WO2022182014A1 - 광결정 구조체 및 이의 제조 방법 - Google Patents

광결정 구조체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022182014A1
WO2022182014A1 PCT/KR2022/001852 KR2022001852W WO2022182014A1 WO 2022182014 A1 WO2022182014 A1 WO 2022182014A1 KR 2022001852 W KR2022001852 W KR 2022001852W WO 2022182014 A1 WO2022182014 A1 WO 2022182014A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
refractive index
independently
polymer
photonic crystal
Prior art date
Application number
PCT/KR2022/001852
Other languages
English (en)
French (fr)
Inventor
정서현
정유진
임보규
박종목
공호열
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022182014A1 publication Critical patent/WO2022182014A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3405Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of organic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a photonic crystal structure and a method for manufacturing the same.
  • a photonic crystal is a structure in which dielectric materials having different refractive indices are periodically arranged, and overlapping interference occurs between light scattered at regular lattice points, so that light is selectively transmitted in a specific wavelength range without being transmitted. It means a material that reflects, that is, forms an optical bandgap.
  • the photonic crystal uses photons instead of electrons as a means of information processing, and as a result, the speed of information processing is excellent, and thus, it is emerging as a key material for improving the efficiency of the information industry.
  • the photonic crystal can be implemented as a one-dimensional structure in which photons move in the main axis direction, a two-dimensional structure in which the photons move along a plane, or a three-dimensional structure in which photons move freely in all directions through the entire material, and It can be applied to various fields because it is easy to control the optical properties.
  • the photonic crystal may be applied to optical devices such as photonic crystal fibers, light emitting devices, photovoltaic devices, photonic crystal sensors, and semiconductor lasers.
  • the Bragg stack is a photonic crystal having a one-dimensional structure, and can be easily manufactured only by stacking two layers having different refractive indices, and the optical properties can be easily controlled by adjusting the refractive index and thickness of the two layers. There is this. Due to these characteristics, the Bragg stack is widely used for applications as photonic crystal sensors that detect electrical, chemical, and thermal stimuli as well as energy devices such as solar cells. Accordingly, various materials and structures for easily manufacturing a photonic crystal sensor having excellent sensitivity and reproducibility have been studied.
  • An object of the present invention is to provide a photonic crystal structure in which a first refractive index layer and a second refractive index layer are alternately stacked.
  • Another object of the present invention is to provide a method for manufacturing a color conversion photonic crystal structure.
  • first refractive index layers comprising a first polymer exhibiting a first refractive index and an inorganic salt; and a second refractive index layer comprising a second polymer exhibiting a second refractive index;
  • the first refractive index is lower than the second refractive index, a color conversion photonic crystal structure.
  • R 1 and R 2 are each independently hydrogen or C1-3 alkyl
  • R 3 is represented by the following formula 2 or 3
  • R 4 is O or NH
  • R 5 is benzoylphenyl
  • n and m are each independently an integer of 1 or more
  • n+m 100 to 2,000.
  • R 7 is H, OH, C1-10 alkyl, C1-10 aminoalkyl, C1-10 alkoxy or ego,
  • l is an integer from 1 to 20, and o is an integer from 1 to 10.
  • n and m are each independently an integer of 1 or more
  • n+m 100 to 2,000
  • l is an integer from 1 to 20).
  • R 3 to R 6 are each independently hydrogen or C1-3 alkyl
  • a 1 and A 2 are each independently a C6-20 aromatic ring or a C2-20 heteroaromatic ring,
  • R 11 to R 13 are each independently hydroxy, cyano, nitro, amino, halogen, SO 3 H, SO 3 (C1-5 alkyl), C1-10 alkyl or C1-10 alkoxy, or are linked to each other to C4 -12 to form an aromatic ring,
  • a1 to a3 are each independently an integer of 0 to 5
  • Y 2 and Y 3 are each independently benzoylphenyl
  • Y 2 and Y 3 are unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C1-5 alkyl and C1-5 alkoxy;
  • n' and m' are each independently an integer of 1 or more
  • n" and m" are each independently an integer greater than or equal to 1;
  • n"+m" is 100 to 2,000).
  • n" and m" are each independently an integer of 1 or more, and n"+m" is 100 to 2,000.
  • a color conversion film for humidity sensing comprising the photonic crystal structure of any one of 1 to 8 above.
  • forming a first refractive index layer comprising applying a first dispersion comprising a first polymer and an inorganic salt;
  • Forming a second refractive index layer comprising the step of applying a second dispersion containing a second polymer on the first refractive index layer;
  • the first refractive index is lower than the second refractive index, the method of manufacturing a color conversion photonic crystal structure.
  • R 1 and R 2 are each independently hydrogen or C1-3 alkyl
  • R 3 is represented by the following formula 2 or 3
  • R 4 is O or NH
  • R 5 is benzoylphenyl
  • the benzoylphenyl is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C1-5 alkyl and C1-5 alkoxy,
  • n and m are each independently an integer of 1 or more
  • n+m 100 to 2,000.
  • R 7 is H, OH, C1-10 alkyl, C1-10 aminoalkyl, C1-10 alkoxy or ego,
  • l is an integer from 1 to 20, and o is an integer from 1 to 10.
  • n and m are each independently an integer of 1 or more
  • n+m 100 to 2,000
  • l is an integer from 1 to 20).
  • R 3 to R 6 are each independently hydrogen or C1-3 alkyl
  • a 1 and A 2 are each independently a C6-20 aromatic ring or a C2-20 heteroaromatic ring,
  • a1 to a3 are each independently an integer of 0 to 5
  • L 2 and L 3 are each independently O or NH
  • Y 2 and Y 3 are each independently benzoylphenyl
  • Y 2 and Y 3 are unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C1-5 alkyl and C1-5 alkoxy;
  • n' and m' are each independently an integer of 1 or more
  • n'+m' is 100 to 2,000
  • n" and m" are each independently an integer greater than or equal to 1;
  • n"+m" is 100 to 2,000).
  • n" and m" are each independently an integer of 1 or more, and n"+m" is 100 to 2,000.
  • the inorganic salt is LiCl, NaCl, KCl, AlCl 3 , MgCl 2 , CaCl 2 , LiTFSi, LiBr, NaBr, KBr, AlBr 3 , MgBr 2 , CaBr 2 , LiI, NaI, KI, AlI 3 , MgI 2 And CaI 2 Any one or more selected from the group consisting of, a method for producing a color conversion photonic crystal structure.
  • the first dispersion comprises 0.01 to 5% by weight of the first polymer, 1 to 4% by weight of the inorganic salt, and the balance of the dispersion medium.
  • the color conversion photonic crystal structure of the present invention is a structure in which a low-refractive-index layer and a high-refractive-index layer are alternately stacked, and a refractive index layer is prepared by using a dispersion liquid further containing an inorganic salt in a polymer, and the refractive index between the low-refractive-index layer and the high-refractive-index layer It is possible to create a photonic crystal structure with a maximum difference.
  • the film for humidity sensing using the color conversion photonic crystal structure contains an inorganic salt in the refractive index layer, it reacts more sensitively to humidity and shows good reactivity.
  • FIG. 1 schematically shows the structure of a photonic crystal structure according to an embodiment of the present invention.
  • Example 3 shows a change in reflectivity when the film prepared in Example 1 is blown.
  • Example 4 shows a change in reflectivity when the film prepared in Example 2 is blown.
  • Example 5 shows a change in reflectivity when the film prepared in Example 3 is blown.
  • FIGS. 2 to 5 shows the results of Comparative Example 1 and Examples 1 to 3 ( FIGS. 2 to 5 ) together.
  • Example 7 shows a change in reflectivity when the film prepared in Example 26 is blown.
  • the term 'photonic crystal' used in the present invention is a structure in which dielectric materials having different refractive indices are periodically arranged, and overlapping interference occurs between light scattered at each regular lattice point, resulting in a specific wavelength band It refers to a material that does not transmit light but selectively reflects light, that is, forms an optical bandgap.
  • These photonic crystals use photons instead of electrons as a means of information processing and are materials with excellent information processing speed.
  • a one-dimensional structure in which photons move in the main axis direction a two-dimensional structure in which photons move along a plane, or all directions through the entire material It can be implemented as a three-dimensional structure that moves freely.
  • optical devices such as photonic crystal fibers, light emitting devices, photovoltaic devices, color conversion films, and semiconductor lasers by controlling the optical properties by controlling the optical band gap of the photonic crystal.
  • the term 'photonic crystal structure' used in the present invention is a Bragg stack having a one-dimensional photonic crystal structure manufactured by repeatedly and alternately stacking materials having different refractive indices, and by the periodic difference in the refractive index of the stacked structure. It is possible to reflect light in a specific wavelength range, and the reflected wavelength is shifted by an external stimulus to mean a structure in which the reflected color is converted. Specifically, partial reflection of light occurs at the boundary of each layer of the structure, and many of these reflected waves structurally interfere so that light of a specific wavelength having high intensity can be reflected.
  • the photonic crystal structure may have its optical properties controlled by adjusting the refractive index and thickness, and may be manufactured in the form of a coating film coated on a separate substrate or substrate, or in the form of a free standing film.
  • the present invention provides a first refractive index layer comprising a first polymer and an inorganic salt having a first refractive index, which are alternately stacked; and a second refractive index layer including a second polymer exhibiting a second refractive index, wherein the first refractive index is lower than the second refractive index, and relates to a color conversion photonic crystal structure.
  • the first polymer may be more hydrophilic than the second polymer, but is not limited thereto.
  • the second refractive index may be higher than the refractive index of the inorganic salt.
  • the refractive index of the second polymer may be higher than that of the inorganic salt.
  • the photonic crystal structure has a one-dimensional photonic crystal structure manufactured by repeatedly and alternately stacking materials having different refractive indices, and for example, a first refractive index layer and a second refractive index layer are alternately stacked as shown in FIG. it means
  • the total number of layers of the first refractive index layer and the second refractive index layer may be, for example, 3 to 30 layers, but is not limited thereto.
  • the first refractive index and the second refractive index may be different from each other, and the first refractive index layer may be lower than the second refractive index.
  • the first refractive index layer may have a thickness of, for example, 5 to 100 nm, and the second refractive index layer may have a thickness of, for example, 50 to 150 nm, but is not limited thereto.
  • the refractive index may be determined by the polymer and inorganic salt included in each refractive index layer.
  • the first refractive index layer corresponding to the low refractive index layer includes a first polymer and an inorganic salt.
  • the reflection wavelength ( ⁇ ) concentrated to one wavelength by the interference of the partially reflected light in this way color according to
  • the reflection wavelength ⁇ of the photonic crystal structure may be determined by Equation 1 below:
  • the reflection wavelength of the photonic crystal structure is shifted by the swelling (swelling) of the first polymer and/or the second polymer included in the photonic crystal structure by an external stimulus. This is because, when the first polymer and/or the second polymer swells, the crystal lattice structure of each refractive index layer changes, so that the shape of light scattered at the interface of each layer changes. That is, the photonic crystal structure exhibits a converted color by the shifted reflection wavelength ⁇ ′, and the presence or absence of an external stimulus can be confirmed by the color conversion of the photonic crystal structure.
  • the reflection wavelength ( ⁇ ) and the shifted reflection wavelength ( ⁇ ′) of the photonic crystal structure are within the range of 380 nm to 760 nm, which is the visible ray region, the color conversion of the photonic crystal structure can be easily confirmed with the naked eye.
  • the color conversion of the photonic crystal structure may appear while the reflection wavelength of the photonic crystal structure is shifted by the swelling of the first or second polymer by the external stimulus, for example, relative humidity of 70% or more.
  • the reason that the photonic crystal structure according to the present invention has no or almost no color conversion at a relative humidity of less than 70% is due to appropriate hydrophilicity, which can be realized by changing the monomer composition of the photonic crystal structure.
  • a photonic crystal structure 10 includes a first refractive index layer 11 and a second refractive index layer 12 that are alternately stacked.
  • the first refractive index layer 11 may be located at the top of the photonic crystal structure. Accordingly, the first refractive index layer 11 is additionally laminated on the laminate in which the first refractive index layer 11 and the second refractive index layer 12 are alternately stacked, so that the photonic crystal structure has an odd number of refractive index layers. can have In this case, as described above, constructive interference between lights reflected from the interface of each layer increases, so that the intensity of the reflection wavelength of the photonic crystal structure may increase.
  • the first refractive index layer 11 includes a first polymer exhibiting a first refractive index n1
  • the second refractive index layer 12 includes a second polymer exhibiting a second refractive index n2 .
  • the first refractive index n1 and the second refractive index n2 may be different.
  • the difference may be, for example, 0.01 to 0.5. Specifically, the difference may be 0.05 to 0.3, more specifically 0.1 to 0.2.
  • the difference between the refractive indices increases, the optical bandgap of the photonic crystal structure increases. Therefore, it is possible to control the reflection of light of a desired wavelength by adjusting the difference between the refractive indices within the above-described range, and the refractive index is adjusted by changing the type of polymer to be described later. It is possible.
  • the first refractive index n1 may be 1.3 to 1.6
  • the second refractive index n2 may be 1.51 to 1.8.
  • the first refractive index layer 11 is a low refractive index layer
  • the second refractive index layer 12 corresponds to a high refractive index layer
  • the photonic crystal structure 10 is a low refractive index layer / It may have a structure in which a high refractive index layer/ a low refractive index layer/ a high refractive index layer/ a low refractive index layer is sequentially stacked.
  • FIG. 1 shows only one photonic crystal structure 10 composed of a total of 5 layers, the total number of stacked photonic crystal structures is not limited thereto, and the anti-counterfeiting color conversion film includes a plurality of such photonic crystal structures.
  • the total number of layers of the first refractive index layer and the second refractive index layer may be 5 to 30 layers.
  • the interference of light reflected from each layer interface may be sufficiently generated to have a reflection intensity sufficient to detect a color change according to an external stimulus.
  • each of the plurality of photonic crystal structures may have a different total number of layers of the first refractive index layer and the second refractive index layer.
  • the first polymer included in the first refractive index layer (low refractive index layer) having a relatively low refractive index among the first refractive index layer and the second refractive index layer included in the color conversion photonic crystal structure according to the present invention may include various monomer-derived structural units.
  • the first polymer may include one or more repeating units derived from the following monomers: methyl (meth)acrylate, ethyl (meth)acrylate, isobutyl (meth)acrylate, 1-phenylethyl (meth)acrylate, 2-phenylethyl (meth)acrylate, 1,2-diphenylethyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, m-nitro (meth)acrylate-based monomers such as benzyl (meth)acrylate, ⁇ -naphthyl (meth)acrylate, and benzoylphenyl (meth)acrylate; Methyl (meth)acrylamide, ethyl (meth)acrylamide, isobutyl (meth)acrylamide, 1-phenylethyl (meth)acrylamide, 2-phenylethyl (meth)acrylamide, phenyl (meth)acrylamide, phen
  • dicarboxylic acid monomers such as xylylene-based monomers such as o-xylylene, m-xylylene, and p-xylylene; alkylene oxide-based monomers such as ethylene oxide and propylene oxide;
  • a phenylene oxide-based monomer such as phenylene oxide and 2,6-dimethyl-1,4-phenylene oxide may be used, and among them, those having high hydrophilicity and low refractive index are preferable.
  • the first polymer may be a copolymer including a repeating unit represented by the following Chemical Formula 1:
  • R 1 and R 2 are each independently hydrogen or C1-3 alkyl
  • R 3 is represented by the following formula 2 or 3
  • R 4 is O or NH
  • R 5 is benzoylphenyl
  • the benzoylphenyl is unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C1-5 alkyl and C1-5 alkoxy,
  • n and m are each independently an integer of 1 or more
  • R 7 is H, OH, C1-10 alkyl, C1-10 aminoalkyl, C1-10 alkoxy or ego,
  • the refractive index is low, the chemical properties such as thermal stability, chemical resistance, oxidation stability are excellent, and the transparency is excellent.
  • the copolymer including the repeating unit represented by Chemical Formula 1 according to the present invention is a random copolymerization of an acrylate or acrylamide-based monomer of Chemical Formula 2 or 3 and an acrylate or acrylamide-based monomer having a photoactive functional group (R 5 ) It may be a random copolymer in which the repeating units between the square brackets of Formula 1 are randomly arranged with each other.
  • the copolymer including the repeating unit represented by Chemical Formula 1 according to the present invention may be a block copolymer in which blocks of repeating units between square brackets of Chemical Formula 1 are connected by a covalent bond.
  • it may be an alternating copolymer in which repeating units between square brackets of Formula 1 are crossed and arranged, or a graft copolymer in which any one repeating unit is bonded in a branched form, but the arrangement of the repeating units is not limited
