解ニッケルめっき浴中の初期のニッケルイオン濃度に相当する量のニッケル金属がめっきされるまで連続してめっきを行うことをいう。例えば、無電解ニッケルめっき浴中の初期ニッケルイオン濃度が、M[g/L]であるとした場合、M[g/L]のニッケルがめっきにより析出した時点を1ターンとするものである。よって、この場合には、3ターン連続使用とは、3×M[g/L]のニッケルめっきがなされるまで連続してめっきすることをいう。
Figure JPOXMLDOC01-appb-T000003
 実施例3で評価した本発明めっき浴(2)は、3ターンまで良好に無電解ニッケルめっきを続けることができ、連続的に使用しても、析出速度の低下が少なく、浴安定性にも優れたものであった。また、めっきの未析出は確認されなかった。
 更に、本発明めっき浴(2)は、アンモニア使用の比較めっき浴(2)に比べても、ターン進行時における析出速度の低下が少なく優れていた。また、めっき浴安定性において、めっき浴中の析出物の生成も少なく、アンモニア使用の浴と比較しても遜色のない性能であることが確認された。更に、本発明めっき浴はアンモニア特有の刺激臭もなく、使用性もよいことが分かった。
実 施 例 4
   無電解ニッケルめっき:
 下記組成で、p-フェノールスルホン酸塩を含む本発明の無電解ニッケルめっき浴を常法に従って調製した。
<無電解ニッケルめっき浴組成(窒素フリー、規制物質フリー)>
 硫酸ニッケル六水和物               20g/L
 次亜リン酸ナトリウム一水和物           20g/L
 酸化ビスマス                   4.8mg/L
 錯化剤                      適宜
 p-フェノールスルホン酸ナトリウム二水和物    10g/L
 チオジグリコール酸                95mg/L
 めっき液のpH (水酸化ナトリウムで調整)    8.6
 * 錯化剤はクエン酸、リンゴ酸、コハク酸、マロン酸、グルコン酸、グリコール酸、ヒドロキシ安息香酸及びそれらの塩の中から二種以上を組み合わせて、錯化剤の総量が50g/L以下となるように添加した。
 本発明の無電解ニッケルめっき浴は、実施例1および3と同様に無電解ニッケルめっきをし得る。
実 施 例 5
   無電解ニッケルめっき:
 下記組成で、p-フェノールスルホン酸塩を含む本発明の無電解ニッケルめっき浴を常法に従って調製した。
<無電解ニッケルめっき浴組成(窒素フリー、規制物質フリー)>
 硫酸ニッケル六水和物               24g/L
 次亜リン酸ナトリウム一水和物           20g/L
 モリブデン酸二ナトリウム二水和物         126mg/L
 錯化剤                      適宜
 p-フェノールスルホン酸ナトリウム二水和物    20g/L
 めっき液のpH(水酸化ナトリウムで調整)     9.2
 * 錯化剤はクエン酸、コハク酸、酢酸、乳酸、マロン酸、ヒドロキシ安息香酸及びそれらの塩の中から二種以上を組み合わせて、錯化剤の総量が50g/L以下となるように添加した。
 本発明の無電解ニッケルめっき浴は、実施例1および3と同様に無電解ニッケルめっきをし得る。
実 施 例 6
   無電解ニッケル合金めっき:
 下記組成で、p-フェノールスルホン酸塩を含む本発明の無電解ニッケル合金めっき浴を常法に従って調製した。
<無電解ニッケル合金めっき浴組成(窒素フリー、規制物質フリー)>
 硫酸ニッケル六水和物               19g/L
 硫酸銅五水和物                 0.75g/L
 次亜リン酸ナトリウム一水和物           20g/L
 酸化ビスマス                 3.6mg/L
 錯化剤                      適宜
 p-フェノールスルホン酸ナトリウム二水和物    15g/L
 めっき液のpH(水酸化ナトリウムで調整)     9.4
 * 錯化剤はクエン酸、リンゴ酸、コハク酸、マロン酸、フマル酸、マレイン酸、ヒドロキシ安息香酸及びそれらの塩の中から二種以上を組み合わせて、錯化剤の総量が50g/L以下となるように添加した。
 本発明の無電解ニッケル合金めっき浴は、実施例1および3と同様に無電解ニッケル合金めっきをし得る。
 本発明の無電解ニッケル(合金)めっき浴は、無電解ニッケル(合金)めっきに利用できるものである。
                             以 上

