WO2022181591A1 - スパンボンド不織布および芯鞘型複合繊維 - Google Patents

スパンボンド不織布および芯鞘型複合繊維 Download PDF

Info

Publication number
WO2022181591A1
WO2022181591A1 PCT/JP2022/007166 JP2022007166W WO2022181591A1 WO 2022181591 A1 WO2022181591 A1 WO 2022181591A1 JP 2022007166 W JP2022007166 W JP 2022007166W WO 2022181591 A1 WO2022181591 A1 WO 2022181591A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
core
sheath type
spunbond nonwoven
fiber
Prior art date
Application number
PCT/JP2022/007166
Other languages
English (en)
French (fr)
Inventor
島田大樹
山野浩司
竹光洋樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2022513110A priority Critical patent/JPWO2022181591A1/ja
Priority to CN202280017001.XA priority patent/CN116897228A/zh
Priority to KR1020237026905A priority patent/KR20230150795A/ko
Publication of WO2022181591A1 publication Critical patent/WO2022181591A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/018Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • the present invention relates to a polyethylene spunbond nonwoven fabric and a core-sheath type composite fiber.
  • nonwoven fabrics for sanitary materials such as disposable diapers and sanitary napkins are required to have good texture, flexibility, and high productivity.
  • the topsheet of disposable diapers is a material that comes into direct contact with the skin, it is one of the applications in which these demands are high.
  • polyethylene fibers having a density of 0.930 to 0.965 g/cm 3 and an average single fiber diameter of 8.0 to 16.5 ⁇ m, and a complex viscosity of 90 Pa at a temperature of 230 ° C. and 6.23 rad/sec.
  • a polyethylene spunbonded nonwoven fabric having a shear strength of less than sec has been proposed (see Patent Document 2).
  • these nonwoven fabrics have high flexibility due to the characteristics of polyethylene resin.
  • an object of the present invention is to provide a spunbond nonwoven fabric that has excellent softness and texture, uniform texture, sufficient strength for practical use, and excellent productivity.
  • Another object of the present invention is to provide a conjugate fiber that is excellent in flexibility and touch, and also has excellent spinning stability and thermal adhesiveness.
  • the spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric made of core-sheath type conjugate fibers containing a polyethylene resin as a main component, the spunbonded nonwoven fabric having a fused portion and a non-fused portion.
  • the ratio Ofs/Ofc of the orientation parameter Ofs of the sheath component of the core-sheath type composite fiber of the non-fused portion to the orientation parameter Ofc of the core component of the core-sheath type composite fiber of the non-fused portion is 0.10 to 0.10. is 90.
  • the orientation parameter Obs of the sheath component of the core-sheath type conjugate fiber of the fused portion is 1.2 to 3.0, and the core-sheath type of the fused portion is The orientation parameter Obc of the core component of the composite fiber is from 2.0 to 10.0.
  • the core-sheath type composite fiber has a solid density of 0.935 g/cm 3 or more and 0.970 g/cm 3 or less.
  • the Ofs is 2.0 or more and 8.0 or less.
  • the spunbond nonwoven fabric has a single melting peak temperature within the range of 100°C or higher and 150°C or lower in differential scanning calorimetry.
  • the tensile strength in the horizontal direction per basis weight of the spunbond nonwoven fabric is 0.20 (N/25 mm)/(g/m 2 ) or more.
  • the stress per unit weight of the spunbond nonwoven fabric at 5% elongation in the vertical direction is 0.20 (N/25 mm)/(g/m 2 ) or more.
  • the core-sheath type conjugate fiber of the present invention is a core-sheath type conjugate fiber containing a polyethylene resin as a main component, and the core-sheath type conjugate fiber with respect to the orientation parameter Ofc of the core component of the core-sheath type conjugate fiber.
  • the ratio Ofs/Ofc of the orientation parameter Ofs of the fiber sheath component is 0.1 to 0.9.
  • the core-sheath type conjugate fiber has a solid density of 0.935 g/cm 3 or more and 0.970 g/cm 3 or less.
  • Ofs is 2 or more and 8 or less.
  • the core-sheath type conjugate fiber has a single melting peak temperature within the range of 100°C or higher and 150°C or lower in differential scanning calorimetry.
  • the spunbonded nonwoven fabric of the present invention can be used particularly favorably as sanitary materials.
  • a core-sheath type composite fiber having excellent flexibility and touch, excellent spinning stability and thermal adhesiveness can be obtained.
  • a spunbonded nonwoven fabric using the core-sheath type conjugate fiber of the present invention has the excellent properties described above.
  • the spunbonded nonwoven fabric of the present invention is a spunbonded nonwoven fabric made of core-sheath type conjugate fibers containing a polyethylene resin as a main component, the spunbonded nonwoven fabric having a fused portion and a non-fused portion.
  • the ratio Ofs/Ofc of the orientation parameter Ofs of the sheath component of the core-sheath type composite fiber of the non-fused portion to the orientation parameter Ofc of the core component of the core-sheath type composite fiber of the non-fused portion is 0.10 to 0.10. is 90.
  • the core-sheath type conjugate fiber of the present invention is a core-sheath type conjugate fiber containing a polyethylene-based resin as a main component, and the non-fused portion with respect to the orientation parameter Ofc of the core component of the core-sheath type conjugate fiber
  • the ratio Ofs/Ofc of the orientation parameter Ofs of the sheath component of the core-sheath type composite fiber is 0.10 to 0.90.
  • the spunbonded nonwoven fabric can be made into a polyethylene spunbonded nonwoven fabric that has excellent softness and texture, uniform texture, sufficient strength for practical use, and excellent productivity.
  • the core-sheath type conjugate fiber of the present invention and the core-sheath type conjugate fiber constituting the spunbond nonwoven fabric of the present invention are polyethylene.
  • the main component is a system resin.
  • a polyethylene-based resin means a resin having an ethylene unit as a repeating unit, and examples thereof include homopolymers of ethylene and copolymers of ethylene and various ⁇ -olefins. Among them, an ethylene homopolymer is preferable in order to prevent a decrease in spinning stability and strength.
  • the copolymerization ratio is preferably 5 mol % or less, more preferably 3 mol % or less, and even more preferably 1 mol % or less, in order to prevent deterioration of spinning stability and strength.
  • the proportion of ethylene homopolymer is preferably 60% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. By doing so, good spinnability can be maintained and strength can be improved.
  • the polyethylene resin used in the present invention includes medium density polyethylene, high density polyethylene (hereinafter sometimes abbreviated as HDPE), linear low density polyethylene (hereinafter sometimes abbreviated as LLDPE), and the like. mentioned. LLDPE is preferably used because of its excellent spinnability.
  • the polyethylene resin used in the present invention may be a mixture of two or more kinds, and also other polyolefin resins such as polypropylene, poly-4-methyl-1-pentene, thermoplastic elastomers, low-melting polyesters, and A resin composition containing a thermoplastic resin such as low-melting polyamide can also be used.
  • the ratio of other thermoplastic resins to be mixed is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • the polyethylene resin used in the present invention preferably contains a fatty acid amide compound having 23 or more and 50 or less carbon atoms in order to improve touch and flexibility.
  • a fatty acid amide compound having 23 or more and 50 or less carbon atoms in order to improve touch and flexibility.
  • fatty acid amide compounds having 23 to 50 carbon atoms used in the present invention include saturated fatty acid monoamide compounds, saturated fatty acid diamide compounds, unsaturated fatty acid monoamide compounds, and unsaturated fatty acid diamide compounds.
  • tetradocosanoic acid amide, hexadocosanoic acid amide, octadocosanoic acid amide, nervonic acid amide, tetracosapentaenoic acid amide, nisic acid amide, ethylenebislauric acid amide, methylenebislauric acid amide, ethylenebisstearic acid amide , ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylenebisstearic acid amide, hexamethylenebisbehenic acid amide, hexamethylene hydroxystearic acid amide, distearyladipic acid amide, distearylsebacic acid amide, ethylenebisolein Acid amides, ethylenebiserucamide, hexamethylenebisoleic acid amide, and the like can be mentioned, and a plurality of these can be used in combination.
  • ethylene bis-stearic acid amide which is a saturated fatty acid diamide compound, is particularly preferably used because it can impart high lubricity and flexibility and is excellent in spinnability.
  • the amount of the fatty acid amide compound added to the polyethylene resin is preferably 0.01% by mass to 5% by mass.
  • the addition amount of the fatty acid amide compound is preferably 0.01% by mass to 5% by mass, more preferably 0.1% by mass to 3% by mass, and still more preferably 0.1% by mass to 1% by mass. Appropriate lubricity and softness can be imparted while maintaining the properties.
  • the amount added here refers to the mass fraction of the fatty acid amide compound in all the polyethylene resins that constitute the spunbond nonwoven fabric of the present invention. For example, even when the fatty acid amide compound is added only to the sheath component that constitutes the core-sheath type composite fiber, the ratio of addition to the total amount of the core-sheath component is calculated.
  • the additive is solvent-extracted from the fiber and quantitatively analyzed using liquid chromatography mass spectrometry (LS/MS) or the like. method.
  • the extraction solvent is appropriately selected according to the type of the fatty acid amide compound.
  • LS/MS liquid chromatography mass spectrometry
  • a method using a chloroform-methanol mixed solution can be mentioned as an example.
  • the polyethylene resin used in the present invention contains commonly used antioxidants, weather stabilizers, light stabilizers, heat stabilizers, antistatic agents, charge aids, and spinning agents, as long as they do not impair the effects of the present invention.
  • Additives such as agents, antiblocking agents, lubricants including polyethylene waxes, nucleating agents, and pigments, or other polymers can be added as desired.
  • the melting point Tmr of the polyethylene resin used in the present invention is preferably 100°C to 150°C.
  • Tmr By setting Tmr to preferably 100° C. or higher, more preferably 110° C. or higher, and even more preferably 120° C. or higher, heat resistance that can withstand practical use can be easily obtained.
  • Tmr by setting the Tmr to preferably 150° C. or lower, more preferably 140° C. or lower, and even more preferably 135° C. or lower, it becomes easier to cool the yarn discharged from the spinneret, suppressing the fusion between the fibers and making the yarn thin. It becomes easy to perform stable spinning even with a fiber diameter.
  • the melting point Tmr refers to the maximum melting peak temperature obtained by measuring the resin by differential scanning calorimetry (DSC).
  • the melt flow rate (hereinafter sometimes abbreviated as MFR) of the polyethylene resin used in the present invention is preferably 1 g/10 minutes to 300 g/10 minutes.
  • MFR melt flow rate
  • the MFR of the polyethylene-based resin is preferably 1 g/10 minutes or more, more preferably 10 g/10 minutes or more, and even more preferably 30 g/10 minutes or more, even a thin fiber diameter can be stably spun, and the texture is good.
  • the spunbonded nonwoven fabric is excellent in texture, uniform in texture, and has sufficient strength for practical use.
  • the MFR of the polyethylene-based resin is preferably 300 g/10 minutes or less, a decrease in single yarn strength is suppressed, and operational problems such as excessive softening during heat bonding and sticking to a hot roll occur. can be prevented from occurring.
  • the MFR of the polyethylene-based resin as the core component is 1 g/10 to 100 g/10 min.
  • the MFR of the polyethylene-based resin of the core component is preferably 1 g/10 minutes or more, more preferably 10 g/10 minutes or more, and even more preferably 30 g/10 minutes or more, so that even a thin fiber diameter can be stably spun.
  • a spunbonded nonwoven fabric having excellent texture, uniform texture, and sufficient strength for practical use can be obtained.
  • the MFR of the polyethylene-based resin is preferably 100 g/10 min or less, more preferably 80 g/10 min or less, and even more preferably 60 g/10 min or less, so that the single filament strength of the core-sheath type composite fiber is prevented from decreasing.
  • the spunbonded nonwoven fabric can be obtained by suppressing the deformation and having sufficient strength for practical use.
  • the MFR of the polyethylene-based resin as the sheath component is preferably 5 g/10 minutes to 200 g/10 minutes higher than the MFR of the polyethylene-based resin as the core component.
  • the MFR of the polyethylene-based resin of the sheath component is greater than the MFR of the polyethylene-based resin of the core component by more than 200 g/10 min, the single filament strength of the core-sheath type composite fiber is lowered, and excessive It is not preferable because it tends to be softened and causes operational problems such as sticking to the hot roll.
  • polyethylene resin For the MFR of polyethylene resin, the value measured by ASTM D1238 (A method) is adopted. According to this standard, polyethylene is measured under a load of 2.16 kg and a temperature of 190° C., and the polyethylene resin according to the present invention is also measured under the same load and temperature.
  • the MFR of the resin to be blended with the main polyethylene-based resin that is, the polyethylene-based resin that occupies the largest mass fraction in the polyethylene-based resin
  • the MFR of the resin to be blended with the main polyethylene-based resin is preferably 10 to 1000 g/10 min, more preferably. 20 to 800 g/10 minutes, more preferably 30 to 600 g/10 minutes.
  • the polyethylene resin used in the present invention should not contain any substances that decompose the polyethylene resin to lower the MFR, such as peroxides, particularly free radical agents such as dialkyl peroxides. is preferred. By doing so, it is possible to prevent the occurrence of partial viscosity unevenness due to uneven decomposition or gelation, to make the single fiber fineness uniform, and to stably spin even fine fibers. In addition, it is possible to prevent deterioration of spinnability due to air bubbles caused by decomposition gas.
  • peroxides particularly free radical agents such as dialkyl peroxides.
  • the solid density of the polyethylene resin used in the present invention is preferably 0.935 g/cm 3 to 0.970 g/cm 3 .
  • the solid density of the polyethylene resin is preferably 0.935 g/cm 3 or more, more preferably 0.940 g/cm 3 or more, and even more preferably 0.945 g/cm 3 or more, excessive softening occurs during heat bonding. It is possible to prevent the occurrence of operational problems such as sticking to the hot roll.
  • the solid density of the polyethylene resin is preferably 0.970 g/cm 3 or less, more preferably 0.965 g/cm 3 or less, further preferably 0.96 g/cm 3 or less, thereby improving spinnability. , can be stably spun even with fine fineness.
  • the core-sheath type conjugate fiber in the present invention includes a sea-island type conjugate fiber.
  • the term "sheath component” should be changed to "sea component” and "core component.” ” should be read as “island component” before measurement.
  • the mass ratio of the sheath component is 20% by mass to 80% by mass.
  • the mass ratio of the sheath component is preferably 20% by mass or more, more preferably 30% by mass or more, and even more preferably 40% by mass or more, the sheath components are strongly fused to each other during thermal bonding, and the adhesive is sufficiently durable for practical use. It can be a spunbond nonwoven fabric having a high strength.
  • the mass ratio of the sheath component is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, thereby increasing the ratio of the highly oriented core component and producing a core-sheath type composite.
  • the single filament strength of the fiber can be improved, and a spunbond nonwoven fabric having sufficient strength for practical use can be obtained.
  • the ratio Ofs/Ofc of the orientation parameter Ofs of the sheath component to the orientation parameter Ofc of the core component is 0.0. 10 to 0.90.
  • the orientation parameter of the core-sheath type conjugate fiber in the present invention means that the larger the numerical value, the more the molecular chains of the polyethylene resin constituting the core-sheath type conjugate fiber are oriented in a specific direction. It is an index (no units) indicating that the smaller the molecular chain is, the more randomly the molecular chain is oriented. This orientation parameter is 1.2 when completely randomly oriented.
  • the drawing stress is excessively concentrated in the fiber inner layer where the core component is present during spinning, resulting in poor spinning stability. can be prevented from declining.
  • Ofs/Ofc is 0.90 or less, preferably 0.70 or less, more preferably 0.50 or less, only the fiber surface layer can be softened during thermal bonding. By doing so, the fibers can be strongly thermally bonded to each other while leaving the molecular orientation of the fiber inner layer.
  • the spunbonded nonwoven fabric of the present invention it can be a polyethylene spunbonded nonwoven fabric that has excellent softness and texture, uniform texture, sufficient strength for practical use, and excellent productivity. .
  • the orientation parameter Ofs of the sheath component of the core-sheath type conjugate fiber and the orientation parameter Ofc of the core component of the core-sheath type conjugate fiber in the present invention are measured by the following method.
  • a sample of core-sheath type composite fiber or spunbond nonwoven fabric is embedded in a bisphenol-based epoxy resin.
  • the cut surface is cut at an angle from the fiber axis so that the cut surface is elliptical, and the thickness of the minor axis of the ellipse is measured by selecting a portion where the thickness is constant.
  • the cutting angle By setting the cutting angle within 4°, it can be regarded as being parallel to the fiber axis within a film thickness of 2 ⁇ m.
  • the sample is a spunbond nonwoven fabric
  • a section is cut out with a microtome so that the vicinity of the center of the non-fused portion of the spunbond nonwoven fabric (a portion approximately equidistant from the surrounding fused portion) becomes the cut surface.
  • the section thickness is 2 ⁇ m.
  • the subsequent measurement is performed by selecting a portion of the conjugate fiber in the non-fused portion and having a cutting angle within 4° from the fiber axis.
  • sample is a spunbond nonwoven fabric
  • (5) Perform similar measurements at three different non-fused portions of the spunbond nonwoven fabric, calculate the average value of the orientation parameters, and round off to the second decimal place.
  • the core-sheath type conjugate fiber of the present invention and the core-sheath type conjugate fiber of the non-fused portion of the spunbond nonwoven fabric of the present invention preferably have an orientation parameter Ofs of 2 to 8 for the sheath component.
  • Ofs is preferably 2.0 or more, more preferably 2.5 or more, and still more preferably 3.0 or more, so that the fiber surface layer is excessively softened during thermal bonding and sticks to the heat roll. You can prevent problems from occurring.
  • the Ofs is preferably 8.0 or less, more preferably 7.0 or less, and still more preferably 6.0 or less, the fiber surface layer is easily softened during thermal bonding, and the fibers are firmly thermally bonded. Therefore, a spunbond nonwoven fabric having a strength that can withstand practical use can be obtained.
  • MFR melting point
  • additives mass ratio of the sheath component of the composite fiber
  • spinning temperature and spinning speed which will be described later.
  • the core-sheath type conjugate fiber of the present invention and the core-sheath type conjugate fiber of the non-fused portion of the spunbond nonwoven fabric of the present invention preferably have an orientation parameter Ofc of 6 to 18 for the core component.
  • a spunbonded nonwoven fabric having Ofc of preferably 6.0 or more, more preferably 7.0 or more, and still more preferably 8.0 or more improves the strength of the fiber inner layer and has practical strength after thermal bonding. can do.