  • the copolymer represented by Chemical Formula 1 according to the present invention may exhibit, for example, a refractive index of 1.3 to 1.6.
  • a photonic crystal structure that reflects light of a desired wavelength may be realized by a difference in refractive index from a polymer used for a second refractive index layer (high refractive index layer) to be described later.
  • R 1 and R 2 may each independently be hydrogen or methyl.
  • R 1 and R 2 may be hydrogen.
  • R 5 may be benzoylphenyl unsubstituted or substituted with C1-3 alkyl.
  • R 5 is benzoylphenyl, it may be advantageous in terms of easiness of photocuring.
  • n means the total number of repeating units derived from fluoroalkyl acrylamide-based monomers in the copolymer
  • m is an acrylate or acrylamide-based monomer having a photoactive functional group (R 5 ) in the copolymer. It means the total number of repeating units derived from
  • the copolymer including the repeating unit represented by Formula 1 may have a molar ratio of n:m of 100:1 to 100:50, and a number average molecular weight of 10,000 to 100,000 g/mol.
  • the copolymer including the repeating unit represented by Formula 1 may have a molar ratio of n:m of 100:1 to 100:40, specifically 100:20 to 100:35.
  • the copolymer including the repeating unit represented by Formula 1 may have a number average molecular weight of 10,000 to 80,000 g/mol. In the above range, it is possible to prepare a copolymer having a low refractive index and easy photocuring.
  • the copolymer including the repeating unit represented by Chemical Formula 1 may be one of the copolymers including the repeating unit represented by the following Chemical Formulas 1-1 to 1-10:
  • the second refractive index layer of the color conversion photonic crystal structure is the second refractive index layer of the color conversion photonic crystal structure
  • the second polymer included in the second refractive index layer (high refractive index layer) having a relatively high refractive index among the first refractive index layer and the second refractive index layer included in the color conversion photonic crystal structure according to the present invention may include repeating units derived from various monomers.
  • the second polymer may include one or more repeating units derived from the following monomers: methyl (meth)acrylate, ethyl (meth)acrylate, isobutyl (meth)acrylate, 1-phenylethyl (meth)acrylate, 2-phenylethyl (meth)acrylate, 1,2-diphenylethyl (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, m-nitro (meth)acrylate-based monomers such as benzyl (meth)acrylate, ⁇ -naphthyl (meth)acrylate, and benzoylphenyl (meth)acrylate; Methyl (meth)acrylamide, ethyl (meth)acrylamide, isobutyl (meth)acrylamide, 1-phenylethyl (meth)acrylamide, 2-phenylethyl (meth)acrylamide, phenyl (meth)acrylamide, phen
  • dicarboxylic acid monomers such as xylylene-based monomers such as o-xylylene, m-xylylene, and p-xylylene; alkylene oxide-based monomers such as ethylene oxide and propylene oxide; phenylene oxide-based monomers such as phenylene oxide and 2,6-dimethyl-1,4-phenylene oxide.
  • it may have a repeating unit derived from a styrenic monomer and a repeating unit derived from one of (meth)acrylate and (meth)acrylamide in terms of implementing a preferred refractive index difference and easiness of photocuring.
  • the second polymer used in the second refractive index layer may be a copolymer including a repeating unit represented by the following Chemical Formula 4 or 5:
  • R 3 to R 6 are each independently hydrogen or C1-3 alkyl
  • a 1 and A 2 are each independently a C6-20 aromatic ring or a C2-20 heteroaromatic ring,
  • R 11 to R 13 are each independently hydroxy, cyano, nitro, amino, halogen, SO 3 H, SO 3 (C1-5 alkyl), C1-10 alkyl or C1-10 alkoxy, or are linked to each other to C4 -12 to form an aromatic ring,
  • a1 to a3 are each independently an integer of 0 to 5
  • L 2 and L 3 are each independently O or NH
  • Y 2 and Y 3 are each independently benzoylphenyl
  • Y 2 and Y 3 are unsubstituted or substituted with 1 to 4 substituents each independently selected from the group consisting of hydroxy, halogen, nitro, C1-5 alkyl and C1-5 alkoxy;
  • n' and m' are each independently an integer of 1 or more
  • n'+m' is 100 to 2,000
  • n" and m" are each independently an integer greater than or equal to 1;
  • n"+m" is 100 to 2,000).
  • the copolymer including a repeating unit represented by Formula 4 or 5 includes a repeating unit derived from a styrene-based monomer and a repeating unit derived from a carbazole-based monomer, respectively, the refractive index is high, so that a high refractive index layer can be implemented.
  • the copolymer including the repeating unit represented by Formula 4 or 5 further comprises a repeating unit derived from an acrylate or acrylamide-based monomer having photoactive functional groups (Y 2 and Y 3 ), a separate photoinitiator
  • photocuring may be possible by itself without a crosslinking agent.
  • the copolymer including the repeating unit represented by Chemical Formula 4 is prepared by randomly copolymerizing a styrene-based monomer and an acrylate or acrylamide-based monomer having a photoactive functional group (Y 2 ) between the square brackets of Chemical Formula 4 It may be a random copolymer in which repeating units are randomly arranged with each other.
  • the copolymer including the repeating unit represented by Chemical Formula 4 may be a block copolymer in which blocks of repeating units between square brackets of Chemical Formula 4 are connected by a covalent bond. Also alternatively, it may be an alternating copolymer in which repeating units between square brackets of Formula 4 are alternately arranged, or a graft copolymer in which any one repeating unit is bonded in a branched form, but the arrangement of the repeating units The form is not limited.
  • the copolymer including the repeating unit represented by Chemical Formula 5 may be a block copolymer in which blocks of repeating units between square brackets of Chemical Formula 5 are connected by a covalent bond.
  • it may be an alternating copolymer in which repeating units between square brackets of Formula 5 are crossed and arranged, or a graft copolymer in which any one repeating unit is bonded in a branched form, but the arrangement of the repeating units The form is not limited.
  • the copolymer including the repeating unit represented by Formula 4 or 5 may have a refractive index of 1.51 to 1.8. In the above range, a color conversion photonic crystal structure that reflects light of a desired wavelength by a difference in refractive index with the polymer including the repeating unit represented by Formula 1 may be implemented.
  • R 3 to R 6 may each independently be hydrogen or methyl.
  • R 3 to R 6 may be hydrogen.
  • a 1 and A 2 may each independently be a benzene ring or a naphthalene ring.
  • a 1 and A 2 may each independently be a benzene ring.
  • R 11 to R 13 may each independently represent hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, or tert-butyl.
  • a1 means the number of R 11 , and may be 0, 1, or 2
  • two or more R 11 may be the same or different from each other.
  • a2 and a3 may also be understood with reference to the description of a1 and structures of Chemical Formulas 4 and 5, and may be 0, 1, or 2.
  • Y 2 and Y 3 may each independently be benzoylphenyl unsubstituted or substituted with C1-3 alkyl.
  • Y 2 and Y 3 are benzoylphenyl, it is advantageous in terms of easiness of photocuring.
  • n' means the total number of repeating units derived from styrenic monomers in the copolymer
  • m' is the number of repeating units derived from acrylate or acrylamide-based monomers having a photoactive functional group in the copolymer. means the total number.
  • the copolymer including the repeating unit represented by Formula 4 according to the present invention may have a molar ratio of n':m' of 100:1 to 100:50, for example, 100:30 to 100:50.
  • the copolymer including the repeating unit represented by Formula 4 may have a number average molecular weight (Mn) of 10,000 to 100,000 g/mol, for example, 10,000 to 50,000 g/mol.
  • Mn number average molecular weight
  • the copolymer including the repeating unit represented by Chemical Formula 4 according to the present invention may be a copolymer including the repeating unit represented by the following Chemical Formula 4-1:
  • n' and m' are as defined above.
  • n means the total number of repeating units derived from carbazole-based monomers in the copolymer
  • m is a repeating unit derived from an acrylate or acrylamide-based monomer having a photoactive functional group in the copolymer.
  • the copolymer including the repeating unit represented by Formula 5 may have a molar ratio of n":m" of 100:1 to 100:50, for example, 100:1 to 100:40.
  • the copolymer including the repeating unit represented by Formula 5 may have a number average molecular weight (Mn) of 10,000 to 500,000 g/mol, for example, 10,000 to 350,000 g/mol.
  • Mn number average molecular weight
  • the copolymer including the repeating unit represented by Chemical Formula 5 may be a copolymer including the repeating unit represented by the following Chemical Formula 5-1 or 5-2:
  • the inorganic salt according to the present invention may be included in the first refractive index layer to lower the detection limit for the external stimulus of the color conversion photonic crystal structure, improve the reaction sensitivity, and increase the reaction holding time.
  • the type of the inorganic salt is not limited, but a low refractive index is preferable in view of a large optical bandgap.
  • chlorides such as lithium, magnesium, calcium, zinc, and aluminum
  • the inorganic salt may be appropriately selected in consideration of the refractive index and the degree of dispersion during the formation of the refractive index layer within the range exemplified above.
  • the refractive index of LiCl is 1.662
  • the refractive index of NaCl is 1.5442
  • the refractive index of KCl is 1.4904
  • the refractive index of CaCl 2 is 1.442.
  • the refractive index of the inorganic salt may be lower than that of the second refractive index layer.
  • the first refractive index layer may be formed by coating/drying a dispersion containing the first polymer and an inorganic salt.
  • the dispersion medium of the dispersion may be any as long as it is capable of dispersing the first polymer and the inorganic salt, and may be, for example, ethanol, propanol, butanol, chlorobenzene, and the like, but is not limited thereto.
  • the second refractive index layer may be formed by coating/drying a dispersion containing the second polymer on the first refractive index layer.
  • the dispersion medium of the dispersion may be any as long as it is capable of dispersing the second polymer, and may be, for example, ethanol, propanol, butanol, chlorobenzene, or the like, but is not limited thereto.
  • the present invention relates to a color conversion film for humidity sensing comprising the above-described photonic crystal structure.
  • a reflection wavelength is shifted according to a change in humidity, so that color conversion may occur, which may occur because the first or second refractive index layer absorbs moisture to change the refractive index, and the thickness of the refractive index layer increases.
  • the first refractive index layer may be a sensing layer that absorbs moisture. This may be due to using a polymer having higher hydrophilicity than the second polymer as the first polymer.
  • the first refractive index layer absorbs moisture and swells, thereby changing the thickness. Accordingly, the reflection wavelength of the photonic crystal structure may be shifted.
  • the shifted reflection wavelength ( ⁇ ') is in the range of 380 nm to 760 nm, so that color change can be observed with the naked eye.
  • the reflection wavelength ⁇ and the shifted reflection wavelength ⁇ ′ can be measured with a device such as a reflectometer.
  • the color conversion film for humidity sensing of the present invention may include one or a plurality of the photonic crystal structures described above.
  • the color conversion film for humidity sensing may include two or more, or two to 100, the above-described photonic crystal structures, but is not limited thereto. Any general film manufacturing method for manufacturing a film using the photonic crystal structure is possible, and the method is not limited thereto.
  • the plurality of photonic crystal structures are each independently, the above-described first and second polymer types, inorganic salts, the thickness of the first refractive index layer and the second refractive index layer, and/or the total stacking of the first refractive index layer and the second refractive index layer
  • the number may be the same or different.
  • the color conversion film for humidity sensing is different in color depending on the type of copolymer in the photonic crystal structure when in contact with moisture, it is possible to check the humidity by observing the converted color.
  • the color conversion film for humidity sensing can be quickly restored to its original state when contact with external stimuli is stopped, so that it can be reused repeatedly.
  • the present invention also relates to a color conversion sensor comprising the color conversion film.
  • the color conversion sensor of the present invention may be a humidity sensor.
  • the humidity sensor of the present invention has excellent sensitivity to humidity and has a low detection limit, so it can exhibit excellent reactivity to low humidity. In addition, the reaction duration is long and the visibility is excellent.
  • the present invention comprises the steps of forming a first refractive index layer comprising the step of applying a first dispersion comprising a first polymer and an inorganic salt; and forming a second refractive index layer comprising the step of applying a second dispersion comprising a second polymer on the first refractive index layer, wherein the first refractive index is lower than the second refractive index. It relates to a method of manufacturing a converted photonic crystal structure.
  • a first refractive index layer is formed by applying a first dispersion including a first polymer and an inorganic salt.
  • the description of the first polymer, the inorganic salt, and the first refractive index layer is the same as described above.
  • the first dispersion includes the first polymer and the inorganic salt, and any dispersion medium used in the first dispersion can be used as long as it can disperse the first polymer and the inorganic salt, for example, ethanol, propanol, butanol. and the like, but is not limited thereto.
  • the content ratio of the first polymer and the inorganic salt is not particularly limited, for example, 1: 0.001 to 5, 1: 0.01 to 5, 1: 0.01 to 4, 1: 0.01 to 3, 1: 0.1 to 5, 1: 0.1 to 4, 1: may be 0.1 to 3, but is not limited thereto.
  • the first dispersion can be applied, for example, on a substrate or on a second refractive index layer.
  • spin coating dip coating, roll coating, screen coating, spray coating, Spin casting, flow coating, screen printing, ink jet or drop casting may be exemplified, but are not limited thereto.
  • the dispersion may be dried/cured by a method known in the art to form a first refractive index layer.
  • a second refractive index layer including the step of applying a second dispersion including a second polymer on the first refractive index layer is formed.
  • the second dispersion liquid includes the second polymer, and any dispersion medium used in the second dispersion liquid can be used as long as it can disperse the second polymer, for example, ethanol, propanol, butanol, etc., but is limited thereto. it's not going to be
  • the content of the second polymer included in the second dispersion is not particularly limited.
  • the second polymer may comprise 0.01 to 5%, 0.01 to 4%, 0.1 to 5%, 0.1 to 4%, 0.1 to 3.5%, 0.1 to 3%, 0.5% by weight of the total weight of the second dispersion.
  • the method exemplified above may be used as a method for applying the second dispersion, but is not limited thereto.
  • UV curing may be performed during curing, but is not limited thereto.
  • TCI Tokyo chemical industry
  • Mn number average molecular weight
  • PDI molecular weight distribution
  • Tg glass transition temperature: measured using a differential scanning calorimeter (DSC).
  • Refractive index measured by ellipsometer.
  • Poly(AA-BPA) prepared in Preparation Example 4 was dissolved in prool at 2.0% by weight to prepare a low refractive index dispersion
  • Poly(VC-BPA) prepared in Preparation Example 3 was dissolved in chlorobenzene at 2.5% by weight.
  • a refractive index dispersion was prepared.
  • the high refractive index dispersion was applied on a glass substrate at a speed of 2800 rpm using a spin coater, and then cured at 365 nm for 15 minutes to prepare a 120 nm thick high refractive index layer.
  • the low refractive index dispersion was applied on the high refractive index layer at a speed of 2800 rpm using a spin coater, and then cured at 365 nm for 10 minutes to prepare a low refractive index layer with a thickness of 100 nm.
  • a color conversion photonic crystal structure in which a total of 10 refractive index layers were laminated was prepared.
  • Poly (AA-BPA) prepared in Preparation Example 4 was dissolved in propanol at 2% by weight, and inorganic salt LiCl was dissolved in 4% by weight to prepare a first dispersion (low refractive index dispersion), and Poly prepared in Preparation Example 3 (VC-BPA) was dissolved in chlorobenzene to a concentration of 2.0% to prepare a second dispersion (high refractive index dispersion).
  • the second dispersion was applied on a glass substrate at a speed of 3000 rpm using a spin coater, and then cured at 365 nm for 15 minutes to prepare a second refractive index layer (high refractive index layer) having a thickness of 120 nm.
  • the first dispersion was applied on the second refractive index layer at a speed of 3000 rpm using a spin coater, and then cured at 365 nm for 10 minutes to prepare a first refractive index layer having a thickness of 100 nm.
  • a color conversion photonic crystal structure in which a total of 10 refractive index layers were laminated was prepared.
  • Example 1 the low refractive polymer concentration, inorganic salt type, inorganic salt concentration, low refractive index dispersion medium, high refractive polymer concentration, high refractive index dispersion medium, low refractive index layer and spin coating speed when preparing the high refractive index layer were used in Example 1 Except that, Examples 1 and 2 were a total of 4 refractive index layers, and Examples 3 and 17 were all prepared as a total of 10 refractive index layers, except that a total of 8 refractive index layers.
  • Poly(PEGMA-BPA) prepared in Preparation Example 5 was dissolved in propanol at 1.5% by weight, and inorganic salt CaCl 2 was dissolved in 1% by weight to prepare a first dispersion (low refractive index dispersion), prepared in Preparation Example 6
  • Poly(VN-BPA) was dissolved in chlorobenzene to a concentration of 2.5% to prepare a second dispersion (high refractive index dispersion).
  • the second dispersion was applied on a glass substrate at a speed of 3000 rpm using a spin coater, and then cured at 365 nm for 15 minutes to prepare a second refractive index layer (high refractive index layer) having a thickness of 120 nm.
  • the first dispersion was applied on the second refractive index layer at a speed of 3000 rpm using a spin coater, and then cured at 365 nm for 10 minutes to prepare a first refractive index layer having a thickness of 100 nm.
  • a color conversion photonic crystal structure in which a total of 10 refractive index layers were laminated was prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

