WO2022185367A1 - 光源装置及びセンサ装置 - Google Patents

光源装置及びセンサ装置 Download PDF

Info

Publication number
WO2022185367A1
WO2022185367A1 PCT/JP2021/007645 JP2021007645W WO2022185367A1 WO 2022185367 A1 WO2022185367 A1 WO 2022185367A1 JP 2021007645 W JP2021007645 W JP 2021007645W WO 2022185367 A1 WO2022185367 A1 WO 2022185367A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
light source
virtual axis
light
source device
Prior art date
Application number
PCT/JP2021/007645
Other languages
English (en)
French (fr)
Inventor
仁史 滝口
Original Assignee
パイオニア株式会社
パイオニアスマートセンシングイノベーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニアスマートセンシングイノベーションズ株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2021/007645 priority Critical patent/WO2022185367A1/ja
Publication of WO2022185367A1 publication Critical patent/WO2022185367A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to a light source device and a sensor device.
  • the sensor device includes a light source such as a laser, and a photodetector element such as an avalanche photodiode (APD) that detects reflected light of light emitted from the light source.
  • a light source such as a laser
  • a photodetector element such as an avalanche photodiode (APD) that detects reflected light of light emitted from the light source.
  • APD avalanche photodiode
  • Patent Document 1 describes an example of a sensor device.
  • the sensor device has a reflecting surface that reflects light emitted vertically upward from a light source in a horizontal direction orthogonal to the vertical direction, and rotates the reflecting surface around a virtual axis parallel to the vertical direction. and a mechanism.
  • the light reflected by the reflecting surface can be emitted in all directions in the horizontal direction.
  • Patent Document 2 describes an example of a sensor device.
  • the sensor device includes a reflecting surface that reflects light emitted downward in the vertical direction from the light source.
  • the sensor device also includes a mechanism for rotating the reflecting surface around a virtual axis parallel to the vertical direction, and a mechanism for adjusting the tilt of the reflecting surface with respect to the horizontal direction.
  • Patent Document 1 by rotating the reflecting surface around a predetermined virtual axis parallel to the vertical direction, it is possible to irradiate light in all directions in the horizontal direction.
  • the light reflected by the reflecting surface cannot be deflected in the vertical direction only by rotating the reflecting surface.
  • the irradiation range of the light emitted around the virtual axis described above can be relatively narrow in the vertical direction.
  • Patent Document 2 when a mechanism for adjusting the inclination of the reflecting surface is provided as described in Patent Document 2, for example, the number of parts of the sensor device increases and the structure of the sensor device becomes complicated. obtain.
  • One example of the problem to be solved by the present invention is to widen the irradiation range of light emitted around a predetermined virtual axis.
  • the invention according to claim 1, a light source; a first element that rotates the light emitted from the light source about the virtual axis while tilting the light with respect to the virtual axis; a second element that illuminates at least a portion of the light rotated by the first element toward the periphery of the virtual axis; It is a light source device comprising
  • a sensor device comprising:
  • FIG. 1 is a diagram showing a light source device 10 according to an embodiment.
  • the Z direction indicates one direction parallel to the vertical direction.
  • the arrow indicating the Z direction indicates that the direction from the base end to the tip of the arrow is the positive direction of the Z direction, and the direction from the tip of the arrow to the base end is the negative direction of the Z direction.
  • the positive direction of the Z direction is the upward direction in the vertical direction.
  • the negative direction in the Z direction is the downward direction in the vertical direction.
  • the relationship between the Z direction and the vertical direction is not limited to this example.
  • the Z direction may be parallel to a different direction from the vertical direction.
  • the positive direction in the Z direction may be the downward direction in the vertical direction
  • the negative direction in the Z direction may be the upward direction in the vertical direction.
  • the light source device 10 includes a light source 100 , a collimator lens 110 , a first element 200 and a second element 300 .
  • the first element 200 has a first optical member 210 and a first driving section 220 .
  • the second element 300 has a second optical member 310 and a second driving section 320 .
  • the light source 100 is, for example, a laser.
  • the light emitted from the light source 100 is, for example, pulsed light.
  • the light source 100 emits light in the infrared band, for example.
  • the wavelength of the light emitted from the light source 100 may be in a band other than the infrared band, such as a visible light band or an ultraviolet band, instead of the infrared band.
  • Light emitted from the light source 100 toward the positive direction of the Z direction of the light source 100 is transmitted through the collimator lens 110 in the Z direction and enters the first optical member 210 .
  • the first optical member 210 is a wedge split prism.
  • the first optical member 210 has a circular shape when viewed from the Z direction. When viewed from the Z direction, the first optical member 210 may not be circular, and may have a shape different from circular, such as a polygon or an ellipse.
  • the surface of the first optical member 210 on the negative side in the Z direction is a plane orthogonal to the Z direction.
  • the surface of the first optical member 210 on the positive side in the Z direction is a plane oblique to the Z direction.
  • the light emitted from the light source 100 and incident on the surface of the first optical member 210 on the negative direction side in the Z direction in parallel with the Z direction is not refracted by the surface on the negative side of the Z direction of the first optical member 210.
  • the light is refracted by the surface of the first optical member 210 on the positive direction side in the Z direction. 1, the first optical member 210 directs the light emitted from the light source 100 in a direction oblique to the first virtual axis A1. is biased.
  • the first virtual axis A1 is a virtual axis located on the same straight line as the optical axis of the light emitted from the light source 100 and incident on the surface of the first optical member 210 on the negative side in the Z direction parallel to the Z direction. .
  • the first driving section 220 rotates the first optical member 210 around the first virtual axis A1. Specifically, the first driving section 220 rotates the first optical member 210 clockwise or counterclockwise around the first imaginary axis A1 when viewed from the Z direction.
  • the first driving section 220 is, for example, a motor.
  • the first element 200 By rotating the first optical member 210 around the first virtual axis A1 by the first drive unit 220, the first element 200 obliquely tilts the light emitted from the light source 100 with respect to the first virtual axis A1. It is rotated around the first imaginary axis A1 in the state of being held.
  • the second optical member 310 is a right-angle prism mirror whose slopes are coated with a reflective layer such as a metal layer. This slope of the second optical member 310 faces the negative side in the Z direction. As a result, the second optical member 310 has a reflecting surface facing the negative side in the Z direction while being tilted at 45 degrees with respect to the Z direction.
  • the second optical member 310 may not be a rectangular prism mirror, and may be, for example, a flat mirror directed in the negative direction in the Z direction while being tilted at 45 degrees with respect to the Z direction.
  • the second driving section 320 rotates the second optical member 310 around the first virtual axis A1. Specifically, the second driving section 320 rotates the second optical member 310 clockwise or counterclockwise around the first imaginary axis A1 when viewed from the Z direction.
  • the second driving section 320 is, for example, a motor.
  • the second drive unit 320 rotates the second optical member 310 around the first virtual axis A1, so that the second element 300 intersects at least part of the light rotated by the first element 200 in the Z direction. In the direction, the light is emitted toward the periphery of the first virtual axis A1.
  • the second element 300 rotates the first virtual axis A1 in the direction intersecting the Z direction.
  • the light emitted toward the surroundings can be rotated around the second virtual axis A2.