Claims (12)

  1.  水溶性ニッケル塩、還元剤、フェノールスルホン酸ならびにフェノールスルホン酸塩およびこれらの水和物からなる群から選ばれる1種または2種以上を含有することを特徴とする無電解ニッケルめっき浴。
  2.  更に、錯化剤を含有するものである請求項1記載の無電解ニッケルめっき浴。
  3.  フェノールスルホン酸ならびにフェノールスルホン酸塩およびこれらの水和物からなる群から選ばれる1種または2種以上を、1g/L~50g/Lで含有するものである請求項1または2記載の無電解ニッケルめっき浴。
  4.  フェノールスルホン酸塩が、フェノールスルホン酸ナトリウム、フェノールスルホン酸カリウム、フェノールスルホン酸リチウム、フェノールスルホン酸亜鉛、フェノールスルホン酸すず、フェノールスルホン酸銅、フェノールスルホン酸ニッケルからなる群から選ばれる1種または2種以上である請求項1~3の何れか1に記載の無電解ニッケルめっき浴。
  5.  窒素を実質的に含有しないものである請求項1~4の何れか1に記載の無電解ニッケルめっき浴。
  6.  水銀、ヒ素、カドミウムまたは鉛を実質的に含有しないものである請求項1~5の何れか1に記載の無電解ニッケルめっき浴。
  7.  請求項1~6の何れか1に記載の無電解ニッケルめっき浴に、更に、合金化金属塩を含有させたことを特徴とする無電解ニッケル合金めっき浴。
  8.  合金化金属塩の金属が、鉄、銅、スズ、コバルト、タングステン、レニウム、マンガン、パラジウム、バナジウム、亜鉛、クロム、金、銀および白金からなる群から選ばれる1種または2種以上である請求項6記載の無電解ニッケル合金めっき浴。
  9.  被めっき物を請求項1~6の何れか1に記載の無電解ニッケルめっき浴で処理することを特徴とする無電解ニッケルめっき方法。
  10.  被めっき物を請求項7または8記載の無電解ニッケル合金めっき浴で処理することを特徴とする無電解ニッケル合金めっき方法。
  11.  被めっき物を請求項1~6の何れか1に記載の無電解ニッケルめっき浴で処理することにより得られる無電解ニッケルめっき製品。
  12.  被めっき物を請求項7または8記載の無電解ニッケル合金めっき浴で処理することにより得られる無電解ニッケル合金めっき製品。
PCT/JP2022/002769 2021-03-04 2022-01-26 無電解ニッケルめっき浴および無電解ニッケル合金めっき浴 WO2022185791A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280012896.8A CN117295847A (zh) 2021-03-04 2022-01-26 无电解镍镀浴和无电解镍合金镀浴

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021034429A JP2022134922A (ja) 2021-03-04 2021-03-04 無電解ニッケルめっき浴および無電解ニッケル合金めっき浴
JP2021-034429 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022185791A1 true WO2022185791A1 (ja) 2022-09-09

Family

ID=83154957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002769 WO2022185791A1 (ja) 2021-03-04 2022-01-26 無電解ニッケルめっき浴および無電解ニッケル合金めっき浴

Country Status (3)

Country Link
JP (1) JP2022134922A (ja)
CN (1) CN117295847A (ja)
WO (1) WO2022185791A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813159C1 (ru) * 2023-07-04 2024-02-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Применение бис(4-R-2-аминофенил)дисульфида в качестве выравнивателя в растворе для химического осаждения никель-фосфорных покрытий