본 발명은 폴리머 및 무기염을 포함하는 굴절률층을 포함하는 색변환 광결정 구조체에 관한 것으로, 저굴절률층과 고굴절률층이 교대로 적층되고 굴절률층이 무기염을 포함하여 습도 등의 외부 자극에 의해 광밴드갭이 조절되어 습도 센싱용 필름 등에 활용할 수 있다.

Description

광결정 구조체 및 이의 제조 방법
본 발명은 광결정 구조체 및 이의 제조 방법에 관한 것이다.
광결정(photonic crystal)이란, 서로 다른 굴절률을 갖는 유전물질이 주기적으로 배열된 구조체로서, 각각의 규칙적인 격자점에서 산란되는 빛들 사이에 중첩적 간섭이 일어나 특정한 파장 영역대에서 빛을 투과시키지 않고 선택적으로 반사하는, 즉 광밴드갭을 형성하는 물질을 의미한다.
이러한 광결정은 정보 처리의 수단으로 전자 대신 광자를 이용함으로써, 정보처리의 속도가 우수하여 정보화 산업의 효율 향상을 위한 핵심 물질로 부각되고 있다. 더욱이, 광결정은 광자가 주축 방향으로 이동하는 1차원 구조, 평면을 따라 이동하는 2차원 구조, 또는 물질 전체를 통해 모든 방향으로 자유롭게 이동하는 3차원 구조로 구현될 수 있고, 광밴드갭 조절을 통한 광학적 특성의 제어가 용이하여 다양한 분야에 적용 가능하다. 예를 들어, 광결정은 광결정 섬유, 발광소자, 광기전소자, 광결정 센서, 반도체레이저 등 광학 소자에 응용될 수 있다.
특히, 브래그 스택(Bragg stack)은 1차원 구조를 갖는 광결정으로서, 상이한 굴절률을 갖는 두 층의 적층만으로 쉽게 제조가 가능하고, 상기 두 층의 굴절률 및 두께 조절에 의한 광학적 특성의 제어가 용이하다는 장점이 있다. 이러한 특징으로 인해 상기 브래그 스택은 태양 전지와 같은 에너지 소자 뿐만 아니라, 전기적, 화학적, 열적 자극 등을 감지하는 광결정 센서로의 응용에 널리 이용되고 있다. 이에 따라, 감도 및 재현성이 우수한 광결정 센서를 용이하게 제조하기 위한 여러 가지 물질 및 구조에 대한 연구가 이루어지고 있다.
본 발명의 목적은 제1 굴절률층과 제2 굴절률층이 교대로 적층된 광결정 구조체를 제공함에 있다.
본 발명의 목적은 광결정 구조체를 포함하는 습도 센싱용 색변환 필름을 제공함에 있다.
본 발명의 또 다른 목적은 색변환 광결정 구조체의 제조 방법을 제공함에 있다.
1. 교대로 적층된, 제1 굴절률을 나타내는 제1 폴리머 및 무기염을 포함하는 제1굴절률층; 및 제2 굴절률을 나타내는 제2 폴리머를 포함하는 제2 굴절률층;을 포함하며,
상기 제1 굴절률이 상기 제2 굴절률보다 낮은, 색변환 광결정 구조체.
2. 위 1에 있어서, 상기 제1 폴리머는 제2 폴리머보다 더 친수성인, 색변환 광결정 구조체.
3. 위 1에 있어서, 상기 제2 굴절률은 상기 무기염의 굴절률보다 높은, 색변환 광결정 구조체.
4. 위 1에 있어서, 상기 제1 폴리머는 하기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머인 색변환 광결정 구조체:
[화학식 1]
Figure PCTKR2022001852-appb-img-000001
(식 중, R1 및 R2는 각각 독립적으로 수소 또는 C1-3 알킬이고,
R3은 하기 화학식 2 또는 3으로 표시되는 것이고,
R4는 O 또는 NH이고,
R5는 벤조일페닐이고,
상기 벤조일페닐은 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
n 및 m은 각각 독립적으로 1 이상의 정수이고,
n+m은 100 내지 2,000임.)
[화학식 2]
Figure PCTKR2022001852-appb-img-000002
(식 중, R6는 O, NH 또는
Figure PCTKR2022001852-appb-img-000003
이고,
R7은 H, OH, C1~10 알킬, C1~10 아미노알킬, C1~10 알콕시 또는
Figure PCTKR2022001852-appb-img-000004
이고,
l은 1 내지 20의 정수이고, o는 1 내지 10의 정수임.)
[화학식 3]
Figure PCTKR2022001852-appb-img-000005
(식 중, p는 1 내지 4의 정수임).
5. 위 4에 있어서, 상기 제1 폴리머는 하기 화학식 1-1 내지 1-10으로 표시되는 반복단위를 포함하는 코폴리머 중 하나인, 색변환 광결정 구조체.
[화학식 1-1]
Figure PCTKR2022001852-appb-img-000006
[화학식 1-2]
Figure PCTKR2022001852-appb-img-000007
[화학식 1-3]
Figure PCTKR2022001852-appb-img-000008
[화학식 1-4]
Figure PCTKR2022001852-appb-img-000009
[화학식 1-5]
Figure PCTKR2022001852-appb-img-000010
[화학식 1-6]
Figure PCTKR2022001852-appb-img-000011
[화학식 1-7]
Figure PCTKR2022001852-appb-img-000012
[화학식 1-8]
Figure PCTKR2022001852-appb-img-000013
[화학식 1-9]
Figure PCTKR2022001852-appb-img-000014
[화학식 1-10]
Figure PCTKR2022001852-appb-img-000015
(식 중, n 및 m는 각각 독립적으로 1 이상의 정수이고,
n+ m는 100 내지 2,000이고,
l은 1 내지 20의 정수임).
6. 위 1에 있어서, 상기 제2 폴리머는 하기 화학식 4 또는 5로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체:
[화학식 4]
Figure PCTKR2022001852-appb-img-000016
[화학식 5]
Figure PCTKR2022001852-appb-img-000017
(식 중, R3 내지 R6은 각각 독립적으로, 수소 또는 C1-3 알킬이고,
A1 및 A2는 각각 독립적으로, C6-20 방향족 고리 또는 C2-20 헤테로방향족 고리이고,
R11 내지 R13은 각각 독립적으로, 하이드록시, 시아노, 니트로, 아미노, 할로겐, SO3H, SO3(C1-5알킬), C1-10 알킬 또는 C1-10 알콕시이거나, 서로 연결되어 C4-12의 방향족 고리를 형성할 수 있고,
a1 내지 a3는 각각 독립적으로, 0 내지 5의 정수이고,
L2 및 L3는 각각 독립적으로, O 또는 NH이고,
Y2 및 Y3는 각각 독립적으로, 벤조일페닐이고,
Y2 및 Y3는 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
n' 및 m'는 각각 독립적으로 1 이상의 정수이고,
n'+ m'는 100 내지 2,000이며,
n" 및 m"는 각각 독립적으로 1 이상의 정수이고,
n"+ m"는 100 내지 2,000임).
7. 위 6에 있어서, 상기 제2 폴리머는 하기 화학식 5-1 또는 5-2로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체.
[화학식 5-1]
Figure PCTKR2022001852-appb-img-000018
[화학식 5-2]
Figure PCTKR2022001852-appb-img-000019
(식 중, n" 및 m"은 각각 독립적으로 1 이상의 정수이고, n"+m"은 100 내지 2,000임.)
8. 위 1에 있어서, 상기 무기염은 LiCl, NaCl, KCl, AlCl3, MgCl2, CaCl2, LiTFSi, LiBr, NaBr, KBr, AlBr3, MgBr2, CaBr2, LiI, NaI, KI, AlI3, MgI2 및 CaI2 로 이루어진 군에서 선택되는 어느 하나 이상인 광결정 구조체.
9. 위 1 내지 8 중 어느 한 항의 광결정 구조체를 포함하는 습도 센싱용 색변환 필름.
10. 제1 폴리머 및 무기염을 포함하는 제1 분산액을 도포하는 단계를 포함하는 제1 굴절률층을 형성하는 단계; 및
상기 제1 굴절률층 상에 제2 폴리머를 포함하는 제2 분산액을 도포하는 단계를 포함하는 제2 굴절률층을 형성하는 단계;를 포함하며,
상기 제1 굴절률이 상기 제2 굴절률보다 낮은, 색변환 광결정 구조체의 제조 방법.
11. 위 10에 있어서, 상기 제1 폴리머는 제2 폴리머보다 더 친수성인, 색변환 광결정 구조체의 제조 방법.
12. 위 10에 있어서, 상기 제2 굴절률은 상기 무기염의 굴절률보다 높은, 색변환 광결정 구조체의 제조 방법.
13. 위 10에 있어서, 상기 제1 폴리머는 하기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체의 제조 방법:
[화학식 1]
Figure PCTKR2022001852-appb-img-000020
(식 중, R1 및 R2는 각각 독립적으로 수소 또는 C1-3 알킬이고,
R3은 하기 화학식 2 또는 3으로 표시되는 것이고,
R4는 O 또는 NH이고,
R5는 벤조일페닐이고,
상기 벤조일페닐은 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
n 및 m은 각각 독립적으로 1 이상의 정수이고,
n+m은 100 내지 2,000임.)
[화학식 2]
Figure PCTKR2022001852-appb-img-000021
(식 중, R6는 O, NH 또는
Figure PCTKR2022001852-appb-img-000022
이고,
R7은 H, OH, C1~10 알킬, C1~10 아미노알킬, C1~10 알콕시 또는
Figure PCTKR2022001852-appb-img-000023
이고,
l은 1 내지 20의 정수이고, o는 1 내지 10의 정수임.)
[화학식 3]
Figure PCTKR2022001852-appb-img-000024
(식 중, p는 1 내지 4의 정수임).
14. 위 13에 있어서, 상기 제1 폴리머는 하기 화학식 1-1 내지 1-10으로 표시되는 반복단위를 포함하는 코폴리머 중 하나인, 색변환 광결정 구조체의 제조 방법:
[화학식 1-1]
Figure PCTKR2022001852-appb-img-000025
[화학식 1-2]
Figure PCTKR2022001852-appb-img-000026
[화학식 1-3]
Figure PCTKR2022001852-appb-img-000027
[화학식 1-4]
Figure PCTKR2022001852-appb-img-000028
[화학식 1-5]
Figure PCTKR2022001852-appb-img-000029
[화학식 1-6]
Figure PCTKR2022001852-appb-img-000030
[화학식 1-7]
Figure PCTKR2022001852-appb-img-000031
[화학식 1-8]
Figure PCTKR2022001852-appb-img-000032
[화학식 1-9]
Figure PCTKR2022001852-appb-img-000033
[화학식 1-10]
Figure PCTKR2022001852-appb-img-000034
(식 중, n 및 m는 각각 독립적으로 1 이상의 정수이고,
n+ m는 100 내지 2,000이고,
l은 1 내지 20의 정수임).
15. 위 10에 있어서, 상기 제2 폴리머는 하기 화학식 4 또는 5로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체의 제조 방법:
[화학식 4]
Figure PCTKR2022001852-appb-img-000035
[화학식 5]
Figure PCTKR2022001852-appb-img-000036
(식 중, R3 내지 R6은 각각 독립적으로, 수소 또는 C1-3 알킬이고,
A1 및 A2는 각각 독립적으로, C6-20 방향족 고리 또는 C2-20 헤테로방향족 고리이고,
R11 내지 R13은 각각 독립적으로, 하이드록시, 시아노, 니트로, 아미노, 할로겐, SO3H, SO3(C1-5알킬), C1-10 알킬 또는 C1-10 알콕시이거나, 서로 연결되어 C4-12의 방향족 고리를 형성할 수 있고,
a1 내지 a3는 각각 독립적으로, 0 내지 5의 정수이고,
L2 및 L3는 각각 독립적으로, O 또는 NH이고,
Y2 및 Y3는 각각 독립적으로, 벤조일페닐이고,
Y2 및 Y3는 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
n' 및 m'는 각각 독립적으로 1 이상의 정수이고,
n'+ m'는 100 내지 2,000이며,
n" 및 m"는 각각 독립적으로 1 이상의 정수이고,
n"+ m"는 100 내지 2,000임).
16. 위 15에 있어서, 상기 제2 폴리머는 하기 화학식 5-1 또는 5-2로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체의 제조 방법:
[화학식 5-1]
Figure PCTKR2022001852-appb-img-000037
[화학식 5-2]
Figure PCTKR2022001852-appb-img-000038
(식 중, n" 및 m"은 각각 독립적으로 1 이상의 정수이고, n"+m"은 100 내지 2,000임.)
17. 위 10에 있어서, 상기 무기염은 LiCl, NaCl, KCl, AlCl3, MgCl2, CaCl2, LiTFSi, LiBr, NaBr, KBr, AlBr3, MgBr2, CaBr2, LiI, NaI, KI, AlI3, MgI2 및 CaI2 로 이루어진 군에서 선택되는 어느 하나 이상인, 색변환 광결정 구조체의 제조 방법.
18. 위 10에 있어서, 상기 제1 분산액은 제1 폴리머 0.01 내지 5 중량%, 무기염 1 내지 4 중량% 및 잔량의 분산매를 포함하는, 색변환 광결정 구조체의 제조 방법.
19. 위 10에 있어서, 상기 제2 분산액은 제2 폴리머 1 내지 4 중량% 및 잔량의 분산매를 포함하는, 색변환 광결정 구조체의 제조 방법.
본 발명의 색변환 광결정 구조체는 저굴절률층과 고굴절률층이 교대로 적층된 구조체로, 폴리머에 무기염을 더 포함하는 분산액을 사용하여 굴절률층을 제조하여, 저굴절률층과 고굴절률층 간에 굴절률 차이가 극대화된 광결정 구조체를 만들 수 있다.
또한 상기 색변환 광결정 구조체를 이용한 습도 센싱용 필름은 굴절률층에 무기염을 포함하므로, 습도에 더욱 민감하게 반응하여 반응성이 좋게 나타난다.
도 1은 본 발명의 일 실시예에 따른 광결정 구조체의 구조를 간략하게 나타낸 것이다.
도 2는 비교예 1에서 제조된 필름에 입김을 불었을 때의 반사도 변화를 나타낸 것이다.
도 3은 실시예 1에서 제조된 필름에 입김을 불었을 때의 반사도 변화를 나타낸 것이다.
도 4는 실시예 2에서 제조된 필름에 입김을 불었을 때의 반사도 변화를 나타낸 것이다.
도 5는 실시예 3에서 제조된 필름에 입김을 불었을 때의 반사도 변화를 나타낸 것이다.
도 6은 비교예 1 및 실시예 1 내지 3의 결과(도 2 내지 도 5)를 함께 나타낸 것이다.
도 7은 실시예 26에서 제조된 필름에 입김을 불었을 때의 반사도 변화를 나타낸 것이다.
이하 본 발명을 상세히 설명한다.
본 발명에서 사용하는 용어 '광결정(photonic crystal)'은 서로 다른 굴절률을 갖는 유전물질이 주기적으로 배열된 구조체로서, 각각의 규칙적인 격자점에서 산란되는 빛들 사이에 중첩적 간섭이 일어나 특정한 파장 영역대에서 빛을 투과시키지 않고 선택적으로 반사하는, 즉 광밴드갭을 형성하는 물질을 의미한다. 이러한 광결정은 정보 처리의 수단으로 전자 대신 광자를 이용하여 정보처리의 속도가 우수한 물질로서, 광자가 주축 방향으로 이동하는 1차원 구조, 평면을 따라 이동하는 2차원 구조, 또는 물질 전체를 통해 모든 방향으로 자유롭게 이동하는 3차원 구조로 구현될 수 있다. 또한, 광결정의 광밴드갭 조절을 통한 광학적 특성을 제어하여 광결정 섬유, 발광소자, 광기전소자, 색변환 필름, 반도체레이저 등 광학 소자에 응용될 수 있다.