  • the second element 300 causes the second virtual axis A2 and the first increasing the distance in the direction perpendicular to the second virtual axis A2 between the light irradiated around the virtual axis A1 and rotating around the second virtual axis A2 as the distance from the first virtual axis A1 increases can be done.
  • the first element 200 were not provided, the light emitted from the light source 100 would pass through the first virtual axis A1 and would be projected around the first virtual axis A1 in the direction intersecting the Z direction by the second element 300. radiated towards. In this case, the second element 300 cannot deflect in the Z direction the light emitted toward the periphery of the first virtual axis A1 in the direction crossing the Z direction.
  • the light emitted by the second element 300 toward the circumference of the first virtual axis A1 in the direction intersecting the Z direction rotates around the second virtual axis A2,
  • the second element 300 can deflect in the Z direction the light emitted toward the periphery of the first virtual axis A1 in the direction crossing the Z direction. Therefore, in this embodiment, compared to the case where the first element 200 is not provided, the second optical member 310 emits light toward the periphery of the first virtual axis A1 in the direction intersecting the Z direction. can be widened in the Z direction.
  • the second element 300 irradiates the light around the first virtual axis A1 in the direction intersecting the Z direction.
  • light can be deflected in the Z direction. Therefore, in the present embodiment, for example, the second optical member 310 is not provided with a mechanism for moving the second optical member 310 in the Z direction or changing the inclination of the surface of the second optical member 310 on the negative side in the Z direction.
  • the two elements 300 can deflect in the Z direction the light emitted toward the periphery of the first virtual axis A1 in the direction crossing the Z direction. Therefore, in the present embodiment, it is possible to suppress an increase in the number of parts of the light source device 10 and a complication of the structure of the light source device 10 due to the provision of the mechanism described above.
  • the second element 300 may irradiate any light rotated around the first virtual axis A1 by the first element 200 toward the circumference of the first virtual axis A1 in a direction intersecting the Z direction.
  • the second element 300 irradiates only part of the light rotated around the first virtual axis A1 by the first element 200 toward the circumference of the first virtual axis A1 in a direction intersecting the Z direction. good too.
  • the light rotated about the first virtual axis A1 by the first element 200 deviates from the second optical member 310 at a particular timing, the light rotated about the first virtual axis A1 by the first element 200 is illuminated by the second element 300 towards the periphery of the first virtual axis A1 in a direction transverse to the Z direction.
  • the second element 300 irradiates only part of the light rotated around the first virtual axis A1 by the first element 200 toward the circumference of the first virtual axis A1 in a direction intersecting the Z direction
  • the second The amount of light emitted by the element 300 around the first virtual axis A1 in the direction transverse to the Z-direction is less than the amount of light rotated around the first virtual axis A1 by the first element 200.
  • the second element 300 is rotated by the first element 200 about the first virtual axis A1. Any light that is rotated around can be directed around the first virtual axis A1 in a direction transverse to the Z-direction. In this case, when the second element 300 irradiates only part of the light rotated around the first virtual axis A1 by the first element 200 toward the circumference of the first virtual axis A1 in a direction intersecting the Z direction. , the light irradiation range of the light source device 10 can be widened.
  • FIG. 2 is a diagram showing a first optical member 210A according to a first modified example of the first optical member 210 according to the embodiment.
  • a first optical member 210A according to this modified example is the same as the first optical member 210 according to the embodiment except for the following points.
  • a first optical member 210A according to this modified example will be described with reference to FIG.
  • the surface of the first optical member 210A on the positive side in the Z direction is a plane oblique to the Z direction.
  • the surface of the first optical member 210A on the negative side in the Z direction is a plane oblique to the Z direction.
  • the surface of the first optical member 210A on the positive side in the Z direction and the surface of the first optical member 210A on the negative side in the Z direction are non-parallel.
  • the first optical member 210A can deflect the light emitted from the light source 100 in a direction oblique to the first virtual axis A1.
  • FIG. 3 is a diagram showing a first optical member 210B according to a second modification of the first optical member 210 according to the embodiment.
  • a first optical member 210B according to this modified example is the same as the first optical member 210 according to the embodiment except for the following points.
  • a first optical member 210B according to this modification will be described with reference to FIG.
  • the first optical member 210B includes a first prism 212B and a second prism 214B.
  • the first prism 212B is positioned on the negative side in the Z direction of the second prism 214B.
  • the second prism 214B is positioned on the positive side in the Z direction of the first prism 212B.
  • the surface of the first prism 212B on the negative side in the Z direction is a plane perpendicular to the Z direction.
  • the surface of the first prism 212B on the positive side in the Z direction is a plane oblique to the Z direction.
  • the surface of the second prism 214B on the negative side in the Z direction is a plane oblique to the Z direction.
  • the surface of the second prism 214B on the positive side in the Z direction is a plane perpendicular to the Z direction.
  • the surface of the first prism 212B on the positive side in the Z direction and the surface of the second prism 214B on the negative side in the Z direction are bonded to each other via an optical adhesive, for example.
  • the first optical member 210B can deflect the light emitted from the light source 100 in a direction oblique to the first virtual axis A1.
  • FIG. 4 is a diagram showing a first optical member 210C according to a third modified example of the first optical member 210 according to the embodiment.
  • a first optical member 210C according to this modification is the same as the first optical member 210 according to the embodiment except for the following points.
  • a first optical member 210C according to this modified example will be described with reference to FIG.
  • the surface of the first optical member 210C on the positive side in the Z direction is a plane orthogonal to the Z direction.
  • the surface of the first optical member 210C on the negative side in the Z direction is a plane oblique to the Z direction.
  • the surface of the first optical member 210C on the positive side in the Z direction and the surface of the first optical member 210C on the negative side in the Z direction are non-parallel.
  • the first optical member 210C can deflect the light emitted from the light source 100 in a direction oblique to the first virtual axis A1.
  • FIG. 5 is a diagram showing a light source device 10A according to a modification of the light source device 10 according to the embodiment.
  • a light source device 10A according to this modification is the same as the light source device 10 according to the embodiment except for the following points.
  • the light source device 10A includes a light source 100A, a collimator lens 110A, a first element 200A, a reflecting member 232A and a second element 300.
  • the first element 200A has a first optical member 230A and a first driving section 220A.
  • the first optical member 230A and the reflecting member 232A are circular plane mirrors.
  • the first optical member 230A and the reflecting member 232A may be reflecting members such as prisms that are different from plane mirrors.
  • the shapes of the first optical member 230A and the reflecting member 232A may not be circular, and may be shapes other than circular, such as rectangular.
  • the light source 100A and the reflecting member 232A are arranged in a direction perpendicular to the Z direction. Light emitted from the light source 100A passes through the collimator lens 110A in a direction perpendicular to the Z direction, enters the reflecting member 232A, and is reflected by the reflecting member 232A toward the first optical member 230A.
  • the first optical member 230A and the reflecting member 232A are arranged in the Z direction.
  • the first optical member 230A is located on the negative side in the Z direction of the reflecting member 232A.