  • Ofc is preferably 18.0 or less, more preferably 16.0 or less, and still more preferably 14.0 or less, thereby suppressing excessive drawing stress concentration on the inner layer of the fiber during spinning and improving spinning stability. can be improved.
  • MFR melting point
  • additives mass ratio of the core component of the composite fiber
  • spinning temperature and spinning speed which will be described later.
  • the core-sheath type conjugate fiber of the present invention and the core-sheath type conjugate fiber of the non-fused portion of the spunbond nonwoven fabric of the present invention have a softening temperature Tss (° C.) of the surface layer and a softening temperature Tsc (° C.) of the inner layer as follows. It is preferable to satisfy formula (a). (Tss+5) ⁇ Tsc ⁇ (Tss+30) (a).
  • Tsc (° C.) is preferably (Tss+5)° C. or higher, more preferably (Tss+7)° C. or higher, and even more preferably (Tss+10)° C. or higher, so that only the component forming the fiber surface layer can be softened during thermal bonding. can. By doing so, the fibers can be strongly thermally bonded to each other while the molecular orientation of the fiber inner layer remains, so that a spunbond nonwoven fabric having a strength that can withstand practical use can be obtained.
  • Tsc (° C.) is preferably (Tss+30)° C. or less, more preferably (Tss+25)° C. or less, and even more preferably (Tss+20)° C. or less, so that the surface layer of the fiber is excessively softened during thermal bonding and the heat roll is It is possible to prevent the occurrence of operational problems such as sticking to the
  • Tss (° C.) and Tsc (° C.) are calculated by the following procedure by nanoscale-thermomechanical analysis (nano-TMA).
  • This nano-TMA is capable of thermal analysis in the submicron region, and uses an atomic force microscope (AFM) probe (cantilever) equipped with a temperature sensor equipped with a heater.
  • AFM atomic force microscope
  • the Tss (° C.) and Tsc (° C.) of the non-fused portion are determined by the following procedure after collecting 20 core-sheath type composite fibers from the non-fused portion of the spunbond nonwoven fabric. Measured and calculated according to
  • a core-sheath type composite fiber is fixed on a sample stage, and an AFM probe with a temperature sensor equipped with a heater is fixed near the center in the fiber diameter direction.
  • the temperature of the probe is increased from 25°C to 150°C at a temperature increase rate of 10°C/sec, and the height change (a.u.) of the probe is measured.
  • Tss (°C)
  • Tsc (°C)
  • Ts2 may not be observed in some core-sheath type composite fibers. In this case, only the observed Ts2 is averaged to obtain the inner layer softening temperature Tsc (°C).
  • Tss and Tsc can be controlled by the MFR, melting point, additives, mass ratio of the sheath component constituting the core-sheath type composite fiber, and/or spinning temperature and spinning speed, which will be described later. .
  • the core-sheath type conjugate fiber of the present invention and the spunbond nonwoven fabric of the present invention preferably have a single peak melting temperature Tm in differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the core-sheath type composite fiber has a single peak melting temperature Tm in differential scanning calorimetry
  • the spunbond nonwoven fabric has a single peak melting temperature Tm in differential scanning calorimetry
  • has means that substantially only one melting endothermic peak described in (3) of the following measuring method is observed.
  • the core-sheath type conjugate fiber of the present invention when used, for example, as a fiber constituting a spunbonded nonwoven fabric, and in the spunbonded nonwoven fabric of the present invention, the low melting point component is added during heat bonding. Fibers can be strongly thermally bonded to each other at a sufficient temperature without causing operational problems such as melting and sticking to hot rolls, making it easier to obtain a spunbond nonwoven fabric with strength that can withstand practical use. .
  • Tm of the core-sheath type composite fiber or spunbond nonwoven fabric obtained by differential scanning calorimetry (DSC)
  • DSC differential scanning calorimetry
  • a sample amount of 0.5 to 5 mg of fiber pieces of core-sheath type composite fiber or spunbond nonwoven fabric is sampled.
  • DSC differential scanning calorimetry
  • the Tm of the core-sheath type conjugated fiber and the Tm of the spunbonded nonwoven fabric have the same value. can be thought of as indicating
  • the core-sheath type conjugate fiber of the present invention and the spunbonded nonwoven fabric of the present invention preferably satisfy the following formulas (b) and (c). 100 ⁇ Tm ⁇ 150 (b) (Tm-40) ⁇ Tss ⁇ (Tm-10) (c) By doing so, it is possible to obtain a core-sheath type conjugate fiber and a spunbonded nonwoven fabric which have practical heat resistance and strength and are excellent in spinning stability and operational stability.
  • the melting peak temperature Tm (°C) of the core-sheath type composite fiber by differential scanning calorimetry (DSC) is preferably 100°C or higher and 150°C or lower.
  • the melting peak temperature Tm (° C.) is preferably 100° C. or higher, more preferably 110° C. or higher, and even more preferably 120° C. or higher, practical heat resistance can be imparted.
  • the melting peak temperature Tm (° C.) is preferably 150° C. or less, more preferably 140° C. or less, and even more preferably 135° C. or less, the yarn discharged from the spinneret is easily cooled, and the fibers are separated from each other. It suppresses fusion and facilitates stable spinning even with a small fiber diameter.
  • the softening temperature Tss (°C) of the surface layer of the core-sheath type composite fiber is preferably (Tm-40)°C or higher and (Tm-10)°C or lower.
  • the softening temperature Tss (° C.) of the surface layer is preferably (Tm ⁇ 40)° C. or higher, more preferably (Tm ⁇ 35)° C. or higher, and still more preferably (Tm ⁇ 30)° C. or higher. It is possible to prevent the occurrence of operational problems such as excessive softening of the fiber surface layer and sticking to the heat roll.
  • Tss (° C.) is preferably (Tm ⁇ 10)° C. or less, more preferably (Tm ⁇ 15)° C. or less, and even more preferably (Tm ⁇ 20)° C. or less, so that the fibers are firmly bonded together during thermal bonding. It can be thermally bonded to a spunbond nonwoven fabric having a strength that can withstand practical use.
  • the softening temperature Tsc (° C.) of the inner layer is the melting peak temperature Tm by differential scanning calorimetry (DSC). (°C).
  • the softening temperature Tsc (°C) of the inner layer of the core-sheath type composite fiber is preferably (Tm-20)°C or higher and (Tm-1)°C or lower.
  • the softening temperature Tsc (° C.) of the inner layer is preferably (Tm ⁇ 20)° C. or higher, more preferably (Tm ⁇ 15)° C. or higher, and further preferably (Tm ⁇ 10)° C.
  • Tsc (° C.) is preferably (Tm ⁇ 1)° C. or less, more preferably (Tm ⁇ 3)° C. or less, and even more preferably (Tm ⁇ 5)° C. or less, so that fibers can be strongly thermally bonded, and a spunbond nonwoven fabric having a strength that can withstand practical use can be obtained.
  • the composite form of the core-sheath type composite fiber in the present invention for example, composite forms such as a concentric core-sheath type, an eccentric core-sheath type, and a sea-island type can be used.
  • a core-sheath type composite form is preferable, and a concentric core-sheath type composite form is a more preferable embodiment, since the fibers are excellent in spinnability and the fibers can be uniformly bonded to each other by thermal bonding. .
  • a round cross-section, a flat cross-section, and an irregular cross-section such as a Y-shape or a C-shape can be used.
  • a round cross section is preferable because it does not have difficulty in bending due to a structure such as a flat cross section or an irregular cross section, and can be used as a spunbond nonwoven fabric that takes advantage of the flexibility of polyethylene resin.
  • a hollow cross-section can be applied as the cross-sectional shape, but a solid cross-section is preferable because it is excellent in spinnability and can be stably spun even with a small fiber diameter.
  • the core-sheath type conjugate fiber in the present invention preferably has an average single fiber fineness of 0.5 dtex to 3.0 dtex.
  • a spunbonded nonwoven fabric having an average single fiber fineness of preferably 0.5 dtex or more, more preferably 0.6 dtex or more, and even more preferably 0.7 dtex or more prevents a decrease in spinnability and has excellent production stability. be able to.
  • the average single fiber fineness is preferably 3.0 dtex or less, more preferably 2.4 dtex or less, and still more preferably 2.0 dtex or less, so that the texture is excellent, the texture is uniform, and it is sufficient for practical use. It can be a spunbond nonwoven fabric having a high strength.
  • the average single fiber fineness can be controlled by the spinning temperature, single hole discharge rate, spinning speed, etc., which will be described later.
  • the core-sheath type composite fiber in the present invention preferably has an average single fiber diameter of 8 to 20 ⁇ m.
  • the average single fiber diameter preferably 8 ⁇ m or more, more preferably 9 ⁇ m or more, and even more preferably 10 ⁇ m or more, it is possible to prevent a decrease in spinnability and obtain a spunbond nonwoven fabric with excellent production stability.
  • the average single fiber diameter preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, and even more preferably 16 ⁇ m or less, the spunbond has excellent texture, uniform texture, and sufficient strength for practical use. It can be a non-woven fabric.
  • the average single fiber diameter ( ⁇ m) of the core-sheath type composite fibers constituting the spunbonded nonwoven fabric is a value calculated by the following procedure.
  • the average single fiber diameter can be controlled by the spinning temperature, single hole discharge rate, spinning speed, etc., which will be described later.
  • the core-sheath type conjugate fiber in the present invention preferably has a solid density of 0.935 g/cm 3 to 0.970 g/cm 3 .
  • a solid density of the polyethylene resin preferably 0.935 g/cm 3 or more, more preferably 0.940 g/cm 3 or more, and even more preferably 0.945 g/cm 3 or more.
  • the solid density of the polyethylene resin is preferably 0.970 g/cm 3 or less, more preferably 0.965 g/cm 3 or less, and further preferably 0.960 g/cm 3 or less, thereby improving spinnability. , can be stably spun even with fine fineness.
  • the solid density (g/cm 3 ) of the conjugate fiber shall adopt a value calculated by the following procedure.
  • a composite fiber test piece is soaked in ethanol, washed, and dried in the air.
  • the density is determined by the floating and sinking method using a water-ethanol mixed solution system.
  • the density is determined by the floating-sink method using a water-ethanol mixed solution system.
  • the spunbonded nonwoven fabric of the present invention is composed of core-sheath type conjugate fibers containing a polyethylene resin as a main component.
  • the spunbond nonwoven fabric of the present invention has a fused portion and a non-fused portion.
  • the fused portion refers to the portion where the core-sheath type conjugate fibers are fused together
  • the non-fused portion refers to the portion where the core-sheath type conjugate fibers are not fused to each other and the cross-sectional shape is maintained. .
  • the orientation parameter Obs of the sheath component is 1.2 to 3.0 in the core-sheath type conjugate fiber of the fused portion.
  • the orientation parameter Obs of the sheath component is preferably 3.0 or less, more preferably 2.5 or less, and still more preferably 2.0 or less, the sheath components forming the fiber surface layer are strongly thermally bonded to each other. , can be a spunbond nonwoven fabric having strength to withstand practical use.
  • the orientation parameter Obs of the sheath component of the core-sheath type composite fiber in the fused portion is the orientation parameter Ofs of the sheath component of the core-sheath type composite fiber and/or the thermal bonding conditions (temperature, linear pressure, etc.) described later. can be controlled by appropriately adjusting
  • the orientation parameter Obc of the core component is 2 to 10 in the core-sheath type composite fibers of the fused portion.
  • Obc is preferably 2.0 or more, more preferably 2.5 or more, and still more preferably 3.0 or more, so that the strength of the core component can be improved, and the spunbond nonwoven fabric can have a strength that can withstand practical use. can.
  • Obc is preferably 10.0 or less, more preferably 9.0 or less, and still more preferably 8.0 or less, excessive drawing stress concentration on the core component during spinning is suppressed and spinning stability is improved. can be improved.
  • the orientation parameter Obc of the core component of the core-sheath type composite fiber in the fused portion is the orientation parameter Ofc of the core component of the core-sheath type composite fiber and/or the thermal bonding conditions (temperature, linear pressure, etc.) described later. can be controlled by appropriately adjusting
  • Obs and Obc are measured by the following procedure.
  • a sample of spunbond nonwoven fabric is embedded in a bisphenol-based epoxy resin.
  • a section is cut out with a microtome so that the center of the fused portion of the spunbond nonwoven fabric serves as the cut surface.
  • the section thickness is 2 ⁇ m.
  • Subsequent measurements are taken at locations where the cut angle is within 4° of the fiber axis. If it is difficult to determine the direction of the fiber axis, rotate the polarization direction at the same point by 15 degrees to obtain a polarized Raman spectrum in each direction, and take the direction that shows the maximum orientation parameter as the fiber axis direction. .
  • the spunbond nonwoven fabric of the present invention preferably has a surface roughness SMD of 1.0 to 3.0 ⁇ m by the KES method on at least one side.
  • the surface roughness SMD by the KES method is preferably 1.0 ⁇ m or more, more preferably 1.3 ⁇ m or more, and even more preferably 1.6 ⁇ m or more, the spunbond nonwoven fabric becomes excessively dense and the texture deteriorates, You can prevent loss of flexibility.
  • the surface roughness SMD by the KES method is preferably 3.0 ⁇ m or less, more preferably 2.8 ⁇ m or less, and still more preferably 2.5 ⁇ m or less, so that the surface is smooth, less rough, and excellent in touch. It can be a spunbond nonwoven.
  • the surface roughness SMD by the KES method depends on the average single fiber diameter of the core-sheath type composite fiber, the texture of the spunbond nonwoven fabric, and/or the thermal bonding conditions described later (shape of bonded portion, compression rate, temperature, and linear pressure, etc.) can be controlled by appropriately adjusting.
  • the surface roughness SMD by the KES method is measured as follows.
  • test pieces each having a width of 200 mm x 200 mm are taken from the spunbond nonwoven fabric at equal intervals in the width direction of the spunbond nonwoven fabric.
  • the friction coefficient MIU of the spunbond nonwoven fabric of the present invention according to the KES method is preferably 0.01 to 0.30.
  • a spunbond nonwoven fabric having a friction coefficient MIU of preferably 0.30 or less, more preferably 0.20 or less, and still more preferably 0.15 or less thereby improving the slipperiness of the surface of the nonwoven fabric and providing an excellent texture.
  • the coefficient of friction MIU is preferably 0.01 or more, more preferably 0.03 or more, and still more preferably 0.05 or more, so that when the spun yarns are collected on the collecting conveyor, It is possible to prevent slippage and deterioration of texture uniformity.
  • the coefficient of friction MIU according to the KES method depends on the additive of the polyethylene resin, the average single fiber diameter of the core-sheath type composite fiber, the texture of the spunbond nonwoven fabric, and/or the thermal bonding conditions described later (the shape of the bonded portion , pressure bonding rate, temperature, linear pressure, etc.) can be controlled by appropriately adjusting.
  • the coefficient of friction MIU by the KES method is measured as follows.
  • test pieces each having a width of 200 mm x 200 mm are taken from the spunbond nonwoven fabric at equal intervals in the width direction of the spunbond nonwoven fabric.
  • test piece is scanned with a contact friction element (material: ⁇ 0.5 mm piano wire (20 wires in parallel), contact area: 1 cm 2 ) to which a load of 50 gf is applied to measure the coefficient of friction.
  • a contact friction element material: ⁇ 0.5 mm piano wire (20 wires in parallel), contact area: 1 cm 2
  • the MFR of the spunbond nonwoven fabric of the present invention is preferably 1 g/10 minutes to 300 g/10 minutes.
  • the MFR of the spunbond nonwoven fabric is preferably 1 g/10 minutes or more, more preferably 10 g/10 minutes or more, and even more preferably 30 g/10 minutes or more, so that even a small fiber diameter can be stably spun and the texture is improved.
  • the spunbonded nonwoven fabric is excellent in texture, uniform in texture, and has sufficient strength for practical use.
  • the MFR of the polyethylene-based resin is preferably 300 g/10 minutes or less, it suppresses a decrease in strength and causes operational problems such as excessive softening during heat bonding and sticking to the hot roll. can prevent you from doing it.
  • the value measured by ASTM D1238 (method A) is adopted.
  • polyethylene is measured under a load of 2.16 kg and a temperature of 190°C.
  • the spunbond nonwoven fabric of the present invention preferably has a basis weight of 10 g/m 2 to 100 g/m 2 .
  • the basis weight is preferably 10 g/m 2 or more, more preferably 13 g/m 2 or more, and even more preferably 15 g/m 2 or more, so that the spunbond nonwoven fabric has sufficient strength for practical use.
  • the spun having a basis weight of preferably 100 g/m 2 or less, more preferably 50 g/m 2 or less, and even more preferably 30 g/m 2 or less has flexibility suitable for use as a nonwoven fabric for sanitary materials. It can be a bonded nonwoven fabric.
  • the basis weight of the spunbond nonwoven fabric conforms to "6.2 Mass per unit area" of JIS L1913:2010 "General nonwoven fabric test method", and the value measured by the following procedure shall be adopted. do.
  • the average value is represented by mass (g/m 2 ) per 1 m 2 .
  • the thickness of the spunbond nonwoven fabric of the present invention is preferably 0.05 mm to 1.5 mm. With a thickness of preferably 0.05 to 1.5 mm, more preferably 0.08 to 1.0 mm, and even more preferably 0.10 to 0.8 mm, the sanitary material has flexibility and moderate cushioning properties.
  • a spunbond nonwoven fabric for use it can be a spunbond nonwoven fabric that is particularly suitable for use in disposable diapers.
  • the thickness (mm) of the spunbond nonwoven fabric conforms to JIS L1906:2000 "General long fiber nonwoven fabric test method” "5.1", and adopts a value measured by the following procedure.
  • the thickness of 10 points per 1 m is measured at equal intervals in the width direction of the nonwoven fabric with a load of 10 kPa in units of 0.01 mm.
  • the spunbond nonwoven fabric of the present invention preferably has an apparent density of 0.05 g/cm 3 to 0.30 g/cm 3 .
  • the apparent density is preferably 0.30 g/cm 3 or less, more preferably 0.25 g/cm 3 or less, still more preferably 0.20 g/cm 3 or less, so that the fibers are densely packed to form a spunbond nonwoven fabric. flexibility can be prevented.
  • the apparent density is preferably 0.05 g/cm 3 or more, more preferably 0.08 g/cm 3 or more, and still more preferably 0.10 g/cm 3 or more, thereby suppressing the occurrence of fluffing and delamination. , a spunbond nonwoven fabric having sufficient strength and handleability for practical use.
  • the apparent density is determined by appropriately adjusting the average single fiber diameter of the core-sheath type conjugate fiber and/or the thermal bonding conditions described later (shape of bonded portion, pressure bonding rate, temperature, linear pressure, etc.). can be controlled.
  • the apparent density (g/cm 3 ) is calculated based on the following formula from the weight per unit area and the thickness before rounding, and is rounded to the third decimal place.
  • Apparent density (g/cm 3 ) [basis weight (g/m 2 )]/[thickness (mm)] ⁇ 10 ⁇ 3 (formula).
  • the bending resistance of the spunbond nonwoven fabric of the present invention is preferably 60 mm or less.
  • the bending resistance is preferably 60 mm or less, more preferably 50 mm or less, and still more preferably 40 mm or less, so that spunbond nonwoven fabrics for sanitary materials can be excellent in flexibility particularly suitable for use in disposable diapers. can be done.
  • the bending resistance is preferably 10 mm or more.