또한, 본 발명에서 사용하는 용어 '광결정 구조체'는 굴절률이 상이한 물질을 반복적으로 교대 적층하여 제조된 1차원 광결정 구조를 갖는 브래그 스택(Bragg stack)으로, 적층된 구조의 굴절률의 주기적인 차이에 의해 특정한 파장 영역 대의 빛을 반사할 수 있고, 이러한 반사 파장은 외부 자극에 의해 시프트(Shift)되어 반사색이 변환되는 구조체를 의미한다. 구체적으로, 구조체 각각의 층의 경계에서 빛의 부분 반사가 일어나게 되고, 이러한 많은 반사파가 구조적으로 간섭하여 높은 강도를 갖는 특정 파장의 빛이 반사될 수 있다. 이때, 외부 자극에 의한 반사 파장의 시프트는, 층을 형성하는 물질의 격자 구조가 외부 자극에 의해 변화함에 따라 산란되는 빛의 파장이 변화되면서 일어나게 된다. 이러한 광결정 구조체는 굴절률 및 두께의 조절을 통하여 광학적 특성이 제어될 수 있고, 별도의 기재 또는 기판 상에 코팅된 코팅막 형태로, 혹은 프리 스탠딩 필름의 형태로 제조될 수 있다.
본 발명은 교대로 적층된, 제1 굴절률을 나타내는 제1 폴리머 및 무기염을 포함하는 제1 굴절률층; 및 제2 굴절률을 나타내는 제2 폴리머를 포함하는 제2 굴절률층;을 포함하며, 상기 제1 굴절률이 상기 제2 굴절률보다 낮은, 색변환 광결정 구조체에 관한 것이다.
상기 제1 폴리머는 제2 폴리머보다 더 친수성일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 제2 굴절률은 상기 무기염의 굴절률보다 높을 수 있다. 구체적으로, 제2 폴리머의 굴절률이 무기염의 굴절률보다 높을 수 있다.
전술한 바와 같이, 광결정 구조체는 굴절률이 상이한 물질을 반복적으로 교대 적층하여 제조된 1차원 광결정 구조를 갖는 것으로서, 예를 들면 도 1과 같이 제1 굴절률층과 제2 굴절률층이 번갈아가며 적층된 형태를 의미하는 것이다. 제1 굴절률층과 제2 굴절률층의 총 적층수는 예를 들어, 3 내지 30층일 수 있으나, 이에 제한되는 것은 아니다.
제1 굴절률과 제2 굴절률은 상이하며, 제1 굴절률층이 제2 굴절률보다 낮을 수 있다.
제1 굴절률층은 두께가 예를 들어, 5 내지 100nm이고, 제2 굴절률층은 두께가 예를 들어, 50 내지 150nm일 수 있으나, 이에 제한되는 것은 아니다.
굴절률은 각 굴절률층에 포함된 폴리머 및 무기염에 의해 결정될 수 있다.
본 발명의 색변환 광결정 구조체는 저굴절률층에 해당하는 제1 굴절률층이 제1 폴리머 및 무기염을 포함한다.
구체적으로, 본 발명에 따른 광결정 구조체는 다색의 백색광이 입사되면, 각각의 층 경계면에서 입사광의 부분 반사가 일어나게 되고, 이렇게 부분 반사된 빛들의 간섭에 의해 하나의 파장으로 집중된 반사 파장(λ)에 따른 색을 나타낸다. 상기 광결정 구조체의 반사 파장(λ)은 하기 식 1에 의해 결정될 수 있다:
[식 1]
λ= 2(n1*d1 + n2*d2)
상기 식에서, n1 및 n2는 각각 제1 굴절률층 및 제2 굴절률층의 굴절률을 의미하고, d1 및 d2는 각각 제1 굴절률층 및 제2 굴절률층의 두께를 의미한다. 따라서, 후술하는 제1 및 제2 폴리머의 종류, 제1 굴절률층및 제2 굴절률층의 두께 및 제1 굴절률층 및 제2 굴절률층의 총 적층 수를 조절하여 원하는 반사 파장(λ)을 구현할 수 있다.
이러한 광결정 구조체의 반사 파장은, 외부 자극에 의해 광결정 구조체 내에 포함된 상기 제1 폴리머 및/또는 제2 폴리머의 팽윤(swelling)에 의하여 구조체의 반사 파장이 시프트되게 된다. 상기 제1 폴리머 및/또는 제2 폴리머가 팽윤되면 각각의 굴절률층의 결정 격자 구조가 변하여 각각의 층 경계면에서 산란되는 빛의 형태가 변하기 때문이다. 즉, 시프트된 반사 파장(λ')에 의해 광결정 구조체는 변환된 색을 나타내게 되고, 이러한 광결정 구조체의 색변환에 의하여 외부자극의 존재 여부를 확인할 수 있다. 특히, 광결정 구조체의 반사 파장(λ)과 시프트된 반사 파장(λ')이 가시광선 영역인 380 nm 내지 760 nm 범위 이내인 경우, 광결정 구조체의 색변환은 육안으로 용이하게 확인 가능하다.
구체적으로, 상기 광결정 구조체의 색변환은 상기 외부 자극, 예를 들어 70% 이상의 상대 습도에 의해 제1 또는 제2 폴리머의 팽윤에 의해 상기 광결정 구조체의 반사 파장이 시프트되면서 나타나는 것일 수 있다.
본 발명에 따른 광결정 구조체가 70% 미만의 상대 습도에서는 색변환이 없거나 혹은 거의 나타나지 않는 이유는 적절한 친수성 때문이며, 이러한 친수성은 광결정 구조체의 모노머 조성을 변화시켜 구현 가능하다.
이하, 도 1을 참조하여 본 발명의 일 구현예에 따른 색변환 필름에 포함되는 광결정 구조체(10)의 개략적인 구조에 대하여 설명한다.
도 1을 참조하면, 본 발명의 일 구현예에 따른 광결정 구조체(10)는 교대로 적층된, 제1 굴절률층(11) 및 제2 굴절률층(12)을 포함한다.
이때, 제1 굴절률층(11)은 광결정 구조체의 최상부에 위치할 수 있다. 따라서, 제1 굴절률층(11)과 제2 굴절률층(12)이 교대로 적층된 적층체 상에 제1 굴절률층(11)이 추가로 적층되어, 상기 광결정 구조체는 홀수 개 층의 굴절률층을 가질 수 있다. 상기의 경우에, 상술한 바와 같이 각각의 층의 경계면에서 반사된 빛들 간의 보강 간섭이 증가하여, 광결정 구조체의 반사 파장의 강도가 증가할 수 있다.
제1 굴절률층(11)은 제1 굴절률(n1)을 나타내는 제1 폴리머를 포함하고, 상기 제2 굴절률층(12)은 제2 굴절률(n2)을 나타내는 제2 폴리머를 포함한다.
제1 굴절률(n1)과 제2 굴절률(n2)은 상이할 수 있다. 그 차이는 예를 들면 0.01 내지 0.5일 수 있다. 구체적으로, 그 차이는 0.05 내지 0.3, 보다 구체적으로 0.1 내지 0.2일 수 있다. 이러한 굴절률간의 차이가 클수록 광결정 구조체의 광 밴드갭이 커지므로, 상술한 범위 내에서 굴절률간의 차이를 조절하여 원하는 파장의 빛이 반사되도록 제어할 수 있고, 굴절률은 후술하는 폴리머의 종류를 변경하여 조절 가능하다.
상기 제1 굴절률(n1)은 1.3 내지 1.6이고, 상기 제2 굴절률(n2)은 1.51 내지 1.8일 수 있다. 다시 말하면, 상기 제1 굴절률층(11)이 저굴절률층이고, 상기 제2 굴절률층(12)이 고굴절률층에 해당되어, 상기 광결정 구조체(10)는 기판(11) 상에 저굴절률층/ 고굴절률층/ 저굴절률층/ 고굴절률층/ 저굴절률층이 순차적으로 적층된 구조를 가질 수 있다.
상술한 범위로 두께를 조절하여, 광결정 구조체의 반사 파장을 조절할 수 있다. 각 굴절률층의 두께는 폴리머 분산액 조성물 내 폴리머의 농도 또는 분산액 조성물의 코팅 속도를 달리하여 조절 가능하다.
또한, 도 1에서는 총 5층으로 구성된 하나의 광결정 구조체(10)만을 도시하나, 상기 광결정 구조체의 총 적층수가 이에 한정되는 것은 아니며, 상기 위조 방지용 색변환 필름은 이러한 광결정 구조체를 복수 개로 포함한다.
구체적으로, 상기 제1 굴절률층과 상기 제2 굴절률층의 총 적층수는 5 내지 30 층일 수 있다. 상술한 범위로 적층된 구조체일 경우에, 각각의 층 경계면에서 반사된 빛들의 간섭이 충분히 일어나 외부 자극에 따른 색의 변화가 감지될 정도의 반사 강도를 가질 수 있다. 또한, 복수 개의 광결정 구조체는 각각 상이한 상기 제1 굴절률층과 상기 제2 굴절률층의 총 적층수를 가질 수 있다.
색변환 광결정 구조체의 제1 굴절률층
본 발명에 따른 색변환 광결정 구조체 내에 포함된 제1 굴절률층 및 제2 굴절률층 중에서 상대적으로 굴절률이 낮은 제1 굴절률층(저굴절률층)에 포함된 제1 폴리머는 다양한 모노머 유래 구조 단위를 포함할 수 있다. 예를 들면 (메타)아크릴레이트계 화합물, (메타)아크릴아미드계 화합물, 비닐기 함유 방향족 화합물, 디카르복시산, 자일릴렌(xylylene), 알킬렌옥사이드, 아릴렌옥사이드, 및 이들의 유도체. 이들은 단독 또는 2 종 이상 혼합하여 적용될 수 있다. 예를 들어, 제1 폴리머는 다음의 모노머로부터 유도된 반복단위를 1 종 또는 2 종 이상 포함할 수 있다: 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, 이소부틸 (메타)아크릴레이트, 1-페닐에틸 (메타)아크릴레이트, 2-페닐에틸 (메타)아크릴레이트, 1,2-디페닐에틸 (메타)아크릴레이트, 페닐 (메타)아크릴레이트, 벤질 (메타)아크릴레이트, m-니트로벤질 (메타)아크릴레이트, β-나프틸 (메타)아크릴레이트, 벤조일페닐 (메타)아크릴레이트 등의 (메타)아크릴레이트계 모노머; 메틸 (메타)아크릴아미드, 에틸 (메타) 아크릴아미드, 이소부틸 (메타)아크릴아미드, 1-페닐에틸 (메타) 아크릴아미드, 2-페닐에틸(메타) 아크릴아미드, 페닐 (메타)아크릴아미드, 벤질 (메타)아크릴아미드, 벤조일페닐 (메타)아크릴아미드 등의 (메타)아크릴아미드계 모노머; 스티렌, o-메틸스티렌, m-메틸스티렌, p-메틸스티렌, p-메톡시스티렌, o-메톡시스티렌, 4-메톡시-2-메틸스티렌 등의 스티렌계 모노머; p-디비닐벤젠, 2-비닐나프탈렌, 비닐카바졸, 비닐플루오렌 등의 방향족계 모노머; 테레프탈산, 이소프탈산, 2,6-나프탈렌 디카르복시산, 2,7-나프탈렌 디카르복시산, 1,4-나프탈렌 디카르복시산, 1,4-페닐렌 디옥시페닐렌산, 1,3-페닐렌 디옥시디아세트산 등의 디카르복시산 모노머; o-자일릴렌, m-자일릴렌, p-자일릴렌 등의 자일릴렌계 모노머; 에틸렌 옥사이드, 프로필렌 옥사이드 등의 알킬렌 옥사이드계 모노머; 페닐렌 옥사이드, 2,6-디메틸-1,4-페닐렌 옥사이드 등의 페닐렌 옥사이드계 모노머 등을 사용할 수 있고, 이 중 높은 친수성, 낮은 굴절률을 갖는 것이 바람직하다.
구체적으로, 제1 폴리머는 하기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머일 수 있다:
[화학식 1]
Figure PCTKR2022001852-appb-img-000039
(식 중, R1 및 R2는 각각 독립적으로 수소 또는 C1-3 알킬이고,
R3은 하기 화학식 2 또는 3으로 표시되는 것이고,
R4는 O 또는 NH이고,
R5는 벤조일페닐이고,
상기 벤조일페닐은 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
n 및 m은 각각 독립적으로 1 이상의 정수이고,
n+m은 100 내지 2,000임.)
[화학식 2]
Figure PCTKR2022001852-appb-img-000040
(식 중, R6는 O, NH 또는
Figure PCTKR2022001852-appb-img-000041
이고,
R7은 H, OH, C1~10 알킬, C1~10 아미노알킬, C1~10 알콕시 또는
Figure PCTKR2022001852-appb-img-000042
이고,
l은 1 내지 20의 정수이고, o는 1 내지 10의 정수임.)
[화학식 3]
Figure PCTKR2022001852-appb-img-000043
(식 중, p는 1 내지 4의 정수임).
화학식 1로 표시되는 코폴리머를 포함하면 굴절률이 낮고, 열적 안정성, 내화학성, 산화 안정성 등 화학적 성질이 우수하며, 투명성이 뛰어나다.
본 발명에 따른 화학식 1로 표시되는 반복단위를 포함하는 코폴리머는, 화학식 2 또는 3의 아크릴레이트 또는 아크릴아미드계 모노머 및 광활성 관능기(R5)를 갖는 아크릴레이트 또는 아크릴아미드계 모노머를 랜덤하게 공중합하여 제조된, 상기 화학식 1의 대괄호 사이의 반복 단위들이 서로 랜덤하게 배열되어 있는 랜덤 코폴리머일 수 있다.
본 발명에 따른 화학식 1로 표시되는 반복단위를 포함하는 코폴리머는, 상기 화학식 1의 대괄호 사이의 반복단위들의 블록이 공유 결합에 의해 연결되어 있는 블록 코폴리머일 수 있다. 또한, 상기 화학식 1의 대괄호 사이의 반복단위들이 교차되어 배열되어 있는 교호 코폴리머이거나, 혹은 어느 하나의 반복단위가 가지 형태로 결합되어 있는 그라프트 코폴리머일 수 있으나, 상기 반복단위들의 배열 형태가 한정되지는 않는다.
본 발명에 따른 화학식 1로 표시되는 코폴리머는 예를 들면 1.3 내지 1.6의 굴절률을 나타낼 수 있다. 상술한 범위일 때, 후술하는 제2 굴절률층(고굴절률층)에 사용된 폴리머와의 굴절률 차이에 의해 원하는 파장의 빛을 반사하는 광결정 구조체가 구현될 수 있다.
화학식 1에서, R1 및 R2는 각각 독립적으로 수소 또는 메틸일 수 있다. 예를 들어, R1 및 R2는 수소일 수 있다.
화학식 1에서, R5는 비치환되거나, 또는 C1-3 알킬로 치환된 벤조일페닐일 수 있다. R5가 벤조일페닐인 경우, 광경화의 용이성 측면에서 유리할 수 있다.
화학식 1에서, n은 상기 코폴리머 내 플루오로알킬 아크릴아미드계 모노머로부터 유도된 반복단위의 총 개수를 의미하고, m은 상기 코폴리머 내 광활성 관능기(R5)를 갖는 아크릴레이트 또는 아크릴아미드계 모노머로부터 유도된 반복단위의 총 개수를 의미한다.
이때, 상기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머는 n:m의 몰비가 100:1 내지 100:50일 수 있고, 수 평균 분자량이 10,000 내지 100,000 g/mol일 수 있다. 예를 들어, 상기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머는 n:m의 몰비가 100:1 내지 100:40, 구체적으로 100:20 내지 100:35일 수 있다. 또한 예를 들어, 상기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머는 수 평균 분자량이 10,000 내지 80,000 g/mol 일 수 있다. 상기 범위에서, 굴절률이 낮으면서도 광경화가 용이한 코폴리머의 제조가 가능하다.
구체적으로, 상기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머는, 하기 화학식 1-1 내지 1-10으로 표시되는 반복단위를 포함하는 코폴리머 중 하나일 수 있다:
[화학식 1-1]
Figure PCTKR2022001852-appb-img-000044
[화학식 1-2]
Figure PCTKR2022001852-appb-img-000045
[화학식 1-3]
Figure PCTKR2022001852-appb-img-000046
[화학식 1-4]
Figure PCTKR2022001852-appb-img-000047
[화학식 1-5]
Figure PCTKR2022001852-appb-img-000048
[화학식 1-6]
Figure PCTKR2022001852-appb-img-000049
[화학식 1-7]
Figure PCTKR2022001852-appb-img-000050
[화학식 1-8]
Figure PCTKR2022001852-appb-img-000051
[화학식 1-9]
Figure PCTKR2022001852-appb-img-000052
[화학식 1-10]
Figure PCTKR2022001852-appb-img-000053
(식 중, n, m 및 l은 전술한 바와 같음).
색변환 광결정 구조체의 제2 굴절률층