  • the first optical member 230A has a reflecting surface facing the positive side in the Z direction while being tilted at a predetermined angle with respect to the Z direction. As indicated by solid-line arrows extending from light source 100 in FIG. 5, first optical member 230A obliquely tilts light emitted from light source 100A and reflected by reflecting member 232A with respect to predetermined first virtual axis A1.
  • the first virtual axis A1 is a virtual axis located on the same straight line as the optical axis of the light emitted from the light source 100A and incident on the surface of the first optical member 230A on the positive side in the Z direction in parallel with the Z direction. .
  • the first driving section 220A rotates the first optical member 230A around the first virtual axis A1.
  • the first element 200A obliquely tilts the light emitted from the light source 100A with respect to the first virtual axis A1. It is rotated around the first imaginary axis A1 in the state of being held.
  • the second element 300 emits at least part of the light rotated by the first element 200A toward the periphery of the first virtual axis A1 in a direction intersecting the Z direction, as described using the embodiment.
  • the second optical member 310 directs the light toward the periphery of the first virtual axis A1 in the direction intersecting the Z direction. It is possible to widen the irradiation range of the light irradiated in the Z direction.
  • the positions where the light source 100A and the collimator lens 110A are provided are not limited to the positions according to this modification.
  • the light source 100A may be positioned on the positive side in the Z direction of the first optical member 230A without providing the reflecting member 232A.
  • the collimator lens 110A may be positioned between the light source 100A and the first optical member 230A in the Z direction. In this case, the light emitted from the light source 100A in the negative Z direction of the light source 100A passes through the collimator lens 110A and enters the first optical member 230A.
  • FIG. 6 is a diagram showing the sensor device 20 according to the embodiment.
  • the sensor device 20 includes a light source 100, a collimator lens 110, a first element 200 and a second element 300 in the same manner as the light source device 10 according to the embodiment.
  • the sensor device 20 further comprises a photodetector element 400 , a lens 410 and a beam splitter 420 .
  • the sensor device 20 is, for example, LiDAR. Specifically, the sensor device 20 is a coaxial LiDAR. In one example, the sensor device 20 can detect an object existing outside the sensor device 20 as follows.
  • first element 200 rotates the light emitted from the light source 100 around the first virtual axis A1.
  • the second element 300 irradiates at least part of the light rotated by the first element 200 toward the periphery of the first virtual axis A1 in a direction crossing the Z direction.
  • the light emitted by the second element 300 toward the periphery of the first imaginary axis A1 in the direction intersecting the Z direction is reflected by an object (not shown) existing outside the sensor device 20 .
  • the light reflected by this object is reflected by the second optical member 310, passes through the first optical member 210, is reflected by the beam splitter 420, and is directed from the beam splitter 420 to the photodetector element 400 in FIG. It passes through the lens 410 and reaches the photodetector 400 as indicated by the extending arrow.
  • the photodetector element 400 detects the reflected light of the light emitted by the second element 300 toward the periphery of the first virtual axis A1 in the direction intersecting the Z direction.
  • the photodetector 400 is, for example, an APD (avalanche photodiode).
  • FIG. 7 is a diagram showing a sensor device 20A according to a first modification of the sensor device 20 according to the embodiment.
  • a sensor device 20A according to this modification is the same as the sensor device 20 according to the embodiment except for the following points.
  • the sensor device 20A includes a light source 100A, a collimator lens 110A, a first element 200A and a second element 300 in the same manner as the light source device 10A according to the modification.
  • the sensor device 20A further comprises a photodetector element 400A and a lens 410A.
  • the first element 200A rotates the light emitted from the light source 100A around the first virtual axis A1.
  • the second element 300 irradiates at least part of the light rotated by the first element 200A toward the periphery of the first virtual axis A1 in a direction intersecting the Z direction.
  • the light emitted by the second element 300 toward the periphery of the first virtual axis A1 in the direction crossing the Z direction is reflected by an object (not shown) existing outside the sensor device 20A.
  • the light reflected by this object is reflected by the second optical member 310, passes through the lens 410A, and reaches the photodetector 400A, as indicated by the dashed line reaching the photodetector 400A in FIG.
  • the photodetector element 400A detects the reflected light of the light emitted by the second element 300 toward the periphery of the first virtual axis A1 in the direction intersecting the Z direction.
  • FIG. 8 is a diagram showing a sensor device 20B according to a second modification of the sensor device 20 according to the embodiment.
  • a sensor device 20B according to this modification is the same as the sensor device 20 according to the embodiment except for the following points.
  • the sensor device 20B according to this modified example is a biaxial LiDAR. Also, the second element 300B has a second optical member 310B, a second driving section 320B and a third optical member 330B. In one example, the sensor device 20B can detect an object existing outside the sensor device 20B as follows.
  • first element 200 rotates the light emitted from the light source 100 around the first virtual axis A1.
  • the second optical member 310B irradiates at least part of the light rotated by the first element 200 toward the periphery of the first virtual axis A1 in a direction intersecting the Z direction.
  • the light emitted by the second optical member 310B toward the periphery of the first imaginary axis A1 in the direction crossing the Z direction is reflected by an object (not shown) existing outside the sensor device 20B.
  • the light reflected by this object is reflected by the third optical member 330B, as indicated by the solid arrow extending from the right side of the third optical member 330B to the photodetector 400B via the third optical member 330B in FIG. and passes through the lens 410B to reach the photodetector 400B.
  • the photodetector 400B detects the reflected light of the light emitted toward the periphery of the first virtual axis A1 in the direction intersecting the Z direction by the second optical member 310B.
  • the photodetector 400B is, for example, an APD.
  • the third optical member 330B is a right-angle prism mirror in which the slopes are coated with a reflective layer such as a metal layer in the same manner as the second optical member 310B.
  • This slope of the third optical member 330B faces the positive side in the Z direction.
  • the third optical member 330B has a reflecting surface facing the positive side in the Z direction while being tilted at 45 degrees with respect to the Z direction. For this reason, light emitted by the second optical member 310B toward the periphery of the first imaginary axis A1 in a direction intersecting the Z direction and reflected by an object (not shown) existing outside the sensor device 20B is reflected by the third optical member 310B.
  • the third optical member 330B may not be a rectangular prism mirror, and may be, for example, a plane mirror directed in the positive direction in the Z direction while being tilted by 45 degrees with respect to the Z direction.
  • the second driving section 320B rotates both the second optical member 310B and the third optical member 330B at the same speed around a rotation axis extending parallel to the Z direction.
  • the second optical member 310B and the third optical member 330B can be rotated by the same motor. Therefore, the number of motors for rotating the second optical member 310B and the third optical member 330B can be reduced compared to the case where the second optical member 310B and the third optical member 330B are rotated by different motors.
  • the method of rotating the second optical member 310B and the third optical member 330B is not limited to the example described above.
  • the second optical member 310B and the third optical member 330B may be rotated by different motors.
  • the second driving section 320 may reciprocate the second optical member 310 within a predetermined range around the first virtual axis A1 when viewed from the Z direction.
  • the second element 300 can irradiate at least part of the light rotated by the first element 200 toward the periphery of the first virtual axis A1 in the direction intersecting the Z direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