  • the bending resistance is determined by the MFR of the polyethylene resin, the additive, the average single fiber diameter of the core-sheath type composite fiber, the basis weight of the spunbond nonwoven fabric, and the orientation parameter Ofc of the core component of the core-sheath type composite fiber in the non-fused portion.
  • ratio Os/Oc of the orientation parameter Ofs of the sheath component of the core-sheath type composite fiber in the non-fused portion to the ratio Os/Oc, and/or the thermal bonding conditions described later can be controlled by appropriately adjusting
  • the transverse tensile strength per basis weight of the spunbond nonwoven fabric of the present invention is preferably 0.20 (N/25 mm)/(g/m 2 ) or more, and preferably 0.20 (N/25 mm)/(g /m 2 ) to 2.00 (N/25 mm)/(g/m 2 ).
  • Tensile strength per basis weight is preferably 0.20 (N/25 mm)/(g/m 2 ) or more, more preferably 0.25 (N/25 mm)/(g/m 2 ) or more, still more preferably 0.25 (N/25 mm)/(g/m 2 ) or more.
  • a spunbond nonwoven fabric having a practical strength can be obtained by setting it to 30 (N/25 mm)/(g/m 2 ) or more.
  • the horizontal tensile strength per basis weight is preferably 2.00 (N/25 mm)/(g/m 2 ) or less, the softness of the spunbond nonwoven fabric may be reduced, or the texture may be impaired. can prevent you from doing it.
  • the tensile strength of a spunbonded nonwoven fabric has a vertical direction and a horizontal direction, but since the tensile strength in the horizontal direction is generally smaller than the tensile strength in the vertical direction, the tensile strength in the horizontal direction per basis weight is is 0.2 to 2.00 (N/25 mm)/(g/m 2 ), the spunbond nonwoven fabric can have a practical strength even in the vertical direction.
  • the tensile strength in the horizontal direction per unit weight is determined by the MFR of the polyethylene resin, the additive, the average single fiber diameter of the core-sheath type composite fiber, and the orientation parameter Ofc of the core component of the core-sheath type composite fiber in the non-fused portion.
  • the ratio Os/Oc of the orientation parameter Ofs of the sheath component of the core-sheath type conjugate fiber in the non-fused portion, and/or the spinning speed, thermal bonding conditions (shape of bonded portion, pressure bonding rate, temperature, and linear pressure described later) etc.) can be controlled by appropriately adjusting.
  • the tensile strength in the horizontal direction per basis weight of the spunbond nonwoven fabric conforms to "6.3 Tensile strength and elongation (ISO method)" of JIS L1913: 2010 "General nonwoven fabric test method”. shall adopt the value measured by the procedure of
  • the stress at 5% elongation in the vertical direction per basis weight of the spunbond nonwoven fabric of the present invention is preferably 0.20 (N/25 mm)/(g/m 2 ) or more, and more preferably 0.20 (N/25 mm). /(g/m 2 ) to 2.00 (N/25 mm)/(g/m 2 ) is more preferable.
  • the stress at 5% elongation in the vertical direction per basis weight is preferably 0.2 (N/25 mm)/(g/m 2 ) or more, more preferably 0.25 (N/25 mm)/(g/m 2 ) or more More preferably, it is 0.30 (N / 25 mm) / (g / m 2 ) or more, so that elongation due to tension during production of spunbond nonwoven fabrics and processing as sanitary materials is suppressed, and high yields are obtained. It can be produced stably.
  • the stress at 5% elongation in the vertical direction per unit weight is preferably 2.00 (N / 25 mm) / (g / m 2 ) or less, so that the softness of the spunbond nonwoven fabric is reduced and the texture is impaired. You can prevent it from falling off.
  • the stress at 5% elongation in the vertical direction per unit weight is determined by the MFR of the polyethylene resin, the additive, the average single fiber diameter of the core-sheath type composite fiber, and the orientation of the core component of the core-sheath type composite fiber in the non-fused portion.
  • the ratio Os/Oc of the orientation parameter Ofs of the sheath component of the core-sheath type composite fiber of the non-fused portion to the parameter Ofc, and/or the spinning speed described later, the conditions of thermal bonding (shape of bonded portion, pressure bonding rate, temperature, and linear pressure, etc.) can be controlled by appropriately adjusting.
  • the stress at 5% elongation in the vertical direction per unit weight of spunbond nonwoven fabric is JIS L1913: 2010 "General nonwoven fabric test method” "6.3 Tensile strength and elongation rate (ISO method)" The value measured by the following procedure shall be adopted.
  • the spunbond nonwoven fabric of the present invention is a long-fiber nonwoven fabric produced by the spunbond method.
  • the spunbond method is excellent in productivity and mechanical strength, and can suppress fluffing and falling off of fibers that tend to occur in short fiber nonwoven fabrics.
  • Lamination of a plurality of layers of collected spunbonded nonwoven fiber webs or thermocompression-bonded spunbonded nonwoven fabrics is also a preferred mode for improving productivity and texture uniformity.
  • a molten thermoplastic resin is spun from a spinneret as filaments, which are drawn by suction with compressed air using an ejector, and then collected on a moving net to obtain a nonwoven fibrous web. . Further, the obtained nonwoven fibrous web is subjected to heat bonding treatment to obtain a spunbond nonwoven fabric.
  • the shape of the spinneret or ejector is not particularly limited, but various shapes such as round and rectangular can be adopted.
  • the combination of a rectangular nozzle and a rectangular ejector is recommended because it uses a relatively small amount of compressed air and is excellent in terms of energy cost, and because the yarns are less likely to fuse or rub against each other, and the yarns can be easily opened. It is preferably used.
  • a polyethylene resin is melted in an extruder, weighed, supplied to a spinneret, and spun as long fibers.
  • the spinning temperature for melting and spinning the polyethylene resin is preferably 180°C to 250°C, more preferably 190°C to 240°C, and still more preferably 200°C to 230°C.
  • the spun filament yarn is then cooled.
  • Methods for cooling the spun yarn include, for example, a method of forcibly blowing cold air onto the yarn, a method of natural cooling at the ambient temperature around the yarn, and a method of adjusting the distance between the spinneret and the ejector. etc., or a method combining these methods can be adopted. Also, the cooling conditions can be appropriately adjusted in consideration of the discharge rate per single hole of the spinneret, the spinning temperature, the ambient temperature, and the like.
  • the cooled and solidified yarn is pulled and stretched by compressed air jetted from the ejector.
  • the spinning speed is preferably 3000m/min to 6000m/min, more preferably 3500m/min to 5500m/min, and still more preferably 4000m/min to 5000m/min.
  • the spinning speed is preferably 3000m/min to 6000m/min, more preferably 3500m/min to 5500m/min, and still more preferably 4000m/min to 5000m/min.
  • the obtained long fibers are collected on a moving net to obtain a nonwoven fiber web.
  • the obtained nonwoven fibrous web is fused to form fused portions, and the intended spunbond nonwoven fabric can be obtained.
  • the method of fusing the nonwoven fibrous web is not particularly limited, but for example, a thermal embossing roll having a pair of upper and lower rolls with engravings (uneven portions), a roll having a flat (smooth) surface on one side and a roll on the other side.
  • a method of heat-sealing with various rolls such as a heat embossing roll that is combined with a roll with engraving (unevenness) on the roll surface, and a heat calender roll that is a combination of a pair of upper and lower flat (smooth) rolls.
  • Examples include a method of heat-sealing by ultrasonic vibration of a horn, and a method of passing hot air through a nonwoven fiber web to soften or melt the surface of core-sheath type composite fibers to heat-seal the fiber intersections.
  • thermal embossing rolls with engraving (unevenness) on the surface of a pair of upper and lower rolls, or a roll with a flat (smooth) surface on one roll and an engraving (unevenness) on the surface of the other roll It is preferred to use a hot embossing roll consisting of a combination of rolls. By doing so, it is possible to provide a fused portion that improves the strength of the spunbond nonwoven fabric and a non-fused portion that improves the texture and touch with good productivity.
  • a metal roll and a metal roll are used as for the surface material of the hot embossing rolls. Pairing is a preferred embodiment.
  • the embossing adhesion area ratio by such a hot embossing roll is preferably 5 to 30%.
  • the bonding area is preferably 5% or more, more preferably 8% or more, and even more preferably 10% or more, it is possible to obtain strength that can be used practically as a spunbond nonwoven fabric.
  • the bonding area is preferably 30% or less, more preferably 25% or less, and even more preferably 20% or less, spunbond nonwoven fabrics for sanitary materials, particularly suitable for use in disposable diapers, have moderate flexibility. You can get sex. Even when ultrasonic bonding is used, the bonding area ratio is preferably within the same range.
  • the bonding area here refers to the ratio of the bonding area to the entire spunbond nonwoven fabric. Specifically, when thermal bonding is performed using a pair of rolls having unevenness, the spunbond nonwoven fabric at the portion (bonded portion) where the convex portion of the upper roll and the convex portion of the lower roll overlap and contact the nonwoven fiber web It refers to the percentage of the whole. In the case of heat-bonding with a roll having unevenness and a flat roll, it refers to the ratio of the portion (adhesion portion) where the convex portion of the roll having unevenness contacts the nonwoven fiber web to the entire spunbond nonwoven fabric.
  • ultrasonic bonding it refers to the ratio of the portion (bonded portion) heat-sealed by ultrasonic processing to the entire spunbond nonwoven fabric.
  • the areas of the bonded portion and the fused portion can be considered to be equal.
  • the shape of the bonded part by a heat embossing roll or ultrasonic bonding is not particularly limited, but for example, a circle, an oval, a square, a rectangle, a parallelogram, a rhombus, a regular hexagon, and a regular octagon can be used.
  • the bonded portions are uniformly present at regular intervals in the longitudinal direction (conveyance direction) and the width direction of the spunbond nonwoven fabric. By doing so, variations in the strength of the spunbond nonwoven fabric can be reduced.
  • the surface temperature of the thermal embossing roll during thermal bonding is 30°C lower than the melting point Tm (°C) of the thermoplastic resin used and 10°C higher, that is, Tm-30°C or higher and Tm+10°C or lower. Preferred.
  • Tm melting point
  • the linear pressure of the thermal embossing roll during thermal bonding is preferably 50 N/cm to 500 N/cm.
  • the linear pressure of the roll is preferably 50 N/cm or more, more preferably 100 N/cm or more, and even more preferably 150 N/cm or more, it is possible to obtain a spunbond nonwoven fabric that is strongly heat-bonded and has a strength that can withstand practical use.
  • the linear pressure of the heat embossing roll to preferably 500 N/cm or less, more preferably 400 N/cm or less, and even more preferably 300 N/cm or less, the spunbond nonwoven fabric for sanitary materials, particularly for disposable diapers, can be used. You can get the right amount of flexibility for your use.
  • thermal compression bonding may be performed using a thermal calender roll consisting of a pair of upper and lower flat rolls.
  • a pair of upper and lower flat rolls is a metal roll or elastic roll that does not have unevenness on the surface of the roll. can be used.
  • the elastic roll here means a roll made of a material having elasticity compared to a metal roll.
  • elastic rolls include so-called paper rolls such as paper, cotton, and aramid paper, and resin rolls made of urethane resin, epoxy resin, silicon resin, polyester resin, hard rubber, and mixtures thereof. is mentioned.
  • the spunbond nonwoven fabric of the present invention is excellent in softness and touch, has a uniform texture, has sufficient strength to withstand practical use, and is excellent in productivity. It can be widely used for materials and the like. In particular, it can be suitably used as sanitary materials such as disposable diapers, sanitary products and poultice base fabrics, and as medical materials such as protective clothing and surgical gowns.
  • the spunbond nonwoven fabric of the present invention will be specifically described based on examples. However, the present invention is not limited only to these examples. In the measurement of each physical property, unless otherwise specified, the measurement was performed according to the method described above.
  • ⁇ Measurement method nano-TMA (nano thermomechanical analysis)
  • ⁇ Measurement temperature 25 to 150°C
  • Temperature increase rate 10°C/second (600°C/minute)
  • ⁇ Measurement environment In the atmosphere.
  • Orientation parameter of core-sheath type conjugate fiber, orientation parameter of core-sheath type conjugate fiber in non-fused portion of spunbond nonwoven fabric, and orientation parameter of core-sheath type conjugate fiber in fused portion of spunbond nonwoven fabric. was measured by the method described above using a triple Raman spectrometer "T-64000" manufactured by Atago Bussan Co., Ltd. Measurement conditions were as follows.
  • ⁇ Measurement mode Microscopic Raman (polarization measurement)
  • ⁇ Objective lens ⁇ 100 ⁇ Beam diameter: 1 ⁇ m
  • ⁇ Light source Ar + laser/514.5 nm
  • ⁇ Laser power 100mW
  • ⁇ Diffraction grating Single1800gr/mm
  • ⁇ Cross slit 100 ⁇ m - Detector: CCD/Jobin Yvon 1024x256.
  • the core component is a polyethylene-based resin composed of a homopolymer of linear low-density polyethylene (LLDPE) having a melt flow rate (MFR) of 30 g/10 minutes, a melting point of 128°C, and a solid density of 0.955 g/ cm3 .
  • LLDPE linear low-density polyethylene
  • MFR melt flow rate
  • Polyethylene-based resin composed of LLDPE homopolymer having a melting point of 127°C and a solid density of 0.940 g/ cm3 was used as the sheath component, and melted in an extruder, and the hole diameter was 0.40 mm.
  • a concentric core-sheath composite fiber having a sheath component ratio of 40% by mass was spun from a spinneret with a hole depth of 8 mm at a spinning temperature of 220° C., a single hole throughput of 0.50 g/min.
  • the spun yarn was cooled and solidified, it was pulled and stretched by compressed air in an ejector and collected on a moving net to form a spunbond nonwoven fibrous web composed of polyethylene long fibers.
  • the characteristics of the core-sheath type conjugate fibers constituting the formed nonwoven fiber web were an average single fiber diameter of 11.6 ⁇ m and a solid density of 0.949 g/cm 3 , and the spinning speed converted from these was 5000 m/min. rice field. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the formed nonwoven fiber web is heat-bonded under the conditions of a linear pressure of 300 N/cm and a heat-bonding temperature of 126°C using a pair of upper and lower heat embossing rolls composed of the following upper roll and lower roll.
  • a 30 g/m 2 spunbond nonwoven was obtained.
  • Upper roll Metal embossed roll with polka dot pattern engraving with a bonding area ratio of 11%
  • Lower roll Metal flat roll
  • the resulting spunbond nonwoven fabric had a uniform texture and excellent texture. . Table 1 shows the evaluation results.
  • Example 2 A spunbond nonwoven fabric was obtained in the same manner as in Example 1, except that the ratio of the sheath component was 50% by mass and the flow rate of the compressed air in the ejector was reduced.
  • the properties of the fibers constituting the formed spunbond nonwoven fibrous web were an average single fiber diameter of 13.7 ⁇ m and a solid density of 0.948 g/cm 3 , and the spinning speed converted from these was 3600 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
  • Example 3 A spunbond nonwoven fabric was obtained in the same manner as in Example 1, except that the sheath component ratio was 30% by mass and the flow rate of compressed air in the ejector was reduced.
  • the properties of the fibers constituting the formed spunbond nonwoven fibrous web were an average single fiber diameter of 15.5 ⁇ m and a solid density of 0.951 g/cm 3 , and the spinning speed converted from these was 2800 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
  • the core component is a polyethylene resin made of LLDPE homopolymer having an MFR of 30 g/10 min, a melting point of 128°C and a solid density of 0.955 g/cm 3 , and an MFR of 50 g/10 min, a melting point of 128° C. and a solid density of 0
  • a spunbonded nonwoven fabric was obtained in the same manner as in Example 2, except that a polyethylene resin composed of a homopolymer of LLDPE of 0.950 g/cm 3 was used as the sheath component.
  • the properties of the fibers constituting the formed spunbond nonwoven fibrous web were an average single fiber diameter of 13.7 ⁇ m and a solid density of 0.953 g/cm 3 , and the spinning speed converted from these was 3600 m/min. As for spinnability, yarn breakage occurred several times in one hour of spinning. Table 1 shows the evaluation results of the obtained spunbond nonwoven fabric.
  • Example 5 A spunbonded nonwoven fabric was obtained in the same manner as in Example 2, except that the spinneret was changed to provide an eccentric sheath-core composite fiber.
  • the properties of the fibers constituting the formed spunbond nonwoven fibrous web were an average single fiber diameter of 13.7 ⁇ m and a solid density of 0.948 g/cm 3 , and the spinning speed converted from these was 3600 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour.
  • the resulting spunbond nonwoven fabric had a uniform texture and excellent touch. Table 1 shows the evaluation results.
  • Example 1 By the same method as in Example 2, except that the polyethylene resin consisting of a homopolymer of LLDPE having an MFR of 30 g/10 min, a melting point of 128° C., and a solid density of 0.955 g/cm 3 was used and spun as a single component. , to obtain a spunbond nonwoven.
  • the properties of the fibers constituting the formed spunbond nonwoven fibrous web were an average single fiber diameter of 13.9 ⁇ m, a solid density of 0.955 g/cm 3 and a spinning speed of 3500 m/min. The spinnability was poor with frequent occurrence of yarn breakage in one hour of spinning. Table 1 shows the evaluation results of the obtained spunbond nonwoven fabric.
  • Example 2 A polyethylene resin consisting of a homopolymer of LLDPE with an MFR of 60 g/10 min, a melting point of 127°C, and a solid density of 0.940 g/cm 3 was spun as a single component, and the heat bonding temperature was set to 120°C.
  • a spunbonded nonwoven fabric was obtained in the same manner as in Example 2 except for the above.
  • the properties of the fibers constituting the formed spunbond nonwoven fibrous web were an average single fiber diameter of 13.7 ⁇ m and a solid density of 0.940 g/cm 3 , and the spinning speed converted from these was 3600 m/min. Spinnability was good with no yarn breakage observed after spinning for 1 hour. When the thermal adhesion temperature was set to 126° C., sheet breakage occurred due to sticking to the thermal embossing roll, making production impossible. Table 1 shows the evaluation results of the obtained spunbond nonwoven fabric.
  • the core component is a polyethylene resin made of LLDPE homopolymer having an MFR of 30 g/10 min, a melting point of 128°C and a solid density of 0.955 g/ cm3 .
  • a spunbonded nonwoven fabric was obtained in the same manner as in Example 2, except that a polyethylene resin composed of a homopolymer of LLDPE of 0.950 g/cm 3 was used as the sheath component.
  • the properties of the fibers constituting the formed spunbond nonwoven fibrous web were an average single fiber diameter of 13.7 ⁇ m and a solid density of 0.953 g/cm 3 , and the spinning speed converted from these was 3600 m/min. The spinnability was poor with frequent occurrence of yarn breakage in one hour of spinning. Table 1 shows the evaluation results of the obtained spunbond nonwoven fabric.
  • Spunbonded nonwoven fabrics of Examples 1 to 5 which are composed of core-sheath type conjugate fibers containing polyethylene resin as a main component and satisfy a ratio Ofs/Ofc of Ofs to Ofc of non-fused portions of 0.10 to 0.90.
  • the product had excellent flexibility and touch, uniform formation, sufficient strength for practical use, and excellent productivity.
  • the spunbonded nonwoven fabrics shown in Comparative Examples 1 to 4 had low tensile strength per basis weight in the transverse direction and stress at 5% elongation in the vertical direction per basis weight, and were inferior in strength.