본 발명에 따른 색변환 광결정 구조체 내에 포함된 제1 굴절률층 및 제2 굴절률층 중에서 상대적으로 굴절률이 높은 제2 굴절률층(고굴절률층)에 포함된 제2 폴리머는 다양한 모노머 유래 반복단위를 포함할 수 있다. 예를 들면 (메타)아크릴레이트계 화합물, (메타)아크릴아미드계 화합물, 비닐기 함유 방향족 화합물, 디카르복시산, 자일릴렌(xylylene), 알킬렌옥사이드, 아릴렌옥사이드, 및 이들의 유도체. 이들은 단독 또는 2 종 이상 혼합하여 적용될 수 있다. 예를 들어, 제2 폴리머는 다음의 모노머로부터 유도된 반복단위를 1 종 또는 2 종 이상 포함할 수 있다: 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, 이소부틸 (메타)아크릴레이트, 1-페닐에틸 (메타)아크릴레이트, 2-페닐에틸 (메타)아크릴레이트, 1,2-디페닐에틸 (메타)아크릴레이트, 페닐 (메타)아크릴레이트, 벤질 (메타)아크릴레이트, m-니트로벤질 (메타)아크릴레이트, β-나프틸 (메타)아크릴레이트, 벤조일페닐 (메타)아크릴레이트 등의 (메타)아크릴레이트계 모노머; 메틸 (메타)아크릴아미드, 에틸 (메타) 아크릴아미드, 이소부틸 (메타)아크릴아미드, 1-페닐에틸 (메타) 아크릴아미드, 2-페닐에틸(메타) 아크릴아미드, 페닐 (메타)아크릴아미드, 벤질 (메타)아크릴아미드, 벤조일페닐 (메타)아크릴아미드 등의 (메타)아크릴아미드계 모노머; 스티렌, o-메틸스티렌, m-메틸스티렌, p-메틸스티렌, p-메톡시스티렌, o-메톡시스티렌, 4-메톡시-2-메틸스티렌 등의 스티렌계 모노머; p-디비닐벤젠, 2-비닐나프탈렌, 비닐카바졸, 비닐플루오렌 등의 방향족계 모노머; 테레프탈산, 이소프탈산, 2,6-나프탈렌 디카르복시산, 2,7-나프탈렌 디카르복시산, 1,4-나프탈렌 디카르복시산, 1,4-페닐렌 디옥시페닐렌산, 1,3-페닐렌 디옥시디아세트산 등의 디카르복시산 모노머; o-자일릴렌, m-자일릴렌, p-자일릴렌 등의 자일릴렌계 모노머; 에틸렌 옥사이드, 프로필렌 옥사이드 등의 알킬렌 옥사이드계 모노머; 페닐렌 옥사이드, 2,6-디메틸-1,4-페닐렌 옥사이드 등의 페닐렌 옥사이드계 모노머. 이 중, 바람직한 굴절률 차이 구현 및 광경화의 용이성 측면에서 스티렌계 모노머로부터 유도된 반복 단위 및 (메타)아크릴레이트 및 (메타)아크릴아미드 중 하나로부터 유도된 반복단위를 가질 수 있다.
구체적으로, 상기 제2 굴절률층에 사용되는 제2 폴리머는 하기 화학식 4 또는 5로 표시되는 반복단위를 포함하는 코폴리머일 수 있다:
[화학식 4]
Figure PCTKR2022001852-appb-img-000054
[화학식 5]
Figure PCTKR2022001852-appb-img-000055
(식 중, R3 내지 R6은 각각 독립적으로, 수소 또는 C1-3 알킬이고,
A1 및 A2는 각각 독립적으로, C6-20 방향족 고리 또는 C2-20 헤테로방향족 고리이고,
R11 내지 R13은 각각 독립적으로, 하이드록시, 시아노, 니트로, 아미노, 할로겐, SO3H, SO3(C1-5알킬), C1-10 알킬 또는 C1-10 알콕시이거나, 서로 연결되어 C4-12의 방향족 고리를 형성할 수 있고,
a1 내지 a3는 각각 독립적으로, 0 내지 5의 정수이고,
L2 및 L3는 각각 독립적으로, O 또는 NH이고,
Y2 및 Y3는 각각 독립적으로, 벤조일페닐이고,
Y2 및 Y3는 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
n' 및 m'는 각각 독립적으로 1 이상의 정수이고,
n'+ m'는 100 내지 2,000이며,
n" 및 m"는 각각 독립적으로 1 이상의 정수이고,
n"+ m"는 100 내지 2,000임).
화학식 4로 표시되는 반복단위를 포함하는 코폴리머는, 스티렌계 모노머로부터 유도된 반복단위 및 광활성 관능기(Y2)를 갖는 아크릴레이트(L2 = O) 또는 아크릴아미드(L2 = NH)계 모노머부터 유도된 반복 단위를 동시에 포함하는 고분자를 의미할 수 있다. 또한, 상기 화학식 4로 표시되는 코폴리머는, 카바졸계 모노머로부터 유도된 반복 단위 및 광활성 관능기(Y3)를 갖는 아크릴레이트(L3 = O) 또는 아크릴아미드(L3 = NH)계 모노머부터 유도된 반복단위를 동시에 포함하는 고분자를 의미할 수 있다.
화학식 4 또는 5로 표시되는 반복단위를 포함하는 코폴리머가 각각 스티렌계 모노머로부터 유도되는 반복단위 및 카바졸계 모노머로부터 유도된 반복단위를 포함하는 경우, 굴절률이 높아 고굴절률층의 구현이 가능하다.
더욱이, 상기 화학식 4 또는 5로 표시되는 반복단위를 포함하는 코폴리머는 광활성 관능기(Y2 및 Y3)를 갖는 아크릴레이트 또는 아크릴아미드계 모노머부터 유도된 반복단위를 추가로 포함하여, 별도의 광개시제 혹은 가교제 없이도 자체적으로 광경화가 가능할 수 있다.
이러한 상기 화학식 4로 표시되는 반복단위를 포함하는 코폴리머는, 스티렌계 모노머 및 광활성 관능기(Y2)를 갖는 아크릴레이트 또는 아크릴아미드계 모노머를 랜덤하게 공중합하여 제조된, 상기 화학식 4의 대괄호 사이의 반복단위들이 서로 랜덤하게 배열되어 있는 랜덤 코폴리머일 수 있다.
다르게는, 상기 화학식 4로 표시되는 반복단위를 포함하는 코폴리머는, 상기 화학식 4의 대괄호 사이의 반복단위들의 블록이 공유 결합에 의해 연결되어 있는 블록 코폴리머일 수 있다. 또한 다르게는, 상기 화학식 4의 대괄호 사이의 반복단위들이 교차되어 배열되어 있는 교호 코폴리머이거나, 혹은 어느 하나의 반복단위가 가지 형태로 결합되어 있는 그라프트 코폴리머일 수 있으나, 상기 반복단위들의 배열 형태가 한정되지는 않는다.
다르게는, 상기 화학식 5로 표시되는 반복단위를 포함하는 코폴리머는, 상기 화학식 5의 대괄호 사이의 반복단위들의 블록이 공유 결합에 의해 연결되어 있는 블록 코폴리머일 수 있다. 또한 다르게는, 상기 화학식 5의 대괄호 사이의 반복단위들이 교차되어 배열되어 있는 교호 코폴리머이거나, 혹은 어느 하나의 반복단위가 가지형태로 결합되어 있는 그라프트 코폴리머일 수 있으나, 상기 반복단위들의 배열형태가 한정되지는 않는다.
이러한 상기 화학식 4 또는 5로 표시되는 반복단위를 포함하는 코폴리머는 1.51 내지 1.8의 굴절률을 나타낼 수 있다. 상술한 범위일 때, 상기 화학식 1로 표시되는 반복단위를 포함하는 폴리머와의 굴절률 차이에 의해 원하는 파장의 빛을 반사하는 색변환 광결정 구조체가 구현될 수 있다.
화학식 4 또는 5에서, R3 내지 R6은 각각 독립적으로 수소 또는 메틸일 수 있다. 예를 들어, R3 내지 R6은 수소일 수 있다.
화학식 5에서, A1 및 A2는 각각 독립적으로, 벤젠 고리 또는 나프탈렌 고리일 수 있다. 예를 들어, A1 및 A2는 각각 독립적으로, 벤젠 고리일 수 있다.
화학식 4 또는 5에서, R11 내지 R13은 각각 독립적으로, 수소, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, sec-부틸, 또는 tert-부틸일 수 있다. 이때, a1은, R11의 개수를 의미하는 것으로 0, 1 또는 2일 수 있으며, a1이 2 이상인 경우 2 이상의 R11은 서로 동일하거나 상이할 수 있다. a2 및 a3 또한 a1에 대한 설명 및 화학식 4 및 5의 구조를 참조하여 이해될 수 있으며, 0, 1, 또는 2일 수 있다.
화학식 4 또는 5에서, Y2 및 Y3는 각각 독립적으로, 비치환되거나, 또는 C1-3 알킬로 치환된 벤조일페닐일 수 있다. Y2 및 Y3가 벤조일페닐인 경우, 광경화의 용이성 측면에서 유리하다.
화학식 4에서, n'는 상기 코폴리머 내 스티렌계 모노머로부터 유도된 반복 단위의 총 개수를 의미하고, m'는 상기 코폴리머 내 광활성 관능기를 갖는 아크릴레이트 또는 아크릴아미드계 모노머로부터 유도된 반복 단위의 총 개수를 의미한다.
본 발명에 따른 화학식 4로 표시되는 반복단위를 포함하는 코폴리머는 n':m'의 몰비가 100:1 내지 100:50, 예를 들어, 100:30 내지 100:50일 수 있다. 또한, 상기 화학식 4로 표시되는 반복단위를 포함하는 코폴리머는 수 평균 분자량(Mn)이 10,000 내지 100,000 g/mol, 예를 들어, 10,000 내지 50,000 g/mol일 수 있다. 상기 범위에서, 상기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머와 상술한 범위의 굴절률 차이를 가지면서도 광경화가 용이한 코폴리머의 제조가 가능하다.
구체적으로, 본 발명에 따른 화학식 4로 표시되는 반복단위를 포함하는 코폴리머는, 하기 화학식 4-1로 표시되는 반복단위를 포함하는 코폴리머일 수 있다:
[화학식 4-1]
Figure PCTKR2022001852-appb-img-000056
(식 중, n' 및 m'의 정의는 앞서 정의한 바와 같음).
상기 화학식 5에서, n”는 상기 코폴리머 내 카바졸계 모노머로부터 유도된 반복 단위의 총 개수를 의미하고, m”는 상기 코폴리머 내 광활성 관능기를 갖는 아크릴레이트 또는 아크릴아미드계 모노머로부터 유도된 반복 단위의 총 개수를 의미한다.
본 발명에 따른 화학식 5로 표시되는 반복단위를 포함하는 코폴리머는 n":m"의 몰비가 100:1 내지 100: 50, 예를 들어, 100: 1 내지 100: 40일 수 있다. 또한, 상기 화학식 5로 표시되는 반복단위를 포함하는 코폴리머는 수평균 분자량(Mn)이 10,000 내지 500,000 g/mol, 예를 들어, 10,000 내지 350,000 g/mol일 수 있다. 상기 범위에서, 상기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머와 상술한 범위의 굴절률 차이를 가지면서도 광경화가 용이한 코폴리머의 제조가 가능하다.
구체적으로, 상기 화학식 5로 표시되는 반복단위를 포함하는 코폴리머는, 하기 화학식 5-1 또는 5-2로 표시되는 반복단위를 포함하는 코폴리머일 수 있다:
[화학식 5-1]
Figure PCTKR2022001852-appb-img-000057
[화학식 5-2]
Figure PCTKR2022001852-appb-img-000058
(식 중, n” 및 m”의 정의는 앞서 정의한 바와 같음).
본 발명에 따른 무기염은 제1 굴절률층에 포함되어 색변환 광결정 구조체의 외부 자극에 대한 검출 한계를 낮추고, 반응 감도를 개선하며, 반응 유지시간을 증가시킬 수 있다.
외부 자극은 예를 들면 습도일 수 있다.
무기염은 그 종류는 제한되지 않으나, 굴절률이 낮은 것이 큰 광 밴드갭의 측면에서 바람직하다. 예를 들면 리튬, 마그네슘, 칼슘, 아연, 알루미늄 등의 염화물, 브롬화물, 요오드화물 등의 할로겐화물, 구체적으로 LiCl, NaCl, KCl, AlCl3, MgCl2, CaCl2, LiTFSi, LiBr, NaBr, KBr, AlBr3, MgBr2, CaBr2, LiI, NaI, KI, AlI3, MgI2 및 CaI2 로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다. 무기염은 상기 예시된 범위 내에서 굴절률, 그리고 굴절률층 형성시의 분산 정도 등을 고려하여 적절히 선택될 수 있다. 예를 들어, LiCl의 굴절률은 1.662, NaCl의 굴절률은 1.5442, KCl의 굴절률은 1.4904, CaCl2의 굴절률은 1.442이다. 무기염의 굴절률은 제2 굴절률층의 굴절률보다 낮을 수 있다.
제1 굴절률층은 상기 제1 폴리머 및 무기염을 포함하는 분산액을 코팅/건조하여 형성된 것일 수 있다.
분산액의 분산매는 제1 폴리머 및 무기염을 분산시킬 수 있는 것이라면 어느 것이든 사용 가능하며, 예를 들면 에탄올, 프로판올, 부탄올, 클로로벤젠 등일 수 있으나, 이에 제한되는 것은 아니다.
상기 제1 폴리머, 무기염에 대한 설명은 전술한 바와 같다.
제2 굴절률층은 제2 폴리머를 포함하는 분산액을 제1 굴절률층 상에 코팅/건조하여 형성된 것일 수 있다.
분산액의 분산매는 제2 폴리머를 분산시킬 수 있는 것이라면 어느 것이든 사용 가능하며, 예를 들면 에탄올, 프로판올, 부탄올, 클로로벤젠 등일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명은 전술한 광결정 구조체를 포함하는 습도 센싱용 색변환 필름에 관한 것이다.
상기 광결정 구조체는 습도의 변화에 따라 반사 파장이 시프트되어 색변환이 나타날 수 있는 것으로, 이는 제1 또는 제2 굴절률층이 수분을 흡수하여 굴절률이 변화하고, 굴절률층의 두께가 증가하여 나타날 수 있다.
본 발명의 습도 센싱용 색변환 필름에서 제1 굴절률층이 수분을 흡수하는 센싱층일 수 있다. 이는 제1 폴리머로 제2 폴리머보다 높은 친수성을 갖는 폴리머를 사용함에 의한 것일 수 있다. 그러한 경우를 구체적으로 설명하자면, 광결정 구조체가 수분과 접촉하는 경우, 예를 들어, 광결정 구조체가 수분이 포함된 공기에 노출되거나 혹은 액체인 물에 함침되는 경우, 제1 폴리머 및 무기염을 포함하는 제1 굴절률층은 수분을 흡수하여 팽윤되고, 이에 따라 두께가 변하게 된다. 이에 의해 광결정 구조체의 반사 파장이 시프트될 수 있다. 이때, 시프트된 반사 파장(λ')은 380 nm 내지 760 nm 범위 내여서 육안으로 색변화를 관찰할 수 있다. 상기 반사 파장(λ) 및 시프트된 반사 파장(λ')은 반사계(Reflectometer)와 같은 장치로 측정 가능하다.
또한, 상기 광결정 구조체는 습도가 높을수록, 즉 수분 함량이 높을수록, 장파장으로 반사 파장이 시프트될 수 있다. 따라서, 상기 광결정 구조체의 시프트된 반사 파장(λ')은 외부 자극이 없는 경우의 반사 파장(λ)에 비해 큰 값을 가질 수 있다. 따라서, 이를 포함하는 색변환 필름은 고습도에 의해 자극되는 경우에 외부 자극이 없는 경우에 비해 색 변환을 나타낸다.본 발명의 습도 센싱용 색변환 필름은 상술한 광결정 구조체를 한 개 또는 복수 개 포함할 수 있다. 예를 들어, 상기 습도 센싱용 색변환 필름은 전술한 광결정 구조체를 2개 이상, 또는 2개 내지 100개 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 광결정 구조체를 이용하여 필름을 제조하는 일반적인 필름 제조 방법이라면 모두 가능한 것이고, 방법에 제한되는 것은 아니다.
복수 개의 광결정 구조체는 각각 독립적으로, 상술한 제1 및 제2 폴리머의 종류, 무기염의 종류, 제1 굴절률층 및 제2 굴절률층의 두께 및/또는 제1 굴절률층 및 제2 굴절률층의 총 적층 수가 동일하거나 또는 상이할 수 있다.
상기 습도 센싱용 색변환 필름은 수분과 접촉 시 광결정 구조체 내 코폴리머의 종류에 따라 상이하게 색이 변환되므로, 변환된 색을 관찰하여 습도의 확인이 가능하다. 또한, 습도 센싱용 색변환 필름은 외부 자극과의 접촉이 중단되는 경우 빠르게 원래의 상태로 회복될 수 있어, 반복적으로 재사용이 가능하다.
또한 본 발명은 상기 색변환 필름을 포함하는 색변환 센서에 관한 것이다.
본 발명의 색변환 센서는 습도 센서일 수 있다.
본 발명의 습도 센서는 습도에 대한 감도가 우수하고, 검출 한계가 낮아 낮은 습도에 대해서도 우수한 반응성을 나타낼 수 있다. 또한, 반응 지속 시간이 길어 시인성이 우수하다.
또한, 본 발명은 제1 폴리머 및 무기염을 포함하는 제1 분산액을 도포하는 단계를 포함하는 제1 굴절률층을 형성하는 단계; 및 상기 제1 굴절률층 상에 제2 폴리머를 포함하는 제2 분산액을 도포하는 단계를 포함하는 제2 굴절률층을 형성하는 단계;를 포함하며, 상기 제1 굴절률이 상기 제2 굴절률보다 낮은, 색변환 광결정 구조체의 제조 방법에 관한 것이다.