第1駆動部(220)が第1光学部材(210)を第1仮想軸(A1)の周りに回転させることで、第1素子(200)は、光源(100)から出射された光を第1仮想軸(A1)に対して斜めに傾けた状態で第1仮想軸(A1)の周りに回転させている。第2駆動部(320)が第2光学部材(310)を第1仮想軸(A1)の周りに回転させることで、第2素子(300)は、第1素子(200)によって回転される光の少なくとも一部をZ方向に交差する方向において第1仮想軸(A1)の周囲に向けて照射させている。

Description

光源装置及びセンサ装置
 本発明は、光源装置及びセンサ装置に関する。
 近年、LiDAR(Light Detection And Ranging)等の様々なセンサ装置が開発されている。センサ装置は、レーザ等の光源と、光源から照射された光の反射光を検出するアバランシェフォトダイオード(APD)等の光検出素子と、を備えている。
 特許文献1には、センサ装置の一例について記載されている。センサ装置は、光源から鉛直方向の上方に向けて出射された光を鉛直方向に直交する水平方向に向けて反射する反射面と、当該反射面を鉛直方向に平行な仮想軸の周りに回転させる機構と、を備えている。このセンサ装置では、反射面を回転させることで、反射面によって反射された光を水平方向の全方位に向けて照射することができる。
 特許文献2には、センサ装置の一例について記載されている。センサ装置は、光源から鉛直方向の下方に向けて出射された光を反射する反射面を備えている。また、センサ装置は、当該反射面を鉛直方向に平行な仮想軸の周りに回転させる機構と、当該反射面の水平方向に対する傾きを調整する機構と、を備えている。
特開2019-28003号公報 特開2019-190860号公報
 例えば特許文献1に記載されているように反射面を鉛直方向に平行な所定の仮想軸の周りに回転させることで、水平方向の全方位に向けて光を照射することができる。しかしながら、反射面を回転させるだけでは、反射面によって反射された光を鉛直方向に偏向させることができない。このため、上述した仮想軸の周りに向けて照射された光の照射範囲が鉛直方向において比較的狭くなり得る。また、例えば特許文献2に記載されているように反射面の傾きを調整する機構を設ける場合、この機構に応じて、センサ装置の部品点数が増加したり、センサ装置の構造が複雑化したりし得る。
 本発明が解決しようとする課題としては、所定の仮想軸の周りに照射される光の照射範囲を広くすることが一例として挙げられる。
 請求項1に記載の発明は、
 光源と、
 前記光源から出射された光を所定の仮想軸に対して傾けた状態で前記仮想軸の周りに回転させる第1素子と、
 前記第1素子によって回転される前記光の少なくとも一部を前記仮想軸の周囲に向けて照射させる第2素子と、
を備える光源装置である。
 請求項6に記載の発明は、
 上記光源装置と、
 前記光源装置から照射された光の反射光を検出する光検出素子と、
を備えるセンサ装置である。
実施形態に係る光源装置を示す図である。 実施形態に係る第1光学部材の第1の変形例に係る第1光学部材を示す図である。 実施形態に係る第1光学部材の第2の変形例に係る第1光学部材を示す図である。 実施形態に係る第1光学部材の第3の変形例に係る第1光学部材を示す図である。 実施形態に係る光源装置の変形例に係る光源装置を示す図である。 実施例に係るセンサ装置を示す図である。 実施例に係るセンサ装置の第1の変形例に係るセンサ装置を示す図である。 実施例に係るセンサ装置の第2の変形例に係るセンサ装置を示す図である。
 以下、本発明の実施形態、変形例及び実施例について、図面を用いて説明する。すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 本明細書において、「第1」、「第2」、「第3」等の序数詞は、特に断りのない限り、同様の名称が付された構成を単に区別するために付されたものであり、構成の特定の特徴(例えば、順番又は重要度)を意味するものではない。
 図1は、実施形態に係る光源装置10を示す図である。
 図1において、Z方向は、鉛直方向に平行な一方向を示している。また、Z方向を示す矢印は、矢印の基端から先端に向かう方向がZ方向の正方向であり、矢印の先端から基端に向かう方向がZ方向の負方向であることを示している。Z方向の正方向は、鉛直方向の上方向である。Z方向の負方向は、鉛直方向の下方向である。Z方向及び鉛直方向の関係はこの例に限定されない。例えば、光源装置10の配置によっては、Z方向は、鉛直方向と異なる方向に平行になっていてもよい。また、Z方向の正方向が鉛直方向の下方向となっていて、Z方向の負方向が鉛直方向の上方向となってもよい。
 光源装置10は、光源100、コリメータレンズ110、第1素子200及び第2素子300を備えている。第1素子200は、第1光学部材210及び第1駆動部220を有している。第2素子300は、第2光学部材310及び第2駆動部320を有している。
 光源100は、例えばレーザである。光源100から発せられる光は、例えば、パルス光である。光源100は、例えば、赤外線帯域の光を発する。光源100から発せられる光の波長は、赤外線帯域でなく、可視光帯域、紫外線帯域等、赤外線帯域以外の帯域であってもよい。
 光源100から光源100のZ方向の正方向に向けて発せられた光は、コリメータレンズ110をZ方向に透過して第1光学部材210に入射する。
 本実施形態において、第1光学部材210は、ウェッジスプリズムである。
 Z方向から見て、第1光学部材210は、円形となっている。Z方向から見て、第1光学部材210は、円形でなくてもよく、多角形、楕円形等、円形と異なる形であってもよい。
 第1光学部材210のZ方向の負方向側の面は、Z方向に直交する平面となっている。第1光学部材210のZ方向の正方向側の面は、Z方向に斜交する平面となっている。光源100から出射されて第1光学部材210のZ方向の負方向側の面にZ方向に平行に入射する光は、第1光学部材210のZ方向の負方向側の面では屈折せず、第1光学部材210のZ方向の正方向側の面で屈折する。これによって、図1において光源100から延びる実線の矢印で示すように、第1光学部材210は、光源100から出射された光を所定の第1仮想軸A1に対して斜めに傾いた方向に向けて偏向させている。第1仮想軸A1は、光源100から出射されて第1光学部材210のZ方向の負方向側の面にZ方向に平行に入射する光の光軸と同一直線上に位置する仮想軸である。
 第1駆動部220は、第1光学部材210を第1仮想軸A1の周りに回転させている。具体的には、第1駆動部220は、Z方向から見て第1光学部材210を第1仮想軸A1の周りに時計回り又は反時計回りに回転させている。第1駆動部220は、例えばモータである。第1駆動部220が第1光学部材210を第1仮想軸A1の周りに回転させることで、第1素子200は、光源100から出射された光を第1仮想軸A1に対して斜めに傾けた状態で第1仮想軸A1の周りに回転させている。