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266076A (ja) * 1987-04-22 1988-11-02 Kawasaki Kasei Chem Ltd 無電解ニツケル−銅−燐合金めつき液
JPH03100179A (ja) * 1989-09-14 1991-04-25 Okuno Seiyaku Kogyo Kk 無電解ニッケルめっき皮膜上への無電解ニッケルめっき方法
JPH06128752A (ja) * 1992-10-14 1994-05-10 Nippon Chem Ind Co Ltd ニッケル合金めっき粉末及びその製造方法
JP2011102429A (ja) * 2009-08-25 2011-05-26 Rohm & Haas Electronic Materials Llc ケイ化ニッケルの向上した形成方法
JP2013537935A (ja) * 2010-09-10 2013-10-07 マクダーミッド アキューメン インコーポレーテッド 金属表面を処理する方法
JP2018012882A (ja) * 2016-07-08 2018-01-25 石原ケミカル株式会社 無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液並びに無電解ニッケル又はニッケル合金メッキ方法
WO2020094642A1 (en) * 2018-11-06 2020-05-14 Atotech Deutschland Gmbh Electroless nickel plating solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266076A (ja) * 1987-04-22 1988-11-02 Kawasaki Kasei Chem Ltd 無電解ニツケル−銅−燐合金めつき液
JPH03100179A (ja) * 1989-09-14 1991-04-25 Okuno Seiyaku Kogyo Kk 無電解ニッケルめっき皮膜上への無電解ニッケルめっき方法
JPH06128752A (ja) * 1992-10-14 1994-05-10 Nippon Chem Ind Co Ltd ニッケル合金めっき粉末及びその製造方法
JP2011102429A (ja) * 2009-08-25 2011-05-26 Rohm & Haas Electronic Materials Llc ケイ化ニッケルの向上した形成方法
JP2013537935A (ja) * 2010-09-10 2013-10-07 マクダーミッド アキューメン インコーポレーテッド 金属表面を処理する方法
JP2018012882A (ja) * 2016-07-08 2018-01-25 石原ケミカル株式会社 無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液並びに無電解ニッケル又はニッケル合金メッキ方法
WO2020094642A1 (en) * 2018-11-06 2020-05-14 Atotech Deutschland Gmbh Electroless nickel plating solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813159C1 (ru) * 2023-07-04 2024-02-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Применение бис(4-R-2-аминофенил)дисульфида в качестве выравнивателя в растворе для химического осаждения никель-фосфорных покрытий

Also Published As

Publication number Publication date
JP2022134922A (ja) 2022-09-15
CN117295847A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
EP2671969A1 (en) Plating bath for electroless deposition of nickel layers
JP6180441B2 (ja) 無電解ニッケルめっき浴
TWI572742B (zh) Reduction Electroless Silver Plating Solution and Reduced Electroless Silver Plating Method
JP4430570B2 (ja) 無電解ニッケル複合めっき浴および無電解ニッケル合金複合めっき浴
JP6449335B2 (ja) 水性無電解ニッケルめっき浴、及びその使用方法
US20150368806A1 (en) Method for depositing a first metallic layer onto non-conductive polymers
WO2014010662A1 (ja) 無電解金めっき処理方法、および金めっき被覆材料
KR101861626B1 (ko) Pc-abs 수지 부품의 비전해성 금속도금방법
JP2018523756A (ja) 無電解銀めっき浴及びその使用方法
JP2015537122A (ja) 非導電性プラスチック表面の金属化方法
WO2022185791A1 (ja) 無電解ニッケルめっき浴および無電解ニッケル合金めっき浴
JP4139347B2 (ja) 無電解ニッケルめっき浴および無電解ニッケル合金めっき浴
JP4705776B2 (ja) リン酸塩被膜を有する無電解ニッケルめっき膜の形成方法およびその形成膜
JP2007154223A (ja) 無電解ニッケルめっき液およびそれを使用しためっき方法
JP2005290400A (ja) 無電解ニッケルめっき浴及び無電解ニッケル合金めっき浴
JP2007314876A (ja) 無電解ニッケルめっき液
EP3156517A1 (en) Use of water soluble and air stable phosphaadamantanes as stabilizer in electrolytes for electroless metal deposition
JP6212323B2 (ja) 無電解ニッケルめっき液及びそれを用いた無電解ニッケルめっき方法
JP2007321218A (ja) 無電解めっき液、それを用いた無電解めっき方法及びその方法により得られるめっき皮膜
JP3227504B2 (ja) 無電解銅めっき液
EP2270255A1 (en) Beta-amino acid comprising electrolyte and method for the deposition of a metal layer
JP2014055314A (ja) 自己触媒型無電解銀めっき液及びめっき方法
JP4960142B2 (ja) 無電解ニッケルめっき液及びそれを用いた無電解ニッケルめっき方法
JP2021080513A (ja) 無電解ニッケルめっき皮膜及び該無電解ニッケルめっき皮膜形成のための前処理方法
JP2004169058A (ja) 無電解金めっき液及び無電解金めっき方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762850

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280012896.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762850

Country of ref document: EP

Kind code of ref document: A1