먼저, 제1 폴리머 및 무기염을 포함하는 제1 분산액을 도포하는 단계를 포함하여 제1 굴절률층을 형성한다.
상기 제1 폴리머, 무기염 및 제1 굴절률층에 대한 설명은 전술한 바와 같다.
제1 분산액은 제1 폴리머 및 무기염을 포함하는 것으로서, 제1 분산액에 사용되는 분산매는 제1 폴리머 및 무기염을 분산시킬 수 있는 것이라면 어느 것이든 사용 가능하며, 예를 들면 에탄올, 프로판올, 부탄올 등일 수 있으나, 이에 제한되는 것은 아니다.
제1 분산액에 포함되는 제1 폴리머와 무기염의 함량은 특별히 제한되지 않는다. 예를 들면 제1 폴리머는 제1 분산액 총 중량 중 0.01 내지 5 중량%, 0.01 내지 4 중량%, 0.1 내지 5 중량%, 0.1 내지 4 중량%, 0.1 내지 3.5 중량%, 0.1 내지 3 중량%, 0.5 내지 5 중량%, 0.5 내지 4 중량%, 0.5 내지 3 중량%로 포함될 수 있다. 예를 들면 무기염은 1 내지 4 중량%, 1 내지 3 중량%, 1 내지 2.5 중량%, 1.5 내지 4 중량%, 1.5 내지 3 중량%, 1.5 내지 2.5 중량%, 2 내지 2.5 중량%로 포함될 수 있다.
제1 폴리머와 무기염의 함량비는 특별히 한정되지 않으며, 예를 들면 1: 0.001 내지 5, 1: 0.01 내지 5, 1: 0.01 내지 4, 1: 0.01 내지 3, 1: 0.1 내지 5, 1: 0.1 내지 4, 1: 0.1 내지 3일 수 있으나, 이에 제한되는 것은 아니다.
제1 분산액은 예를 들면 기판 상 또는 제2 굴절률층 상에 도포될 수 있다.
제1 분산액을 기판 또는 굴절률층 상에 도포하는 방법으로는 스핀코팅(spin coating), 딥코팅(dip coating), 롤코팅(roll coating), 스크린 코팅(screen coating), 분무코팅(spray coating), 스핀 캐스팅(spin casting), 흐름코팅(flow coating), 스크린 인쇄(screen printing), 잉크젯(ink jet) 또는 드롭 캐스팅(drop casting) 등을 예로 들 수 있으나, 이에 제한되는 것은 아니다.
분산액을 도포한 후에는 당분야에 공지된 방법으로 분산액을 건조/경화하여 제1 굴절률층을 형성할 수 있다.
다음으로, 제1 굴절률층 상에 제2 폴리머를 포함하는 제2 분산액을 도포하는 단계를 포함하는 제2 굴절률층을 형성한다.
상기 제2 폴리머에 대한 설명은 전술한 바와 같다.
제2 분산액은 제2 폴리머를 포함하는 것으로서, 제2 분산액에 사용되는 분산매는 제2 폴리머를 분산시킬 수 있는 것이라면 어느 것이든 사용 가능하며, 예를 들면 에탄올, 프로판올, 부탄올 등일 수 있으나, 이에 제한되는 것은 아니다.
제2 분산액에 포함되는 제2 폴리머의 함량은 특별히 제한되지 않는다. 예를 들면 제2 폴리머는 제2 분산액 총 중량 중 0.01 내지 5 중량%, 0.01 내지 4 중량%, 0.1 내지 5 중량%, 0.1 내지 4 중량%, 0.1 내지 3.5 중량%, 0.1 내지 3 중량%, 0.5 내지 5 중량%, 0.5 내지 4 중량%, 0.5 내지 3 중량%으로 포함될 수 있다.
제2 분산액의 도포 방법으로는 앞서 예시한 방법을 사용할 수 있으나, 이에 제한되는 것은 아니다.
필요에 따라, 경화시에 UV 경화가 수행될 수 있으나, 이에 제한되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
사용 물질
이하 제조예에서 하기의 물질을 사용하였다. 이때, 각 물질들을 별도의 정제 공정 없이 사용하였다.
- 4-아미노벤조페논: 순도 98%의 TCI(Tokyo chemical industry) 사 제품을 사용하였다.
- 트리에틸아민: 순도 99%의 TCI(Tokyo chemical industry) 사 제품을 사용하였다.
- 디클로로메탄: 순도 99.9%의 Burdick&jackson 사 제품을 사용하였다.
- 아크릴로일 클로라이드: 순도 96%의 Merck 사 제품을 사용하였다.
- 테트라하이드로퓨란: 순도 99.99%의 Burdick&jackson 사 제품을 사용하였다.
- p-메틸스티렌: 순도 96%의 Sigma-aldrich 사 제품을 사용하였다.
- 아조비스이소부티로니트릴: 순도 98%의 JUNSEI 사 제품을 사용하였다.
- N-이소프로필 아크릴아미드: 순도 98%의 TCI(Tokyo chemical industry) 사 제품을 사용하였다.
- N-아이소프로필아크릴아마이드: 순도 98%의 TCI(Tokyo chemical industry) 사 제품을 사용하였다.
- 아크릴릭 엑시드: 순도 99% Sigma-aldrich 사 제품을 사용하였다.
- 폴리에틸렌 글라이콜 메스아크릴레이트: 평균 분자량 Mn 500, Sigma-aldrich 사 제품을 사용하였다.
-2-바이닐 나프탈렌: 순도 95% Sigma-aldrich 사 제품을 사용하였다.
모노머 및 코폴리머
이하의 제조예에서 제조한, 모노머 및 코폴리머의 명칭 및 표기는 하기 표 1과 같다.
구분 명칭 표기
제조예 A N-(4-benzoylphenyl)acrylamide BPAA
제조예 B 4-benzoylphenyl acrylate BPA
제조예 1 poly(Vinylpyrrolidone)-co-poly(N-(benzoylphenyl)acrylamide) Poly(VP-BPAA)
제조예 2 poly(Acrylic acid)-co- poly(N-(benzoylphenyl)acrylamide) Poly(AA-BPAA)
제조예 3 poly(9-vinylcarbazole)-co- 4-benzoylphenylacrylate Poly(VC-BPA)
제조예 4 Poly(acrylic acid-co-benzophenone acrylate) Poly(AA-BPA)
제조예 5 Poly(poly(ethylene glycol) methacrylate-co-benzophenone acrylate)) Poly(PEGMA-BPA)
제조예 6 Poly(2-vinyl naphthalene-co-benzophenone acrylate) Poly(2VN-BPA)
제조예
모노머 합성
제조예 A: BPAA의 제조
9.86 g의 4-aminobenzophenone, 15 mL의 triethylamine, 80 mL의 dichloromethane을 250 mL 라운드 플라스크에 넣은 후 플라스크를 얼음물에 두었다. 4.06 mL의 Acryloyl chloride 넣은 후 12 시간 교반하였다. 상기 반응 종료 후 용매를 제거한 후, 진공 오븐에 건조시켜, 노란색 고체의 N-(4-benzoylphenyl)acrylamide를 얻었다.
제조예 B: BPA의 제조
10 g의 4-hydroxybenzophenone, 20 mL의 triethylamine, 120 mL의 dichloromethane을 250 mL 라운드 플라스크에 넣은 후 플라스크를 얼음물에 두었다. 4.92 mL의 Acryloyl chloride를 넣은 후 12 시간 교반하였다. 상기 반응 종료 후 매를 제거한 후, 진공 오븐에 건조시켜, 노란색 고체의 N-(4-benzoylphenyl)acrylate를 얻었다.
코폴리머 합성
제조예 1: Poly(VP-BPAA)
25 mL의 Vinyl pyrrolidone, 5 g의 N-(4-benzoylphenyl)acrylamide, 0.1 g의 AIBN, 15 mL의 1,4-dioxane을 50 mL의 schlenk flask에 넣은 후, magnetic bar로 모두 혼합되도록 교반하였다. 50℃ oil bath에 4시간 교반하였다. 상기 반응 종료 후, 고분자를 추출하여 진공 오븐에 건조시킨 Poly(VP-BPAA) (n: m = 92: 8)를 얻었다.
제조예 2: Poly(AA-BPAA)의 제조
25 mL의 Acrylic acid, 5 g의 N-(4-benzoylphenyl)acrylamide, 0.1 g의 AIBN, 25 mL의 1,4-dioxane을 50 mL의 schlenk flask에 넣은 후, magnetic bar로 모두 혼합되도록 교반하였다. 50℃ oil bath에 3시간 교반하였다. 상기 반응 종료 후 고분자를 추출하여 진공 오븐에 건조시켜 Poly(AA-BPAA) (n: m =95:5)를 얻었다.
제조예 3: Poly(VC-BPA)의 제조
Figure PCTKR2022001852-appb-img-000059
3 g의 9-vinyl carbazole, 1 g의 제조예 B에서 제조한 BPA, 0.1 g의 Azobisisobutyronitrile을 25 ml의 라운드 플라스크에 넣어준 다음 교반하였다. 15시간 반응을 진행하였다. 상기 반응 종료 후 필터하여 고분자를 추출한 후 상온 진공오븐에 건조시켜, Poly(VC-BPA) (n": m" =90: 10 )를 얻었다.
제조예 4: Poly(AA-BPA)의 제조
Figure PCTKR2022001852-appb-img-000060
25 mL의 Acrylic acid, 5 g의 N-(4-benzoylphenyl)acrylate, 0.1 g의 AIBN, 25 mL의 1,4-dioxane을 50 mL의 schlenk flask에 넣은 후, magnetic bar로 모두 혼합되도록 교반하였다. 70℃ oil bath에 8시간 교반하였다. 상기 반응 종료 후 고분자를 추출하여 진공 오븐에 건조시켜 Poly(AA-BPA) (n: m =98:2)를 얻었다.
제조예 5: Poly(PEGMA-BPA)의 제조
2.78mL의 poly(ethylene glycol) methacrylate, 0.031g의 N-(4-benzoylphenyl)acrylate, 0.002 g의 AIBN, 25 mL의 DMF을 9 mL의 schlenk flask에 넣은 후, magnetic bar로 모두 혼합되도록 교반하였다. 70℃ oil bath에 8시간 교반하였다. 상기 반응 종료 후 고분자를 추출하여 진공 오븐에 건조시켜 Poly(PEGMA-BPA) (n: m =96:4)를 얻었다.
제조예 6: Poly(2VN-BPA)의 제조
5 g의 2-비닐 나프탈렌(2-Vinyl naphthalene), 0.9 g의 단계1에서 제조한 BPA, 0.01 g의 아조비스이소부티로니트릴(Azobisisobutyronitrile)을 25 ml의 라운드 플라스크에 넣어준 다음 80℃에서 24시간 반응을 진행하였다. 상기 반응 종료 후, 폴리머를 추출한 후 상온(25 ℃) 진공오븐에 건조시켜, 표제 화합물 Poly(2VN-BPA) (n: m =90:10)를 얻었다.
실험예 1: 코폴리머의 물성 측정
상기 제조예 1 내지 6에서 제조한 코폴리머의 구체적인 물성을 하기의 방법으로 측정하였고, 그 결과를 표 2에 나타내었다.
구분 Mn(g/mol) PDI BPA함량(%) BPAA 함량(%) 굴절률
제조예 1 15,000 1.49 - 5.5 1.544
제조예 2 86,000 1.18 - 9.42 1.536
제조예 3 83,000 2.28 10 - 1.636
제조예 4 58,000 2.07 2 - 1.51
제조예 5 71,000 8.74 4 - 1.48
제조예 6 44,700 6.14 10 - 1.63
Mn(수평균 분자량) 및 PDI(분자량 분포): 폴리스티렌을 Calibration용 표준 시료로 사용한 겔투과크로마토그래피(GPC)를 사용하여 측정하였다.
Tg(유리전이온도): DSC(differential scanning calorimeter)를 사용하여 측정하였다.
BPAA 구조 단위의 함량: NMR에 의해 측정하였다.
굴절률: 타원계측법(Ellipsometer)에 의해 측정하였다.
비교예 1.
(1) 실험 방법
제조예 4에서 제조한 Poly(AA-BPA)를 프로올에 2.0 중량%로 녹여 저굴절률 분산액을 제조하였고, 제조예 3에서 제조한 Poly(VC-BPA)를 클로로벤젠에 2.5 중량%로 녹여 고굴절률 분산액을 제조하였다. 유리 기판 상에 상기 고굴절률 분산액을 스핀 코터를 이용하여 2800 rpm의 속도로 도포한 후, 365 nm에서 15분간 경화시켜 120 nm 두께의 고굴절률층을 제조하였다. 상기 고굴절률층 상에 상기 저굴절률 분산액을 스핀 코터를 이용하여 2800 rpm의 속도로 도포한 후 365 nm에서 10분간 경화시켜 100 nm 두께의 저굴절률층을 제조하였다. 상기 저굴절률층 상에 고굴절률층 및 저굴절률층을 반복적으로 적층하여, 총 10 층의 굴절률층이 적층된 색변환 광결정 구조체를 제조하였다.
(2) 실험 결과
입김을 불었을 때, 4초 만에 필름의 색변화가 나타났고, 원상태로 돌아오기까지 4.5초 걸렸다.
실시예.
(1) 실시예 1
제조예 4에서 제조한 Poly(AA-BPA)를 프로판올에 2 중량%로 녹이고, 무기염 LiCl을 4 중량%로 녹여, 제1 분산액(저굴절률 분산액)을 제조하였고, 제조예 3에서 제조한 Poly(VC-BPA)를 클로로벤젠에 2.0% 농도가 되도록 녹여 제2 분산액(고굴절률 분산액)을 제조하였다. 유리 기판 상에 상기 제2 분산액을 스핀 코터를 이용하여 3000 rpm의 속도로 도포한 후, 365 nm에서 15분간 경화시켜 120 nm 두께의 제2 굴절률층(고굴절률층)을 제조하였다. 상기 제2 굴절률층 상에 상기 제1 분산액을 스핀 코터를 이용하여 3000 rpm의 속도로 도포한 후 365 nm에서 10분간 경화시켜 100 nm 두께의 제1 굴절률층을 제조하였다. 상기 제1 굴절률층 상에 제2 굴절률층 및 제1 굴절률층을 반복적으로 적층하여, 총 10 층의 굴절률층이 적층된 색변환 광결정 구조체를 제조하였다.
(2) 실시예 2 내지 25
상기 실시예 1에서 하기 표 3에 기재된 저굴절 폴리머의 농도, 무기염 종류, 무기염 농도, 저굴절 분산매, 고굴절 폴리머의 농도, 고굴절 분산매, 저굴절층 및 고굴절층 제조시의 스핀코팅 속도를 사용한 것을 제외하고는 동일하고, 실시예 1 및 2는 총 4층의 굴절률층이고, 실시예 3 및 17은 총 8층의 굴절률층인 것을 제외하고는 모두 총 10층의 굴절률층으로 제조하였다.
Figure PCTKR2022001852-appb-img-000061
(3) 실시예 26
제조예 5에서 제조한 Poly(PEGMA-BPA)를 프로판올에 1.5 중량%로 녹이고, 무기염 CaCl2을 1 중량%로 녹여, 제1 분산액(저굴절률 분산액)을 제조하였고, 제조예 6에서 제조한 Poly(VN-BPA)를 클로로벤젠에 2.5% 농도가 되도록 녹여 제2 분산액(고굴절률 분산액)을 제조하였다. 유리 기판 상에 상기 제2 분산액을 스핀 코터를 이용하여 3000 rpm의 속도로 도포한 후, 365 nm에서 15분간 경화시켜 120 nm 두께의 제2 굴절률층(고굴절률층)을 제조하였다. 상기 제2 굴절률층 상에 상기 제1 분산액을 스핀 코터를 이용하여 3000 rpm의 속도로 도포한 후 365 nm에서 10분간 경화시켜 100 nm 두께의 제1 굴절률층을 제조하였다. 상기 제1 굴절률층 상에 제2 굴절률층 및 제1 굴절률층을 반복적으로 적층하여, 총 10 층의 굴절률층이 적층된 색변환 광결정 구조체를 제조하였다.
실험예. 코팅성 및 센싱능 확인
각 실시예의 색변환 광결정 구조체의 코팅성 및 센싱능을 확인하였다. 코팅성은 코팅이 깔끔하게 되는지, 투명하게 되는지 등을 기준으로 판단하였고, 센싱능은 반응성이 우수한지, 반응이 오래 유지되는지 등을 기준으로 판단하였다. 그 결과는 하기 표 4와 같다.
Figure PCTKR2022001852-appb-img-000062
O: 우수, △: 보통, X: 나쁨, (- : 반응 이후 원래 색상으로 돌아오지 않음)