 本実施形態において、第2光学部材310は、斜面に金属層等の反射層がコーティングされた直角プリズムミラーである。第2光学部材310のこの斜面は、Z方向の負方向側に向けられている。これによって、第2光学部材310は、Z方向に対して45度傾けられた状態でZ方向の負方向側に向けられた反射面を有している。このため、仮に、光が第1仮想軸A1を通過して第2光学部材310のZ方向の負方向側から第2光学部材310のZ方向の負方向側の反射面に入射した場合、この光は、第1仮想軸A1と第2光学部材310のZ方向の負方向側の反射面との交点からZ方向に直交する方向に延伸する第2仮想軸A2を通過してZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射される。第2光学部材310は、直角プリズムミラーでなくてもよく、例えば、Z方向に対して45度傾けられた状態でZ方向の負方向側に向けられた平面ミラーであってもよい。
 第2駆動部320は、第2光学部材310を第1仮想軸A1の周りに回転させている。具体的には、第2駆動部320は、Z方向から見て第2光学部材310を第1仮想軸A1の周りに時計回り又は反時計回りに回転させている。第2駆動部320は、例えばモータである。第2駆動部320が第2光学部材310を第1仮想軸A1の周りに回転させることで、第2素子300は、第1素子200によって回転される光の少なくとも一部をZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させている。
 本実施形態においては、光源100から出射された光を第1素子200によって第1仮想軸A1の周りに回転させることで、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射される光を第2仮想軸A2の周りに回転させることができる。さらに、光源100から出射された光を第1素子200によって第1仮想軸A1に対して斜めに傾けることで、第2仮想軸A2と、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射されて第2仮想軸A2の周りに回転する光と、の間の第2仮想軸A2に直交する方向の距離を第1仮想軸A1から離れるにつれて大きくすることができる。仮に、第1素子200が設けられていない場合、光源100から出射された光は、第1仮想軸A1を通過して第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射される。この場合、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射された光をZ方向に偏向させることができない。これに対して、本実施形態では、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射された光が第2仮想軸A2の周りを回転することで、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射された光をZ方向に偏向させることができる。したがって、本実施形態においては、第1素子200が設けられていない場合と比較して、第2光学部材310によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射される光の照射範囲をZ方向において広くすることができる。
 また、本実施形態では、第1光学部材210を第1仮想軸A1の周りに回転させることで、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射される光をZ方向に偏向させることができる。このため、本実施形態では、例えば、第2光学部材310をZ方向に移動させたり、第2光学部材310のZ方向の負方向側の面の傾きを変えたりする機構を設けることなく、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射される光をZ方向に偏向させることができる。このため、本実施形態では、上述した機構を設けることによる光源装置10の部品点数の増加や、光源装置10の構造の複雑化を抑制することができる。
 第2素子300は、第1素子200によって第1仮想軸A1の周りに回転される光のいずれをもZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させてもよい。或いは、第2素子300は、第1素子200によって第1仮想軸A1の周りに回転される光の一部のみをZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させてもよい。例えば、第1素子200によって第1仮想軸A1の周りに回転される光が特定のタイミングにおいて第2光学部材310から逸れる場合、第1素子200によって第1仮想軸A1の周りに回転される光の一部のみが第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射される。第2素子300が第1素子200によって第1仮想軸A1の周りに回転される光の一部のみをZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させる場合、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に照射される光の量が、第1素子200によって第1仮想軸A1の周りに回転される光の量よりも少なくなる。
 第1素子200によって第1仮想軸A1の周りに回転される光がいずれのタイミングにおいても第2光学部材310から逸れない場合、第2素子300は、第1素子200によって第1仮想軸A1の周りに回転される光のいずれをもZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させることができる。この場合、第2素子300が第1素子200によって第1仮想軸A1の周りに回転される光の一部のみをZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させる場合と比較して、光源装置10の光の照射範囲を広くすることができる。
 図2は、実施形態に係る第1光学部材210の第1の変形例に係る第1光学部材210Aを示す図である。本変形例に係る第1光学部材210Aは、以下の点を除いて、実施形態に係る第1光学部材210と同様である。図1を参照しながら、本変形例に係る第1光学部材210Aについて説明する。
 第1光学部材210AのZ方向の正方向側の面は、Z方向に斜交する平面となっている。第1光学部材210AのZ方向の負方向側の面は、Z方向に斜交する平面となっている。第1光学部材210AのZ方向の正方向側の面と、第1光学部材210AのZ方向の負方向側の面と、は非平行となっている。
 光源100から出射されて第1光学部材210AのZ方向の負方向側の面にZ方向に平行に入射する光は、第1光学部材210AのZ方向の負方向側の面と、第1光学部材210AのZ方向の正方向側の面と、で屈折する。これによって、第1光学部材210Aは、光源100から出射された光を第1仮想軸A1に対して斜めに傾いた方向に向けて偏向させることができる。