Abstract

本発明は、柔軟性や肌触りに優れ、地合が均一であり、実用に耐える十分な強度を有し、かつ生産性に優れたスパンボンド不織布を提供することを課題とする。 本発明は、ポリエチレン系樹脂を主成分とする芯鞘型複合繊維からなるスパンボンド不織布であって、前記のスパンボンド不織布は融着部と非融着部とを有し、前記の非融着部の芯鞘型複合繊維の芯成分の配向パラメータOfcに対する前記の非融着部の芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率(Ofs/Ofc)が0.10~0.90である、スパンボンド不織布である。

Description

スパンボンド不織布および芯鞘型複合繊維
 本発明は、ポリエチレンスパンボンド不織布および芯鞘型複合繊維に関する。
 一般に、紙おむつや生理用ナプキン等の衛生材料用の不織布には、肌触り、柔軟性および高い生産性が求められている。特に、紙おむつのトップシートは肌に直接触れる素材であることから、これらの要求が高い用途の一つである。
 このように、肌触りや柔軟性を向上させる手段として、従来から弾性率や摩擦係数がポリプロピレンよりも低い、ポリエチレンを用いる検討がなされている。例えば、密度の異なる直鎖状低密度ポリエチレンを混合した樹脂組成物からなるポリエチレンスパンボンド不織布が提案されている(特許文献1参照。)。
 また別に、密度が0.930~0.965g/cmで、平均単繊維径が8.0~16.5μmのポリエチレン繊維からなり、温度が230℃で6.23rad/secにおける複素粘度が90Pa・sec以下であるポリエチレンスパンボンド不織布が提案されている(特許文献2参照。)。
 確かに、これらの不織布はポリエチレン樹脂の特性により、高い柔軟性を有するものである。
特開2008-274445号公報 特開2019-26954号公報
 しかしながら、ポリエチレン樹脂からなるスパンボンド不織布は、従来から十分な強度を付与することが大きな課題であり、特許文献1や特許文献2に開示された方法でも、実用に供しうる強度を実現することが困難である。
 そこで、本発明の目的は、柔軟性や肌触りに優れ、地合が均一であり、実用に耐える十分な強度を有し、かつ生産性に優れたスパンボンド不織布を提供することにある。
 また、本発明の別の目的は、柔軟性や肌触りに優れ、かつ優れた紡糸安定性と熱接着性を兼ね備えた複合繊維を提供することにある。
 本発明のスパンボンド不織布は、ポリエチレン系樹脂を主成分とする芯鞘型複合繊維からなるスパンボンド不織布であって、前記のスパンボンド不織布は融着部と非融着部とを有し、前記の非融着部の芯鞘型複合繊維の芯成分の配向パラメータOfcに対する前記の非融着部の芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率Ofs/Ofcが0.10~0.90である。
 本発明のスパンボンド不織布の好ましい態様によれば、前記融着部の芯鞘型複合繊維の鞘成分の配向パラメータObsが1.2~3.0であり、かつ前記融着部の芯鞘型複合繊維の芯成分の配向パラメータObcが2.0~10.0である。
 本発明のスパンボンド不織布の好ましい態様によれば、前記の芯鞘型複合繊維の固体密度が0.935g/cm以上0.970g/cm以下である。
 本発明のスパンボンド不織布の好ましい態様によれば、前記Ofsが2.0以上8.0以下である。
 本発明のスパンボンド不織布の好ましい態様によれば、前記のスパンボンド不織布が示差走査型熱量測定において100℃以上150℃以下の範囲内に単一の融解ピーク温度を有する。
 本発明のスパンボンド不織布の好ましい態様によれば、前記のスパンボンド不織布の目付あたりのヨコ方向の引張強力が0.20(N/25mm)/(g/m)以上である。
 本発明のスパンボンド不織布の好ましい態様によれば、前記のスパンボンド不織布の目付あたりのタテ方向の5%伸長時応力が0.20(N/25mm)/(g/m)以上である。
 また、本発明の芯鞘型複合繊維は、ポリエチレン系樹脂を主成分とする芯鞘型複合繊維であって、前記の芯鞘型複合繊維の芯成分の配向パラメータOfcに対する前記の芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率Ofs/Ofcが0.1~0.9である。
 本発明の芯鞘型複合繊維の好ましい態様によれば、前記の芯鞘型複合繊維の固体密度が0.935g/cm以上0.970g/cm以下である。
 本発明の芯鞘型複合繊維の好ましい態様によれば、前記Ofsが2以上8以下である。
 本発明の芯鞘型複合繊維の好ましい態様によれば、前記の芯鞘型複合繊維が示差走査型熱量測定において100℃以上150℃以下の範囲内に単一の融解ピーク温度を有する。
 本発明によれば、柔軟性や肌触りに優れ、地合が均一であり、実用に供しうる十分な強度を有し、かつ生産性に優れたポリエチレンスパンボンド不織布が得られる。これらの特性から、本発明のスパンボンド不織布は、特に衛生材料用途として好適に用いることができる。
 また、本発明によれば、柔軟性や肌触りに優れ、かつ優れた紡糸安定性と熱接着性を兼ね備えた芯鞘型複合繊維が得られる。本発明の芯鞘型複合繊維を用いてなるスパンボンド不織布は、前記の優れた特性を有する。
 本発明のスパンボンド不織布は、ポリエチレン系樹脂を主成分とする芯鞘型複合繊維からなるスパンボンド不織布であって、前記のスパンボンド不織布は融着部と非融着部とを有し、前記の非融着部の芯鞘型複合繊維の芯成分の配向パラメータOfcに対する前記の非融着部の芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率Ofs/Ofcが0.10~0.90である。
 このようにすることにより、柔軟性や肌触りに優れ、地合が均一であり、実用に供しうる十分な強度を有し、かつ生産性に優れたポリエチレンスパンボンド不織布とすることができる。
 また、本発明の芯鞘型複合繊維は、ポリエチレン系樹脂を主成分とする芯鞘型複合繊維であって、前記の芯鞘型複合繊維の芯成分の配向パラメータOfcに対する前記の非融着部の芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率Ofs/Ofcが0.10~0.90である。
 このようにすることにより、柔軟性や肌触りに優れ、かつ優れた紡糸安定性と熱接着性を兼ね備えた芯鞘型複合繊維とすることができ、本発明の芯鞘型複合繊維を用いてなるスパンボンド不織布は、柔軟性や肌触りに優れ、地合が均一であり、実用に供しうる十分な強度を有し、かつ生産性に優れたポリエチレンスパンボンド不織布とすることができる。
 以下に、これら本発明の構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。
 [ポリエチレン系樹脂]
 本発明の芯鞘型複合繊維および本発明のスパンボンド不織布を構成する芯鞘型複合繊維(以下、これらをまとめて「本発明における芯鞘型複合繊維」と呼ぶことがある。)は、ポリエチレン系樹脂を主成分としてなる。ポリエチレン系樹脂を主成分とすることにより、優れた紡糸安定性と熱接着性を兼ね備えた芯鞘型複合繊維とすることができる。また、柔軟性や肌触りに優れたスパンボンド不織布とすることができる。
 ポリエチレン系樹脂とは、繰り返し単位としてエチレン単位を有する樹脂を意味し、エチレンの単独重合体もしくはエチレンと各種α-オレフィンとの共重合体などが挙げられる。中でも、紡糸安定性や強度の低下を防ぐため、エチレンの単独重合体が好ましい。
 エチレンと各種α-オレフィンとの共重合体を用いる場合、共重合成分としては、紡糸安定性に優れることから、ヘプテンやオクテンが好ましく、オクテンがより好ましい。また、共重合比率は、紡糸安定性や強度の低下を防ぐため、5mol%以下が好ましく、3mol%以下がより好ましく、1mol%以下がさらに好ましい。
 本発明で用いられるポリエチレン系樹脂について、エチレンの単独重合体の割合が60質量%以上であることが好ましく、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。このようにすることで良好な紡糸性を維持し、かつ強度を向上させることができる。
 本発明で用いられるポリエチレン系樹脂としては、中密度ポリエチレン、高密度ポリエチレン(以下、HDPEと略すことがある。)、または直鎖状低密度ポリエチレン(以下、LLDPEと略すことがある。)などが挙げられる。紡糸性が優れていることから、LLDPEが好ましく用いられる。
 また、本発明で用いるポリエチレン系樹脂は2種以上の混合物であってもよく、またポリプロピレン、ポリ-4-メチル-1-ペンテンなどの他のポリオレフィン系樹脂、熱可塑性エラストマー、低融点ポリエステル、および低融点ポリアミド等の熱可塑性樹脂を含有する樹脂組成物を用いることもできる。ただし、ポリエチレンの特性を十分に発現させるため、混合する他の熱可塑性樹脂の比率は5質量%以下であることが好ましく、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
 本発明で用いられるポリエチレン系樹脂には、肌触りや柔軟性を向上させるために、炭素数23以上50以下の脂肪酸アミド化合物が含有されていることが好ましい。前記脂肪酸アミド化合物の炭素数を好ましくは23以上、より好ましくは30以上とすることにより、脂肪酸アミド化合物が過度に繊維表面に露出することを抑制し、紡糸性と加工安定性に優れたものとし、高い生産性を保持することができる。一方、前記脂肪酸アミド化合物の炭素数を好ましくは50以下、より好ましくは42以下とすることにより、脂肪酸アミド化合物が繊維表面に移動しやすくなり、スパンボンド不織布に滑り性と柔軟性を付与することができる。
 本発明で使用される炭素数23以上50以下の脂肪酸アミド化合物としては、飽和脂肪酸モノアミド化合物、飽和脂肪酸ジアミド化合物、不飽和脂肪酸モノアミド化合物、および不飽和脂肪酸ジアミド化合物などが挙げられる。
 より具体的には、テトラドコサン酸アミド、ヘキサドコサン酸アミド、オクタドコサン酸アミド、ネルボン酸アミド、テトラコサペンタエン酸アミド、ニシン酸アミド、エチレンビスラウリン酸アミド、メチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、ジステアリルアジピン酸アミド、ジステアリルセバシン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、およびヘキサメチレンビスオレイン酸アミドなどが挙げられ、これらは複数組み合わせて用いることもできる。
 本発明では、脂肪酸アミド化合物の中でも、高い滑り性や柔軟性を付与することができ、紡糸性にも優れることから、特に飽和脂肪酸ジアミド化合物であるエチレンビスステアリン酸アミドが好ましく用いられる。
 本発明では、前記ポリエチレン系樹脂に対する前記脂肪酸アミド化合物の添加量は、0.01質量%~5質量%であることが好ましい。脂肪酸アミド化合物の添加量を好ましくは0.01質量%~5質量%、より好ましくは0.1質量%~3質量%、さらに好ましくは0.1質量%~1質量%とすることにより、紡糸性を維持しながら適度な滑り性と柔軟性を付与することができる。
 ここでいう添加量とは、本発明のスパンボンド不織布を構成する全てのポリエチレン系樹脂中の脂肪酸アミド化合物の質量分率を言う。例えば、芯鞘型複合繊維を構成する鞘部成分のみに脂肪酸アミド化合物を添加する場合でも、芯鞘成分全体量に対する添加割合を算出している。
 ポリエチレン系樹脂からなる繊維に対する脂肪酸アミド化合物の添加量を測定する方法としては、例えば、前記の繊維から添加剤を溶媒抽出し、液体クロマトグラフ質量分析(LS/MS)などを用いて定量分析する方法が挙げられる。このとき抽出溶媒は脂肪酸アミド化合物の種類に応じて適宜選択されるものであるが、例えばエチレンビスステアリン酸アミドの場合には、クロロホルム-メタノール混液などを用いる方法が一例として挙げられる。
 本発明で用いられるポリエチレン系樹脂には、本発明の効果を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、耐熱安定剤、帯電防止剤、帯電助剤、紡曇剤、ブロッキング防止剤、ポリエチレンワックスを含む滑剤、結晶核剤、および顔料等の添加物、あるいは他の重合体を必要に応じて添加することができる。
 本発明で用いられるポリエチレン系樹脂の融点Tmrは、100℃~150℃であることが好ましい。Tmrを好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上とすることにより、実用に耐え得る耐熱性を得やすくなる。また、Tmrを好ましくは150℃以下、より好ましくは140℃以下、さらに好ましくは135℃以下とすることにより、口金から吐出された糸条を冷却し易くなり、繊維同士の融着を抑制し細い繊維径でも安定した紡糸が行い易くなる。ここで融点Tmrとは、樹脂を示差走査型熱量測定法(DSC)によって測定して得られる、最大の融解ピーク温度を指す。
 本発明で用いられるポリエチレン系樹脂のメルトフローレート(以下、MFRと略すことがある。)は、1g/10分~300g/10分であることが好ましい。ポリエチレン系樹脂のMFRを好ましくは1g/10分以上、より好ましくは10g/10分以上、さらに好ましくは30g/10分以上とすることにより、細い繊維径でも安定して紡糸することができ、肌触りに優れ、地合が均一であり、かつ実用に耐える十分な強度を有するスパンボンド不織布とすることができる。一方、ポリエチレン系樹脂のMFRを好ましくは300g/10分以下とすることにより、単糸強度の低下を抑制するとともに、熱接着時に過度に軟化しやすくなり熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。
 本発明における芯鞘型複合繊維は、芯成分のポリエチレン系樹脂のMFRが1g/10~100g/10分であることが好ましい。芯成分のポリエチレン系樹脂のMFRが好ましくは1g/10分以上、より好ましくは10g/10分以上、さらに好ましくは30g/10分以上であることにより、細い繊維径でも安定して紡糸することができ、肌触りに優れ、地合が均一であり、かつ実用に耐える十分な強度を有するスパンボンド不織布とすることができる。一方、ポリエチレン系樹脂のMFRが好ましくは100g/10分以下、より好ましくは80g/10分以下、さらに好ましくは60g/10分以下であることにより、芯鞘型複合繊維の単糸強度の低下を抑制し、実用に耐える十分な強度を有するスパンボンド不織布とすることができる。
 本発明における芯鞘型複合繊維は、鞘成分のポリエチレン系樹脂のMFRが、芯成分のポリエチレン系樹脂のMFRよりも5g/10分~200g/10分大きいことが好ましい。鞘成分のポリエチレン系樹脂のMFRを、芯成分のポリエチレン系樹脂のMFRよりも好ましくは5g/10分以上、より好ましくは10g/10分以上、さらに好ましくは20g/10分以上大きくすることにより、紡糸時に芯成分に紡糸応力を集中させ、芯成分の分子配向を促進させるとともに、鞘成分の分子配向を抑制させることができる。一方、鞘成分のポリエチレン系樹脂のMFRが、芯成分のポリエチレン系樹脂のMFRよりも200g/10分を超えて大きいと、芯鞘型複合繊維の単糸強度が低下するとともに、熱接着時に過度に軟化しやすくなり、熱ロールに貼り付くなどの操業上の問題が発生するため好ましくない。
 ポリエチレン系樹脂のMFRは、ASTM D1238(A法)によって測定される値を採用する。この規格によれば、ポリエチレンは荷重2.16kg、温度190℃にて測定することが規定されており、本発明に係るポリエチレン系樹脂も同じ荷重、温度で測定することとする。
 もちろん、MFRの異なる2種類以上の樹脂を任意の割合でブレンドして、本発明で用いられるポリエチレン系樹脂のMFRを調整することもできる。この場合、主となるポリエチレン系樹脂、すなわちポリエチレン系樹脂において最も大きな質量分率を占めるポリエチレン系樹脂に対してブレンドする樹脂のMFRは、10~1000g/10分であることが好ましく、より好ましくは20~800g/10分、さらに好ましくは30~600g/10分である。このようにすることにより、ブレンドしたポリエチレン系樹脂に部分的に粘度斑が生じることを防ぎ、単繊維径や単繊維繊度を均一化したり、細い繊維でも安定して紡糸したりすることができる。
 また、本発明で用いられるポリエチレン系樹脂には、ポリエチレン系樹脂を分解してMFRを低下させるようなもの、例えば、過酸化物、特に、ジアルキル過酸化物等の遊離ラジカル剤などを添加しないことが好ましい。このようにすることにより、不均一な分解やゲル化に起因する部分的な粘度斑の発生を防ぎ、単繊維繊度を均一化したり、細い繊維でも安定して紡糸したりすることができる。また分解ガスによる気泡で紡糸性が悪化することを防ぐこともできる。
 本発明で用いられるポリエチレン系樹脂の固体密度は、0.935g/cm~0.970g/cmであることが好ましい。ポリエチレン系樹脂の固体密度を好ましくは0.935g/cm以上、より好ましくは0.940g/cm以上、さらに好ましくは0.945g/cm以上とすることにより、熱接着時に過度に軟化しやすくなり熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。またポリエチレン系樹脂の固体密度を、好ましくは0.970g/cm以下、より好ましくは0.965g/cm以下、さらに好ましくは0.96g/cm以下とすることにより、紡糸性を向上させ、細い繊度でも安定して紡糸することができる。
 [芯鞘型複合繊維]
 本発明における芯鞘型複合繊維には、海島型複合繊維も含まれるものとする。海島型複合繊維の場合においては、複合繊維の芯成分または鞘成分のポリエチレン系樹脂の特性値を測定・解釈などするときは、「鞘成分」とあるのを「海成分」と、「芯成分」とあるのを「島成分」と読み替えた上で、測定などを行うこととする。
 本発明における芯鞘型複合繊維は、鞘成分の質量比率が20質量%~80質量%であることが好ましい。鞘成分の質量比率が好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上であることにより、熱接着時に鞘成分同士が強固に融着し、実用に耐える十分な強度を有するスパンボンド不織布とすることができる。一方、鞘成分の質量比率が好ましくは80質量%以下、より好ましくは70質量%以下、さらに好ましくは60質量%以下であることにより、高配向である芯成分の割合を増やし、芯鞘型複合繊維の単糸強度を向上させ、実用に耐える十分な強度を有するスパンボンド不織布とすることができる。