Claims (19)

  1. 교대로 적층된, 제1 굴절률을 나타내는 제1 폴리머 및 무기염을 포함하는 제1굴절률층; 및 제2 굴절률을 나타내는 제2 폴리머를 포함하는 제2 굴절률층;을 포함하며,
    상기 제1 굴절률이 상기 제2 굴절률보다 낮은, 색변환 광결정 구조체.
  2. 청구항 1에 있어서, 상기 제1 폴리머는 제2 폴리머보다 더 친수성인, 색변환 광결정 구조체.
  3. 청구항 1에 있어서, 상기 제2 굴절률은 상기 무기염의 굴절률보다 높은, 색변환 광결정 구조체.
  4. 청구항 1에 있어서, 상기 제1 폴리머는 하기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머인 색변환 광결정 구조체:
    [화학식 1]
    Figure PCTKR2022001852-appb-img-000063
    (식 중, R1 및 R2는 각각 독립적으로 수소 또는 C1-3 알킬이고,
    R3은 하기 화학식 2 또는 3으로 표시되는 것이고,
    R4는 O 또는 NH이고,
    R5는 벤조일페닐이고,
    상기 벤조일페닐은 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
    n 및 m은 각각 독립적으로 1 이상의 정수이고,
    n+m은 100 내지 2,000임.)
    [화학식 2]
    Figure PCTKR2022001852-appb-img-000064
    (식 중, R6는 O, NH 또는
    Figure PCTKR2022001852-appb-img-000065
    이고,
    R7은 H, OH, C1~10 알킬, C1~10 아미노알킬, C1~10 알콕시 또는
    Figure PCTKR2022001852-appb-img-000066
    이고,
    l은 1 내지 20의 정수이고, o는 1 내지 10의 정수임.)
    [화학식 3]
    Figure PCTKR2022001852-appb-img-000067
    (식 중, p는 1 내지 4의 정수임).
  5. 청구항 4에 있어서, 상기 제1 폴리머는 하기 화학식 1-1 내지 1-10으로 표시되는 반복단위를 포함하는 코폴리머 중 하나인, 색변환 광결정 구조체.
    [화학식 1-1]
    Figure PCTKR2022001852-appb-img-000068
    [화학식 1-2]
    Figure PCTKR2022001852-appb-img-000069
    [화학식 1-3]
    Figure PCTKR2022001852-appb-img-000070
    [화학식 1-4]
    Figure PCTKR2022001852-appb-img-000071
    [화학식 1-5]
    Figure PCTKR2022001852-appb-img-000072
    [화학식 1-6]
    Figure PCTKR2022001852-appb-img-000073
    [화학식 1-7]
    Figure PCTKR2022001852-appb-img-000074
    [화학식 1-8]
    Figure PCTKR2022001852-appb-img-000075
    [화학식 1-9]
    Figure PCTKR2022001852-appb-img-000076
    [화학식 1-10]
    Figure PCTKR2022001852-appb-img-000077
    (식 중, n 및 m는 각각 독립적으로 1 이상의 정수이고,
    n+ m는 100 내지 2,000이고,
    l은 1 내지 20의 정수임).
  6. 청구항 1에 있어서, 상기 제2 폴리머는 하기 화학식 4 또는 5로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체:
    [화학식 4]
    Figure PCTKR2022001852-appb-img-000078
    [화학식 5]
    Figure PCTKR2022001852-appb-img-000079
    (식 중, R3 내지 R6은 각각 독립적으로, 수소 또는 C1-3 알킬이고,
    A1 및 A2는 각각 독립적으로, C6-20 방향족 고리 또는 C2-20 헤테로방향족 고리이고,
    R11 내지 R13은 각각 독립적으로, 하이드록시, 시아노, 니트로, 아미노, 할로겐, SO3H, SO3(C1-5알킬), C1-10 알킬 또는 C1-10 알콕시이거나, 서로 연결되어 C4-12의 방향족 고리를 형성할 수 있고,
    a1 내지 a3는 각각 독립적으로, 0 내지 5의 정수이고,
    L2 및 L3는 각각 독립적으로, O 또는 NH이고,
    Y2 및 Y3는 각각 독립적으로, 벤조일페닐이고,
    Y2 및 Y3는 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
    n' 및 m'는 각각 독립적으로 1 이상의 정수이고,
    n'+ m'는 100 내지 2,000이며,
    n" 및 m"는 각각 독립적으로 1 이상의 정수이고,
    n"+ m"는 100 내지 2,000임).
  7. 청구항 6에 있어서, 상기 제2 폴리머는 하기 화학식 5-1 또는 5-2로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체.
    [화학식 5-1]
    Figure PCTKR2022001852-appb-img-000080
    [화학식 5-2]
    Figure PCTKR2022001852-appb-img-000081
    (식 중, n" 및 m"은 각각 독립적으로 1 이상의 정수이고, n"+m"은 100 내지 2,000임.)
  8. 청구항 1에 있어서, 상기 무기염은 LiCl, NaCl, KCl, AlCl3, MgCl2, CaCl2, LiTFSi, LiBr, NaBr, KBr, AlBr3, MgBr2, CaBr2, LiI, NaI, KI, AlI3, MgI2 및 CaI2 로 이루어진 군에서 선택되는 어느 하나 이상인 광결정 구조체.
  9. 청구항 1 내지 8 중 어느 한 항의 광결정 구조체를 포함하는 습도 센싱용 색변환 필름.
  10. 제1 폴리머 및 무기염을 포함하는 제1 분산액을 도포하는 단계를 포함하는 제1 굴절률층을 형성하는 단계; 및
    상기 제1 굴절률층 상에 제2 폴리머를 포함하는 제2 분산액을 도포하는 단계를 포함하는 제2 굴절률층을 형성하는 단계;를 포함하며,
    상기 제1 굴절률이 상기 제2 굴절률보다 낮은, 색변환 광결정 구조체의 제조 방법.
  11. 청구항 10에 있어서, 상기 제1 폴리머는 제2 폴리머보다 더 친수성인, 색변환 광결정 구조체의 제조 방법.
  12. 청구항 10에 있어서, 상기 제2 굴절률은 상기 무기염의 굴절률보다 높은, 색변환 광결정 구조체의 제조 방법.
  13. 청구항 10에 있어서, 상기 제1 폴리머는 하기 화학식 1로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체의 제조 방법:
    [화학식 1]
    Figure PCTKR2022001852-appb-img-000082
    (식 중, R1 및 R2는 각각 독립적으로 수소 또는 C1-3 알킬이고,
    R3은 하기 화학식 2 또는 3으로 표시되는 것이고,
    R4는 O 또는 NH이고,
    R5는 벤조일페닐이고,
    상기 벤조일페닐은 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
    n 및 m은 각각 독립적으로 1 이상의 정수이고,
    n+m은 100 내지 2,000임.)
    [화학식 2]
    Figure PCTKR2022001852-appb-img-000083
    (식 중, R6는 O, NH 또는
    Figure PCTKR2022001852-appb-img-000084
    이고,
    R7은 H, OH, C1~10 알킬, C1~10 아미노알킬, C1~10 알콕시 또는
    Figure PCTKR2022001852-appb-img-000085
    이고,
    l은 1 내지 20의 정수이고, o는 1 내지 10의 정수임.)
    [화학식 3]
    Figure PCTKR2022001852-appb-img-000086
    (식 중, p는 1 내지 4의 정수임).
  14. 청구항 13에 있어서, 상기 제1 폴리머는 하기 화학식 1-1 내지 1-10으로 표시되는 반복단위를 포함하는 코폴리머 중 하나인, 색변환 광결정 구조체의 제조 방법:
    [화학식 1-1]
    Figure PCTKR2022001852-appb-img-000087
    [화학식 1-2]
    Figure PCTKR2022001852-appb-img-000088
    [화학식 1-3]
    Figure PCTKR2022001852-appb-img-000089
    [화학식 1-4]
    Figure PCTKR2022001852-appb-img-000090
    [화학식 1-5]
    Figure PCTKR2022001852-appb-img-000091
    [화학식 1-6]
    Figure PCTKR2022001852-appb-img-000092
    [화학식 1-7]
    Figure PCTKR2022001852-appb-img-000093
    [화학식 1-8]
    Figure PCTKR2022001852-appb-img-000094
    [화학식 1-9]
    Figure PCTKR2022001852-appb-img-000095
    [화학식 1-10]
    Figure PCTKR2022001852-appb-img-000096
    (식 중, n 및 m는 각각 독립적으로 1 이상의 정수이고,
    n+ m는 100 내지 2,000이고,
    l은 1 내지 20의 정수임).
  15. 청구항 10에 있어서, 상기 제2 폴리머는 하기 화학식 4 또는 5로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체의 제조 방법:
    [화학식 4]
    Figure PCTKR2022001852-appb-img-000097
    [화학식 5]
    Figure PCTKR2022001852-appb-img-000098
    (식 중, R3 내지 R6은 각각 독립적으로, 수소 또는 C1-3 알킬이고,
    A1 및 A2는 각각 독립적으로, C6-20 방향족 고리 또는 C2-20 헤테로방향족 고리이고,
    R11 내지 R13은 각각 독립적으로, 하이드록시, 시아노, 니트로, 아미노, 할로겐, SO3H, SO3(C1-5알킬), C1-10 알킬 또는 C1-10 알콕시이거나, 서로 연결되어 C4-12의 방향족 고리를 형성할 수 있고,
    a1 내지 a3는 각각 독립적으로, 0 내지 5의 정수이고,
    L2 및 L3는 각각 독립적으로, O 또는 NH이고,
    Y2 및 Y3는 각각 독립적으로, 벤조일페닐이고,
    Y2 및 Y3는 비치환되거나, 또는 하이드록시, 할로겐, 니트로, C1-5 알킬 및 C1-5 알콕시로 구성되는 군으로부터 각각 독립적으로 선택되는 1개 내지 4개의 치환기로 치환되고,
    n' 및 m'는 각각 독립적으로 1 이상의 정수이고,
    n'+ m'는 100 내지 2,000이며,
    n" 및 m"는 각각 독립적으로 1 이상의 정수이고,
    n"+ m"는 100 내지 2,000임).
  16. 청구항 15에 있어서, 상기 제2 폴리머는 하기 화학식 5-1 또는 5-2로 표시되는 반복단위를 포함하는 코폴리머인, 색변환 광결정 구조체의 제조 방법:
    [화학식 5-1]
    Figure PCTKR2022001852-appb-img-000099
    [화학식 5-2]
    Figure PCTKR2022001852-appb-img-000100
    (식 중, n" 및 m"은 각각 독립적으로 1 이상의 정수이고, n"+m"은 100 내지 2,000임.)
  17. 청구항 10에 있어서, 상기 무기염은 LiCl, NaCl, KCl, AlCl3, MgCl2, CaCl2, LiTFSi, LiBr, NaBr, KBr, AlBr3, MgBr2, CaBr2, LiI, NaI, KI, AlI3, MgI2 및 CaI2 로 이루어진 군에서 선택되는 어느 하나 이상인, 색변환 광결정 구조체의 제조 방법.
  18. 청구항 10에 있어서, 상기 제1 분산액은 제1 폴리머 0.01 내지 5 중량%, 무기염 1 내지 4 중량% 및 잔량의 분산매를 포함하는, 색변환 광결정 구조체의 제조 방법.
  19. 청구항 10에 있어서, 상기 제2 분산액은 제2 폴리머 1 내지 4 중량% 및 잔량의 분산매를 포함하는, 색변환 광결정 구조체의 제조 방법.
PCT/KR2022/001852 2021-02-24 2022-02-07 광결정 구조체 및 이의 제조 방법 WO2022182014A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210024611A KR20220120881A (ko) 2021-02-24 2021-02-24 광결정 구조체 및 이의 제조 방법
KR10-2021-0024611 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022182014A1 true WO2022182014A1 (ko) 2022-09-01

Family

ID=83048311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001852 WO2022182014A1 (ko) 2021-02-24 2022-02-07 광결정 구조체 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR20220120881A (ko)
WO (1) WO2022182014A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568501B1 (ko) * 2022-05-31 2023-08-21 한국화학연구원 유-무기 하이브리드 재료를 이용한 고반사성 1차원 광결정 구조체 및 이의 용도

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160252625A1 (en) * 2014-10-29 2016-09-01 The University Of Massachusetts Photonic polymer multilayers for colorimetric radiation sensing
KR101782265B1 (ko) * 2016-05-23 2017-09-28 부산대학교 산학협력단 마그네토플라즈모닉 필름, 이를 포함하는 습도 센서 및 이들의 제조방법
KR20180132365A (ko) * 2017-06-02 2018-12-12 한국화학연구원 광결정 구조체 및 이를 포함하는 위조 방지용 색변환 필름

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630251B1 (ko) 2014-10-15 2016-06-17 대화제약 주식회사 가용화된 광감작제를 유효성분으로 하는 진단 또는 치료용 약학적 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160252625A1 (en) * 2014-10-29 2016-09-01 The University Of Massachusetts Photonic polymer multilayers for colorimetric radiation sensing
KR101782265B1 (ko) * 2016-05-23 2017-09-28 부산대학교 산학협력단 마그네토플라즈모닉 필름, 이를 포함하는 습도 센서 및 이들의 제조방법
KR20180132365A (ko) * 2017-06-02 2018-12-12 한국화학연구원 광결정 구조체 및 이를 포함하는 위조 방지용 색변환 필름

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AN HEISHOKU, HIRATA MITSUTOSHI, YOSOMIYA RYUTOKU, YAOQUAN XIN: "Humidity dependence of the electric characteristics of quaternized 4-vinylpyridine-styrene copolymer/perchlorate complexes", ANGEWANDTE MAKROMOLEKULARE CHEMIE. APPLIED MACROMOLECULARCHEMISTRY AND PHYSICS., WILEY VCH, WEINHEIM., DE, vol. 150, no. 1, 1 May 1987 (1987-05-01), DE , pages 33 - 44, XP055962493, ISSN: 0003-3146, DOI: 10.1002/apmc.1987.051500104 *
DAI JIANXUN, ZHANG TONG, QI RONGRONG, ZHAO HONGRAN, FEI TENG, LU GEYU: "LiCl loaded cross-linked polymer composites by click reaction for humidity sensing", SENSORS AND ACTUATORS B: CHEMICAL, ELSEVIER BV, NL, vol. 253, 1 December 2017 (2017-12-01), NL , pages 361 - 367, XP055962486, ISSN: 0925-4005, DOI: 10.1016/j.snb.2017.06.082 *

Also Published As

Publication number Publication date
KR20220120881A (ko) 2022-08-31

Similar Documents

Publication Publication Date Title
WO2017047917A1 (ko) 변성 폴리이미드 및 이를 포함하는 경화성 수지 조성물
WO2010095905A2 (ko) 변성 폴리비닐알코올계 수지, 이를 포함하는 접착제, 편광판 및 표시장치
WO2018034411A1 (ko) 필름 터치 센서 및 필름 터치 센서용 구조체
WO2015016456A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2022182014A1 (ko) 광결정 구조체 및 이의 제조 방법
WO2013100298A1 (en) Positive photosensitive resin composition
WO2013051831A2 (ko) 배향막 형성용 조성물, 그로부터 제조된 배향막 및 위상차 필름
WO2017213419A1 (ko) 색변환 광결정 구조체, 이를 이용한 색변환 광결정 센서 및 유사 석유 검출용 광센서
WO2018128381A1 (ko) 광결정 구조체 및 이를 포함하는 위조 방지용 색변환 필름
WO2014193072A1 (ko) 자외선 차단 기능이 우수한 광학 필름 및 이를 포함하는 편광판
WO2016085087A9 (ko) 고굴절률 (메트)아크릴계 화합물, 이의 제조방법, 이를 포함하는 광학시트 및 이를 포함하는 광학표시장치
WO2014104496A1 (ko) 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2019093805A1 (ko) 함질소 고리 화합물 및 이를 포함하는 색변환 필름
WO2017171272A1 (ko) 컬러필터 및 이를 포함하는 화상표시장치
WO2021221374A1 (ko) 폴리아마이드계 복합 필름 및 이를 포함한 디스플레이 장치
WO2020184972A1 (ko) 폴리이미드 공중합체, 폴리이미드 공중합체의 제조방법, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름 및 광학 장치
WO2021132865A1 (ko) 고분자 수지 화합물, 이의 제조 방법 및 이를 포함하는 감광성 수지 조성물
WO2017171271A1 (ko) 필름 터치 센서 및 이를 포함하는 터치 스크린 패널
WO2020197179A1 (ko) 알칼리 가용성, 광경화성 및 열경화성을 갖는 공중합체, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름, 및 컬러필터
WO2019160355A1 (ko) 필름 터치 센서 및 필름 터치 센서용 구조체
WO2020130552A1 (ko) 디아민 화합물, 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2019039821A1 (ko) 광결정 구조체 및 이를 포함하는 색변환 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759932

Country of ref document: EP

Kind code of ref document: A1