 図3は、実施形態に係る第1光学部材210の第2の変形例に係る第1光学部材210Bを示す図である。本変形例に係る第1光学部材210Bは、以下の点を除いて、実施形態に係る第1光学部材210と同様である。図1を参照しながら、本変形例に係る第1光学部材210Bについて説明する。
 第1光学部材210Bは、第1プリズム212B及び第2プリズム214Bを含んでいる。第1プリズム212Bは、第2プリズム214BのZ方向の負方向側に位置している。第2プリズム214Bは、第1プリズム212BのZ方向の正方向側に位置している。第1プリズム212BのZ方向の負方向側の面は、Z方向に直交する平面となっている。第1プリズム212BのZ方向の正方向側の面は、Z方向に斜交する平面となっている。第2プリズム214BのZ方向の負方向側の面は、Z方向に斜交する平面となっている。第2プリズム214BのZ方向の正方向側の面は、Z方向に直交する平面となっている。第1プリズム212BのZ方向の正方向側の面と、第2プリズム214BのZ方向の負方向側の面と、は、例えば光学接着剤を介して互いに接合されている。
 光源100から出射されて第1プリズム212BのZ方向の負方向側の面にZ方向に平行に入射する光は、第1プリズム212BのZ方向の負方向側の面では屈折せず、第1プリズム212BのZ方向の正方向側の面と第2プリズム214BのZ方向の負方向側の面との間の界面と、第2プリズム214BのZ方向の正方向側の面と、で屈折する。これによって、第1光学部材210Bは、光源100から出射された光を第1仮想軸A1に対して斜めに傾いた方向に向けて偏向させることができる。
 図4は、実施形態に係る第1光学部材210の第3の変形例に係る第1光学部材210Cを示す図である。本変形例に係る第1光学部材210Cは、以下の点を除いて、実施形態に係る第1光学部材210と同様である。図1を参照しながら、本変形例に係る第1光学部材210Cについて説明する。
 第1光学部材210CのZ方向の正方向側の面は、Z方向に直交する平面となっている。第1光学部材210CのZ方向の負方向側の面は、Z方向に斜交する平面となっている。第1光学部材210CのZ方向の正方向側の面と、第1光学部材210CのZ方向の負方向側の面と、は非平行となっている。
 光源100から出射されて第1光学部材210CのZ方向の負方向側の面にZ方向に平行に入射する光は、第1光学部材210CのZ方向の負方向側の面と、第1光学部材210CのZ方向の正方向側の面と、で屈折する。これによって、第1光学部材210Cは、光源100から出射された光を第1仮想軸A1に対して斜めに傾いた方向に向けて偏向させることができる。
 図5は、実施形態に係る光源装置10の変形例に係る光源装置10Aを示す図である。本変形例に係る光源装置10Aは、以下の点を除いて、実施形態に係る光源装置10と同様である。
 光源装置10Aは、光源100A、コリメータレンズ110A、第1素子200A、反射部材232A及び第2素子300を備えている。第1素子200Aは、第1光学部材230A及び第1駆動部220Aを有している。本変形例において、第1光学部材230A及び反射部材232Aは、円形の平面ミラーである。第1光学部材230A及び反射部材232Aは、プリズム等、平面ミラーと異なる反射部材であってもよい。また、第1光学部材230A及び反射部材232Aの形状は、円形でなくてもよく、円形以外の形状、例えば矩形であってもよい。
 光源100A及び反射部材232Aは、Z方向に直交する方向に並んでいる。光源100Aから出射された光は、Z方向に直交する方向にコリメータレンズ110Aを透過して反射部材232Aに入射して、反射部材232Aによって第1光学部材230Aに向けて反射される。
 第1光学部材230A及び反射部材232Aは、Z方向に並んでいる。第1光学部材230Aは、反射部材232AのZ方向の負方向側に位置している。第1光学部材230Aは、Z方向に対して所定角度傾けられた状態でZ方向の正方向側に向けられた反射面を有している。図5において光源100から延びる実線の矢印で示すように、第1光学部材230Aは、光源100Aから出射されて反射部材232Aによって反射された光を所定の第1仮想軸A1に対して斜めに傾いた方向に向けて反射している。第1仮想軸A1は、光源100Aから出射されて第1光学部材230AのZ方向の正方向側の面にZ方向に平行に入射する光の光軸と同一直線上に位置する仮想軸である。
 第1駆動部220Aは、第1仮想軸A1の周りに第1光学部材230Aを回転させている。第1駆動部220Aが第1光学部材230Aを第1仮想軸A1の周りに回転させることで、第1素子200Aは、光源100Aから出射された光を第1仮想軸A1に対して斜めに傾けた状態で第1仮想軸A1の周りに回転させている。
 第2素子300は、実施形態を用いて説明したように、第1素子200Aによって回転される光の少なくとも一部をZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させている。
 本変形例においても、実施形態と同様にして、第1素子200Aが設けられていない場合と比較して、第2光学部材310によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射される光の照射範囲をZ方向において広くすることができる。
 光源100A及びコリメータレンズ110Aが設けられる位置は、本変形例に係る位置に限定されない。例えば、反射部材232Aを設けずに、光源100Aは、第1光学部材230AのZ方向の正方向側に位置していてもよい。また、コリメータレンズ110Aは、Z方向において光源100Aと第1光学部材230Aとの間に位置していてもよい。この場合、光源100Aから光源100AのZ方向の負方向に向けて出射された光がコリメータレンズ110Aを透過して第1光学部材230Aに入射する。
 図6は、実施例に係るセンサ装置20を示す図である。
 センサ装置20は、実施形態に係る光源装置10と同様にして、光源100、コリメータレンズ110、第1素子200及び第2素子300を備えている。センサ装置20は、光検出素子400、レンズ410及びビームスプリッタ420をさらに備えている。
 センサ装置20は、例えば、LiDARである。具体的には、センサ装置20は、コアキシャル型LiDARとなっている。一例において、センサ装置20は、以下のようにして、センサ装置20の外部に存在する物体を検出することができる。
 まず、光源100から出射された光がコリメータレンズ110及びビームスプリッタ420を透過して第1光学部材210に入射する。実施形態において説明したように、第1素子200は、光源100から出射された光を第1仮想軸A1の周りに回転させている。第2素子300は、第1素子200によって回転される光の少なくとも一部をZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させている。