 本発明の芯鞘型複合繊維、および本発明のスパンボンド不織布の非融着部の芯鞘型複合繊維は、芯成分の配向パラメータOfcに対する鞘成分の配向パラメータOfsの比率Ofs/Ofcが0.10~0.90である。
 ここで、本発明における芯鞘型複合繊維の配向パラメータとは、数値が大きいほど芯鞘型複合繊維を構成するポリエチレン系樹脂の分子鎖が特定の方向に配向していることを示し、数値が小さいほど分子鎖がランダムに配向していることを示す指標(単位なし)である。なお、この配向パラメータは完全にランダムに配向しているとき、1.2となる。
 Ofs/Ofcが0.10以上、好ましくは0.15以上、より好ましくは0.20以上であることにより、紡糸時に芯成分が存在する繊維内層に過度に延伸応力が集中して紡糸安定性が低下することを防ぐことができる。一方、Ofs/Ofcが0.90以下、好ましくは0.70以下、より好ましくは0.50以下であることにより、熱接着時に繊維表層のみを軟化させることができる。このようにすることにより、繊維内層の分子配向を残留させつつ、繊維同士を強固に熱接着させることができる。そして本発明のスパンボンド不織布として見れば、柔軟性や肌触りに優れ、地合が均一であり、実用に耐える十分な強度を有し、かつ生産性に優れたポリエチレンスパンボンド不織布とすることができる。
 本発明における芯鞘型複合繊維の鞘成分の配向パラメータOfsおよび芯鞘型複合繊維の芯成分の配向パラメータOfcは、以下の方法で測定される。
 (1)芯鞘型複合繊維またはスパンボンド不織布の試料をビスフェノール系エポキシ樹脂で樹脂包埋する。
 (2)樹脂が硬化した後、ミクロトームにより切片を切り出す。切片厚みは2μmとする。この際、切断面が楕円形となるよう繊維軸から傾けて切断し、以降では楕円形の短軸の厚みが一定厚を示す箇所を選択して測定する。なお、切断角度が4°以内とすることで、2μmの膜厚内では繊維軸と平行と見なすことができる。
 試料がスパンボンド不織布の場合は、
 (2)樹脂が硬化した後、スパンボンド不織布の非融着部の中央付近(周囲の融着部から概ね等距離となる箇所)が切断面となるようミクロトームにより切片を切り出す。切片厚みは2μmとする。非融着部の複合繊維であり、かつ切断角度が繊維軸から4°以内である箇所を選択して以降の測定を行う。
 (3)芯鞘型複合繊維の切片の繊維表層から中心部にかけて、繊維軸と平行な偏光を入射し、ラマンスペクトルのライン測定を行う。
 (4)芯成分、鞘成分それぞれの位置における1130cm-1付近および1060cm-1付近のラマンバンド強度I1130およびI1060を算出し、その強度比から、以下の式(d)に基づいて配向パラメータを算出する。芯成分が独立した複数の領域に分割されている場合は、すべての領域で配向パラメータを測定し、最も高い値を採用する。
配向パラメータ=I1130/I1060   ・・・(d)。
 (5)芯鞘型複合繊維の軸方向に場所を変えて3箇所で同様の測定を行い、配向パラメータの平均値を算出し、小数点以下第二位を四捨五入する。
 試料がスパンボンド不織布の場合は、
 (5)スパンボンド不織布の異なる非融着部について3箇所で同様の測定を行い、配向パラメータの平均値を算出し、小数点以下第二位を四捨五入する。
 本発明の芯鞘型複合繊維、および本発明のスパンボンド不織布の非融着部の芯鞘型複合繊維は、鞘成分の配向パラメータOfsが2~8であることが好ましい。Ofsが好ましくは2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上であることにより、熱接着時に繊維表層が過度に軟化して熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。一方、Ofsが好ましくは8.0以下、より好ましくは7.0以下、さらに好ましくは6.0以下であることにより、熱接着時に繊維表層が軟化しやすくなり、繊維同士を強固に熱接着させることができるため、実用に耐える強度を有するスパンボンド不織布とすることができる。
 Ofsは、前記のポリエチレン系樹脂のMFR、融点、添加剤、複合繊維の鞘成分の質量比率、および/または、後述する紡糸温度、紡糸速度などによって制御することができる。
 本発明の芯鞘型複合繊維、および本発明のスパンボンド不織布の非融着部の芯鞘型複合繊維は、芯成分の配向パラメータOfcが6~18であることが好ましい。Ofcが好ましくは6.0以上、より好ましくは7.0以上、さらに好ましくは8.0以上であることにより、繊維内層の強度を向上させ、熱接着後に実用に耐える強度を有するスパンボンド不織布とすることができる。また熱接着時に繊維表層が過度に軟化して熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。一方、Ofcが好ましくは18.0以下、より好ましくは16.0以下、さらに好ましくは14.0以下であることにより、紡糸時の繊維内層への過度な延伸応力集中を抑え、紡糸安定性を向上させることができる。
 Ofcは、前記のポリエチレン系樹脂のMFR、融点、添加剤、複合繊維の芯成分の質量比率、および/または、後述する紡糸温度、紡糸速度などによって制御することができる。
 本発明の芯鞘型複合繊維、および本発明のスパンボンド不織布の非融着部の芯鞘型複合繊維は、表層の軟化温度Tss(℃)と内層の軟化温度Tsc(℃)とが下記の式(a)を満足することが好ましい。
(Tss+5)≦Tsc≦(Tss+30)   ・・・(a)。
 Tsc(℃)が好ましくは(Tss+5)℃以上、より好ましくは(Tss+7)℃以上、さらに好ましくは(Tss+10)℃以上であることにより、熱接着時に繊維表層を形成する成分のみを軟化させることができる。そして、このようにすることにより、繊維内層の分子配向を残留させつつ、繊維同士を強固に熱接着させることができるため、実用に耐える強度を有するスパンボンド不織布とすることができる。一方、Tsc(℃)が好ましくは(Tss+30)℃以下、より好ましくは(Tss+25)℃以下、さらに好ましくは(Tss+20)℃以下であることにより、熱接着時に繊維表層が過度に軟化して熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。
 Tss(℃)とTsc(℃)は、ナノスケール熱機械分析法(nanoscale-Thermomechanical Analysis;nano-TMA)により、下記の手順によって算出される。このnano-TMAはサブミクロン領域での熱分析が可能であり、原子間力顕微鏡(AFM)のプローブ(カンチレバー)に加熱ヒーターを備えた温度センサーを取り付けた装置を使用する。
 本発明のスパンボンド不織布においては、前記非融着部のTss(℃)およびTsc(℃)は、スパンボンド不織布の非融着部から芯鞘型複合繊維を20本採取した後、下記の手順に従って測定・算出される。
 (1)芯鞘型複合繊維を試料台に固定し、繊維直径方向の中央付近に、加熱ヒーターを備えた温度センサー付きのAFMプローブを固定する。
 (2)プローブを25℃から150℃まで、昇温速度10℃/秒で昇温し、プローブの高さ変化(a.u.)を測定する。
 (3)プローブの高さ変化から試料中へプローブが針入する温度(軟化温度(℃))を測定し、低温から観測された順にTs1、Ts2、Ts3・・・とする。
 (4)同様の測定を20本の繊維で行い、Ts1の平均値の小数点以下第二位を四捨五入し、Tss(℃)とする。またTs2の平均値の小数点以下第二位を四捨五入し、Tsc(℃)とする。なお、AFMプローブの接触位置により一部の芯鞘型複合繊維でTs2が観測されないことがあるが、この場合は観測されたTs2のみを平均し、内層の軟化温度Tsc(℃)を求める。
 TssおよびTscは、前記のポリエチレン系樹脂のMFR、融点、添加剤、芯鞘型複合繊維を構成する鞘成分の質量比率、および/または、後述する紡糸温度、紡糸速度などによって制御することができる。
 本発明の芯鞘型複合繊維、および本発明のスパンボンド不織布は、示差走査型熱量測定(DSC)において単一の融解ピーク温度Tmを有することが好ましい。なお、本発明において、「芯鞘型複合繊維が示差走査型熱量測定において単一の融解ピーク温度Tmを有する」、「スパンボンド不織布が示差走査型熱量測定法で単一の融解ピーク温度Tmを有する」とは、下記の測定方法の(3)に記載の融解吸熱ピークが、実質的に1つのピークしか観測されないことを言う。このようにすることにより、本発明の芯鞘型複合繊維を、例えば、スパンボンド不織布を構成する繊維として用いる場合には、また、本発明のスパンボンド不織布においては、熱接着時に低融点成分が溶融し熱ロールに貼り付くなどの操業上の問題を発生させることなく、繊維同士を十分な温度で強固に熱接着させることができるため、実用に耐える強度を有するスパンボンド不織布が得られ易くなる。
 示差走査型熱量測定法(DSC)により得られる芯鞘型複合繊維またはスパンボンド不織布の融解ピーク温度Tmは、以下の手順によって算出される値を採用するものとする。
 (1)芯鞘型複合繊維またはスパンボンド不織布の繊維片を試料量0.5~5mgサンプリングする。
 (2)示差走査型熱量測定法(DSC)を用い、昇温速度20℃/分で、常温から温度200℃まで昇温しDSC曲線を得る。
 (3)DSC曲線から融解吸熱ピークのピークトップ温度を読み取り、融解ピーク温度Tm(℃)とする。
 なお、本発明の芯鞘型複合繊維を、本発明のスパンボンド不織布を構成する繊維として用いる場合には、当該芯鞘型複合繊維のTmと、当該スパンボンド不織布のTmとは、同じ値を示すものと考えることができる。
 そして、本発明の芯鞘型複合繊維、および本発明のスパンボンド不織布は、下記の式(b)および(c)を満足することが好ましい。
100≦Tm≦150   ・・・(b)
(Tm-40)≦Tss≦(Tm-10)   ・・・(c)
このようにすることで、実用に耐える耐熱性と強度を有し、かつ紡糸安定性と操業安定性に優れる芯鞘型複合繊維およびスパンボンド不織布を得ることができる。
 まず、式(b)に関し、示差走査型熱量測定法(DSC)による芯鞘型複合繊維の融解ピーク温度Tm(℃)については、100℃以上150℃以下であることが好ましい。融解ピーク温度Tm(℃)が好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上であることにより、実用に耐える耐熱性を付与することができる。また、融解ピーク温度Tm(℃)が好ましくは150℃以下、より好ましくは140℃以下、さらに好ましくは135℃以下であることにより、口金から吐出された糸条を冷却し易くなり、繊維同士の融着を抑制し細い繊維径でも安定した紡糸が行い易くなる。
 次に、式(c)に関し、前記芯鞘型複合繊維の表層の軟化温度Tss(℃)が、(Tm-40)℃以上かつ(Tm-10)℃以下であることが好ましい。前記の表層の軟化温度Tss(℃)が好ましくは(Tm-40)℃以上、より好ましくは(Tm-35)℃以上、さらに好ましくは(Tm-30)℃以上であることにより、熱接着時に繊維表層が過度に軟化して熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。一方、Tss(℃)が好ましくは(Tm-10)℃以下、より好ましくは(Tm-15)℃以下、さらに好ましくは(Tm-20)℃以下であることにより、熱接着時に繊維同士を強固に熱接着させることができ、実用に耐える強度を有するスパンボンド不織布とすることができる。
 さらに、本発明における芯鞘型複合繊維は、芯鞘型複合繊維の軟化が進行した後に溶融するため、内層の軟化温度Tsc(℃)は示差走査型熱量測定法(DSC)による融解ピーク温度Tm(℃)よりも小さくなる。そして、前記の芯鞘型複合繊維の内層の軟化温度Tsc(℃)が、(Tm-20)℃以上かつ(Tm-1)℃以下であることが好ましい。内層の軟化温度Tsc(℃)が好ましくは(Tm-20)℃以上、より好ましくは(Tm-15)℃以上、さらに好ましくは(Tm-10)℃以上であることにより、繊維内層の強度を向上させ、熱接着後に実用に耐える強度を有するスパンボンド不織布とすることができる。一方、Tsc(℃)が、好ましくは(Tm-1)℃以下、より好ましは(Tm-3)℃以下、さらに好ましくは(Tm-5)℃以下であることにより、熱接着時に繊維同士を強固に熱接着させることができ、実用に耐える強度を有するスパンボンド不織布とすることができる。
 本発明における芯鞘型複合繊維の複合形態としては、例えば、同心芯鞘型、偏心芯鞘型および海島型などの複合形態を用いることができる。中でも、紡糸性に優れ、熱接着により繊維同士を均一に接着させることができることから、芯鞘型の複合形態とすることが好ましく、同心芯鞘型の複合形態とすることがより好ましい態様である。
 本発明における芯鞘型複合繊維の断面形状としては、丸断面、扁平断面、およびY型やC型などの異形断面を用いることができる。中でも、扁平断面や異形断面のような構造由来の曲げにくさがなく、ポリエチレン樹脂の持つ柔軟性を生かしたスパンボンド不織布とすることができることから、丸断面が好ましい態様である。また断面形状として中空断面を適用することもできるが、紡糸性に優れ、細い繊維径でも安定して紡糸できることから、中実断面が好ましい態様である。
 本発明における芯鞘型複合繊維は、平均単繊維繊度が0.5dtex~3.0dtexであることが好ましい。平均単繊維繊度を好ましくは0.5dtex以上、より好ましくは0.6dtex以上、さらに好ましくは0.7dtex以上とすることにより、紡糸性の低下を防ぎ、生産安定性に優れたスパンボンド不織布とすることができる。一方、平均単繊維繊度を好ましくは3.0dtex以下、より好ましくは2.4dtex以下、さらに好ましくは2.0dtex以下とすることにより、肌触りに優れ、地合が均一であり、かつ実用に耐える十分な強度を有するスパンボンド不織布とすることができる。
 平均単繊維繊度は、後述する紡糸温度、単孔吐出量、紡糸速度などによって制御することができる。
 本発明における芯鞘型複合繊維は、平均単繊維径が8~20μmであることが好ましい。平均単繊維径を好ましくは8μm以上、より好ましくは9μm以上、さらに好ましくは10μm以上とすることにより、紡糸性の低下を防ぎ、生産安定性に優れたスパンボンド不織布とすることができる。一方、平均単繊維径を好ましくは20μm以下、より好ましくは18μm以下、さらに好ましくは16μm以下とすることにより、肌触りに優れ、地合が均一であり、かつ実用に耐える十分な強度を有するスパンボンド不織布とすることができる。
 なお、本発明においては、前記の芯鞘型複合繊維の平均単繊維径(μm)は、以下の手順によって算出される値を採用するものとする。
 (1)芯鞘型複合繊維について、マイクロスコープまたは走査型電子顕微鏡で500~2000倍の表面写真を撮影し、異なる計100本の芯鞘型複合繊維の幅(直径)を測定する。芯鞘型複合繊維の断面が異形の場合には断面積を測定し、同一の断面積を有する正円の直径を求める。
 (2)測定した100本の直径の値の平均し、小数点以下第二位を四捨五入して平均単繊維径(μm)とする。
 また本発明、前記のスパンボンド不織布を構成する芯鞘型複合繊維の平均単繊維径(μm)は、以下の手順によって算出される値を採用するものとする。
 (1)スパンボンド不織布からランダムに小片サンプル(100×100mm)を10個採取する。
 (2)マイクロスコープまたは走査型電子顕微鏡で500~2000倍の表面写真を撮影し、各サンプルから10本ずつ、計100本の非融着部の芯鞘型複合繊維の幅(直径)を測定する。芯鞘型複合繊維の断面が異形の場合には断面積を測定し、同一の断面積を有する正円の直径を求める。
 (3)測定した100本の直径の値の平均し、小数点以下第二位を四捨五入して平均単繊維径(μm)とする。
 平均単繊維径は、後述する紡糸温度、単孔吐出量、紡糸速度などによって制御することができる。
 本発明における芯鞘型複合繊維は、その固体密度が、0.935g/cm~0.970g/cmであることが好ましい。ポリエチレン系樹脂の固体密度を、好ましくは0.935g/cm以上、より好ましくは0.940g/cm以上、さらに好ましくは0.945g/cm以上とすることにより、熱接着時に過度に軟化しやすくなり熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。またポリエチレン系樹脂の固体密度を、好ましくは0.970g/cm以下、より好ましくは0.965g/cm以下、さらに好ましくは0.960g/cm以下とすることにより、紡糸性を向上させ、細い繊度でも安定して紡糸することができる。
 なお、本発明においては、前記の複合繊維の固体密度(g/cm)は、以下の手順によって算出される値を採用するものとする。
 (1)複合繊維の試験片をエタノールに浸して洗浄し、大気中で乾燥する。
 (2)複合繊維の試験片について、水-エタノール混合液系を用いて、浮沈法により密度を求める。
 (3)同様の測定を異なる試験片を用いて5回行い、測定した密度の値(g/cm)を平均し、小数点以下第四位を四捨五入して複合繊維の固体密度(g/cm)とする。
 また、前記のスパンボンド不織布を構成する複合繊維の固体密度(g/cm)は、以下の手順によって算出される値を採用するものとする。
 (1)スパンボンド不織布からランダムに小片を5枚採取する。
 (2)小片をエタノールに浸して洗浄し、大気中で乾燥する。
 (3)スパンボンド不織布の小片について、水-エタノール混合液系を用いて、浮沈法により密度を求める。
 (4)同様の測定を5枚の小片で行い、測定した密度の値(g/cm)を平均し、小数点以下第四位を四捨五入して複合繊維の固体密度(g/cm)とする。
 [スパンボンド不織布]
 本発明のスパンボンド不織布は、ポリエチレン系樹脂を主成分とする芯鞘型複合繊維からなる。
 本発明のスパンボンド不織布は、融着部と非融着部とを有する。かかる形態とすることにより、ポリエチレン系樹脂由来の柔軟性や肌触りを保持しつつ、実用に耐える十分な強度を有するスパンボンド不織布とすることができる。融着部とは芯鞘型複合繊維同士が融着している箇所を指し、非融着部とは芯鞘型複合繊維同士が融着しておらず断面形状を保持している箇所を指す。
 本発明のスパンボンド不織布は、前記融着部の芯鞘型複合繊維において、鞘成分の配向パラメータObsが1.2~3.0であることが好ましい。Obsが好ましくは1.2のとき、分子鎖は完全にランダムに配向している状態であり、これよりも小さい値となることはない。一方、鞘成分の配向パラメータObsが好ましくは3.0以下、より好ましくは2.5以下、さらに好ましくは2.0以下であることにより、繊維表層を形成する鞘成分同士が強固に熱接着し、実用に耐える強度を有するスパンボンド不織布とすることができる。
 融着部の芯鞘型複合繊維における鞘成分の配向パラメータObsは、前記の芯鞘型複合繊維の鞘成分の配向パラメータOfs、および/または、後述する熱接着の条件(温度、線圧等)などを適切に調整することにより制御することができる。
 本発明のスパンボンド不織布は、前記融着部の芯鞘型複合繊維において、芯成分の配向パラメータObcが2~10であることが好ましい。Obcが好ましくは2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上であることにより、芯成分の強度を向上させ、実用に耐える強度を有するスパンボンド不織布とすることができる。また熱接着時に繊維表層が過度に軟化して熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。一方、Obcが好ましくは10.0以下、より好ましくは9.0以下、さらに好ましくは8.0以下であることにより、紡糸時の芯成分への過度な延伸応力集中を抑え、紡糸安定性を向上させることができる。
 融着部の芯鞘型複合繊維における芯成分の配向パラメータObcは、前記の芯鞘型複合繊維の芯成分の配向パラメータOfc、および/または、後述する熱接着の条件(温度、線圧等)などを適切に調整することにより制御することができる。
 ObsおよびObcは、以下の手順によって測定される。
 (1)スパンボンド不織布の試料をビスフェノール系エポキシ樹脂で樹脂包埋する。
 (2)樹脂が硬化した後、スパンボンド不織布の融着部の中央付近が切断面となるようミクロトームにより切片を切り出す。切片厚みは2μmとする。切断角度が繊維軸から4°以内である箇所を選択して以降の測定を行う。なお、繊維軸の方向の判別が困難である場合は、同一点において偏光方位を15度ずつ回転させて各方位で偏光ラマンスペクトルを取得し、配向パラメータが最大を示す方位を繊維軸方向とする。
 (3)融着部の芯鞘型複合繊維の切片の中心部において、繊維軸と平行な偏光を入射し、ラマンスペクトルのライン測定を行う。
 (4)融着部の芯鞘型複合繊維の鞘成分、芯成分それぞれの位置における1130cm-1付近および1060cm-1付近のラマンバンド強度I1130およびI1060を算出し、その強度比から、以下の式(d)に基づいて配向パラメータを算出する。芯成分が独立した複数の領域に分割されている場合は、すべての領域で配向パラメータを測定し、最も高い値を採用する。
配向パラメータ=I1130/I1060   ・・・(d)。
 (5)スパンボンド不織布の異なる融着部について3箇所で同様の測定を行い、配向パラメータの平均値を算出し、小数点以下第二位を四捨五入する。
 本発明のスパンボンド不織布は、少なくとも片面のKES法による表面粗さSMDが1.0~3.0μmであることが好ましい。KES法による表面粗さSMDが好ましくは1.0μm以上、より好ましくは1.3μm以上、さらに好ましくは1.6μm以上であることにより、スパンボンド不織布が過度に緻密化して風合いが悪化したり、柔軟性が損なわれたりすることを防ぐことができる。一方、KES法による表面粗さSMDが好ましくは3.0μm以下、より好ましくは2.8μm以下、さらに好ましくは2.5μm以下であることにより、表面が滑らかでざらつき感が小さく、肌触りに優れたスパンボンド不織布とすることができる。
 KES法による表面粗さSMDは、前記の芯鞘型複合繊維の平均単繊維径、スパンボンド不織布の地合、および/または、後述する熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。
 なお、本発明においてKES法による表面粗さSMDは、以下のように測定される。
 (1)スパンボンド不織布から幅200mm×200mmの試験片を、スパンボンド不織布の幅方向等間隔に3枚採取する。
 (2)試験片を試料台にセットする。
 (3)10gfの荷重をかけた表面粗さ測定用接触子(素材:φ0.5mmピアノ線、接触長さ:5mm)で試験片の表面を走査して、表面の凹凸形状の平均偏差を測定する。
 (4)上記の測定を、すべての試験片のタテ方向(不織布の長手方向)とヨコ方向(不織布の幅方向)で行い、これらの計6点の平均偏差を平均して小数点以下第二位を四捨五入し、表面粗さSMD(μm)とする。
 本発明のスパンボンド不織布のKES法による摩擦係数MIUは、0.01~0.30であることが好ましい。摩擦係数MIUが好ましくは0.30以下、より好ましくは0.20以下、さらに好ましくは0.15以下であることにより、不織布表面の滑り性を向上させ、肌触りに優れたスパンボンド不織布とすることができる。一方、摩擦係数MIUが好ましくは0.01以上、より好ましくは0.03以上、さらに好ましくは0.05以上であることにより、紡糸した糸条を捕集コンベアに捕集する際に糸条同士が滑り地合均一性が悪化することを防ぐことができる。
 KES法による摩擦係数MIUは、前記のポリエチレン系樹脂の添加剤、芯鞘型複合繊維の平均単繊維径、スパンボンド不織布の地合、および/または、後述する熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。
 なお、本発明においてKES法による摩擦係数MIUは、以下のように測定される。
 (1)スパンボンド不織布から幅200mm×200mmの試験片を、スパンボンド不織布の幅方向等間隔に3枚採取する。
 (2)試験片を試料台にセットする。
 (3)50gfの荷重をかけた接触摩擦子(素材:φ0.5mmピアノ線(20本並列)、接触面積:1cm)で試験片の表面を走査して、摩擦係数を測定する。
 (4)上記の測定を、すべての試験片のタテ方向(不織布の長手方向)とヨコ方向(不織布の幅方向)で行い、これらの計6点の平均偏差を平均して小数点以下第四位を四捨五入し、摩擦係数MIUとする。
 本発明のスパンボンド不織布のMFRは、1g/10分~300g/10分であることが好ましい。スパンボンド不織布のMFRが好ましくは1g/10分以上、より好ましくは10g/10分以上、さらに好ましくは30g/10分以上であることにより、細い繊維径でも安定して紡糸することができ、肌触りに優れ、地合が均一であり、かつ実用に耐える十分な強度を有するスパンボンド不織布とすることができる。一方、ポリエチレン系樹脂のMFRが好ましくは300g/10分以下であることにより、強度の低下を抑制するとともに、熱接着時に過度に軟化しやすくなり熱ロールに貼り付くなどの操業上の問題が発生することを防ぐことができる。
 本発明に係るスパンボンド不織布のMFRは、ASTM D1238 (A法)によって測定される値を採用する。この規格によれば、ポリエチレンは荷重2.16kg、温度190℃にて測定することが規定されている。
 本発明のスパンボンド不織布の目付は、10g/m~100g/mであることが好ましい。目付が好ましくは10g/m以上、より好ましくは13g/m以上、さらに好ましくは15g/m以上であることにより、実用に供し得る十分な強度を有するスパンボンド不織布とすることができる。一方、目付が好ましくは100g/m以下、より好ましくは50g/m以下、さらに好ましくは30g/m以下であることにより、衛生材料用の不織布としての使用に適した柔軟性を有するスパンボンド不織布とすることができる。
 なお、本発明において、スパンボンド不織布の目付は、JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量」に準じ、以下の手順によって測定される値を採用するものとする。
 (1)20cm×25cmの試験片を、試料の幅1m当たり3枚採取する。
 (2)標準状態におけるそれぞれの質量(g)を量る。
 (3)その平均値を1m当たりの質量(g/m)で表する。
 本発明のスパンボンド不織布の厚みは、0.05mm~1.5mmであることが好ましい。厚みが好ましくは0.05~1.5mm、より好ましくは0.08~1.0mm、さらに好ましくは0.10~0.8mmであることにより、柔軟性と適度なクッション性を備え、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適したスパンボンド不織布とすることができる。
 なお、本発明において、スパンボンド不織布の厚さ(mm)は、JIS L1906:2000「一般長繊維不織布試験方法」の「5.1」に準じ、以下の手順によって測定される値を採用するものとする。
 (1)直径10mmの加圧子を使用し、荷重10kPaで不織布の幅方向等間隔に1mあたり10点の厚さを0.01mm単位で測定する。
 (2)上記10点の平均値の小数点以下第三位を四捨五入する。
 また、本発明のスパンボンド不織布の見掛密度は、0.05g/cm~0.30g/cmであることが好ましい。見掛密度が好ましくは0.30g/cm以下、より好ましくは0.25g/cm以下、さらに好ましくは0.20g/cm以下であることにより、繊維が密にパッキングしてスパンボンド不織布の柔軟性が損なわれることを防ぐことができる。一方、見掛密度が好ましくは0.05g/cm以上、より好ましくは0.08g/cm以上、さらに好ましくは0.10g/cm以上であることにより、毛羽立ちや層間剥離の発生を抑え、実用に耐え得る十分な強度や取り扱い性を備えたスパンボンド不織布とすることができる。
 見掛密度は、芯鞘型複合繊維の平均単繊維径、および/または、後述する熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。
 なお、本発明において、見掛密度(g/cm)は、上記の四捨五入前の目付と厚みから、次の式に基づいて算出し、小数点以下第三位を四捨五入したものとする。
見掛密度(g/cm)=[目付(g/m)]/[厚さ(mm)]×10-3  …(式)。
 本発明のスパンボンド不織布の剛軟度は、60mm以下であることが好ましい。剛軟度が好ましくは60mm以下、より好ましくは50mm以下、さらに好ましくは40mm以下であることにより、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適した優れた柔軟性を得ることができる。また、剛軟度が極端に低いと取り扱い性に劣るため、剛軟度は10mm以上であることが好ましい。
 剛軟度は、前記のポリエチレン系樹脂のMFR、添加剤、芯鞘型複合繊維の平均単繊維径、スパンボンド不織布の目付、非融着部の芯鞘型複合繊維の芯成分の配向パラメータOfcに対する非融着部の芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率Os/Oc、および/または、後述する熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。
 本発明のスパンボンド不織布の目付あたりのヨコ方向の引張強力は、0.20(N/25mm)/(g/m)以上であることが好ましく、0.20(N/25mm)/(g/m)~2.00(N/25mm)/(g/m)であることがより好ましい。目付あたりの引張強力が好ましくは0.20(N/25mm)/(g/m)以上、より好ましくは0.25(N/25mm)/(g/m)以上、さらに好ましくは0.30(N/25mm)/(g/m)以上であることにより、実用に耐える強度を有するスパンボンド不織布とすることができる。一方、目付あたりのヨコ方向の引張強力が好ましくは2.00(N/25mm)/(g/m)以下であることにより、スパンボンド不織布の柔軟性が低下したり、風合いが損なわれたりすることを防ぐことができる。なお、スパンボンド不織布の引張強力はタテ方向とヨコ方向があるが、一般的にはヨコ方向の引張強力の方がタテ方向の引張強力よりも小さくなることから、目付あたりのヨコ方向の引張強力が0.2~2.00(N/25mm)/(g/m)であることにより、タテ方向においても実用に耐える強度を有するスパンボンド不織布とすることができる。
 目付あたりのヨコ方向の引張強力は、前記のポリエチレン系樹脂のMFR、添加剤、芯鞘型複合繊維の平均単繊維径、非融着部の芯鞘型複合繊維の芯成分の配向パラメータOfcに対する非融着部の芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率Os/Oc、および/または、後述する紡糸速度、熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。
 なお、本発明において、スパンボンド不織布の目付あたりのヨコ方向の引張強力は、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」に準じ、以下の手順によって測定される値を採用するものとする。
 (1)25mm×200mmの試験片を、長片側が不織布のヨコ方向(不織布の幅方向)となるように、不織布の幅1m当たり3枚採取する。
 (2)試験片をつかみ間隔100mmで引張試験機にセットする。
 (3)引張速度100mm/分で引張試験を実施し、最大強力を測定する。
 (4)各試験片で測定した最大強力の平均値を求め、次の式に基づいて目付あたりの引張強力を算出し、小数点以下第三位を四捨五入する。
目付あたりのヨコ方向の引張強力((N/25mm)/(g/m))=[最大強力の平均値(N/25mm)]/目付(g/m) …(式)。
 本発明のスパンボンド不織布の目付あたりのタテ方向の5%伸長時応力は、0.20(N/25mm)/(g/m)以上であることが好ましく、0.20(N/25mm)/(g/m)~2.00(N/25mm)/(g/m)であることがより好ましい。目付あたりのタテ方向の5%伸長時応力が好ましくは0.2(N/25mm)/(g/m)以上、より好ましくは0.25(N/25mm)/(g/m)以上、さらに好ましくは0.30(N/25mm)/(g/m)以上であることにより、スパンボンド不織布の生産時や衛生材料用途としての加工時の張力による伸びを抑制し、高い歩留まりで安定して生産することができる。また目付あたりのタテ方向の5%伸長時応力が好ましくは2.00(N/25mm)/(g/m)以下であることにより、スパンボンド不織布の柔軟性が低下したり、風合いが損なわれたりすることを防ぐことができる。
 目付あたりのタテ方向の5%伸長時応力は、前記のポリエチレン系樹脂のMFR、添加剤、芯鞘型複合繊維の平均単繊維径、非融着部の芯鞘型複合繊維の芯成分の配向パラメータOfcに対する非融着部の芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率Os/Oc、および/または、後述する紡糸速度、熱接着の条件(接着部の形状、圧着率、温度、および線圧等)などを適切に調整することにより制御することができる。
 なお、本発明において、スパンボンド不織布の目付あたりのタテ方向の5%伸長時応力は、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」に準じ、以下の手順によって測定される値を採用するものとする。
 (1)25mm×200mmの試験片を、長片側が不織布のタテ方向(不織布の長手方向)となるように、不織布の幅1m当たり3枚採取する。
 (2)試験片をつかみ間隔100mmで引張試験機にセットする。
 (3)引張速度100mm/分で引張試験を実施し、5%伸長時の応力(5%伸長時応力)を測定する。
 (4)各試験片で測定した5%伸長時応力の平均値を求め、次の式に基づいて目付あたりのタテ方向の5%伸長時応力を算出し、小数点以下第三位を四捨五入する。
目付あたりのタテ方向の5%伸長時応力((N/25mm)/(g/m))=[5%伸長時応力の平均値(N/25mm)]/目付(g/m) …(式)。
 [スパンボンド不織布の製造方法]
 次に、本発明のスパンボンド不織布を製造する方法の好ましい態様について、具体的に説明する。
 本発明のスパンボンド不織布は、スパンボンド法により製造される長繊維不織布である。スパンボンド法は、生産性や機械的強度に優れている他、短繊維不織布で起こりやすい毛羽立ちや繊維の脱落を抑制することができる。また、捕集したスパンボンド不織繊維ウェブあるいは熱圧着したスパンボンド不織布を複数層積層することも、生産性や地合均一性が向上するため好ましい態様である。
 スパンボンド法では、まず溶融した熱可塑性樹脂を紡糸口金から長繊維として紡出し、これをエジェクターにより圧縮エアで吸引延伸した後、移動するネット上に繊維を捕集して不織繊維ウェブを得る。さらに得られた不織繊維ウェブに熱接着処理を施し、スパンボンド不織布が得られる。
 紡糸口金やエジェクターの形状は特に制限されないが、例えば、丸形や矩形等、種々の形状のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なくエネルギーコストに優れること、糸条同士の融着や擦過が起こりにくく、糸条の開繊も容易であることから、矩形口金と矩形エジェクターの組み合わせが好ましく用いられる。
 本発明では、ポリエチレン系樹脂を押出機において溶融し、計量して紡糸口金へと供給し、長繊維として紡出する。ポリエチレン系樹脂を溶融し紡糸する際の紡糸温度は、180℃~250℃であることが好ましく、より好ましくは190℃~240℃であり、さらに好ましくは200℃~230℃である。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。
 紡出された長繊維の糸条は、次に冷却される。紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸温度および雰囲気温度等を考慮して適宜調整して採用することができる。
 次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。
 紡糸速度は、3000m/分~6000m/分であることが好ましく、より好ましくは3500m/分~5500m/分であり、さらに好ましくは4000m/分~5000m/分である。紡糸速度を3000m/分~6000m/分とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み、高強度の長繊維を得ることができる。前述したとおり、本発明のポリエチレン系樹脂を主成分とする芯鞘型複合繊維は、紡糸安定性に優れ、速い紡糸速度でも安定して生産することができる。
 続いて、得られた長繊維を、移動するネット上に捕集して不織繊維ウェブを得る。
 本発明では、前記の不織繊維ウェブに対して、ネット上でその片面から熱フラットロールを当接して仮接着させることも好ましい態様である。このようにすることにより、ネット上を搬送中に不織繊維ウェブの表層がめくれたり吹き流れたりして地合が悪化することを防いだり、糸条を捕集してから熱圧着するまでの搬送性を改善することができる。
 続いて、得られた不織繊維ウェブを、融着させることにより融着部を形成させ、意図するスパンボンド不織布を得ることができる。
 不織繊維ウェブを融着させる方法は特に制限されないが、例えば、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロール、および上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど、各種ロールにより熱融着させる方法、ホーンの超音波振動により熱融着させる方法、および不織繊維ウェブに熱風を貫通させて芯鞘型複合繊維の表面を軟化または融解させ、繊維交点同士を熱融着させるなどの方法が挙げられる。
 なかでも、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、または片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロールを用いることが好ましい。このようにすることで、生産性良く、スパンボンド不織布の強度を向上させる融着部と、風合いや肌触りを向上させる非融着部と、を設けることができる。
 熱エンボスロールの表面材質としては、十分な熱圧着効果を得て、かつ片方のエンボスロールの彫刻(凹凸部)が他方のロール表面に転写することを防ぐため、金属製ロールと金属製ロールを対にすることが好ましい態様である。
 このような熱エンボスロールによるエンボス接着面積率は、5~30%であることが好ましい。接着面積を好ましくは5%以上、より好ましくは8%以上、さらに好ましくは10%以上とすることにより、スパンボンド不織布として実用に供し得る強度を得ることができる。一方、接着面積を好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下とすることにより、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適した適度な柔軟性を得ることができる。超音波接着を用いる場合でも、接着面積率は同様の範囲であることが好ましい。
 ここでいう接着面積とは、接着部がスパンボンド不織布全体に占める割合のことを言う。具体的には、一対の凹凸を有するロールにより熱接着する場合は、上側ロールの凸部と下側ロールの凸部とが重なって不織繊維ウェブに当接する部分(接着部)のスパンボンド不織布全体に占める割合のことを言う。また、凹凸を有するロールとフラットロールにより熱接着する場合は、凹凸を有するロールの凸部が不織繊維ウェブに当接する部分(接着部)のスパンボンド不織布全体に占める割合のことを言う。また、超音波接着する場合は、超音波加工により熱溶着させる部分(接着部)のスパンボンド不織布全体に占める割合のことを言う。熱接着時に接着部に十分な熱が加わり、接着部の芯鞘型複合繊維全体が融着している場合、接着部と融着部の面積は等しいと見なすことができる。
 熱エンボスロールや超音波接着による接着部の形状は特に制限されないが、例えば、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形および正八角形などを用いることができる。また接着部は、スパンボンド不織布の長手方向(搬送方向)と幅方向にそれぞれ一定の間隔で均一に存在していることが好ましい。このようにすることにより、スパンボンド不織布の強度のばらつきを低減することができる。
 熱接着時の熱エンボスロールの表面温度は、使用している熱可塑性樹脂の融点Tm(℃)に対し30℃低い温度から10℃高い温度、すなわちTm-30℃以上Tm+10℃以下とすることが好まし。熱ロールの表面温度をTm-30℃以上、より好ましくはTm-20℃以上、さらに好ましくはTm-10℃以上とすることにより、強固に熱接着させ実用に耐える強度のスパンボンド不織布を得ることができる。また、熱エンボスロールの表面温度を好ましくはTm+10℃以下、より好ましくはTm+5℃以下、さらに好ましくはTm以下とすることにより、過度な熱接着を抑制し、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適した適度な柔軟性を得ることができる。
 熱接着時の熱エンボスロールの線圧は、50N/cm~500N/cmとすることが好ましい。ロールの線圧を好ましくは50N/cm以上、より好ましくは100N/cm以上、さらに好ましくは150N/cm以上とすることにより、強固に熱接着させ実用に耐える強度のスパンボンド不織布を得ることができる。一方、熱エンボスロールの線圧を好ましくは500N/cm以下、より好ましくは400N/cm以下、さらに好ましくは300N/cm以下とすることにより、衛生材料用のスパンボンド不織布として、特に紙おむつ用途での使用に適した適度な柔軟性を得ることができる。
 また本発明では、スパンボンド不織布の厚みを調整することを目的に、上記の熱エンボスロールによる熱接着の前および/あるいは後に、上下一対のフラットロールからなる熱カレンダーロールにより熱圧着を施すことができる。上下一対のフラットロールとは、ロールの表面に凹凸のない金属製ロールや弾性ロールのことであり、金属製ロールと金属製ロールを対にしたり、金属製ロールと弾性ロールを対にしたりして用いることができる。
 また、ここで弾性ロールとは、金属製ロールと比較して弾性を有する材質からなるロールのことである。弾性ロールとしては、例えば、ペーパー、コットンおよびアラミドペーパー等のいわゆるペーパーロールや、ウレタン系樹脂、エポキシ系樹脂、シリコン系樹脂、ポリエステル系樹脂および硬質ゴム、およびこれらの混合物からなる樹脂製のロールなどが挙げられる。
 本発明のスパンボンド不織布は、柔軟性や肌触りに優れ、地合が均一であり、実用に耐える十分な強度を有し、かつ生産性に優れることから、衛生材料、医療材料、生活資材および工業資材等に幅広く用いることができる。特に衛生材料では使い捨ておむつ、生理用品および湿布材の基布等、医療材料では防護服やサージカルガウン等として好適に用いることができる。
 次に、実施例に基づき、本発明のスパンボンド不織布について具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。
 [測定方法]
 (1)樹脂のメルトフローレート(MFR)(g/10分)
 樹脂のMFRは、荷重が2.16kgで、温度が190℃の条件で測定した。
 (2)スパンボンド不織布を構成する芯鞘型複合繊維の平均単繊維径(μm)
 株式会社キーエンス製電子顕微鏡「VHX-D500」を用いて、前記の方法により測定した。
 (3)スパンボンド不織布を構成する複合繊維の固体密度(g/cm
 複合繊維の固体密度は、前記の方法により測定した。
 (4)紡糸速度(m/分)
 上記の平均単繊維径と使用する樹脂の固体密度から、長さ10000m当たりの質量を平均単繊維繊度(dtex)として、小数点以下第二位を四捨五入して算出した。平均単繊維繊度と、各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量(以下、単孔吐出量と略記する。)(g/分)から、次の式に基づき、紡糸速度を算出した。
紡糸速度(m/分)=(10000×[単孔吐出量(g/分)])/[平均単繊維繊度(dtex)] …(式)。
 (5)芯鞘型複合繊維の軟化温度(℃)およびスパンボンド不織布の非融着部の芯鞘型複合繊維の軟化温度(℃)
 測定装置にはAnalysis Instruments社製Nano-TA装置「Nano-TA2」を、AFM装置にはPACIFIC NANOTECHNOLOGY社製「Nano-R」を、プローブにはAnalysis Instruments社製「PNI-AN2-300」を使用し、前記の方法により測定した。測定条件は、次のとおりで実施した。
・測定手法:nano-TMA(ナノ熱機械分析)
・測定温度:25~150℃
・昇温速度:10℃/秒(600℃/分)
・測定環境:大気中。
 (6)芯鞘型複合繊維の配向パラメータ、スパンボンド不織布の非融着部の芯鞘型複合繊維の配向パラメータ、およびスパンボンド不織布の融着部の芯鞘型複合繊維の配向パラメータ
 測定装置には、愛宕物産株式会社製トリプルラマン分光装置「T-64000」を用いて、前記の方法により測定した。測定条件は、次のとおりで実施した。
・測定モード:顕微ラマン(偏光測定)
・対物レンズ:×100
・ビーム径:1μm
・光源:Arレーザー/514.5nm
・レーザーパワー:100mW
・回折格子:Single1800gr/mm
・クロススリット:100μm
・検出器:CCD/Jobin Yvon 1024×256。
 (7)スパンボンド不織布の融解ピーク温度Tm(℃)
 測定装置にはPerkin-Elmer社製「DSC8500」を使用し、前記の方法により測定した。測定条件は、次のとおりで実施した。
・装置内雰囲気:窒素(20mL/分)
・温度・熱量校正:高純度インジウム(Tm=156.61℃、ΔHm=28.70J/g)
・温度範囲:20℃~200℃
・昇温速度:20℃/分
・試料量:約0.5~4mg
・試料容器:アルミニウム製標準容器。
 (8)スパンボンド不織布のタテ方向の剛軟度(mm)
 スパンボンド不織布の剛軟度は、JIS L1913:2010「一般不織布試験方法」の「6.7 剛軟度(JIS法及びISO法)」の「6.7.4 ガーレ法」に記載の方法に準じて、不織布のタテ方向(長手方向)の測定を行った。なお、いずれのスパンボンド不織布も、タテ方向(長手方向)の剛軟度の方がヨコ方向(幅方向)の剛軟度よりも大きかった。タテ方向の剛軟度は50mm以下を合格とした。
 (9)スパンボンド不織布の目付あたりの引張強力および目付あたりの5%伸長時応力(N/25mm/(g/m))
 測定装置には株式会社エー・アンド・デイ(A&D)製「RTG-1250」を使用し、前記の方法により測定した。目付あたりのヨコ方向の引張強力は0.2(N/25mm)/(g/m)以上を合格とし、目付あたりのヨコ方向の5%伸長時応力は0.2(N/25mm)/(g/m)以上を合格とした。
 [実施例1]
 メルトフローレート(MFR)が30g/10分、融点が128℃、固体密度0.955g/cmの直鎖状低密度ポリエチレン(LLDPE)のホモポリマーからなるポリエチレン系樹脂を芯成分とし、MFRが60g/10分、融点が127℃、固体密度0.940g/cmのLLDPEのホモポリマーからなるポリエチレン系樹脂を鞘成分として使用し、それぞれ押出機で溶融し、孔の直径が0.40mmで、孔深度が8mmの紡糸口金から、紡糸温度が220℃、単孔吐出量が0.50g/分で、鞘成分の比率が40質量%の同心芯鞘型複合繊維を紡出した。
 紡出した糸条を冷却固化した後、これをエジェクターにおいて圧縮エアによって牽引、延伸し、移動するネット上に捕集し、ポリエチレン系長繊維からなるスパンボンド不織繊維ウェブを形成した。形成した不織繊維ウェブを構成する芯鞘型複合繊維の特性は、平均単繊維径は11.6μm、固体密度は0.949g/cmであり、これから換算した紡糸速度は5000m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
 引き続き、形成した不織繊維ウェブを、以下の上ロール、下ロールから構成される上下一対の熱エンボスロールを用いて、線圧300N/cm、熱接着温度126℃の条件で熱接着し、目付30g/mのスパンボンド不織布を得た。
上ロール:金属製で水玉柄の彫刻がなされた、接着面積率11%のエンボスロール
下ロール:金属製フラットロール
得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
 [実施例2]
 鞘成分の比率を50質量%とし、エジェクターの圧縮エアの流量を低減したこと以外は実施例1と同じ方法により、スパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は13.7μm、固体密度は0.948g/cmであり、これから換算した紡糸速度は3600m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
 [実施例3]
 鞘成分比率を30質量%とし、エジェクターの圧縮エアの流量を低減したこと以外は実施例1と同じ方法により、スパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は15.5μm、固体密度は0.951g/cmであり、これから換算した紡糸速度は2800m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
 [実施例4]
 MFRが30g/10分、融点が128℃、固体密度0.955g/cmのLLDPEのホモポリマーからなるポリエチレン系樹脂を芯成分とし、MFRが50g/10分、融点が128℃、固体密度0.950g/cmのLLDPEのホモポリマーからなるポリエチレン系樹脂を鞘成分として使用したこと以外は実施例2と同じ方法により、スパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は13.7μm、固体密度は0.953g/cmであり、これから換算した紡糸速度は3600m/分であった。紡糸性については、1時間の紡糸において糸切れが数回発生した。得られたスパンボンド不織布について評価した結果を表1に示す。
 [実施例5]
 紡糸口金を変更し、偏心芯鞘型複合繊維としたこと以外は実施例2と同じ方法により、スパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は13.7μm、固体密度は0.948g/cmであり、これから換算した紡糸速度は3600m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布は地合が均一で、肌触りに優れたものであった。評価した結果を表1に示す。
 [比較例1]
 MFRが30g/10分、融点が128℃、固体密度0.955g/cmのLLDPEのホモポリマーからなるポリエチレン系樹脂のみを使用して単成分で紡糸したこと以外は実施例2と同じ方法により、スパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は13.9μm、固体密度は0.955g/cmであり、これから換算した紡糸速度は3500m/分であった。紡糸性については、1時間の紡糸において糸切れが多発し不良であった。得られたスパンボンド不織布について評価した結果を表1に示す。
 [比較例2]
 MFRが60g/10分、融点が127℃、固体密度0.940g/cmのLLDPEのホモポリマーからなるポリエチレン系樹脂のみを使用して単成分で紡糸し、熱接着温度を120℃としたこと以外は実施例2と同じ方法により、スパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は13.7μm、固体密度は0.940g/cmであり、これから換算した紡糸速度は3600m/分であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。なお、熱接着温度を126℃とすると、熱エンボスロールへの貼り付きによりシート切れが発生し、生産不可であった。得られたスパンボンド不織布について評価した結果を表1に示す。
 [比較例3]
 特許文献2(特開2019-26954号公報)に開示された方法を参考に、MFRが100g/10分、融点が115℃、固体密度0.933g/cmのLLDPEのホモポリマーからなるポリエチレン系樹脂のみを使用し、単成分で紡糸したこと以外は実施例2と同じ方法により、スパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は15.2μm、固体密度は0.933g/cmであり、これから換算した紡糸速度は3500m/分であり、特許文献2の実施例1と同等であった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。得られたスパンボンド不織布について評価した結果を表1に示す。
 [比較例4]
 MFRが30g/10分、融点が128℃、固体密度0.955g/cmのLLDPEのホモポリマーからなるポリエチレン系樹脂を芯成分とし、MFRが40g/10分、融点が128℃、固体密度0.950g/cmのLLDPEのホモポリマーからなるポリエチレン系樹脂を鞘成分として使用したこと以外は実施例2と同じ方法により、スパンボンド不織布を得た。形成したスパンボンド不織繊維ウェブを構成する繊維の特性は、平均単繊維径は13.7μm、固体密度は0.953g/cmであり、これから換算した紡糸速度は3600m/分であった。紡糸性については、1時間の紡糸において糸切れが多発し不良であった。得られたスパンボンド不織布について評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~5の、ポリエチレン系樹脂を主成分とする芯鞘型複合繊維からなり、非融着部のOfcに対するOfsの比率Ofs/Ofcが0.10~0.90を満足するスパンボンド不織布は、柔軟性や肌触りに優れ、地合が均一であり、実用に耐える十分な強度を有し、かつ生産性に優れたものであった。
 一方、比較例1~4に示すスパンボンド不織布は、目付あたりのヨコ方向の引張強力や目付あたりのタテ方向の5%伸長時応力が低く、強度に劣るものであった。
 

Claims (11)

  1.  ポリエチレン系樹脂を主成分とする芯鞘型複合繊維からなるスパンボンド不織布であって、前記スパンボンド不織布は融着部と非融着部とを有し、前記非融着部の芯鞘型複合繊維の芯成分の配向パラメータOfcに対する前記非融着部の芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率Ofs/Ofcが0.10~0.90である、スパンボンド不織布。
  2.  前記融着部の芯鞘型複合繊維の鞘成分の配向パラメータObsが1.2~3.0であり、かつ前記融着部の芯鞘型複合繊維の芯成分の配向パラメータObcが2.0~10.0である、請求項1に記載のスパンボンド不織布。
  3.  前記芯鞘型複合繊維の固体密度が0.935g/cm以上0.970g/cm以下である、請求項1または2に記載のスパンボンド不織布。
  4.  前記Ofsが2.0以上8.0以下である、請求項1~3のいずれかに記載のスパンボンド不織布。
  5.  前記スパンボンド不織布が示差走査型熱量測定において100℃以上150℃以下の範囲内に単一の融解ピーク温度Tmを有する、請求項1~4のいずれかに記載のスパンボンド不織布。
  6.  前記スパンボンド不織布の目付あたりのヨコ方向の引張強力が0.20(N/25mm)/(g/m)以上である、請求項1~5のいずれかに記載のスパンボンド不織布。
  7.  前記スパンボンド不織布の目付あたりのタテ方向の5%伸長時応力が0.20(N/25mm)/(g/m)以上である、請求項1~6のいずれかに記載のスパンボンド不織布。
  8.  ポリエチレン系樹脂を主成分とする芯鞘型複合繊維であって、前記芯鞘型複合繊維の芯成分の配向パラメータOfcに対する前記芯鞘型複合繊維の鞘成分の配向パラメータOfsの比率Ofs/Ofcが0.10~0.90である、芯鞘型複合繊維。
  9.  前記ポリエチレン系樹脂の固体密度が0.935g/cm以上0.970g/cm以下である、請求項8に記載の芯鞘型複合繊維。
  10.  前記Ofsが2.0以上8.0以下である、請求項8または9に記載の芯鞘型複合繊維。
  11.  前記芯鞘型複合繊維が示差走査型熱量測定において100℃以上150℃以下の範囲内に単一の融解ピーク温度Tmを有する、請求項8~10のいずれかに記載の芯鞘型複合繊維。
     
PCT/JP2022/007166 2021-02-26 2022-02-22 スパンボンド不織布および芯鞘型複合繊維 WO2022181591A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022513110A JPWO2022181591A1 (ja) 2021-02-26 2022-02-22
CN202280017001.XA CN116897228A (zh) 2021-02-26 2022-02-22 纺粘无纺布及芯鞘型复合纤维
KR1020237026905A KR20230150795A (ko) 2021-02-26 2022-02-22 스펀본드 부직포 및 코어-시스형 복합 섬유

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021029609 2021-02-26
JP2021-029609 2021-02-26
JP2021-029600 2021-02-26
JP2021029600 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181591A1 true WO2022181591A1 (ja) 2022-09-01

Family

ID=83048147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007166 WO2022181591A1 (ja) 2021-02-26 2022-02-22 スパンボンド不織布および芯鞘型複合繊維

Country Status (4)

Country Link
JP (1) JPWO2022181591A1 (ja)
KR (1) KR20230150795A (ja)
TW (1) TW202302946A (ja)
WO (1) WO2022181591A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509784A (ja) * 1993-04-27 1996-10-15 ザ・ダウ・ケミカル・カンパニー 弾性繊維、生地およびそれらから製造される製品
JP2002088582A (ja) * 2000-05-29 2002-03-27 Chisso Corp ポリエチレン系複合繊維およびこれを用いた不織布
JP2002138359A (ja) * 2000-10-27 2002-05-14 Unitika Ltd ポリエチレン系複合長繊維不織布
JP2004218183A (ja) * 2002-12-24 2004-08-05 Kao Corp 熱融着性複合繊維
JP2007182662A (ja) * 2005-12-07 2007-07-19 Kao Corp 熱伸長性繊維

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274445A (ja) 2007-04-06 2008-11-13 Idemitsu Unitech Co Ltd 不織布組成物およびスパンボンド不織布
JP7035359B2 (ja) 2017-07-28 2022-03-15 東レ株式会社 ポリエチレンスパンボンド不織布

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509784A (ja) * 1993-04-27 1996-10-15 ザ・ダウ・ケミカル・カンパニー 弾性繊維、生地およびそれらから製造される製品
JP2002088582A (ja) * 2000-05-29 2002-03-27 Chisso Corp ポリエチレン系複合繊維およびこれを用いた不織布
JP2002138359A (ja) * 2000-10-27 2002-05-14 Unitika Ltd ポリエチレン系複合長繊維不織布
JP2004218183A (ja) * 2002-12-24 2004-08-05 Kao Corp 熱融着性複合繊維
JP2007182662A (ja) * 2005-12-07 2007-07-19 Kao Corp 熱伸長性繊維

Also Published As

Publication number Publication date
KR20230150795A (ko) 2023-10-31
JPWO2022181591A1 (ja) 2022-09-01
TW202302946A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
KR102113455B1 (ko) 스펀본드 부직포 및 위생 재료
JP2022132044A (ja) スパンボンド不織布および芯鞘型複合繊維
WO2018139523A1 (ja) スパンボンド不織布
JP6715056B2 (ja) スパンボンド不織布および衛生材料
WO2019167851A1 (ja) スパンボンド不織布
WO2018092444A1 (ja) スパンボンド不織布およびその製造方法
JP7247884B2 (ja) スパンボンド不織布
WO2010024268A1 (ja) 長繊維不織布
JP2019026955A (ja) スパンボンド不織布
TW201837252A (zh) 熱熔接性複合纖維和使用其的不織布、製品
KR20220034111A (ko) 스펀본드 부직포 및 적층 부직포
KR102398859B1 (ko) 스펀본드 부직포, 위생 재료, 및 스펀본드 부직포의 제조 방법
JP2018119247A (ja) スパンボンド不織布
WO2022181591A1 (ja) スパンボンド不織布および芯鞘型複合繊維
WO2022181590A1 (ja) スパンボンド不織布および複合繊維
JP7409524B2 (ja) スパンボンド不織布
JP7172250B2 (ja) スパンボンド不織布
WO2023090200A1 (ja) スパンボンド不織布
JP7040122B2 (ja) スパンボンド不織布
JP2022183506A (ja) スパンボンド不織布および芯鞘型複合繊維
JP2020196961A (ja) スパンボンド不織布
CN112912550B (zh) 无纺布及其制造方法
JP2020196962A (ja) スパンボンド不織布
CN116897228A (zh) 纺粘无纺布及芯鞘型复合纤维
JP2023131245A (ja) スパンボンド不織布

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022513110

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017001.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759627

Country of ref document: EP

Kind code of ref document: A1