 第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射された光は、センサ装置20の外部に存在する不図示の物体によって反射される。この物体によって反射された光は、第2光学部材310によって反射されて、第1光学部材210を透過し、ビームスプリッタ420によって反射されて、図6においてビームスプリッタ420から光検出素子400に向けて延びる矢印で示すようにレンズ410を透過して光検出素子400に達する。これによって、光検出素子400は、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射された光の反射光を検出している。光検出素子400は、例えば、APD(アバランシェフォトダイオード)である。
 図7は、実施例に係るセンサ装置20の第1の変形例に係るセンサ装置20Aを示す図である。本変形例に係るセンサ装置20Aは、以下の点を除いて、実施例に係るセンサ装置20と同様である。
 センサ装置20Aは、変形例に係る光源装置10Aと同様にして、光源100A、コリメータレンズ110A、第1素子200A及び第2素子300を備えている。センサ装置20Aは、光検出素子400A及びレンズ410Aをさらに備えている。
 変形例に係る光源装置10Aと同様にして、第1素子200Aは、光源100Aから出射された光を第1仮想軸A1の周りに回転させている。第2素子300は、第1素子200Aによって回転される光の少なくとも一部をZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させている。
 第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射された光は、センサ装置20Aの外部に存在する不図示の物体によって反射される。この物体によって反射された光は、図7において光検出素子400Aに達する破線で示すように、第2光学部材310によって反射されて、レンズ410Aを透過して光検出素子400Aに達する。これによって、光検出素子400Aは、第2素子300によってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射された光の反射光を検出している。
 図8は、実施例に係るセンサ装置20の第2の変形例に係るセンサ装置20Bを示す図である。本変形例に係るセンサ装置20Bは、以下の点を除いて、実施例に係るセンサ装置20と同様である。
 本変形例に係るセンサ装置20Bは、バイアキシャル型LiDARとなっている。また、第2素子300Bは、第2光学部材310B、第2駆動部320B及び第3光学部材330Bを有している。一例において、センサ装置20Bは、以下のようにして、センサ装置20Bの外部に存在する物体を検出することができる。
 まず、光源100から出射された光がコリメータレンズ110を透過して第1光学部材210に入射する。実施形態において説明したように、第1素子200は、光源100から出射された光を第1仮想軸A1の周りに回転させている。第2光学部材310Bは、第1素子200によって回転される光の少なくとも一部をZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させている。
 第2光学部材310BによってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射された光は、センサ装置20Bの外部に存在する不図示の物体によって反射される。この物体によって反射された光は、図8において第3光学部材330Bの右側から第3光学部材330Bを経由して光検出素子400Bに延びる実線の矢印で示すように、第3光学部材330Bによって反射されて、レンズ410Bを透過して光検出素子400Bに達する。これによって、光検出素子400Bは、第2光学部材310BによってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射された光の反射光を検出している。光検出素子400Bは、例えば、APDである。
 第3光学部材330Bは、第2光学部材310Bと同様にして、斜面に金属層等の反射層がコーティングされた直角プリズムミラーである。第3光学部材330Bのこの斜面は、Z方向の正方向側に向けられている。これによって、第3光学部材330Bは、Z方向に対して45度傾けられた状態でZ方向の正方向側に向けられた反射面を有している。このため、第2光学部材310BによってZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射されてセンサ装置20Bの外部に存在する不図示の物体によって反射された光が第3光学部材330BのZ方向の正方向側の反射面に入射した場合、この光は、第3光学部材330BのZ方向の正方向側に位置するレンズ410B及び光検出素子400Bに向けて反射される。第3光学部材330Bは、直角プリズムミラーでなくてもよく、例えば、Z方向に対して45度傾けられた状態でZ方向の正方向側に向けられた平面ミラーであってもよい。
 第2駆動部320Bは、第2光学部材310Bと、第3光学部材330Bと、の双方をZ方向に平行に延伸する回転軸の周りに同一速度で回転させている。この場合、第2光学部材310B及び第3光学部材330Bを同一のモータで回転させることができる。したがって、第2光学部材310B及び第3光学部材330Bを異なるモータで回転させる場合と比較して、第2光学部材310B及び第3光学部材330Bを回転させるモータの数を少なくすることができる。第2光学部材310B及び第3光学部材330Bを回転させる方法は、上述した例に限定されない。例えば、第2光学部材310B及び第3光学部材330Bは、異なるモータによって回転されていてもよい。
 以上、図面を参照して実施形態、変形例及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 例えば、第2駆動部320は、Z方向から見て第2光学部材310を第1仮想軸A1の周りに所定の範囲で往復回転させていてもよい。この場合であっても、第2素子300は、第1素子200によって回転される光の少なくとも一部をZ方向に交差する方向において第1仮想軸A1の周囲に向けて照射させることができる。
10 光源装置
10A 光源装置
20 センサ装置
20A センサ装置
20B センサ装置
100 光源
100A 光源
110 コリメータレンズ
110A コリメータレンズ
200 第1素子
200A 第1素子
210 第1光学部材
210A 第1光学部材
210B 第1光学部材
210C 第1光学部材
212B 第1プリズム
214B 第2プリズム
220 第1駆動部
220A 第1駆動部
230A 第1光学部材
232A 反射部材
300 第2素子
300B 第2素子
310 第2光学部材
310B 第2光学部材
320 第2駆動部
320B 第2駆動部
330B 第3光学部材
400 光検出素子
400A 光検出素子
400B 光検出素子
410 レンズ
410A レンズ
410B レンズ
420 ビームスプリッタ
A1 第1仮想軸
A2 第2仮想軸

Claims (6)

  1.  光源と、
     前記光源から出射された光を所定の仮想軸に対して傾けた状態で前記仮想軸の周りに回転させる第1素子と、
     前記第1素子によって回転される前記光の少なくとも一部を前記仮想軸の周囲に向けて照射させる第2素子と、
    を備える光源装置。
  2.  請求項1に記載の光源装置において、
     前記第1素子は、
      前記光源から出射された前記光を前記仮想軸に対して傾いた方向に向けて偏向させる光学部材と、
      前記光学部材を前記仮想軸の周りに回転させる駆動部と、
    を有する、光源装置。
  3.  請求項1に記載の光源装置において、
     前記第1素子は、
      前記光源から出射された前記光を前記仮想軸に対して傾いた方向に向けて反射する光学部材と、
      前記光学部材を前記仮想軸の周りに回転させる駆動部と、
    を有する、光源装置。
  4.  請求項1~3のいずれか一項に記載の光源装置において、
     前記第2素子は、前記第1素子によって回転される前記光のいずれをも前記仮想軸の周囲に向けて照射させる、光源装置。
  5.  請求項1~3のいずれか一項に記載の光源装置において、
     前記第2素子によって前記仮想軸の周囲に向けて照射される前記光の量が前記第1素子によって回転される前記光の量より少ない、光源装置。
  6.  請求項1~5のいずれか一項に記載の光源装置と、
     前記光源装置から照射された光の反射光を検出する光検出素子と、
    を備えるセンサ装置。
PCT/JP2021/007645 2021-03-01 2021-03-01 光源装置及びセンサ装置 WO2022185367A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007645 WO2022185367A1 (ja) 2021-03-01 2021-03-01 光源装置及びセンサ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007645 WO2022185367A1 (ja) 2021-03-01 2021-03-01 光源装置及びセンサ装置

Publications (1)

Publication Number Publication Date
WO2022185367A1 true WO2022185367A1 (ja) 2022-09-09

Family

ID=83155196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007645 WO2022185367A1 (ja) 2021-03-01 2021-03-01 光源装置及びセンサ装置

Country Status (1)

Country Link
WO (1) WO2022185367A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152730A (ja) * 1974-11-01 1976-05-10 Omron Tateisi Electronics Co
US4196461A (en) * 1979-03-06 1980-04-01 Chartglen, Ltd. Pattern generating entertainment device
JPH01196682A (ja) * 1987-12-28 1989-08-08 Symbol Technol Inc 多指向性の光学的スキャナ
WO2014010107A1 (ja) * 2012-07-11 2014-01-16 北陽電機株式会社 走査式測距装置
JP2020519894A (ja) * 2017-05-12 2020-07-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 簡素化された検出を備えたlidar装置および方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152730A (ja) * 1974-11-01 1976-05-10 Omron Tateisi Electronics Co
US4196461A (en) * 1979-03-06 1980-04-01 Chartglen, Ltd. Pattern generating entertainment device
JPH01196682A (ja) * 1987-12-28 1989-08-08 Symbol Technol Inc 多指向性の光学的スキャナ
WO2014010107A1 (ja) * 2012-07-11 2014-01-16 北陽電機株式会社 走査式測距装置
JP2020519894A (ja) * 2017-05-12 2020-07-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 簡素化された検出を備えたlidar装置および方法

Similar Documents

Publication Publication Date Title
JP5903293B2 (ja) 走査型ミラーデバイス
US7773277B2 (en) Beam irradiation apparatus
JP2009121836A (ja) レーザレーダ装置
JP2019128232A (ja) ライダー装置
WO2017135225A1 (ja) 光走査型の対象物検出装置
JP2006505823A (ja) 光変換デバイス
US5093745A (en) Light beam scanning optical system
JP3334447B2 (ja) 光走査装置の光軸調整方法、光軸調整装置、及び光走査装置
WO2022185367A1 (ja) 光源装置及びセンサ装置
JPH07280939A (ja) 反射測定装置
JP2002196270A (ja) レーザー描画装置
JP2009085947A (ja) ビーム照射装置
JP2020190495A (ja) 距離測定装置
JP2003161907A (ja) レーザビーム径可変装置
JPS62133416A (ja) 光走査装置の軸ぶれ検出方法および軸ぶれ検出装置
WO2021240978A1 (ja) ビーム走査光学系およびレーザレーダ
JP7483016B2 (ja) 測距装置
JP3374941B2 (ja) 透明板の厚み測定装置
US20220107397A1 (en) Lidar system
JPS62139523A (ja) 光ビ−ム走査装置
JP2023091293A (ja) 光走査装置、光電センサおよび測距装置
JP7155526B2 (ja) ライダー装置
JPH10232363A (ja) 光走査装置
JP4027630B2 (ja) 反射型走査光学系
WO2019151092A1 (ja) 走査装置及び測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP