WO2022181142A1 - 熱収縮チューブ、熱収縮接続部品、熱収縮チューブの製造方法及び熱収縮接続部品の製造方法 - Google Patents

熱収縮チューブ、熱収縮接続部品、熱収縮チューブの製造方法及び熱収縮接続部品の製造方法 Download PDF

Info

Publication number
WO2022181142A1
WO2022181142A1 PCT/JP2022/002302 JP2022002302W WO2022181142A1 WO 2022181142 A1 WO2022181142 A1 WO 2022181142A1 JP 2022002302 W JP2022002302 W JP 2022002302W WO 2022181142 A1 WO2022181142 A1 WO 2022181142A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
shrinkable
tube
shrinkable tube
less
Prior art date
Application number
PCT/JP2022/002302
Other languages
English (en)
French (fr)
Inventor
恵二 石橋
清一郎 村田
遼太 福本
Original Assignee
住友電工ファインポリマー株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ファインポリマー株式会社, 住友電気工業株式会社 filed Critical 住友電工ファインポリマー株式会社
Priority to US18/276,027 priority Critical patent/US20240106221A1/en
Priority to EP22759184.9A priority patent/EP4299284A4/en
Priority to JP2023502173A priority patent/JP7406043B2/ja
Publication of WO2022181142A1 publication Critical patent/WO2022181142A1/ja
Priority to JP2023211529A priority patent/JP2024041760A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/08Making preforms having internal stresses, e.g. plastic memory by stretching tubes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/08Cable junctions
    • H02G15/18Cable junctions protected by sleeves, e.g. for communication cable
    • H02G15/1806Heat shrinkable sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/02Condition, form or state of moulded material or of the material to be shaped heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/14Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for joining or terminating cables

Definitions

  • the present disclosure relates to a heat-shrinkable tube, a heat-shrinkable connecting part, a method for manufacturing a heat-shrinkable tube, and a method for manufacturing a heat-shrinkable connecting part.
  • Wire bundles are used as wire harnesses for aircraft, electronic components, railroad vehicles, automobiles, and motorcycles.
  • Each insulated wire is generally configured by covering a bundle of wires made of one or more conductors such as copper alloys with an insulator.
  • the connection portions (joint portions) at the ends and intermediate portions of the wire bundle require electrical insulation, mechanical protection, and waterproofing because the wires are exposed.
  • Heat-shrink tubing is used for electrical insulation, mechanical protection, and waterproofing.
  • a heat-shrinkable connecting piece comprising a heat-shrinkable tube that is heat-shrinkable in the radial direction is used.
  • the heat-shrinkable tube provided in this heat-shrinkable connection part covers the connection part of the insulated wires and heats it, it shrinks along the shape of the connection part due to the shape memory effect and adheres tightly to the connection of the electric wire, pipe, etc. part can be protected.
  • PTFE Polytetrafluoroethylene
  • PTFE Polytetrafluoroethylene
  • Patent Document 1 Polyvinylidene fluoride
  • a heat-shrinkable tube contains an ethylene-tetrafluoroethylene copolymer as a main component, has a storage elastic modulus of 0.8 MPa or more and 2.8 MPa or less at 250° C. or more and 280° C. or less, and has a melting point of 210. °C or higher and 250 °C or lower.
  • a method for producing a heat-shrinkable tube is a method for producing a heat-shrinkable tube, in which a resin composition containing an ethylene-tetrafluoroethylene copolymer as a main component is extruded into a tubular shape. a step of cross-linking the tube formed by the extrusion molding step by irradiation; a step of heating the tube after the cross-linking step at a temperature of 250° C. or more and 280° C. or less; and expanding the tube by 50 kPa or more higher than the outside, and the storage elastic modulus of the heat shrinkable tube at 250 ° C. or higher and 280 ° C. or lower is 0.8 MPa or higher and 2.8 MPa or lower, and the melting point is 210 ° C. above 250° C. and below.
  • FIG. 1 is a schematic perspective view showing a heat shrinkable tube according to one embodiment of the present disclosure
  • FIG. FIG. 2 is a schematic perspective view of a heat shrinkable connection piece according to one embodiment of the present disclosure
  • FIG. 3 is a schematic perspective view of a heat shrinkable connection component according to another embodiment of the present disclosure
  • FIG. 4 is a schematic perspective view of a heat shrinkable connection component according to another embodiment of the present disclosure
  • FIG. 5 is a schematic perspective view of a heat shrinkable connection component according to another embodiment of the present disclosure
  • FIG. 6 is a schematic perspective view of a heat shrinkable connection component according to another embodiment of the present disclosure
  • FIG. 1 is a schematic perspective view showing a heat shrinkable tube according to one embodiment of the present disclosure
  • FIG. FIG. 2 is a schematic perspective view of a heat shrinkable connection piece according to one embodiment of the present disclosure
  • FIG. 3 is a schematic perspective view of a heat shrinkable connection component according to another embodiment of the present disclosure
  • FIG. 4 is a schematic perspective view
  • FIG. 7 is a schematic diagram illustrating a state before inserting conductors exposed from two insulated wires into a heat-shrinkable connection component according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating a state in which a connection portion of two insulated wires is covered with a heat-shrinkable connection component according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating a state in which a heat-shrinkable connection component according to an embodiment of the present disclosure has started to heat-shrink.
  • FIG. 10 is a schematic diagram illustrating a melted state of the sealant of the heat-shrinkable connection component according to the embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating a melted state of the solder material of the heat-shrinkable connection component according to the embodiment of the present disclosure.
  • the melting point of PTFE is 327°C, which is extremely high. Therefore, when the heat-shrinkable tube is shrunk, the insulation layer of the highly heat-resistant insulated wire containing ethylene-tetrafluoroethylene copolymer, silicon, etc. may be easily damaged. be.
  • a heat-shrinkable connection part for an insulated wire is required not only to protect the connection portion of the insulated wire, but also to be highly waterproof to prevent water from entering the connection portion from the outside.
  • the heat-shrinkable tube shrinks at temperatures above its melting point, the use of PVDF, which has a melting point of 160° C., may result in insufficient reliability in applications requiring heat resistance at higher temperatures.
  • the heat-shrinkable tube used for the heat-shrinkable connection parts for high heat-resistant grade insulated wires has high heat resistance and water stop performance, while giving heat damage to the insulated wire to be covered. It is required to be able to heat shrink without shrinkage.
  • the present disclosure has been made based on such circumstances, and aims to provide a heat-shrinkable tube that is excellent in heat resistance and heat-shrinkability as a heat-shrinkable connection part for highly heat-resistant insulated wires.
  • a heat-shrinkable tube contains an ethylene-tetrafluoroethylene copolymer (ETFE) as a main component, and has a storage elastic modulus of 0.8 MPa or more and 2.8 MPa or less at 250° C. or more and 280° C. or less, It has a melting point of 210° C. or higher and 250° C. or lower.
  • ETFE ethylene-tetrafluoroethylene copolymer
  • the main component of the heat-shrinkable tube is an ethylene-tetrafluoroethylene copolymer, which makes it easy to control the storage elastic modulus at the melting point and above the melting point.
  • the heat-shrinkable tube has a melting point of 210° C. or more and 250° C. or less, so that heat resistance can be ensured and heat damage to the object to be covered can be suppressed.
  • the storage elastic modulus at 250° C. or higher and 280° C. or lower is 0.8 MPa or higher and 2.8 MPa or lower, it is excellent in deformability when heated to the melting point or higher, and can be easily expanded (diameter expanded) in the manufacturing process. can be done.
  • the uneven thickness ratio (thickness distribution) and length change rate during shrinkage of the tube can be controlled within a good range, and the shrinkage performance is excellent in that it can be shrunk back to its original shape. , the end face inclination during contraction can be suppressed. Therefore, the heat-shrinkable tube is excellent in heat resistance and heat-shrinkability as a heat-shrinkable connection part for an insulated wire whose insulating layer contains ethylene-tetrafluoroethylene copolymer, silicon, or the like.
  • the heat-shrinkable tube of the present invention is a single-layer tube that can control the uneven wall thickness ratio and the length change rate within a good range, it can be used as a conventional two-layer type with a fluid adhesive layer on the inside. Thus, it is possible to suppress the occurrence of gaps between the coating object and provide good shrinkability without causing problems of manufacturing efficiency and cost.
  • the “main component” in the heat-shrinkable tube means the component with the highest content, and is contained in an amount of 95% by mass or more relative to the total mass of the heat-shrinkable tube, and 98% relative to the total mass of the resin components. It refers to a component contained in a mass % or more.
  • the “storage modulus” is a value measured in accordance with the dynamic mechanical property test method described in JIS-K7244-4 (1999), using a viscoelasticity measuring device, tensile mode, strain 0 This value is measured at the above temperature and frequency under the condition of 0.08%.
  • the viscoelasticity measuring device for example, "DVA-220" manufactured by IT Keisoku Co., Ltd. can be used.
  • the fluorine content in the ethylene-tetrafluoroethylene copolymer is preferably 58% by mass or more and 62% by mass or less.
  • the melting point and the storage elastic modulus at or above the melting point of the heat-shrinkable tube can be controlled within an appropriate range.
  • the ratio n/m of the tetrafluoroethylene unit number n to the ethylene unit number m in the ethylene-tetrafluoroethylene copolymer is preferably 1.02 or more and 1.20 or less.
  • the melting point and the storage elastic modulus at or above the melting point of the heat-shrinkable tube can be controlled within an appropriate range.
  • the heat-shrinkable tube preferably has a storage elastic modulus of 500 MPa or more and 900 MPa or less at 25°C.
  • the storage elastic modulus at 25° C. is within the above range, the strength and flexibility of the heat-shrinkable connecting part using the heat-shrinkable tube can be maintained within favorable ranges.
  • the surface arithmetic mean roughness Ra is preferably 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • the arithmetic mean roughness Ra is a value measured according to JIS-B0601 (2013).
  • the heat-shrinkable tube preferably has a transmittance of 90.0% or more and 99.0% or less for infrared rays with a wavelength of 1 ⁇ m.
  • the infrared transmittance range By setting the infrared transmittance range to the above range, the heating efficiency in the manufacturing process of the heat-shrinkable tube can be improved. Moreover, the shrinkage behavior of the heat-shrinkable connecting part using the heat-shrinkable tube can be improved.
  • a UV-3600 spectrophotometer manufactured by Shimadzu Corporation can be used to measure the transmittance of infrared rays having a wavelength of 1 ⁇ m.
  • a heat-shrinkable connection component is a heat-shrinkable connection component for connecting insulated wires in which wires are covered with an insulating layer, and includes the heat-shrinkable tube and both ends of the heat-shrinkable tube. and a pair of sealing portions disposed on the inner peripheral surfaces of the sides. Since the heat-shrinkable connecting part includes the heat-shrinkable tube, the heat-shrinkable connecting part has excellent shrinkability, sealing properties, and heat resistance.
  • the shear viscosity at 250°C and a shear rate of 100/s of the sealing material constituting the sealing portion is preferably 1000 Pa ⁇ s or more and 2000 Pa ⁇ s or less.
  • the shear viscosity at 250 ° C. and a shear rate of 100 / s is 1000 Pa s or more and 2000 Pa s or less at a shear rate of 100 / s, gaps are unlikely to occur when the heat shrinkable tube 1 shrinks, and the heat shrinkage It is possible to improve the sealing performance of the connecting parts.
  • a rotational rheometer (“MCR302" manufactured by Anton Paar) can be used to evaluate the shear viscosity at a predetermined temperature and shear rate.
  • the shear viscosity at 215°C and a shear rate of 0.01/s of the sealing material constituting the sealing portion is preferably 7000 Pa ⁇ s or more and 70000 Pa ⁇ s or less.
  • the sealing material constituting the sealing portion has a shear viscosity of 7000 Pa s or more and 70000 Pa s or less at a shear rate of 0.01 / s at 215 ° C., it has appropriate fluidity. can be improved.
  • the heat-shrink connecting component further includes a solder portion disposed on the inner peripheral surface between the pair of sealing portions of the heat-shrinkable tube.
  • the heat-shrinkable connection component further includes a solder portion disposed on the inner peripheral surface between the pair of sealing portions of the heat-shrinkable tube, thereby further improving the connectivity between the insulated wires.
  • the melting point of the solder material forming the solder portion is preferably 210°C or higher and 240°C or lower, and the softening point of the sealing material is preferably 80°C or higher and 170°C or lower. Since the melting point of the solder material and the softening point of the sealing material are within the above ranges, the heat shrinkable tube, the solder material, and the sealing material are combined to achieve heat resistance and sealing properties in the heat shrinkable connection part. It is possible to improve the stopping property and the connectability of the insulated wire.
  • the "softening point” means the temperature at which the thickness becomes 50% when the temperature is raised while applying pressure of 5 kPa using a thermomechanical analyzer.
  • the melting point of the sealing material is preferably 110°C or higher and 170°C or lower.
  • the softening point of the sealing material is 110° C. or higher and 170° C. or lower, the sealing material has better fluidity and the effect of filling the gap is further enhanced, so that the sealing performance can be further improved.
  • the transmittance of infrared rays with a wavelength of 1 ⁇ m in the sealing material is preferably 1.0% or more and 30.0% or less.
  • the transmittance of infrared rays with a wavelength of 1 ⁇ m in the sealing material is within the above range, it is possible to improve the absorption of infrared rays in the infrared heating of the heat-shrinkable connection part, and to improve the heat shrinkage behavior of the heat-shrinkable connection part. Obtainable.
  • a method for producing a heat-shrinkable tube is a method for producing a heat-shrinkable tube, in which a resin composition containing an ethylene-tetrafluoroethylene copolymer as a main component is extruded into a tubular shape. a step of cross-linking the tube formed by the extrusion molding step by irradiation; a step of heating the tube after the cross-linking step at a temperature of 250° C. or more and 280° C. or less; and expanding the tube by 50 kPa or more higher than the outside, and the storage elastic modulus of the heat shrinkable tube at 250 ° C. or higher and 280 ° C.
  • the melting point is 210 ° C. above 250° C. and below. According to the method for producing a heat-shrinkable tube, it is possible to produce a heat-shrinkable tube having excellent heat resistance and heat-shrinkability as a heat-shrinkable connection part for an insulated wire with high heat resistance.
  • a method for manufacturing a heat-shrinkable connection component includes the steps of disposing sealing portions on inner peripheral surfaces of both end sides of the heat-shrinkable tube, and shrinking the heat-shrinkable tube for sealing. and fixing the portion, and the softening point of the sealing material forming the sealing portion is 80° C. or higher and 170° C. or lower.
  • the method for manufacturing the heat-shrinkable connection component includes the steps of disposing a pair of sealing portions on the inner peripheral surfaces of both ends of the heat-shrinkable tube; and fixing, and since the softening point of the sealing material constituting the sealing portion is 80° C. or more and 170° C. or less, the heat-shrinkable connection part having good shrinkage performance, sealing property and heat resistance can be easily manufactured. can be manufactured to
  • a heat-shrinkable tube according to an embodiment of the present disclosure is used as a covering material for protecting an object to be covered.
  • a heat-shrinkable tube is a tube whose diameter is reduced by being heated. More specifically, the object to be covered is protected by heating the heat-shrinkable tube into which the object to be covered is inserted on the object to be covered and covering the object to be covered with the shrinkable body of the heat-shrinkable tube.
  • the heat-shrinkable tube 1 in FIG. 1 is composed of a cylindrical single-layer base material layer.
  • the heat-shrinkable tube 1 is used, for example, to cover connecting parts between objects to be covered, wiring ends, metal pipes, etc. for protection, insulation, waterproofing, corrosion protection, and the like.
  • the heat-shrinkable tube 1 is made of a resin composition for forming a heat-shrinkable tube, and the main component of the heat-shrinkable tube 1 is an ethylene-tetrafluoroethylene copolymer.
  • the heat-shrinkable tube 1 contains an ethylene-tetrafluoroethylene copolymer as a main component, so that the storage elastic modulus at the melting point and above the melting point can be easily controlled.
  • the lower limit of the fluorine content in the ethylene-tetrafluoroethylene copolymer is preferably 58% by mass, more preferably 59% by mass.
  • the upper limit of the fluorine content is preferably 62% by mass, more preferably 61% by mass. If the fluorine content is less than the above lower limit, the melting point of the heat-shrinkable tube 1 increases, and the storage elastic modulus above the melting point may decrease. If the content of fluorine exceeds the above upper limit, the melting point of the heat-shrinkable tube 1 may become low, and the storage elastic modulus at the melting point or higher may become too high. When the fluorine content is within the above range, the melting point and the storage elastic modulus at or above the melting point of the heat-shrinkable tube can be controlled within an appropriate range.
  • the fluorine content can be measured by gas ion chromatographic analysis.
  • the lower limit of the ratio n/m of the tetrafluoroethylene unit number n to the ethylene unit number m in the ethylene-tetrafluoroethylene copolymer is preferably 1.02, more preferably 1.03, and further 1.04. preferable.
  • the upper limit of the ratio n/m of the number n of tetrafluoroethylene units to the number m of ethylene units is preferably 1.20, more preferably 1.15, and even more preferably 1.12.
  • the melting point of the heat-shrinkable tube 1 may become low and the storage elastic modulus at the melting point or higher may become too high.
  • the melting point and the storage elastic modulus at or above the melting point of the heat-shrinkable tube can be controlled within an appropriate range.
  • the lower limit of the storage elastic modulus of the heat-shrinkable tube 1 at 250°C or higher and 280°C or lower is 0.8 MPa, preferably 1.0 MPa, more preferably 1.2 MPa.
  • the upper limit of the storage elastic modulus is 2.8 MPa, preferably 2.0 MPa, and more preferably 1.6 MPa. If the storage elastic modulus at 250° C. or higher and 280° C. or lower is less than the above lower limit, the strength and shrinkage performance (shape memory effect) of the heat-shrinkable tube 1 at high temperatures may be insufficient.
  • the storage elastic modulus exceeds the upper limit, expansion of the tube becomes difficult, and it may become difficult to suppress variations in the quality of the heat-shrinkable tube 1 .
  • the rate of change in thickness of the heat-shrinkable tube during expansion is poor, and there is a risk that the value and variation in the rate of change in length of the heat-shrinkable tube during contraction will increase.
  • the heat-shrinkable tube has excellent deformability when the heat-shrinkable tube 1 is heated to the melting point or higher, and can be easily and reliably expanded in diameter during the manufacturing process. This makes it possible to reduce variations in quality.
  • the lower limit of the storage modulus of the heat-shrinkable tube 1 at 25°C is preferably 500 MPa, more preferably 550 MPa, and even more preferably 600 MPa.
  • the upper limit of the storage elastic modulus at 25°C is preferably 900 MPa, more preferably 850 MPa, and more preferably 800 MPa. If the storage elastic modulus at 25° C. is less than the above lower limit, the strength of the heat-shrinkable connecting part using the heat-shrinkable tube 1 may be insufficient and the tube may be easily damaged. On the other hand, if the storage elastic modulus at 25° C.
  • the flexibility of the heat-shrinkable connecting part may be reduced and the heat-shrinkable connecting part may be easily broken during assembly.
  • the heat-shrinkable tube used is required to be semi-rigid in order to maintain its shape during handling during assembly and contraction.
  • the storage modulus at 25°C is within the above range, so that the strength and flexibility of the heat-shrinkable connection part using the heat-shrinkable tube 1 can be maintained within a favorable range.
  • the lower limit of the melting point of the heat-shrinkable tube 1 is 210°C, more preferably 215°C. If the melting point of the heat-shrinkable tube 1 is less than the above lower limit, the heat-shrinkable tube may be softened or deformed during use at high temperatures.
  • the upper limit of the melting point of the heat-shrinkable tube 1 is 250°C, more preferably 240°C. If the melting point of the heat-shrinkable tube 1 exceeds the above upper limit, the shrinkage temperature of the heat-shrinkable tube 1 becomes high when the manufactured heat-shrinkable tube 1 is heat-shrunk, which may cause thermal damage to the object to be covered.
  • the heat-shrinkable tube has a melting point within the above range, so that heat resistance can be ensured and thermal damage to the object to be covered can be suppressed.
  • the lower limit of the arithmetic mean roughness Ra of the surface of the heat-shrinkable tube 1 is preferably 0.1 ⁇ m, more preferably 0.3 ⁇ m, and even more preferably 0.5 ⁇ m. If the arithmetic mean roughness Ra of the surface of the heat shrinkable tube 1 is less than the above lower limit, there is a risk that the absorption will be small and the heating will be insufficient when heated by an infrared heating device. On the other hand, the upper limit of the arithmetic mean roughness Ra is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m, and still more preferably 1.0 ⁇ m.
  • the heat shrinkable tube 1 When the arithmetic mean roughness Ra of the surface of the heat shrinkable tube 1 exceeds the upper limit, the scattering of visible light increases and the visibility inside the heat shrinkable tube 1 decreases, so the heat shrinkable tube 1 is provided. It may be difficult to confirm the degree of shrinkage of the heat-shrinkable connecting member.
  • the heat-shrinkable connecting part of the insulated wire requires visibility of the inside of the heat-shrinkable tube 1 in order to confirm the contracted state, the melting of the solder material, the connection state of the electric wire, and the like. Therefore, the heat-shrinkable tube used for the heat-shrinkable connection part is required to have transparency.
  • the arithmetic mean roughness Ra is within the above range, visibility inside the heat shrinkable tube 1 can be ensured, and infrared rays (IR ) can improve the absorption of infrared rays in heating.
  • the lower limit of the transmittance of infrared rays with a wavelength of 1 ⁇ m is preferably 90.0%, more preferably 92%.
  • the infrared transmittance of the heat-shrinkable tube 1 is less than the above lower limit, the heat-shrinkable tube 1 is preferentially heated when the heat-shrinkable connecting part is shrunk using the heat-shrinkable tube 1, resulting in the heat-shrinkable connecting part. Insufficient internal heating may occur.
  • the upper limit of the infrared transmittance is preferably 99.0%, more preferably 97%.
  • the heating efficiency may be lowered when the heat-shrinkable tube 1 is heated by infrared heating.
  • the transmittance of the infrared rays with a wavelength of 1 ⁇ m is within the above range, so that the heating efficiency in the manufacturing process of the heat shrinkable tube 1 can be improved, and the heat using the heat shrinkable tube 1 can be improved.
  • the shrinkage behavior of the shrinkable connection part can be improved.
  • the average inner diameter and average thickness of the heat-shrinkable tube 1 are appropriately selected according to the application.
  • the average inner diameter of the heat-shrinkable tube 1 before heat-shrinking can be, for example, 1 mm or more and 60 mm or less.
  • the average inner diameter of the heat-shrinkable tube 1 after heat shrinkage can be, for example, 25% or more and 65% or less of the average inner diameter before heat shrinkage.
  • the average thickness of the heat-shrinkable tube 1 can be, for example, 0.1 mm or more and 5 mm or less.
  • the heat-shrinkable tube 1 preferably does not substantially contain inorganic substances.
  • substantially free of inorganic substances means that inorganic substances as fillers are not contained.
  • the heat-shrinkable tube 1 may inevitably contain a small amount of inorganic substances as impurities.
  • the content of inorganic impurities in the heat-shrinkable tube 1 is preferably, for example, 5% by mass or less, more preferably 1% by mass or less.
  • the heat-shrinkable tube 1 may contain other additives as necessary.
  • additives include strength retention agents, antioxidants, flame retardants, copper damage inhibitors, cross-linking aids, colorants, heat stabilizers, infrared absorbers, ultraviolet absorbers, and the like.
  • the content of the additive in the heat shrinkable tube 1 is preferably less than 5% by mass, more preferably less than 3% by mass. If the content of the additive is more than the above upper limit, the performance of the heat-shrinkable tube 1 may easily vary.
  • the heat-shrinkable tube it is possible to provide a heat-shrinkable tube that is excellent in heat resistance and heat-shrinkability as a heat-shrinkable connection part for highly heat-resistant insulated wires.
  • the heat-shrinkable tube can be suitably used for protection, insulation, waterproofing, anticorrosion, etc. of wires such as insulated wires or cables, for example.
  • the heat shrink tubing can be applied to wire splices and wire harnesses.
  • the heat-shrinkable tube can be used in combination with a soldering material and a sealing material to form a heat-shrinkable connecting part. It can also be used in combination with an adhesive layer and a crimp sleeve to form a crimp terminal.
  • the heat-shrinkable connection part is a heat-shrinkable connection part for connecting insulated wires in which wires are coated with an insulating layer.
  • FIG. 2 is a schematic perspective view of a heat shrinkable connection piece according to one embodiment of the present disclosure; As shown in FIG. 2 , the heat-shrinkable connection component 40 includes the heat-shrinkable tube 1 and a pair of sealing portions 3 provided on the inner peripheral surfaces of both ends of the heat-shrinkable tube 1 . The sealing portion 3 is made of a sealing material. Since the heat-shrinkable connecting part 40 includes the heat-shrinkable tube 1, the heat-shrinkable connecting part has excellent shrinkability, sealing properties, and heat resistance.
  • the heat-shrink connecting component further includes a solder portion disposed on the inner peripheral surface between the pair of sealing portions of the heat-shrinkable tube.
  • the heat-shrinkable connection component further includes a solder portion disposed on the inner peripheral surface between the pair of sealing portions of the heat-shrinkable tube, thereby further improving the connectivity between the insulated wires.
  • the solder portion 2 is made of a solder material.
  • the heat-shrink connecting part can be equipped with an insulated wire for grounding.
  • the heat-shrink connecting part 51 shown in FIG. A solder portion 2 disposed on the inner peripheral surface between the pair of sealing portions 3 and an insulated wire 25 for grounding are provided.
  • the grounding insulated wire 25 includes a wire 23 and an insulating layer 24 covering the wire 23 . Since the heat-shrink connecting part 51 is provided with the grounding insulated wire 25, it can be easily grounded.
  • the insulating coating of the grounding insulated wire may be made of resin or braid.
  • the lower limit of the shear viscosity of the sealing material at 250°C and a shear rate of 100/s is preferably 1000 Pa ⁇ s, more preferably 1100 Pa ⁇ s, and even more preferably 1200 Pa ⁇ s. If the sealing material has a shear viscosity of less than 1000 Pa ⁇ s at 250° C. and a shear rate of 100/s, the heat-shrinkable tube is softened and easily deformed when it is shrunk. There is a risk that the stopping performance will be reduced. On the other hand, the upper limit of the shear viscosity of the sealing material at 250° C.
  • a shear rate of 100/s is preferably 2000 Pa ⁇ s, more preferably 1900 Pa ⁇ s, and even more preferably 1800 Pa ⁇ s.
  • the shear viscosity of the sealing material at 250° C. and a shear rate of 100/s is higher than 2000 Pa s, the fluidity of the heat-shrinkable tube is low when it is shrunk. may decrease.
  • the sealing material preferably has a shear viscosity of 3000 Pa ⁇ s or more and 40000 Pa ⁇ s or less at a shear rate of 0.01/s at 250°C.
  • the shear viscosity at 250° C. and a shear rate of 0.01/s is lower than 3000 Pa ⁇ s, the sealing material tends to flow when kept at a high temperature for a long period of time, and it is difficult to maintain sealing properties. It can be difficult. If the shear viscosity at 250° C. and a shear rate of 0.01/s is higher than 40000 Pa ⁇ s, the fluidity of the sealing material is low, so the effect of filling gaps is low, and the sealing performance is reduced. There is a risk.
  • the lower limit of the shear viscosity of the sealing material at 215°C and a shear rate of 0.01/s is preferably 7000 Pa ⁇ s, more preferably 10000 Pa ⁇ s, and even more preferably 13000 Pa ⁇ s.
  • the sealing material of the sealing material has a shear viscosity of less than 7000 Pa s at a shear rate of 0.01 / s at 215 ° C., it becomes easy to flow when held at high temperature for a long time, and sealing performance may not be able to maintain
  • a shear rate of 0.01/s is preferably 70000 Pa ⁇ s, more preferably 60000 Pa ⁇ s, and even more preferably 50000 Pa ⁇ s. If the sealing material has a shear viscosity at 215° C. and a shear rate of 0.01/s higher than 70,000 Pa ⁇ s, the fluidity becomes too low and the gap cannot be sufficiently filled, resulting in a decrease in sealing performance. There is a risk.
  • the sealing material preferably has a shear viscosity of 1500 Pa ⁇ s or more and 2500 Pa ⁇ s or less at a shear rate of 100/s at 215°C. If the shear viscosity of the sealing material at 215° C. and a shear rate of 100/s is lower than 1500 Pa ⁇ s, the heat-shrinkable tube softens and changes shape easily when shrinking, and gaps are likely to occur. performance may decrease. When the shear viscosity of the sealing material at 215° C. and a shear rate of 100/s is higher than 2500 Pa s, the fluidity of the heat-shrinkable tube is reduced when the tube is shrunk. may decrease.
  • the melting point of the solder material forming the solder portion 2 is preferably 210°C or higher and 240°C or lower, and more preferably 220°C or higher and 230°C or lower.
  • the softening point of the sealing material forming the sealing portion 3 is preferably 80° C. or higher and 170° C. or lower, more preferably 100° C. or higher and 150° C. or lower, and 110° C. or higher and 140° C. or lower. is more preferred.
  • the melting point of the solder material is 210° C. or higher and 240° C. or lower, and the softening point of the sealing material is 80° C. or higher and 170° C. or lower, so that the heat shrinkable tube 1, the solder material, and the sealing material are bonded together. By combining them, the heat resistance, sealing performance, and insulated wire connectivity of the heat-shrinkable connection component 50 can be improved.
  • the melting point of the sealing material is preferably 110°C or higher and 170°C or lower, more preferably 120°C or higher and 160°C or lower.
  • the melting point of the encapsulant is 110° C. or higher and 170° C. or lower, the encapsulant has better fluidity and the effect of filling the gap is further enhanced, so that the sealing performance can be further improved.
  • the melting point is lower than 110° C., the tube will be softened when contracted, and the shape will tend to change.
  • the melting point is higher than 170° C., the fluidity at the time of shrinkage is low, so the effect of filling gaps is reduced, and there is a possibility that the sealing performance is deteriorated.
  • polyolefin resin, fluororesin, and fluororubber can be used as the sealing material.
  • the sealing material may contain
  • the sealing material can be crosslinked to adjust the shear viscosity.
  • chemical cross-linking can be used in addition to electron beam irradiation such as electron beams and gamma rays.
  • the sealing material can contain an inorganic filler for adjusting shear viscosity.
  • inorganic fillers examples include silica, hydrotalcite, clay, or combinations thereof.
  • the content of the inorganic filler in the sealing material is preferably more than 0.2 parts by mass, more preferably 1.0 parts by mass or more, and more than 1.5 parts by mass with respect to 100 parts by mass of the resin of the sealing material. More preferred. When the content of the inorganic filler is 0.2 parts by mass or less, there is a possibility that a sufficient effect of improving the shear viscosity cannot be obtained. On the other hand, the content of the inorganic filler in the sealing material is preferably less than 5.0 parts by mass, more preferably 4.0 parts by mass or less, and even more preferably 3.5 parts by mass or less. If the content of the inorganic filler exceeds 5.0 parts by mass, the shear viscosity may become too high and the sealing performance may deteriorate.
  • a metallic material can be used as the solder material.
  • Sn, Sb, Pb, Bi, Ag, Cu, Ni, In, Ge, P, Zn, or a combination thereof can be used as the solder material.
  • these solder materials those containing Sn--Ag, Sn--Cu, Sn--Sb, Sn--Pb, and Pb--In are preferable from the viewpoint of adjusting the melting point of the solder material within a favorable range.
  • the solder material may contain flux.
  • the transmittance of infrared rays with a wavelength of 1 ⁇ m in the sealing material is preferably 1.0% or more and 30.0% or less, more preferably 3% or more and 22% or less, More preferably, it is 5% or more and 16% or less. If the infrared transmittance of the sealing material exceeds the upper limit, the heating of the sealing portion 3 is slowed down during infrared heating, making it difficult to soften. There is On the other hand, if the infrared transmittance of the sealing material is less than the lower limit, the sealing portion 3 is preferentially softened, and the sealing performance of the solder material may deteriorate.
  • the transmittance of infrared rays with a wavelength of 1 ⁇ m in the sealing material is within the above range, it is possible to improve the absorption of infrared rays in the infrared heating of the heat-shrinkable connection part 50, and to improve the sealing performance of the heat-shrinkable connection part. can.
  • the heat-shrinkable connecting part since it is equipped with the heat-shrinkable tube, it has good shrinkability, sealing performance, and heat resistance as a heat-shrinkable connecting part.
  • the method for producing the heat-shrinkable tube comprises a step of extruding a resin composition containing an ethylene-tetrafluoroethylene copolymer as a main component into a tubular shape, and a step of cross-linking the tube formed by the extrusion molding step by irradiation. a step of heating the tube after the cross-linking step at a temperature of 250° C. or more and 280° C. or less; and a step of expanding the tube by increasing the pressure inside the tube by 50 kPa or more than the outside. .
  • a heat-shrinkable tube is formed by mixing an ethylene-tetrafluoroethylene copolymer, which is a resin component of the heat-shrinkable tube, with other additives as necessary using a melt mixer or the like. to prepare a resin composition.
  • a colorant and a cross-linking aid are added to the raw material of the ethylene-tetrafluoroethylene copolymer.
  • the melting point and storage modulus can be controlled by selecting raw materials for the ethylene-tetrafluoroethylene copolymer and adjusting the cross-linking.
  • the melt mixer is not particularly limited, and for example, an open roll mixer, a Banbury mixer, a pressure kneader, a single screw mixer, a multi-screw mixer and the like can be used.
  • a resin composition containing an ethylene-tetrafluoroethylene copolymer as a main component is extruded into a tubular shape.
  • the above resin composition is extruded using a melt extruder. Specifically, the resin composition is melted by heating to a temperature above the melting point, eluted from an extrusion die having a cylindrical space, cooled below the melting point with cooling water or the like, and solidified to form a resin composition. is extruded into a tube.
  • the dimensions of the extruded product can be designed according to the application. The dimensions of the extruded product can be adjusted by adjusting the dimensions of the extrusion die and the drawdown rate.
  • “Draw-down ratio” is the ratio of the cross-sectional area of the extrusion die to the cross-sectional area of the tube after extrusion. In order to suppress surface roughness during extrusion, the withdrawal rate is preferably 6 or more, more preferably 10 or more.
  • Cross-linking step In the cross-linking step, the tube formed by the extrusion molding step is cross-linked by irradiation.
  • the shrinkage shape memory effect
  • the shrinkage shape memory effect
  • a method for cross-linking the ethylene-tetrafluoroethylene copolymer a method of irradiating the ethylene-tetrafluoroethylene copolymer with radiation is preferable.
  • irradiation crosslinking
  • Examples of radiation used for irradiation cross-linking of ethylene-tetrafluoroethylene copolymer include electron beams ( ⁇ rays) and ⁇ rays. Electron beams are preferable as the radiation because electron accelerators have low running costs, can produce high-power electron beams, and are easy to control.
  • the radiation dose is preferably in the range of 30 kGy or more and 300 kGy or less. If the dose of radiation is less than 30 kGy, the degree of cross-linking will be small, and the strength of the heat-shrinkable connection part will be insufficient, making it susceptible to breakage. In addition, the shrinkage performance (shape memory property) may be deteriorated, and the shape retention at high temperature after shrinkage may be deteriorated. On the other hand, if the dose of radiation exceeds 300 kGy, the degree of cross-linking increases, and the flexibility of the shrinkable heat-shrinkable connecting part decreases, which may make it easier to break during assembly. In addition, expansion becomes difficult, and quality variations are likely to occur, and there is a risk of a reduction in thickness unevenness and variation in the length change rate.
  • Heating process In the heating step, the tube after the cross-linking step is heated to a temperature of 250° C. or higher and 280° C. or lower. As a result, the non-uniform wall thickness of the tube after expansion can be reduced, and the expansion speed can be increased. Therefore, the manufacturing cost of the heat-shrinkable tube and variations in quality can be reduced more reliably. If the heating temperature of the tube is less than the above lower limit, there is a risk that the expansion will be insufficient or that the linear velocity of expansion will decrease. Conversely, if the heating temperature of the tube exceeds the above upper limit, the tube may be thermally damaged. The temperature of the tube may be 250° C. or higher and 280° C. or lower just before the expansion, and multi-step heating of two or more steps may be used to improve heating efficiency and suppress damage due to overheating.
  • the tube after heating is expanded.
  • the expansion of the tube may be performed at the same time as the heating.
  • a known expansion method that is usually used for producing conventional heat-shrinkable tubes can be used. For example, after heating the extruded product to a temperature above its melting point, introducing compressed air into the inside, or decompressing it from the outside, it is expanded to a predetermined inner diameter, and then cooled to fix the shape. method is used.
  • the heat-shrinkable tube is obtained by fixing the shape of the expanded extruded product. Examples of this fixing method include a method of cooling to a temperature below the melting point of the base resin component.
  • the heat-shrinkable tube is obtained by expanding and fixing the shape of the extruded product in this way. Inflation (diameter expansion) of the tube is performed, for example, so that the average inner diameter of the tube becomes about 1.4 to 4 times.
  • the tube is expanded by increasing the pressure inside the tube by 50 kPa or more than the outside. If the pressure inside the tube is less than 50 kPa compared to the outside, there is a risk that the expansion will be insufficient or that the linear expansion speed will decrease.
  • the expansion ratio when used as a heat-shrinkable connecting part is preferably 2.5 times or more, more preferably 3 times or more.
  • the diameter expansion dimension during expansion can be controlled by the size of the expansion die.
  • the expansion die stabilizes the expansion by reducing the frictional resistance with the tube during diameter expansion, and can improve the uneven thickness ratio and reduce the variation in the length change rate.
  • the expansion die can be surface-treated to reduce frictional resistance.
  • the surface shape can be changed by coating with a fluorine resin such as PTFE or PFA having a small coefficient of friction, or by sandblasting, machining, or electrical discharge machining. Frictional resistance can be reduced by increasing the surface roughness or by reducing the contact area with the shape of the grooves.
  • a fluorine resin such as PTFE or PFA having a small coefficient of friction
  • Frictional resistance can be reduced by increasing the surface roughness or by reducing the contact area with the shape of the grooves.
  • the lower limit of the storage elastic modulus at 250°C or higher and 280°C or lower is 0.8 MPa, preferably 1.0 MPa, and more preferably 1.2 MPa.
  • the upper limit of the storage elastic modulus is 2.8 MPa, preferably 2.0 MPa, more preferably 1.6 MPa.
  • the lower limit of the melting point of the heat-shrinkable tube is 210°C, more preferably 215°C.
  • the upper limit of the melting point of the heat-shrinkable tube is 250°C, more preferably 240°C.
  • the uneven wall thickness ratio of the heat-shrinkable tube is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
  • the lower limit of the rate of change in length of the heat-shrinkable tube is preferably ⁇ 15% or more, more preferably ⁇ 10% or more, and even more preferably ⁇ 5% or more.
  • the uneven thickness ratio is defined by the following formula.
  • Non-uniform wall thickness ratio (%) minimum wall thickness/maximum wall thickness in tube cross section x 100
  • the upper limit of the rate of change in length of the heat-shrinkable tube is preferably +15% or less, more preferably +10% or less, and even more preferably +5% or less.
  • the end surface inclination angle of the heat-shrinkable tube during contraction is preferably 10° or less, more preferably 8° or less, and even more preferably 5° or less.
  • the end surface inclination angle is a measure of the degree of deformation that occurs on the end surface in the longitudinal direction of the heat shrinkable tube due to heat shrinkage.
  • the inner diameter of the heat-shrinkable tube, the thickness deviation rate, the length change rate, and the end surface inclination angle during shrinkage are determined by the storage elastic modulus of the heat-shrinkable tube, the heating temperature, the heating method, the pressure difference between the inside and outside of the tube, and the like. It can be carried out by controlling the expansion conditions and the surface treatment of the expansion die.
  • the method for manufacturing the heat-shrinkable tube it is possible to manufacture a heat-shrinkable tube that is excellent in heat resistance and heat-shrinkability as a heat-shrinkable connection part for highly heat-resistant insulated wires. Moreover, the method for manufacturing the heat-shrinkable tube can reduce variations in quality.
  • the method for manufacturing a heat-shrinkable connection component is a method for manufacturing a heat-shrinkable connection component, and includes a step of producing a sealing portion, and fixing a pair of sealing portions to the inner peripheral surfaces of both ends of the heat-shrinkable tube. and a step of Moreover, it is preferable that the method for manufacturing the heat-shrinkable connecting component further includes a step of fixing a solder portion to an inner peripheral surface between the pair of sealing portions of the heat-shrinkable tube.
  • the method for manufacturing the heat-shrinkable connecting component includes the steps of producing a sealing portion using a sealing material, and fixing a pair of sealing portions to inner peripheral surfaces on both end sides of the heat-shrinkable tube. Therefore, a heat-shrinkable connection part having good shrinkability, sealing property and heat resistance can be produced.
  • a sealing portion is produced using a sealing material.
  • the sealing portion is produced using a sealing material.
  • a sealing material for forming a sealing portion is prepared using a melt mixer or the like.
  • the melt mixer is not particularly limited, and for example, an open roll mixer, a Banbury mixer, a pressure kneader, a single screw mixer, a multi-screw mixer and the like can be used.
  • the sealing material is extruded using a melt extruder. Specifically, the sealing material is heated to a temperature equal to or higher than the melting point of the main component resin to be melted, and then eluted from an extrusion die having a cylindrical space. Then, the sealing material is extruded into a tubular shape by cooling with cooling water or the like to below the melting point of the main component resin and solidifying. A ring-shaped sealing portion is produced by cutting it to a predetermined length.
  • Step of fixing the sealing portion a pair of sealing portions are fixed to the inner peripheral surfaces of both ends of the heat-shrinkable tube.
  • a metal rod is provided with a pair of sealing portions composed of the heat-shrinkable tube and the sealing material.
  • a solder portion made of a solder material may also be disposed between the pair of sealing portions in this step.
  • the entire heat-shrinkable tube provided on the metal rod is heated to shrink the heat-shrinkable tube, thereby fixing the pair of sealing portions to the inner peripheral surfaces of both ends of the heat-shrinkable tube. .
  • the pair of sealing portions of the heat shrinkable tube can be separated by shrinking the heat shrinkable tube.
  • the solder portion is also fixed to the inner peripheral surface of the gap.
  • the heating method include a method of heating with a heat gun, a method of heating with an infrared heating device, and the like. Then, the heat-shrinkable connecting part is formed by taking out the heat-shrinkable tube to which the sealing portion, the soldering portion, etc. are fixed, from the metal bar.
  • the softening point of the sealing material is preferably 80°C or higher and 170°C or lower.
  • the sealing material has appropriate fluidity, and the effect of filling the gap is enhanced, so that the sealing performance can be improved.
  • the heat-shrink connecting part 50 is used, for example, as a part for connecting a plurality of insulated wires, as a part for attaching a ground wire for grounding insulated wires, and the like.
  • a mode of connecting a plurality of insulated wires using the heat-shrinkable connection part 50 a method of connecting conductors exposed from two insulated wires will be described with reference to FIGS. 7 to 11. .
  • the number and configuration of the insulated wires are not limited to those shown in FIGS. 7 to 11 .
  • the process of connecting a plurality of insulated wires using the heat-shrinkable connection part 50 mainly includes a heat-shrinkable connection part covering process, a heat-shrinkable connection part heating process, and a heat-shrinkable connection part cooling process.
  • a usage mode of connecting two insulated wires 8 and 18 using the heat-shrinkable connection part 50 to obtain the wire bundle 100 shown in FIG. 11 will be described.
  • Thermal contraction connecting part covering process When connecting two insulated wires 8 and 18 using the heat-shrinkable connection part 50, first, as shown in FIG. The conductor 16 exposed from the insulating layer 17 is inserted through the openings at both ends of the heat-shrinkable connecting part 50 . Then, as shown in FIG. 8 , the heat-shrink connecting part 50 is covered so as to cover the boundary between the exposed portion of the conductor 6 and the insulating layer 7 and the boundary between the exposed portion of the conductor 16 and the insulating layer 17 .
  • the conductor connection part 5 around the boundary between the exposed conductor 6 of the insulated wire 8 and the exposed conductor 16 of the insulated wire 18 is soldered. It is preferably arranged so as to be covered by the portion 2 .
  • the heat-shrinkable connection component 50 is heated and thermally shrunk.
  • the heating method include a method of heating the heat-shrinkable connection component 50 with a heat gun, an infrared heating device, or the like.
  • the heating temperature is determined by the heat shrinkage temperature of the heat shrinkable connection component 50, and is, for example, 200° C. or higher and 600° C. or lower.
  • the heating time may be any time that the heat-shrinkable connection component 50 is sufficiently shrunk, and can be, for example, 1 second or more and 30 seconds or less.
  • FIGS. 9 to 11 As shown in FIGS. 9 to 11, as the shrinkage behavior of the heat-shrinkable connection component 50, the heat-shrinkable tube 1 shrinks first, then the sealing portion 3 deforms, and finally the solder portion 2 melts. is preferred.
  • the heat-shrink connecting component 50 When the heat-shrink connecting component 50 is heated, the solder material of the solder portion 2 flows and spreads.
  • FIG. 11 shows the heat-shrinkable tube 11 after shrinkage, the solder portion 12 after melting, and the sealing portion 13 after melting in the wire bundle 100 after connection. Since the sealing material of the sealing portion 3 has a high viscosity, it does not spread as much as the solder portion 2 and closes the opening of the heat-shrinkable tube 1 .
  • the solder material of the solder portion 2 is prevented from flowing out from the opening of the heat-shrinkable tube 1 .
  • the solder material of the solder portion 2 covers the exposed portions of the conductor 6 of the insulated wire 8 and the conductor 16 of the insulated wire 18, and penetrates into the insulating layer 7 from the boundary between the exposed portion of the conductor 6 and the insulating layer 7. On the other hand, it penetrates inside the insulating layer 17 from the boundary between the exposed portion of the conductor 16 and the insulating layer 17 .
  • the solder material may be eluted without being held by the sealing portion 3 .
  • the sealing portion 3 and the solder portion 2 cannot be melted and held in a state with many gaps. Since the melting point of the solder material and the softening point of the sealing material are within the above ranges, the heat shrinkable tube 1, the solder material, and the sealing material are combined to achieve heat resistance in the heat shrinkable connection component 50. , the sealing property and the connectability of the insulated wire can be improved.
  • the sealing portion 3 is heated by infrared absorption.
  • the transmittance of infrared rays having a wavelength of 1 ⁇ m in the sealing material is preferably 1.0% or more and 30.0% or less, more preferably 3% or more and 22% or less, and 5%. It is more preferable to be 16% or less. If the infrared transmittance of the sealing material exceeds the above upper limit, the sealing portion 3 may be difficult to heat and may be softened slowly.
  • the sealing portion 3 is preferentially softened, and there is a risk of elution from the heat-shrinkable connecting part 50 .
  • the transmittance of infrared rays having a wavelength of 1 ⁇ m in the sealing material is within the above range, it is possible to improve the absorption of infrared rays in the heat-shrinkable connection component 50 when heated by infrared rays, and to facilitate control of the heat-shrink behavior.
  • the solder material in order to visually confirm whether the solder material has been sufficiently heated and melted, can be coated with a temperature-indicating paint whose color disappears at a specified temperature or higher.
  • a via-alloy type solder ring having a high melting point portion in the center and whose temperature can be confirmed by melting of the high melting point portion can be used.
  • the high melting point portion is for visual confirmation, and does not necessarily need to be completely melted in terms of characteristics.
  • the heat-shrinkable connection component 50 is cooled.
  • the cooling method is not particularly limited, for example, cooling by natural standing or forced cooling by cold air or the like can be used. By this cooling, the solder material and the sealing material are solidified, and connection between the insulated wires and water stoppage of the insulated wires are achieved.
  • the heat-shrinkable connection component includes the heat-shrinkable tube, a pair of sealing portions provided on the inner peripheral surfaces of both ends of the heat-shrinkable tube, and a solder portion. may be provided with braided solder instead.
  • the metal material constituting the braided wire is, for example, Cu, Fe, Sn, Sb, Ag, Ni, Al, Zn, or a combination thereof. be able to.
  • the metal material constituting the solder material of the braided solder the same material as the above solder material can be used.
  • the braided solder 27 can be further combined with the above-described solder portion.
  • a crimping sleeve may be used instead of the solder part of the heat-shrink connecting part.
  • a heat-shrink connecting component 54 according to another embodiment shown in FIG. 28.
  • the material of the compression sleeve any one of Cu, Fe, Sn, Sb, Ag, Ni, Al, and Zn can be used singly or in combination of two or more.
  • a coating layer can be formed on the surface to suppress wear and scratches and improve chemical durability. Any of Cu, Fe, Sn, Sb, Ag, Ni, Al, and Zn can be used singly or in combination of two or more for the coating layer.
  • Heat-shrinkable tube No. 1 in Table 1 was obtained through selection of raw materials, resin mixing, extrusion, irradiation, and expansion processes. 1 to No. 10 was made.
  • a tube was formed by melt extrusion using a resin composition obtained by mixing an ethylene-tetrafluoroethylene copolymer resin containing fluorine in the content shown in Table 1 with triallyl isocyanurate as a cross-linking aid. was molded. Extrusion was performed at a die temperature of 280° C., a drawdown rate of 10, and a line speed of 20 m/min.
  • cross-linking was carried out by electron beam irradiation under conditions of an irradiation amount of 25 kGy to 400 kGy.
  • the tube was heated to 250° C. to 280° C. and expanded by using an expansion die to make the inside of the tube higher pressure than the outside.
  • the expansion die used was coated with a fluororesin.
  • the melting point and storage modulus at high temperature were adjusted by selecting raw materials and degree of cross-linking. Shrinkage was performed by heating at 270° C. for 10 minutes.
  • the above heat-shrinkable tube No. 1 to No. 10 the melting point of the tube, the storage elastic modulus [MPa] at 250° C. or higher and 280° C. or lower, the thickness deviation [%], and the length change rate [%] are shown.
  • the expansion performance and contraction performance of the tube were evaluated in four grades A to D. Table 1 shows the results. “-” in the table below indicates that the corresponding evaluation was not performed.
  • Test Example 2 No. 1 of Test Example 1 was used, except that the raw materials for the ethylene-tetrafluoroethylene copolymer resin were selected so that the fluorine content in the ethylene-tetrafluoroethylene copolymer was the value shown in Table 2. 2 in the same manner as No. 11 to No. Nineteen heat shrink tubes were made. No. In No. 18, a PTFE raw material was used, and a petroleum-based solvent was added to the PTFE raw material and mixed to prepare an ingot of a preform, which was then paste extruded, dried and fired to prepare an extruded tube. The extruded tube was expanded similarly to ETFE. No. No.
  • a lead wire was placed so that the tip of the lead wire came to the area of the soldered portion, and a heat-shrinkable tube was placed around it. Then, hot air of 500° C. was applied with a heat gun to shrink the tube to fix the soldered portion and the sealed portion, and after cooling, the tube was taken out from the metal bar to produce a heat-shrinkable connecting part.
  • the tube length was 20 mm.
  • the sealing material had a width of 2 mm and a thickness of 0.4 mm.
  • the solder material had a width of 2.5 mm and a thickness of 0.4 mm.
  • a thermomechanical analyzer TMA-50 manufactured by Shimadzu Corporation was used to measure the softening point.
  • Heat shrink tube no. 11 to No. Table 2 shows the evaluation results of the fluorine content, the physical properties of the tube, the same expansion performance, uneven wall thickness ratio and shrinkage performance as in Test Example 1, and the performance of the heat-shrinkable connection part.
  • the performance of the heat-shrinkable connection part was evaluated by placing the heat-shrinkable connection part on the part of the ETFE wire from which the coating was removed, shrinking it, applying a voltage in the solution, and determining whether the leakage current was below the threshold.
  • the wire after contraction was heated at 200° C. for 500 hours and then evaluated for leakage current.
  • a solution of 5% NaCl and 0.5% surfactant was used as the immersion solution, and a voltage of 1 kV was applied for 60 seconds to evaluate leakage current.
  • the evaluation criteria for the performance of heat-shrinkable joints are shown below.
  • A: Pass rate of leakage current test is 90% or more.
  • B: Pass rate of leakage current test is 80% or more.
  • C Pass rate of leakage current test is 75% or more.
  • D Pass rate of leakage current test is less than 75%.
  • Heat-shrinkable tube No. 1 was prepared in the same manner as in Test Example 1, except that a raw material with a controlled molecular structure of ethylene-tetrafluoroethylene copolymer resin was used. 20 to No. 27 was made. Next, the heat shrinkable tube described in Table 3, a solder material (Sn 96.5 mass% and Ag 3.5 mass%) with a melting point of 223 ° C., and a sealing material with a softening point of 140 ° C. (THV 60 mass% and FKM 40 mass% ), a ring-shaped solder material was fixed to the central portion in the longitudinal direction of the metal rod, and a ring-shaped sealing portion was fixed to both ends thereof.
  • a solder material Sn 96.5 mass% and Ag 3.5 mass%
  • a sealing material with a softening point of 140 ° C. TSV 60 mass% and FKM 40 mass%
  • a lead wire was placed so that the tip of the lead wire came to the area of the soldered portion, and a heat-shrinkable tube was placed around it. Then, hot air of 500° C. was applied with a heat gun to shrink the tube to fix the soldered portion and the sealed portion, and after cooling, the tube was taken out from the metal bar to produce a heat-shrinkable connecting part.
  • the tube length was 20 mm.
  • the physical properties and evaluation of the tube were the same as in Test Example 1, and the same as in Test Example 2. Table 3 shows the evaluation results of the heat-shrinkable connection parts.
  • the ratio n/m of the number of tetrafluoroethylene units to the number of ethylene units m in ETFE is 1.02 or more and 1.20 or less. Good results were obtained in the evaluation.
  • no. In No. 20 the melting point was high and the shrinkage temperature was high, so that the ETFE insulated wire to be coated was damaged by heat when used as a heat-shrinkable connection part.
  • Heat shrink tube no. 28 to No. The strength and flexibility of No. 35 were evaluated according to the following criteria.
  • Strength A of heat-shrinkable connection parts No breakage during assembly, shrinkage, and use.
  • Flexibility A of the heat-shrinkable connection part No breakage occurs during assembly. B: In rare cases, damage may occur during assembly.
  • C Damage may occur during assembly processing. D: High probability of breakage during assembly.
  • Heating efficiency A of heat-shrinkable tube in infrared rays It is particularly excellent when the heat-shrinkable connection part is shrunk for 20 seconds or less.
  • the heat-shrinkable tube No. 1 of Test Example 1 was used except that the amount of the coloring agent was controlled so that the infrared transmittance of the obtained heat-shrinkable tube became the value shown in Table 6. 2 in the same manner as No. 44 to No. 49 heat shrink tubes were made.
  • the heat-shrinkable tube described in Table 6 a solder material (62.0% by mass of Pb and 38.0% by mass of In) having a melting point of 210°C, and a sealing material having a softening point of 95°C (50% by mass of PVDF and 50% by mass of LLDPE ) was used to prepare a heat-shrinkable connection component in the same process as in Test Example 2.
  • the heating efficiency of the sealing material was evaluated according to the following criteria.
  • the transmittance of infrared rays with a wavelength of 1 ⁇ m in the tube is 90.0% or more and 99.0% or less, so that the heating efficiency of the heat shrinkable tube in infrared rays and the sealing inside the heat shrinkable connection part Good results were obtained in the evaluation of the heating efficiency of the material.
  • no. In No. 44 the heating efficiency of the sealing material was lowered when the heat-shrinkable connecting part was heated, so that the sealing material was difficult to deform, and the shrinkage of the heat-shrinkable connecting part was delayed.
  • No. 6 which has an infrared transmittance of more than 99.0%.
  • the heating efficiency of the heat-shrinkable tube was lowered when the heat-shrinkable connecting part was heated, resulting in difficulty in shrinking the heat-shrinkable tube.
  • the melting point of the solder material in the heat-shrinkable connecting part is 210°C or higher and 240°C or lower, and the softening point of the sealing material is 80°C or higher and 170°C or lower. 61 to No. 66 gave good results in the leakage current test.
  • the softening point of the sealing material is less than 80°C. 59
  • the melting point of the solder material is less than 210°C and the softening point of the sealing material is less than 80°C. 58, No. 58
  • the melting point of the solder material is over 240°C.
  • No. 68 the softening point of the encapsulant is over 170°C. 67
  • the melting point of the solder material is over 240°C and the softening point of the sealing material is over 170°C. 69
  • the passing rate of the leakage current test of the heat-shrinkable connection part was lowered.
  • a lead wire was placed so that the tip of the lead wire came to the area of the soldered portion, and a heat-shrinkable tube was placed around it. Then, hot air of 500° C. was applied with a heat gun to shrink the tube to fix the soldered portion and the sealed portion, and after cooling, the tube was taken out from the metal bar to produce a heat-shrinkable connecting part.
  • the tube length was 20 mm.
  • the sealing material had a width of 2 mm and a thickness of 0.4 mm.
  • the solder material had a width of 2.5 mm and a thickness of 0.4 mm.
  • the shear viscosity of the encapsulant was adjusted by the amount of silica added. Table 9 shows the shear viscosity at 250°C.
  • the performance of the heat-shrinkable connection part was evaluated by placing the heat-shrinkable connection part on the part of the ETFE wire from which the coating was removed, shrinking it, applying a voltage in the solution, and determining whether the leakage current was below the threshold.
  • the electric wire after contraction was heated at 215° C. for 750 hours and then evaluated for leakage current.
  • a solution of 5% NaCl and 0.5% surfactant was used as the immersion solution, and a voltage of 1 kV was applied for 60 seconds to evaluate leakage current.
  • Table 9 shows the evaluation results of the performance of the heat-shrinkable connection parts.
  • the evaluation criteria for the performance of heat-shrinkable joints are as follows. A: Pass rate of leakage current test is 90% or more.
  • B: Pass rate of leakage current test is 80% or more.
  • C Pass rate of leakage current test is 75% or more.
  • D Pass rate of leakage current test is less than 75%.
  • ⁇ Test Example 10> A raw material for the ethylene-tetrafluoroethylene copolymer resin was selected so that the fluorine content in the ethylene-tetrafluoroethylene copolymer became the value shown in Table 10, and cross-linking was performed by electron beam irradiation at an irradiation dose of 80 kGy. No. 1 in Test Example 1, except that Heat-shrinkable tube No. 78-No. 89 was made.
  • a heat shrink tube a solder material (Sn 96.0 mass%, Ag 3.0 mass% and Cu 1.0 mass%) with a melting point of 223 ° C., THV 70 mass%, FKM 30 mass% and the content described in the table
  • a sealing material containing silica and having a softening point of 110° C. a ring-shaped solder material was fixed to the central portion in the longitudinal direction of the metal rod, and a ring-shaped sealing portion was fixed to both ends.
  • a lead wire was placed so that the tip of the lead wire came to the area of the soldered portion, and a heat-shrinkable tube was placed around it. Then, hot air of 500° C.
  • the tube length was 20 mm.
  • the sealing material had a width of 2 mm and a thickness of 0.4 mm.
  • the solder material had a width of 2.5 mm and a thickness of 0.4 mm.
  • the shear viscosity of the encapsulant was adjusted by the amount of silica added. The shear viscosity at 215°C is shown in the table.
  • the performance of the heat-shrinkable connection part was evaluated in the same manner as in Test Example 9.
  • the shear viscosity of the sealing material at 215 ° C. and a shear rate of 0.01 / s is 7000 Pa s or more and 70000 Pa s or less, so that the sealing performance of the heat shrinkable connection part is good.
  • the results were obtained.
  • No. 78 the encapsulant easily flowed when held at high temperature for a long period of time, and the passing rate of the leakage current test decreased.
  • the effect of filling the gap was low due to the low fluidity, and the pass rate of the leakage current test decreased due to the deterioration of the sealing performance.
  • the heat-shrinkable connection part No. 1 in which the sealing material has a melting point of 110°C or higher and 170°C or lower. 91 to No. 94 gave good properties of heat-shrinkable joints.
  • the heat-shrinkable tube became soft and easily changed in shape when it was shrunk, and the sealability was deteriorated, so that the pass rate of the leakage current test of the heat-shrinkable connection part was lowered.
  • the sealing material when kept at high temperature for a long period of time, the sealing material easily flowed, and it was difficult to maintain the sealing performance.
  • No. 95 the fluidity of the heat-shrinkable tube was low when it was shrunk, so the effect of filling the gap was low, and the sealing performance was lowered.
  • the tube length was 30 mm.
  • the sealing material had a width of 2 mm and a thickness of 0.4 mm.
  • the shear viscosity was adjusted by the amount of silica added. Table 12 shows the shear viscosities at 250°C and 215°C.
  • the performance of the heat-shrinkable connecting part is evaluated by installing the crimping sleeve and the heat-shrinking connecting part on the part where the coating of the ETFE wire has been removed, placing the tip of the lead wire in the removed part, and crimping the crimping sleeve part with a crimping tool. was fixed by crimping, followed by heat shrinkage, and a voltage was applied in the solution to evaluate whether the leakage current was below the threshold.
  • the crimping sleeve used was a copper substrate plated with nickel having a thickness of 8 ⁇ m and a length of 15 mm. For evaluation of heat resistance, the electric wire after contraction was heated at 215° C. for 750 hours and then evaluated for leakage current.
  • a solution of 5% NaCl and 0.5% surfactant was used as the immersion solution, and a voltage of 1 kV was applied for 60 seconds to evaluate leakage current.
  • Table 12 shows the evaluation results of the performance of the heat-shrinkable connection parts. The evaluation criteria for the performance of heat-shrinkable joints are as follows. A: Pass rate of leakage current test is 90% or more. B: Pass rate of leakage current test is 80% or more. C: Pass rate of leakage current test is 75% or more. D: Pass rate of leakage current test is less than 75%.
  • the storage elastic modulus of the heat-shrinkable tube at 250° C. or higher and 280° C. or lower is 0.8 MPa or higher and 2.8 MPa or lower
  • the shear viscosity of the sealing material at 250° C. and a shear rate of 100/s is 1000 Pa ⁇ s or more and 2000 Pa ⁇ s or less
  • the sealing material has a shear viscosity of 7000 Pa ⁇ s or more and 70000 Pa ⁇ s or less at a shear rate of 0.01/s at 215°C. 96 to No. 103 obtained good sealing performance.
  • Test Example 13 a heat-shrinkable tube with an inorganic substance added as an additive was evaluated. No. 1 of Test Example 1 except that the inorganic substances shown in Table 2 were mixed. Heat-shrinkable tube No. 104-No. 110 was made. This heat-shrinkable tube No. 104-No. Regarding No. 110, in addition to expansion performance and shrinkage performance similar to Test Example 1, strength and facility contamination were also evaluated. Table 13 shows the evaluation results.
  • Strength and facility contamination were evaluated by the following methods.
  • (2) Equipment contamination Evaluation of the above equipment contamination was based on the following criteria for the equipment after the production of the heat-shrinkable tube. A: No contamination. B: Slightly contaminated. C: Slightly contaminated. D: Remarkable contamination.
  • the heat-shrinkable tube has excellent heat resistance and heat-shrinkability as a heat-shrinkable connection part for highly heat-resistant insulated wires.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Insulating Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本開示に係る熱収縮チューブは、エチレン-テトラフルオロエチレン共重合体を主成分とし、融点が210℃以上250℃以下であり、250℃以上280℃以下における貯蔵弾性率が0.8MPa以上2.8MPa以下である。

Description

熱収縮チューブ、熱収縮接続部品、熱収縮チューブの製造方法及び熱収縮接続部品の製造方法
 本開示は、熱収縮チューブ、熱収縮接続部品、熱収縮チューブの製造方法及び熱収縮接続部品の製造方法に関する。
 本出願は、2021年2月24日出願の日本出願第2021-27985号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
 航空機用、電子部品用、鉄道車両用、自動車用や自動二輪用のワイヤハーネスとして、複数の絶縁電線を接続帯や粘着テープ等でまとめた電線束が用いられる。各絶縁電線は、一般に、1又は複数の銅合金等の導体からなる素線の束に絶縁体を被覆して構成される。この電線束の末端や中間部にある接続部分(ジョイント部)は、素線が露出するため電気絶縁、機械的保護や防水が必要である。電気絶縁、機械的保護、防水には熱収縮チューブが用いられる。特に防水には、径方向に熱収縮性を有する熱収縮チューブを備える熱収縮接続部品が用いられる。この熱収縮接続部品が備える熱収縮チューブは、絶縁電線同士の接続部分に被覆して加熱すると、形状記憶効果により、接続部分の形状に沿って収縮して密着することで電線、パイプ等の接続部分を保護できる。
 このような熱収縮チューブの材質としては、耐熱性、機械的強度等に優れ、摩擦係数も小さくできるポリテトラフルオロエチレン(PTFE)が好適に使用される。ただし、PTFEは貯蔵弾性率が高く成形加工が容易ではないので、PTFEチューブを放射線照射により架橋させ、成形加工を容易にする技術が提案されている(特許文献1参照)。さらに、熱収縮チューブの材質として、融点が低く成形加工性に優れるポリフッ化ビニリデン(PVDF)も広く採用されている。
国際公開第2010/038800号
 本開示の一態様に係る熱収縮チューブは、エチレン-テトラフルオロエチレン共重合体を主成分とし、250℃以上280℃以下における貯蔵弾性率が0.8MPa以上2.8MPa以下であり、融点が210℃以上250℃以下である。
 本開示の他の態様に係る熱収縮チューブの製造方法は、熱収縮チューブを製造する方法であって、エチレン-テトラフルオロエチレン共重合体を主成分とする樹脂組成物をチューブ状に押出成形する工程と、上記押出成形工程により形成されるチューブを照射により架橋する工程と、上記架橋工程後のチューブを温度250℃以上280℃以下の温度下で加熱する工程と、上記チューブの内側の圧力を外側よりも50kPa以上高くしてチューブを膨張する工程とを備えており、上記熱収縮チューブの250℃以上280℃以下における貯蔵弾性率が0.8MPa以上2.8MPa以下であり、融点が210℃以上250℃以下である。
図1は、本開示の一実施形態に係る熱収縮チューブを示す模式的斜視図である。 図2は、本開示の一実施形態に係る熱収縮接続部品を示す模式的斜視図である。 図3は、本開示の他の実施形態に係る熱収縮接続部品を示す模式的斜視図である。 図4は、本開示の他の実施形態に係る熱収縮接続部品を示す模式的斜視図である。 図5は、本開示の他の実施形態に係る熱収縮接続部品を示す模式的斜視図である。 図6は、本開示の他の実施形態に係る熱収縮接続部品を示す模式的斜視図である。 図7は、本開示の一実施形態に係る熱収縮接続部品に2本の絶縁電線から露出する導体を挿入する前の状態を説明する模式図である。 図8は、本開示の一実施形態に係る熱収縮接続部品により2本の絶縁電線の接続部分が被覆された状態を説明する模式図である。 図9は、本開示の一実施形態に係る熱収縮接続部品が熱収縮を開始した状態を説明する模式図である。 図10は、本開示の一実施形態に係る熱収縮接続部品の封止剤が溶融した状態を説明する模式図である。 図11は、本開示の一実施形態に係る熱収縮接続部品の半田材が溶融した状態を説明する模式図である。
[本開示が解決しようとする課題]
 PTFEの融点は327℃であり、非常に高いことから、熱収縮チューブの収縮時にエチレン-テトラフルオロエチレン共重合体やシリコン等を含有する高耐熱絶縁電線の絶縁層がダメージを受けやすくなるおそれがある。一方、絶縁電線の熱収縮接続部品としては、絶縁電線の接続部分の保護だけではなく、接続部分への外部からの水の浸入を防ぐ高い防水性が必要となる。また、融点以上の温度では熱収縮チューブが収縮することから、融点が160℃であるPVDFを採用した場合、より高温における耐熱性が要求される用途では信頼性が不足するおそれがある。このように、高耐熱グレード絶縁電線向けの熱収縮接続部品に用いられる熱収縮チューブにおいては、高い耐熱性及び止水性能を有しつつ、被覆対象となる絶縁電線に対して熱によるダメージを与えることなく熱収縮できることが求められる。
 本開示は、このような事情に基づいてなされたものであり、高耐熱性の絶縁電線の熱収縮接続部品用途として耐熱性及び熱収縮性能に優れる熱収縮チューブを提供することを目的とする。
[本開示の効果]
 本開示によれば、高耐熱性の絶縁電線の熱収縮接続部品用途として耐熱性及び熱収縮性能に優れる熱収縮チューブを提供できる。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 本開示の一態様に係る熱収縮チューブは、エチレン-テトラフルオロエチレン共重合体(ETFE)を主成分とし、250℃以上280℃以下における貯蔵弾性率が0.8MPa以上2.8MPa以下であり、融点が210℃以上250℃以下である。
 当該熱収縮チューブは、エチレン-テトラフルオロエチレン共重合体を主成分とすることで、融点及び融点以上における貯蔵弾性率を制御しやすい。当該熱収縮チューブは、融点が210℃以上250℃以下であることで、耐熱性を確保するとともに、被覆対象物の熱によるダメージを抑制できる。さらに、250℃以上280℃以下における貯蔵弾性率が0.8MPa以上2.8MPa以下であるので、融点以上に加熱した際の変形性に優れ、製造過程における膨張(拡径)を容易に行うことができる。また、チューブの収縮時における偏肉率(肉厚分布)及び長さ変化率を良好な範囲に制御でき、元の形状に収縮できる収縮性能に優れ、長さ方向の収縮を均一化することにより、収縮時の端面傾斜を抑制できる。従って、当該熱収縮チューブは、絶縁層がエチレン-テトラフルオロエチレン共重合体やシリコン等を含有する高耐熱性の絶縁電線の熱収縮接続部品用途として耐熱性及び熱収縮性能に優れる。また、本発明の熱収縮チューブは、偏肉率及び長さ変化率を良好な範囲に制御できる単層のチューブであることから、従来の内側に流動性の接着剤層を備える2層タイプのように製造効率やコストの課題を生じることなく、被覆対象物との間の隙間の発生を抑制し、良好な収縮性を備えることができる。
 当該熱収縮チューブにおける「主成分」とは、最も含有量の多い成分を意味し、当該熱収縮チューブの総質量に対して95質量%以上含まれ、かつ、樹脂成分の総質量に対して98質量%以上含まれる成分をいう。「貯蔵弾性率」とは、JIS-K7244-4(1999)に記載の動的機械特性の試験方法に準拠して測定される値であり、粘弾性測定装置を用いて、引張モード、歪0.08%の条件で上記温度と周波数で測定した値である。上記粘弾性測定装置としては、例えばアイティー計測制御社製「DVA-220」を用いることができる。
 当該熱収縮チューブにおいては、上記エチレン-テトラフルオロエチレン共重合体におけるフッ素の含有量が58質量%以上62質量%以下であることが好ましい。上記エチレン-テトラフルオロエチレン共重合体におけるフッ素の含有量を上記範囲とすることで、当該熱収縮チューブの融点と融点以上における貯蔵弾性率を適正な範囲に制御することができる。
 上記エチレン-テトラフルオロエチレン共重合体中のエチレン単位数mに対するテトラフルオロエチレン単位数nの比率n/mが、1.02以上1.20以下であることが好ましい。上記エチレン単位数mに対するテトラフルオロエチレン単位数nの比率n/mが上記範囲であることで、当該熱収縮チューブの融点と融点以上における貯蔵弾性率を適正な範囲に制御することができる。
 当該熱収縮チューブにおいては、25℃における貯蔵弾性率が、500MPa以上900MPa以下であることが好ましい。25℃における貯蔵弾性率が上記範囲であることで、当該熱収縮チューブが用いられる熱収縮接続部品の強度及び可撓性を良好な範囲に維持できる。
 表面の算術平均粗さRaが0.1μm以上2.0μm以下であることが好ましい。上記算術平均粗さRaが上記範囲であることで、当該熱収縮チューブ1の内部の視認性を確保できるとともに、当該熱収縮チューブ1の製造工程時の赤外線(IR)加熱における赤外線の吸収性を向上できる。上記算術平均粗さRaは、JIS-B0601(2013)に準拠して測定した値である。
 当該熱収縮チューブにおいては、波長1μmの赤外線の透過率が90.0%以上99.0%以下であることが好ましい。上記赤外線の透過率の範囲を上記範囲とすることで、当該熱収縮チューブの製造過程における加熱効率を良好にできる。また、当該熱収縮チューブを用いた熱収縮接続部品の収縮挙動を良好にできる。赤外線の透過率の測定方法としては、島津製作所社製の分光光度計UV-3600を用いて波長1μmの赤外線の透過率を測定することができる。
 本開示の他の態様に係る熱収縮接続部品は、素線が絶縁層により被覆された絶縁電線を接続するための熱収縮接続部品であって、当該熱収縮チューブと、上記熱収縮チューブにおける両端側の内周面に配設される1対の封止部とを備える。当該熱収縮接続部品は当該熱収縮チューブを備えているので、熱収縮接続部品として良好な収縮性能、封止性及び耐熱性を備える。
 上記封止部を構成する封止材の250℃、剪断速度100/sにおける剪断粘度が、1000Pa・s以上2000Pa・s以下であることが好ましい。上記250℃、剪断速度100/sにおける剪断粘度が、剪断速度100/sで1000Pa・s以上2000Pa・s以下であることで、熱収縮チューブ1のチューブの収縮時に隙間が生じにくく、当該熱収縮接続部品の封止性を向上できる。上記剪断粘度の測定方法としては、回転式レオメーター(アントンパール社製の「MCR302」)を用い、所定の温度、剪断速度における剪断粘度の評価を行うことができる。
 上記封止部を構成する封止材の215℃、剪断速度0.01/sにおける剪断粘度が、7000Pa・s以上70000Pa・s以下であることが好ましい。上記封止部を構成する封止材の215℃、剪断速度0.01/sにおける剪断粘度が、7000Pa・s以上70000Pa・s以下であることで、適度な流動性を有するので、封止性を向上できる。
 当該熱収縮接続部品は、上記熱収縮チューブにおける上記1対の封止部の間の内周面に配設される半田部をさらに備えることが好ましい。当該熱収縮接続部品が上記熱収縮チューブにおける上記1対の封止部の間の内周面に配設される半田部をさらに備えることで、絶縁電線同士の接続性をより向上できる。
 当該熱収縮接続部品においては、上記半田部を構成する半田材の融点が210℃以上240℃以下であり、上記封止材の軟化点が80℃以上170℃以下であることが好ましい。上記半田材の融点及び上記封止材の軟化点が上記範囲であることで、当該熱収縮チューブと、上記半田材及び上記封止材とを組み合わせて、当該熱収縮接続部品における耐熱性、封止性及び絶縁電線の接続性を良好にできる。ここで、「軟化点」とは、熱機械分析装置を用いて、圧力5kPaで加圧しながら昇温した際に、厚みが50%となる温度を意味する。
 上記封止材の融点が110℃以上170℃以下であることが好ましい。上記封止材の軟化点が110℃以上170℃以下であることで、封止材がより良好な流動性を有し、隙間を充填する効果がさらに高くなるので封止性をより向上できる。
 当該熱収縮接続部品においては、封止材における波長1μmの赤外線の透過率が1.0%以上30.0%以下であることが好ましい。上記封止材における波長1μmの赤外線の透過率が上記範囲であることで、当該熱収縮接続部品の赤外線加熱における赤外線の吸収性を向上できるとともに、当該熱収縮接続部品の良好な熱収縮挙動を得ることができる。
 本開示の他の態様に係る熱収縮チューブの製造方法は、熱収縮チューブを製造する方法であって、エチレン-テトラフルオロエチレン共重合体を主成分とする樹脂組成物をチューブ状に押出成形する工程と、上記押出成形工程により形成されるチューブを照射により架橋する工程と、上記架橋工程後のチューブを温度250℃以上280℃以下の温度下で加熱する工程と、上記チューブの内側の圧力を外側よりも50kPa以上高くしてチューブを膨張する工程とを備えており、上記熱収縮チューブの250℃以上280℃以下における貯蔵弾性率が0.8MPa以上2.8MPa以下であり、融点が210℃以上250℃以下である。当該熱収縮チューブの製造方法によれば、高耐熱性の絶縁電線の熱収縮接続部品用途として耐熱性及び熱収縮性能に優れる熱収縮チューブを製造できる。
 本開示の他の態様に係る熱収縮接続部品の製造方法は、当該熱収縮チューブにおける両端側の内周面に封止部を配設する工程と、上記熱収縮チューブを収縮させることにより封止部を固定する工程とを備えており、上記封止部を構成する封止材の軟化点が80℃以上170℃以下である。当該熱収縮接続部品の製造方法によれば、当該熱収縮接続部品の製造方法は、当該熱収縮チューブにおける両端側の内周面に1対の封止部を配設する工程と、収縮して固定する工程とを備え、上記封止部を構成する封止材の軟化点が80℃以上170℃以下であるので、良好な収縮性能、封止性及び耐熱性を備える熱収縮接続部品を容易に製造できる。
[本開示の実施形態の詳細]
 以下、本開示の実施形態に係る熱収縮チューブについて、適宜図面を参照しつつ詳説する。
<熱収縮チューブ>
 本開示の一実施形態に係る熱収縮チューブは、被覆対象物を保護するための被覆材として使用される。熱収縮チューブは、加熱されることで縮径するチューブである。より具体的には、被覆対象物が挿入された熱収縮チューブを被覆対象物上で加熱し、上記熱収縮チューブの収縮体で被覆対象物を被覆することで、被覆対象物が保護される。
 図1の熱収縮チューブ1は、円筒形状の単層の基材層から構成されている。熱収縮チューブ1は、例えば被覆対象物同士の接続部分、配線の端末、金属管等の保護、絶縁、防水、防食等のための被覆に使用される。また、当該熱収縮チューブ1は、熱収縮チューブ形成用の樹脂組成物により形成され、当該熱収縮チューブ1は、エチレン-テトラフルオロエチレン共重合体を主成分とする。当該熱収縮チューブ1は、エチレン-テトラフルオロエチレン共重合体を主成分とすることで、融点及び融点以上における貯蔵弾性率を制御しやすい。
 上記エチレン-テトラフルオロエチレン共重合体におけるフッ素の含有量の下限としては、58質量%が好ましく、59質量%がより好ましい。一方、上記フッ素の含有量の上限としては、62質量%が好ましく、61質量%がより好ましい。上記フッ素の含有量が上記下限未満の場合、熱収縮チューブ1の融点が高くなり、融点以上における貯蔵弾性率が低下するおそれがある。上記フッ素の含有量が上記上限を超えると、熱収縮チューブ1の融点が低くなり、融点以上における貯蔵弾性率が高くなりすぎるおそれがある。上記フッ素の含有量が上記範囲であることで、上記熱収縮チューブの融点と融点以上における貯蔵弾性率を適正な範囲に制御することができる。上記フッ素の含有量は、ガスイオンクロマトグラフ分析により測定することができる。
 上記エチレン-テトラフルオロエチレン共重合体中のエチレン単位数mに対するテトラフルオロエチレン単位数nの比率n/mの下限としては、1.02が好ましく、1.03がより好ましく、1.04がさらに好ましい。一方、上記エチレン単位数mに対するテトラフルオロエチレン単位数nの比率n/mの上限としては、1.20が好ましく、1.15がより好ましく、1.12がさらに好ましい。上記エチレン単位数mに対するテトラフルオロエチレン単位数nの比率n/mが上記下限未満の場合、熱収縮チューブ1の融点が高くなり、融点以上における貯蔵弾性率が低下するおそれがある。上記エチレン単位数mに対するテトラフルオロエチレン単位数nの比率n/mが上記上限を超えると、熱収縮チューブ1の融点が低くなり、融点以上における貯蔵弾性率が高くなりすぎるおそれがある。上記エチレン単位数mに対するテトラフルオロエチレン単位数nの比率n/mが上記範囲であることで、上記熱収縮チューブの融点と融点以上における貯蔵弾性率を適正な範囲に制御することができる。
 当該熱収縮チューブ1の250℃以上280℃以下における貯蔵弾性率の下限としては、0.8MPaであり、1.0MPaが好ましく、1.2MPaがより好ましい。また、上記貯蔵弾性率の上限としては、2.8MPaであり、2.0MPaが好ましく、1.6MPaがより好ましい。上記250℃以上280℃以下における貯蔵弾性率が上記下限未満の場合、熱収縮チューブ1の高温における強度や収縮性能(形状記憶効果)が不十分となるおそれがある。一方、上記貯蔵弾性率が上記上限を超える場合、チューブの膨張が困難になるため、当該熱収縮チューブ1の品質のばらつきの抑制が困難となるおそれがある。また、膨張時の偏肉率が悪く、収縮時の当該熱収縮チューブの長さ変化率の値やばらつきが大きくなるおそれがある。当該熱収縮チューブは、上記貯蔵弾性率を上記範囲とすることで、熱収縮チューブ1が融点以上に加熱した際の変形性に優れ、製造過程において容易かつ確実に拡径できる。これにより、品質のばらつきを低減することができる。
 当該熱収縮チューブ1の25℃における貯蔵弾性率の下限としては、500MPaが好ましく、550MPaがより好ましく、600MPaがさらに好ましい。一方、上記25℃における貯蔵弾性率の上限としては、900MPaが好ましく、850MPaがより好ましく、800MPaがより好ましい。上記25℃における貯蔵弾性率が上記下限未満の場合、熱収縮チューブ1が用いられる熱収縮接続部品の強度が不足して破損しやすくなるおそれがある。一方、上記25℃における貯蔵弾性率が上記上限を超えると、熱収縮接続部品の可撓性が低下して組み立て時に熱収縮接続部品が折れやすくなるおそれがある。熱収縮接続部品においては、組み立て時、収縮時等のハンドリングから形状を維持するため、用いられる熱収縮チューブは半硬質が求められる。当該熱収縮チューブ1においては、25℃における貯蔵弾性率が上記範囲であることで、当該熱収縮チューブ1が用いられる熱収縮接続部品の強度及び可撓性を良好な範囲に維持できる。
 当該熱収縮チューブ1の融点の下限としては、210℃であり、215℃がより好ましい。当該熱収縮チューブ1の融点が上記下限未満の場合、高温下における使用時に熱収縮チューブが軟化又は変形するおそれがある。一方、当該熱収縮チューブ1の融点の上限としては、250℃であり、240℃がより好ましい。当該熱収縮チューブ1の融点が上記上限を超えると、製造された熱収縮チューブ1を熱収縮させる際の収縮温度が高くなるため、被覆対象物に熱によるダメージを与えるおそれがある。当該熱収縮チューブは、融点が上記範囲であることで、耐熱性を確保するとともに、被覆対象物の熱によるダメージを抑制できる。
 当該熱収縮チューブ1の表面の算術平均粗さRaの下限としては、0.1μmが好ましく、0.3μmがより好ましく、0.5μmがさらに好ましい。当該熱収縮チューブ1の表面の算術平均粗さRaが上記下限未満の場合、赤外線加熱装置で加熱した際の吸収が少なく加熱が不十分となるおそれがある。一方、上記算術平均粗さRaの上限としては、2.0μm以下が好ましく、1.5μmがより好ましく、1.0μmがさらに好ましい。当該熱収縮チューブ1の表面の算術平均粗さRaが上記上限を超える場合、可視光の散乱が大きくなり、当該熱収縮チューブ1の内部の視認性が低下するため、当該熱収縮チューブ1を備える熱収縮接続部材の収縮度合の確認が困難となるおそれがある。絶縁電線の熱収縮接続部品は、収縮状態、半田材の溶融、電線の接続状態等の確認を行うために、当該熱収縮チューブ1の内部の視認性が要求される。従って、熱収縮接続部品に用いられる熱収縮チューブとしては、透明性が求められる。当該熱収縮チューブ1においては、上記算術平均粗さRaが上記範囲であることで、当該熱収縮チューブ1の内部の視認性を確保できるとともに、当該熱収縮チューブ1の製造工程時の赤外線(IR)加熱における赤外線の吸収性を向上できる。
 当該熱収縮チューブ1においては、波長1μmの赤外線の透過率の下限としては、90.0%が好ましく、92%がより好ましい。熱収縮チューブ1の赤外線の透過率が上記下限未満の場合、当該熱収縮チューブ1を用いた熱収縮接続部品の収縮時に、当該熱収縮チューブ1が優先的に加熱されて、熱収縮接続部品の内部の過熱が不十分になるおそれがある。一方、上記赤外線の透過率の上限としては、99.0%が好ましく、97%がより好ましい。上記赤外線の透過率が上記上限を超える場合、赤外線加熱により熱収縮チューブ1を加熱する場合に加熱効率が低下するおそれがある。当該熱収縮チューブ1においては、上記波長1μmの赤外線の透過率が上記範囲であることで、当該熱収縮チューブ1の製造過程における加熱効率を良好にできるとともに、当該熱収縮チューブ1を用いた熱収縮接続部品の収縮挙動を良好にできる。
 熱収縮チューブ1の平均内径及び平均厚さは、用途等に合わせて適宜選択される。熱収縮チューブ1の熱収縮前の平均内径としては、例えば1mm以上60mm以下とできる。また、熱収縮チューブ1の熱収縮後の平均内径としては、例えば熱収縮前の平均内径の25%以上65%以下とできる。また、熱収縮チューブ1の平均厚さとしては、例えば0.1mm以上5mm以下とできる。
 当該熱収縮チューブ1は、無機物を実質的に含まないことが好ましい。ここで、「無機物を実質的に含まない」とは、フィラーとしての無機物を含まないことを意味する。なお、当該熱収縮チューブ1は、不純物として少量の無機物が不可避的に含まれていてもよい。当該熱収縮チューブ1における無機不純物の含有量としては、例えば5質量%以下が好ましく、1質量%以下がより好ましい。
 当該熱収縮チューブ1は、必要に応じてその他の添加剤を含有していてもよい。そのような添加剤としては、例えば強度保持剤、酸化防止剤、難燃剤、銅害防止剤、架橋助剤、着色剤、熱安定剤、赤外線吸収剤、紫外線吸収剤等が挙げられる。当該熱収縮チューブ1における添加剤の含有量は、5質量%未満とすることが好ましく、3質量%未満がより好ましい。添加剤の含有量が上記上限以上の場合、当該熱収縮チューブ1の性能にばらつきが生じ易くなるおそれがある。
 当該熱収縮チューブによれば、高耐熱性の絶縁電線の熱収縮接続部品用途として耐熱性及び熱収縮性能に優れる熱収縮チューブを提供できる。当該熱収縮チューブは、例えば絶縁電線又はケーブル等のワイヤの保護、絶縁、防水、防食等に好適に使用できる。具体的には、当該熱収縮チューブは、ワイヤスプライス及びワイヤハーネスに適用することができる。当該熱収縮チューブは、半田材及び封止材と組み合わせて、熱収縮接続部品を形成して使用することができる。また、接着剤層及び圧着スリーブと組み合わせて、圧着端子の形成に使用することができる。
<熱収縮性接続部材>
 当該熱収縮接続部品は、素線が絶縁層により被覆された絶縁電線を接続するための熱収縮接続部品である。図2は、本開示の一実施形態に係る熱収縮接続部品を示す模式的斜視図である。図2に示すように、熱収縮接続部品40は、当該熱収縮チューブ1と、上記熱収縮チューブ1における両端側の内周面に配設される1対の封止部3とを備える。上記封止部3は、封止材から構成される。当該熱収縮接続部品40は当該熱収縮チューブ1を備えているので、熱収縮接続部品として良好な収縮性能、封止性及び耐熱性を備える。
 当該熱収縮接続部品は、上記熱収縮チューブにおける上記1対の封止部の間の内周面に配設される半田部をさらに備えることが好ましい。当該熱収縮接続部品が上記熱収縮チューブにおける上記1対の封止部の間の内周面に配設される半田部をさらに備えることで、絶縁電線同士の接続性をより向上できる。図3に示す熱収縮接続部品50は、当該熱収縮チューブ1と、上記熱収縮チューブ1における両端側の内周面に配設される1対の封止部3と、上記熱収縮チューブ1における上記1対の封止部3の間の内周面に配設される半田部2とを備える。上記半田部2は半田材から構成される。
 当該熱収縮接続部品は接地用絶縁電線を備えることができる。図4に示す熱収縮接続部品51は、当該熱収縮チューブ1と、上記熱収縮チューブ1における両端側の内周面に配設される1対の封止部3と、上記熱収縮チューブ1における上記1対の封止部3の間の内周面に配設される半田部2と、接地用絶縁電線25とを備える。接地用絶縁電線25は、素線23と、素線23を被覆する絶縁層24とを備える。熱収縮接続部品51が接地用絶縁電線25を備えることで、容易に接地(アース)を取ることができる。なお、接地用絶縁電線の絶縁性の被覆部は、樹脂や編組でもよい。
 当該熱収縮接続部品においては、封止材の250℃、剪断速度100/sにおける剪断粘度の下限としては、1000Pa・sが好ましく、1100Pa・sがより好ましく、1200Pa・sがさらに好ましい。上記封止材の250℃、剪断速度100/sにおける剪断粘度が1000Pa・sよりも低い場合には、熱収縮チューブの収縮時に軟化して形状が変化しやすくなるので、隙間が生じやすく、封止性が低下するおそれがある。一方、封止材の250℃、剪断速度100/sにおける剪断粘度の上限としては、2000Pa・sが好ましく、1900Pa・sがより好ましく、1800Pa・sがさらに好ましい。上記封止材の250℃、剪断速度100/sにおける剪断粘度が2000Pa・sよりも高い場合は、熱収縮チューブの収縮時の流動性が低いため、隙間を充填する効果が低くなり封止性が低下するおそれがある。
 当該熱収縮接続部品においては、封止材の250℃、剪断速度0.01/sにおける剪断粘度は、3000Pa・s以上40000Pa・s以下であることが好ましい。上記250℃、剪断速度0.01/sにおける剪断粘度が3000Pa・sよりも低い場合には、高温で長期間保持された際に封止材が流れやすくなり、封止性を維持するのが困難となるおそれがある。上記250℃、剪断速度0.01/sにおける剪断粘度が40000Pa・sよりも高い場合には、封止材の流動性が低いため、隙間を充填する効果が低くなり、封止性が低下するおそれがある。
 当該熱収縮接続部品においては、封止材の215℃、剪断速度0.01/sにおける剪断粘度の下限としては、7000Pa・sが好ましく、10000Pa・sがより好ましく、13000Pa・sがさらに好ましい。上記封止材の封止材の215℃、剪断速度0.01/sにおける剪断粘度が7000Pa・sよりも低い場合には、高温で長期間保持された場合に流動しやすくなり、封止性を維持できなくなるおそれがある。一方、封止材の215℃、剪断速度0.01/sにおける剪断粘度の上限としては、70000Pa・sが好ましく、60000Pa・sがより好ましく、50000Pa・sがさらに好ましい。上記封止材の215℃、剪断速度0.01/sにおける剪断粘度が70000Pa・sよりも高い場合は、流動性が低くなり過ぎて、隙間を十分に充填できなくなり、封止性が低下するおそれがある。
 当該熱収縮接続部品においては、封止材の215℃、剪断速度100/sにおける剪断粘度は、1500Pa・s以上2500Pa・s以下であることが好ましい。上記封止材の215℃、剪断速度100/sにおける剪断粘度が1500Pa・sよりも低い場合、熱収縮チューブの収縮時に軟化して形状が変化しやすくなり、隙間が生じやすくなるので、封止性が低下するおそれがある。上記封止材の215℃、剪断速度100/sにおける剪断粘度が2500Pa・sよりも高い場合、熱収縮チューブの収縮時に流動性が低くなるため、隙間を充填する効果が低くなって封止性が低下するおそれがある。
 当該熱収縮接続部品50においては、上記半田部2を構成する半田材の融点が210℃以上240℃以下であることが好ましく、220℃以上230℃以下であることがより好ましい。また、上記封止部3を構成する封止材の軟化点が80℃以上170℃以下であることが好ましく、100℃以上150℃以下であることがより好ましく、110℃以上140℃以下であることがさらに好ましい。上記半田材の融点が210℃以上240℃以下であり、上記封止材の軟化点が80℃以上170℃以下であることで、熱収縮チューブ1と、上記半田材及び上記封止材とを組み合わせて、当該熱収縮接続部品50における耐熱性、封止性及び絶縁電線の接続性を良好にできる。
 当該熱収縮接続部品50においては、上記封止材の融点が110℃以上170℃以下であることが好ましく、120℃以上160℃以下であることがより好ましい。封止材の融点が110℃以上170℃以下であることで、封止材がより良好な流動性を有し、隙間を充填する効果がさらに高くなるので封止性をより向上できる。融点が110℃よりも低い場合、チューブの収縮時に軟化し、形状が変化しやすくなるので、隙間が生じやすく、封止性が低下するおそれがある。融点が170℃よりも高い場合、収縮時の流動性が低いため、隙間を充填する効果が低くなり、封止性が低下するおそれがある。
 上記封止材料としては、例えばポリオレフィン樹脂、フッ素樹脂、フッ素ゴムを用いることができる。高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸エチル共重合体(EEA)、エチレン-メチルメタクリレートの共重合体(EMMA)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフロライド共重合体(THV)、フッ化ビニリデン系ゴム(FKM)、フッ化エチレンプロピレン系ゴム(FEPM)、テトラフルオロエチレンパーフルオロビニルエーテル系ゴム(FFKM)等のうちのいずれかを1種又は2種以上混合して用いることができる。また、上記封止材料は、着色剤、酸化防止剤、赤外線吸収剤、潤滑剤を含むことができる。
 上記封止材は、剪断粘度の調整のために架橋することができる。架橋は電子線やガンマ線等の電子線照射の他に、化学架橋を用いることができる。
 また、上記封止材は、剪断粘度の調整のために無機フィラーを含有することができる。無機フィラーとしては、例えばシリカ、ハイドロタルサイト、クレー又はこれらの組み合わせを用いることができる。
 上記封止材における無機フィラーの含有量としては、封止材の樹脂100質量部に対して0.2質量部超が好ましく、1.0質量部以上がより好ましく、1.5質量部以上がさらに好ましい。無機フィラーの含有量が0.2質量部以下の場合、剪断粘度の十分な向上効果が得られないおそれがある。一方、上記封止材における無機フィラーの含有量としては、5.0質量部未満が好ましく、4.0質量部以下がより好ましく、3.5質量部以下がさらに好ましい。上記無機フィラーの含有量が5.0質量部を超える場合、剪断粘度が高くなり過ぎて封止性が低下するおそれがある。
 上記半田材料としては、金属系材料を用いることができる。上記半田材料としては、例えばSn、Sb、Pb、Bi、Ag、Cu、Ni、In、Ge、P、Zn又はこれらの組み合わせを用いることができる。上記半田材料としては、これらの中でも半田材料の融点を良好な範囲に調整できる観点から、Sn-Ag、Sn-Cu、Sn-Sb、Sn-Pb、Pb-Inを含むものが好ましい。上記半田材料にはフラックスを含むことができる。
 当該熱収縮接続部品50においては、封止材における波長1μmの赤外線の透過率が1.0%以上30.0%以下であることが好ましく、3%以上22%以下であることがより好ましく、5%以上16%以下であることがさらに好ましい。上記封止材における赤外線の透過率が上記上限を超えると、赤外線加熱時に封止部3の加熱が遅くなることで軟化が進みにくくなったために、熱収縮接続部品の封止性が低くなるおそれがある。一方、上記封止材における赤外線の透過率が上記下限未満の場合は、封止部3が優先的に軟化してしまい、半田材の封止性が低くなるおそれがある。上記封止材における波長1μmの赤外線の透過率が上記範囲であることで、当該熱収縮接続部品50の赤外線加熱における赤外線の吸収性を向上できるとともに、熱収縮接続部品の封止性を良好にできる。
 当該熱収縮接続部品によれば、当該熱収縮チューブを備えているので、熱収縮接続部品として良好な収縮性能、封止性及び耐熱性を備える。
<熱収縮チューブの製造方法>
 当該熱収縮チューブの製造方法は、エチレン-テトラフルオロエチレン共重合体を主成分とする樹脂組成物をチューブ状に押出成形する工程と、上記押出成形工程により形成されるチューブを照射により架橋する工程と、上記架橋工程後のチューブを温度250℃以上280℃以下の温度下で加熱する工程と、上記チューブの内側の圧力を外側よりも50kPa以上高くしてチューブを膨張する工程とを備えている。
(押出成形工程)
 初めに、溶融混合機等を用いて当該熱収縮チューブの樹脂成分であるエチレン-テトラフルオロエチレン共重合体と、必要に応じてその他の添加剤とを混合することにより熱収縮チューブを形成するための樹脂組成物を調製する。上記樹脂組成物においては、必要に応じてエチレン-テトラフルオロエチレン共重合体の原料に着色剤や架橋助剤を添加する。エチレン-テトラフルオロエチレン共重合体原料の選定や架橋の調整により、融点及び貯蔵弾性率を制御することができる。溶融混合機としては、特に限定されず、例えばオープンロール、バンバリーミキサー、加圧ニーダー、単軸混合機、多軸混合機等を使用できる。
 次に、本工程では、エチレン-テトラフルオロエチレン共重合体を主成分とする樹脂組成物をチューブ状に押出成形する。上記樹脂組成物を溶融押出成形機により押出成形する。具体的には、上記樹脂組成物を融点以上の温度に加熱して溶融させ、円筒状の空間を有する押出ダイスから溶出し、冷却水等で融点以下に冷却して固化させることで樹脂組成物をチューブ状に押出成形する。押出成形品の寸法は用途等に応じて設計することができる。押出成形品の寸法は、押出ダイスの寸法や、引き落とし率により調整できる。「引き落とし率」は、押出ダイスの断面積と押出成形後のチューブの断面積の比率である。押出時の表面荒れを抑制するためには、引き落とし率は6以上が好ましく、10以上がより好ましい。
(架橋工程)
 架橋工程では、上記押出成形工程により形成されるチューブを照射により架橋する。本工程では、押出成形品のベース樹脂であるエチレン-テトラフルオロエチレン共重合体を架橋することにより、膨張工程後に高温で加熱収縮させる際の収縮性(形状記憶効果)及び収縮後の高温における形状保持性を付与する。エチレン-テトラフルオロエチレン共重合体を架橋する方法としては、エチレン-テトラフルオロエチレン共重合体に放射線を照射する方法が好ましい。放射線の照射によりエチレン-テトラフルオロエチレン共重合体を架橋した後は成形が困難になるので、放射線の照射(架橋)は押出成形工程後に行われる。押出成形後に放射線の照射を行うことにより、成形を確実に実施し、かつ放射線の照射による効果を充分に得ることができる。
 エチレン-テトラフルオロエチレン共重合体の照射架橋に使用される放射線としては、電子線(β線)、γ線等が挙げられる。電子加速器はランニングコストが低く、大出力の電子線が得られ、また、制御も容易であるので、放射線としては電子線が好ましい。
 放射線照射量としては、30kGy以上300kGy以下の範囲が好ましい。上記放射線照射量が30kGy未満の場合、架橋度が小さくなり、熱収縮接続部品の強度が不足して破損しやすくなる。また収縮性能(形状記憶性)が低下し、収縮後の高温における形状保持性が低下するおそれがある。一方、上記放射線照射量が300kGy超の場合、架橋度が大きくなり、収縮熱収縮接続部品の可撓性が低下して組立時に折れやすくなるおそれがある。また膨張が困難となり品質ばらつきが生じやすく、偏肉率の低下や長さ変化率のばらつきが生じるおそれがある。
(加熱工程)
 加熱工程では、上記架橋工程後のチューブを温度250℃以上280℃以下の温度となるように加熱する。これにより膨張後チューブの偏肉率を低減し、膨張速度を増加することができる。よって、熱収縮チューブの製造コスト及び品質のばらつきをより確実に低減できる。チューブの加熱温度が上記下限未満の場合、膨張が不十分となるおそれや、膨張の線速が低下するおそれがある。逆に、チューブの加熱温度が上記上限を超える場合、チューブが熱によりダメージを受けるおそれがある。なおチューブ温度は膨張直前で250℃以上280℃以下に加熱されていればよく、加熱効率の向上や過加熱におけるダメージ抑制のために二段階以上の多段階の加熱とすることができる。
(膨張工程)
 膨張工程では、加熱後のチューブを膨張する。なお、チューブの膨張は加熱と同時に行ってもよい。上記チューブの膨張の方法としては、従来の熱収縮チューブの作製に通常使用されている公知の膨張方法を用いることができる。例えば、押出成形品を融点以上の温度に加熱した状態で内部に圧縮空気を導入する方法や、外部から減圧する方法等により所定の内径となるように膨張させた後、冷却して形状を固定させる方法等が用いられる。膨張した押出成形品の形状を固定することで、当該熱収縮チューブが得られる。この固定方法としては、例えばベース樹脂成分の融点以下の温度に冷却する方法等が挙げられる。このようにして押出成形品を膨張させて形状固定したものが当該熱収縮チューブとなる。なお、チューブの膨張(拡径)は、例えばチューブの平均内径が1.4倍~4倍程度となるように行われる。
 膨張工程では上記チューブの内側の圧力を外側よりも50kPa以上高くしてチューブを膨張する。チューブの内側の圧力が外側よりも50kPa未満の場合、膨張が不十分となるおそれや、膨張の線速が低下するおそれがある。熱収縮接続部品として使用される際の膨張倍率としては、2.5倍以上が好ましく、3倍以上がより好ましい。膨張時の拡径寸法は、膨張ダイスのサイズによって制御することができる。膨張ダイスは拡径時のチューブとの摩擦抵抗を低減することで膨張が安定化し、偏肉率の向上や長さ変化率のばらつきを低減することができる。摩擦抵抗低減のために、膨張ダイスに表面処理を施すことができる。表面処理には、摩擦係数の小さいPTFEやPFA等のフッ素樹脂等をコーティングすることや、サンドブラストや機械加工、放電加工により表面形状を変化させることができる。表面粗さの増加や、溝形状により接触面積を低減させることにより摩擦抵抗を低減できる。
 当該熱収縮チューブの製造方法により製造される熱収縮チューブにおいては、250℃以上280℃以下における貯蔵弾性率の下限としては、0.8MPaであり、1.0MPaが好ましく、1.2MPaがより好ましい。一方、上記貯蔵弾性率の上限としては、2.8MPaであり、2.0MPaが好ましく、1.6MPaがより好ましい。
 上記熱収縮チューブの融点の下限としては、210℃であり、215℃がより好ましい。一方、上記熱収縮チューブの融点の上限としては、250℃であり、240℃がより好ましい。上記貯蔵弾性率及び融点を上記範囲とすることで、膨張を安定化することができる。また、上記熱収縮チューブは、融点以上に加熱した際の変形性に優れ、容易かつ確実に拡径できる。
 上記熱収縮チューブの偏肉率としては、60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。上記熱収縮チューブの長さ変化率の下限としては、-15%以上が好ましく、-10%以上がより好ましく、-5%以上がさらに好ましい。上記偏肉率は、以下の式で定義される。
 偏肉率(%)=チューブ断面における最小肉厚/最大肉厚×100
 上記熱収縮チューブの長さ変化率の上限としては、+15%以下が好ましく、+10%以下がより好ましく、+5%以下がさらに好ましい。上記長さ変化率は、以下の式で定義される。
 長さ変化率(%)=(収縮後チューブ長さ-収縮前チューブ長さ)/収縮前チューブ長さ×100
 熱収縮チューブの収縮時の端面傾斜角度としては、10°以下が好ましく、8°以下がより好ましく、5°以下がさらに好ましい。上記端面傾斜角度とは、熱収縮により熱収縮チューブの長手方向の端面に生じる変形の度合いを示す尺度となるものである。上記端面傾斜角度は、以下の手順で測定する。熱収縮チューブの熱収縮後に先端部から長手方向に沿って切断した縦断面視において、先端部から長手方向に対して最も突出した最上点を通る外径と平行な直線と、先端部から長手方向に対して向けて最もへこむ最下点を通る外径と平行な直線との距離をXmmとする。そして、熱収縮チューブの外径をDmmとした場合に下記式を満たす角度θをいう。
 tanθ=X/D
 上記熱収縮チューブの内径、上記偏肉率、上記長さ変化率及び上記収縮時の端面傾斜角度は、熱収縮チューブの貯蔵弾性率、加熱温度、加熱方式、チューブ内側と外側の圧力差等の膨張条件、膨張ダイスの表面処理の制御により行うことができる。
 当該熱収縮チューブの製造方法によれば、高耐熱性の絶縁電線の熱収縮接続部品用途として耐熱性及び熱収縮性能に優れる熱収縮チューブを製造できる。また、当該熱収縮チューブの製造方法は、品質のばらつきを低減できる。
[熱収縮接続部品の製造方法]
 当該熱収縮接続部品の製造方法は、熱収縮接続部品を製造する方法であって、封止部を作製する工程と、熱収縮チューブにおける両端側の内周面に1対の封止部を固定する工程とを備えている。また、当該熱収縮接続部品の製造方法は、上記熱収縮チューブにおける上記1対の封止部の間の内周面に半田部を固定する工程をさらに備えることが好ましい。当該熱収縮接続部品の製造方法は、封止材を用いて封止部を作製する工程と、熱収縮チューブにおける両端側の内周面に1対の封止部を固定する工程とを備えているので、良好な収縮性能、封止性及び耐熱性を備える熱収縮接続部品を製造できる。
(封止部を作製する工程)
 本工程では、封止材を用いて封止部を作製する。封止部作製工程では、封止材を用いて封止部を作製する。初めに、溶融混合機等を用いて封止部を形成するための封止材を調製する。溶融混合機としては、特に限定されず、例えばオープンロール、バンバリーミキサー、加圧ニーダー、単軸混合機、多軸混合機等を使用できる。
 次に、上記封止材を溶融押出成形機により押出成形する。具体的には、封止材を主成分樹脂の融点以上の温度に加熱して溶融させ、円筒状の空間を有する押出ダイスから溶出する。そして、冷却水等で主成分樹脂の融点以下に冷却して固化させることで封止材をチューブ状に押出成形する。それを所定の長さに切断して、リング状の封止部を作製する。
(封止部を固定する工程)
 本工程では、熱収縮チューブにおける両端側の内周面に1対の封止部を固定する。初めに、金属棒に当該熱収縮チューブ及び封止材から構成される一対の封止部を配設する。本工程で上記1対の封止部の間に半田材から構成される半田部も併せて配設してもよい。本工程では、金属棒に配設された当該熱収縮チューブ全体を加熱して上記熱収縮チューブを収縮させることにより、熱収縮チューブにおける両端側の内周面に1対の封止部を固定する。また、上記金属棒における1対の封止部の間に半田部も併せて配設している場合は、上記熱収縮チューブを収縮させることにより、上記熱収縮チューブにおける1対の封止部の間の内周面に半田部も併せて固定される。上記加熱方法としては、例えばヒートガンで加熱する方法、赤外線加熱装置で加熱する方法等が挙げられる。そして、封止部、半田部等が固定された熱収縮チューブを金属棒から取り出すことにより、熱収縮接続部品が形成される。
 上記封止材の軟化点としては、80℃以上170℃以下が好ましい。上記封止材の軟化点が80℃以上170℃以下であることで、封止材が適度な流動性を有し、隙間を充填する効果が高くなるので封止性を向上できる。
 当該熱収縮接続部品の製造方法におけるその他の構成については、上述の記載の通りである。
[当該熱収縮接続部品の使用態様]
 当該熱収縮接続部品50の使用態様としては、例えば複数の絶縁電線の接続用の部品の他、絶縁電線向けの接地用のアース線取り付け用部品等に使用される。当該熱収縮接続部品50を用いて複数の絶縁電線を接続する態様の一例として、図7から図11を参照しながら、2本の絶縁電線から露出する導体の接続部分を接続する方法を説明する。なお、絶縁電線の本数や構成は図7から図11に限定されるものではない。当該熱収縮接続部品50を用いて複数の絶縁電線を接続する工程としては、主として熱収縮接続部品被覆工程と、熱収縮接続部品加熱工程と、熱収縮接続部品冷却工程とを備える。以下においては、当該熱収縮接続部品50を用いて2本の絶縁電線8及び絶縁電線18を接続して、図11に記載の電線束100を得る使用態様について説明する。
(熱収縮接続部品被覆工程)
 当該熱収縮接続部品50を用いて2本の絶縁電線8及び絶縁電線18を接続する場合、始めに、図7に示すように、絶縁電線8の絶縁層7から露出する導体6及び絶縁電線18の絶縁層17から露出する導体16を当該熱収縮接続部品50の両端の開口から挿入する。そして、図8に示すように、導体6の露出部分と絶縁層7との境界、並びに導体16の露出部分と絶縁層17との境界を覆うように当該熱収縮接続部品50を被せる。2本の絶縁電線8及び絶縁電線18に当該熱収縮接続部品50を被せる際には、絶縁電線8の露出する導体6及び絶縁電線18の露出する導体16の境界周辺の導体接続部5が半田部2に覆われるように配置されることが好ましい。
(熱収縮接続部品加熱工程)
 熱収縮接続部品加熱工程では、当該熱収縮接続部品50を加熱し、熱収縮させる。上記加熱方法としては、例えば当該熱収縮接続部品50をヒートガン、赤外線加熱装置等で加熱する方法が挙げられる。また、加熱温度は、当該熱収縮接続部品50の熱収縮温度により決まるが、例えば200℃以上600℃以下である。また、加熱時間としては、当該熱収縮接続部品50が十分に収縮する時間であればよく、例えば1秒以上30秒以下とできる。
 図9~図11に示すように、熱収縮接続部品50の収縮挙動として、当該熱収縮チューブ1が先に収縮し、次に封止部3が変形し、最後に半田部2が溶融することが好ましい。当該熱収縮接続部品50を加熱した際、半田部2の半田材が流動し広がる。図11に接続後の電線束100における収縮後の熱収縮チューブ11、溶融後の半田部12及び溶融後の封止部13を示す。封止部3の封止材は、粘度が高いため半田部2に比べて広がらず、当該熱収縮チューブ1の開口を塞ぐ。このため、半田部2の半田材が当該熱収縮チューブ1の開口から流出することが防止される。また、半田部2の半田材は、絶縁電線8の導体6及び絶縁電線18の導体16の露出部分を覆うと共に、導体6の露出部分と絶縁層7との境界から絶縁層7の内側に侵入する一方で、導体16の露出部分と絶縁層17との境界から絶縁層17の内側に侵入する。
 雰囲気加熱は外側から伝熱することから、半田部2の半田材の融点を210℃以上240℃以下、封止部3の封止材の軟化点を80℃以上170℃以下とすることにより、良好な組み立てが可能になる。封止部3の融点が高く、軟化が遅い場合、当該熱収縮チューブ1の端部を封止できないために、半田材が溶出する。封止部3の融点が低く、軟化が早いと封止材が溶出する。半田材の融点が高いと、熱収縮接続部品50による絶縁電線同士の接続が不十分となるおそれがある。半田材の融点が低いと封止部3で保持されずに半田材が溶出するおそれがある。チューブの収縮が遅い場合には、隙間が多い状態で封止部3、半田部2が溶融して保持することできない。上記半田材の融点及び上記封止材の軟化点が上記範囲であることで、当該熱収縮チューブ1と、上記半田材及び上記封止材とを組み合わせて、当該熱収縮接続部品50における耐熱性、封止性及び絶縁電線の接続性を良好にできる。
 赤外線加熱装置を用いて熱収縮接続部品50が収縮される場合は、赤外線の吸収により封止部3が加熱される。上述したように、封止材における波長1μmの赤外線の透過率としては、1.0%以上30.0%以下であることが好ましく、3%以上22%以下であることがより好ましく、5%以上16%以下であることがさらに好ましい。上記封止材における赤外線の透過率が上記上限を超えると、封止部3が加熱されにくくなることで軟化が遅くなるおそれがある。一方、上記封止材における赤外線の透過率が上記下限未満の場合は、封止部3が優先的に軟化してしまい、熱収縮接続部品50から溶出するおそれがある。上記封止材における波長1μmの赤外線の透過率が上記範囲であることで、当該熱収縮接続部品50の赤外線加熱における赤外線の吸収性を向上できるとともに、熱収縮挙動の制御が容易となる。
 なお半田材が十分に加熱され溶融したかを目視で確認するために、半田材には指定温度以上で色の消失する示温塗料を塗布することができる。また、中央部に高融点部分を有し、上記高融点部分の溶融により温度が確認できるバイアロイ型の半田リングを用いることもできる。高融点部分は目視確認のためであり、特性上は必ずしも完全に溶融する必要はない。
(熱収縮接続部品冷却工程)
 熱収縮接続部品冷却工程では、熱収縮後の当該熱収縮接続部品50を冷却する。冷却方法としては、特に限定されないが、例えば自然放置による冷却や冷風等による強制冷却を利用することができる。この冷却により半田材及び封止材が固化し、絶縁電線同士の接続及び絶縁電線の止水が図られる。
[その他の実施形態]
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内における全ての変更が含まれることが意図される。
 当該熱収縮接続部品の別の形態として、当該熱収縮接続部品は、当該熱収縮チューブと、上記熱収縮チューブにおける両端側の内周面に配設される1対の封止部と、半田部に変えて編組半田を備えていてもよい。図5に示す他の実施形態に係る熱収縮接続部品53は、熱収縮チューブ1と、熱収縮チューブ1における両端側の内周面に配設される1対の封止部3と、編組半田27を備える。接合部2が編組線に半田を含侵させた編組半田の場合、編組線を構成する金属材料としては、例えばCu、Fe、Sn、Sb、Ag、Ni、Al、Zn又はこれらの組み合わせを用いることができる。編組半田の半田材を構成する金属材料としては、上記半田材と同様のものを用いることができる。編組半田27にさらに上記半田部を組み合わせることもできる。
 また、当該熱収縮接続部品の別の形態として、熱収縮接続部品の半田部に変えて圧着スリーブを用いてもよい。図6に示す他の実施形態に係る熱収縮接続部品54は、熱収縮チューブ1と、熱収縮チューブ1における両端側の内周面に配設される1対の封止部3と、圧着スリーブ28を備える。上記圧着スリーブの材料としては、Cu、Fe、Sn、Sb、Ag、Ni、Al、Znのいずれかを1種もしくは2種以上複合して用いることができる。また、摩耗やキズ抑制、化学的耐久性の向上のために表面にコーティング層を形成することができる。コーティング層には、Cu、Fe、Sn、Sb、Ag、Ni、Al、Znのいずれかを1種もしくは2種以上複合して用いることができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<試験例1>
 原料の選定、樹脂混合、押出、照射、膨張工程により、表1の熱収縮チューブNo.1~No.10を作製した。初めに、表1に記載の含有量のフッ素を含有するエチレン-テトラフルオロエチレン共重合体樹脂に架橋助剤としてトリアリルイソシアヌレートを用いて混合した樹脂組成物を用いて、溶融押出成形でチューブを成形した。押出成形は、ダイス温度280℃で、引き落とし率10で、線速20m/minで行った。その後に、照射量25kGy~400kGyの条件で電子線照射により架橋を行った。照射後のチューブを250℃~280℃に加熱して、膨張ダイスを用いてチューブ内側を外側よりも高圧力にすることで膨張を行った。膨張ダイスには、フッ素樹脂をコーティングしたものを用いた。原料選定と架橋度により融点と高温における貯蔵弾性率を調整した。収縮は270℃で10分間加熱することで行った。
 上記熱収縮チューブNo.1~No.10について、チューブの融点、250℃以上280℃以下における貯蔵弾性率[MPa]、偏肉率[%]及び長さ変化率[%]を示す。また、チューブの膨張性能及び収縮性能をA~Dの四段階で評価した。結果を表1に示す。なお、以下、表に記載の「―」は、該当する評価を実施していないことを示す。
 チューブの膨張性能及び収縮性能の評価基準を下記に示す。以下、A~Cが実用上、問題のないレベルである。
(1)膨張性能
A:連続膨張時の寸法ばらつきが特に小さく、特に優れる。
B:連続膨張時に寸法ばらつきが小さく、優れる。
C:安定した連続膨張できる。
D:安定した連続膨張ができない。
(2)収縮性能
A:収縮時間が特に短く、特に優れる。
B:収縮時間が短く、優れる。
C:収縮時間がやや長い。
D:所望サイズまで収縮しない。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、250℃以上280℃以下における貯蔵弾性率を0.8MPa以上2.8MPa以下にすることにより、良好な膨張性能、収縮性能及び偏肉率が得られた。一方、貯蔵弾性率が0.8MPa未満であるNo.1及びNo.9においては、チューブの収縮時に所望のサイズに収縮せず、十分な形状記憶効果が得られなかった。貯蔵弾性率が2.8MPa超であるNo.8及びNo.10は、安定した連続膨張が困難であった。
<試験例2>
 上記エチレン-テトラフルオロエチレン共重合体におけるフッ素含有量が表2に示す値となるようにエチレン-テトラフルオロエチレン共重合体樹脂の原料を選定した点以外は、試験例1のNo.2と同様にしてNo.11~No.19の熱収縮チューブを作製した。No.18はPTFE原料を用い、PTFEは原料に石油系溶剤を添加して混合し、予備成形体のインゴットを作製した後に、ペースト押出成形、乾燥・焼成により押出チューブを作製した。押出チューブをETFEと同様に膨張した。No.19はPVDF原料を用いて熱収縮チューブを作製した。PVDFはETFEと同様に溶融成型により押出チューブを作製し、照射後に膨張を行った。次に、熱収縮チューブと、融点223℃の半田材(Sn96.0質量%、Ag3.0質量%及びCu1.0質量%)と、軟化点110℃の封止材(THV)とを用いて、金属棒の長手方向の中央部にリング状の半田部、両端部にリング状の封止部を設置した。次に、半田部の領域にリード線の先端が来るように設置し、その外周に熱収縮チューブを設置した。そして、ヒートガンにより500℃の熱風をあててチューブを収縮することにより半田部及び封止部を固定し、冷却後に金属棒から取り出すことにより、熱収縮接続部品を作製した。チューブの長さは20mmとした。封止材は幅2mm厚み0.4mmとした。半田材は幅2.5mm厚み0.4mmとした。軟化点の測定には熱機械分析装置TMA-50(島津製作所製)を用い、昇温速度:10℃/min、押込み棒径:0.5mmφ、圧力:5kPaとした際に0.4mmシートの厚みが50%となる温度を軟化点とした。熱収縮チューブNo.11~No.19のフッ素含有量、チューブの物性、試験例1と同様の膨張性能、偏肉率及び収縮性能、並びに熱収縮接続部品の性能の評価結果とを表2に示す。
 熱収縮接続部品の性能は、ETFE電線の被覆を削除した部分に熱収縮接続部品を設置して収縮し、溶液中で電圧を印加して漏れ電流が閾値以下であるかにより評価した。耐熱性の評価のため、収縮後の電線を200℃で500時間加熱した後に漏れ電流の評価を行った。浸漬する溶液は5%NaCl、0.5%界面活性剤の溶液とし、1kVの電圧を60秒間印加して漏れ電流を評価した。
 熱収縮接続部品の性能の評価基準を下記に示す。
A:漏れ電流試験の合格率が90%以上である。
B:漏れ電流試験の合格率80%以上である。
C:漏れ電流試験の合格率75%以上である。
D:漏れ電流試験の合格率75%未満である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ETFEにおけるフッ素の含有量が58質量%以上62質量%以下であることにより、チューブの評価及び熱収縮接続部品の評価において良好な結果が得られた。一方、フッ素の含有量が58質量%未満のNo.11では、融点が高いことから収縮温度が高くなり、熱収縮接続部品として使用した際に、被覆対象となるETFE絶縁電線が熱によりダメージを受けていた。フッ素の含有量が62質量%超のNo.17においては、融点が低いため、熱収縮接続部品を200℃で使用した際に、性能ばらつきが生じた。No.18においては、PTFEの融点が327℃と高いため、材料が軟化せずに膨張が困難であった。また、PTFEは融点が高いために収縮温度が高く、長時間の加熱が必要となり、絶縁電線が熱によりダメージを受けていた。No.19においては、PVDFの融点が160℃と低いため、高温で材料の軟化が進んで安定膨張が困難であった。また、PVDFは融点が低く収縮温度が低いため、半田を溶融させる程度に加熱すると加熱条件が強く、チューブにダメージが生じ、熱収縮接続部品として良好な特性が発現しなかった。
<試験例3>
 エチレン-テトラフルオロエチレン共重合体樹脂の分子構造を制御した原料を用いた以外は、試験例1と同様に熱収縮チューブNo.20~No.27を作製した。次に、表3に記載の熱収縮チューブと、融点223℃の半田材(Sn96.5質量%及びAg3.5質量%)と、軟化点140℃の封止材(THV60質量%及びFKM40質量%)とを用いて、金属棒の長手方向の中央部にリング状の半田材、両端部にリング状の封止部を固定した。次に、半田部の領域にリード線の先端が来るように設置し、その外周に熱収縮チューブを設置した。そして、ヒートガンにより500℃の熱風をあててチューブを収縮することにより半田部及び封止部を固定し、冷却後に金属棒から取り出すことにより、熱収縮接続部品を作製した。チューブの長さは20mmとした。エチレン-テトラフルオロエチレン共重合体中のエチレン単位数mとテトラフルオロエチレン単位数nとの比率n/mとの関係において、試験例1と同様のチューブの物性及び評価、並びに試験例2と同様の熱収縮接続部品の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、ETFE中のエチレン単位数mに対するテトラフルオロエチレン単位数nの比率n/mが、1.02以上1.20以下であることにより、チューブの評価及び熱収縮接続部品の評価において良好な結果が得られた。一方、上記比率n/mが1.02未満であるNo.20は、融点が高く収縮温度が高くなり、熱収縮接続部品として使用した際に、被覆対象となるETFE絶縁電線が熱によりダメージを受けていた。上記比率n/mが1.20超であるNo.27は融点が低いため、熱収縮接続部品を高温下で使用した際に安定した性能が発現せず、200℃耐熱性を満たさなかった。
<試験例4>
 得られる熱収縮チューブの25℃における貯蔵弾性率が表4に示す値となるようにETFEの分子構造と照射線量を制御した点以外は、試験例1のNo.2と同様にしてNo.28~No.35の熱収縮チューブを作製した。次に、表4に記載の熱収縮チューブと、融点236℃の半田材(Sn95.0質量%及びSb5.0質量%)と、軟化点80℃の封止材(PVDF60質量%及びEVA40質量%)とを用いて、試験例2と同様の工程で熱収縮接続部品を作製した。熱収縮チューブNo.28~No.35の25℃における貯蔵弾性率、強度及び可撓性を評価した。評価結果を表4に示す。
 熱収縮チューブNo.28~No.35の強度及び可撓性は下記の基準で評価した。
(1)熱収縮接続部品の強度
A:組み立て加工、収縮時、使用時に破損が生じない。
B:ごくまれに使用時に破損が生じる場合がある。
C:使用時に破損が生じる場合がある。
D:使用時に破損が生じる確率が高い。
(2)熱収縮接続部品の可撓性
A:組み立て加工時に破損が生じない。
B:ごくまれに組み立て加工時に破損が生じる場合がある。
C:組み立て加工時に破損が生じる場合がある。
D:組み立て加工時に破損が生じる確率が高い。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、ETFEにおける25℃における貯蔵弾性率が、500MPa以上900MPa以下であることにより熱収縮接続部品の強度及び可撓性を向上できる。25℃における貯蔵弾性率が500MPa未満のNo.28では、熱収縮接続部品の強度が不足した。25℃における貯蔵弾性率が900MPa超のNo.35では、熱収縮接続部品の可撓性が低く、折れやすい結果となった。
<試験例5>
 得られる熱収縮チューブの表面の算術平均粗さRaが表5に示す値となるように押出時の引き落とし率を制御した点以外は、試験例2のNo.15と同様にしてNo.36~No.43の熱収縮チューブを作製した。また、試験例2と同様の工程で熱収縮接続部品を作製した。半田材、封止材は試験例2と同様のものを用いた。熱収縮チューブNo.36~No.43の算術平均粗さRa及び赤外線における加熱効率と、熱収縮チューブの内部の視認性との評価結果を表5に示す。熱収縮チューブの算術平均粗さRaは、触針式の粗さ計で測定した。
 熱収縮チューブの赤外線における加熱効率及び熱収縮チューブの内部の視認性は下記の基準で評価した。評価結果を表5に示す。
(1)熱収縮チューブの赤外線における加熱効率
A:熱収縮接続部品の収縮時間20秒以下で特に優れる。
B:熱収縮接続部品の収縮時間25秒以下である。
C:熱収縮接続部品の収縮時間35秒以下である。
D:熱収縮接続部品の収縮時間35秒以上である。
(2)熱収縮チューブの内部の視認性
A:半田材の電線への含侵状態、封止材の溶融、電線被覆状態の確認のしやすさが特に優れる。
B:半田材の電線への含侵状態、封止材の溶融、電線被覆状態が確認できる。
C:半田材の電線への含侵状態、封止材の溶融進行が確認できる。
D:半田材の電線への含侵状態、封止材の溶融進行の確認ができない。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、チューブの表面の算術平均粗さRaが0.10μm以上2.00μm以下であることにより、チューブの評価及び熱収縮接続部品の評価において良好な結果が得られた。一方、算術平均粗さRaが0.10μm未満のNo.36においては、赤外線の透過率が高く、チューブの加熱効率が低い結果となった。算術平均粗さRaが2.00m超のNo.43においては、可視光の散乱が大きく、熱収縮接続部品内部の状態を確認する際に、熱収縮チューブの内部の視認性の低下がみられた。
<試験例6>
 得られる熱収縮チューブの赤外線の透過率が表6に示す値となるように着色剤の量を制御した点以外は、試験例1のNo.2と同様にしてNo.44~No.49の熱収縮チューブを作製した。次に、表6に記載の熱収縮チューブと、融点210℃の半田材(Pb62.0質量%及びIn38.0質量%)と、軟化点95℃の封止材(PVDF50質量%及びLLDPE50質量%)とを用いて、試験例2と同様の工程で熱収縮接続部品を作製した。赤外線加熱装置における中心波長1μmにおける熱収縮チューブNo.44~No.49の赤外線透過率と、試験例5と同様の熱収縮チューブの赤外線における加熱効率と、熱収縮接続部品内部の封止材の加熱効率とを表6に示す。
 封止材の加熱効率は下記の基準で評価した。
A:特に短時間で封止材が加熱、溶融して熱収縮接続部品が作製できる。
B:短時間で封止材が加熱、溶融して熱収縮接続部品が作製できる。
C:封止材が加熱、溶融して熱収縮接続部品が作製できる。
D:封止材が十分に加熱、溶融しない。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、チューブにおける波長1μmの赤外線の透過率が、90.0%以上99.0%以下であることにより、熱収縮チューブの赤外線における加熱効率及び熱収縮接続部品内部の封止材の加熱効率の評価において良好な結果が得られた。一方、赤外線の透過率が90.0%未満のNo.44は、熱収縮接続部品の加熱時に封止材の加熱効率が低下することで封止材が変形し難くなり、熱収縮接続部品の収縮が遅くなった。赤外線の透過率が99.0%超のNo.49は、熱収縮接続部品の加熱時に熱収縮チューブの加熱効率が低下することで、熱収縮チューブが収縮し難い結果となった。
<試験例7>
 初めに、試験例1のNo.2と同様にしてNo.50~No.57の熱収縮チューブを作製した。次に、封止材の波長1μmにおける赤外線の透過率が表7に示す値となるように封止材を選定した点以外は、表7に記載の熱収縮チューブと、融点218℃の半田材(Sn67.0質量%、Pb32.0質量%及びCd1.0質量%)と、軟化点160℃の封止材(THV70質量%及びPVDF30質量%)とを用いて、試験例2と同様の工程で熱収縮接続部品を作製した。熱収縮接続部品No.50~No.57における封止材の波長1μmにおける赤外線の透過率と、試験例2と同様の熱収縮接続部品の性能評価の結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、熱収縮接続部品の封止材における波長1μmの赤外線の透過率が1.0%以上30.0%以下であることにより、熱収縮接続部品の性能において良好な結果が得られた。一方、封止材における上記赤外線の透過率が1.0%未満のNo.50は、赤外線における加熱が早く進んだことにより封止材の軟化が早く、半田材の封止性が低くなったために、熱収縮接続部品の性能が低下する結果となった。封止材における上記赤外線の透過率が30.0%超のNo.57は、封止材の加熱が遅くなることで軟化が進みにくくなったために、熱収縮接続部品の性能が低下する結果となった。
<試験例8>
 初めに、試験例1のNo.2と同様にしてNo.58~No.69の熱収縮チューブを作製した。次に、熱収縮接続部品の封止材の軟化点及び半田材の融点が表8に示す値となるように、封止材として、THV、PVDF、FKM、EVA、LLDPE、HDPEの中から1種又は2種以上を混合して用い、半田材は、Sn、Ag、Sb、Pb、Bi、Inの中から2種以上を混合して用いた。熱収縮接続部品No.58~No.69における封止材の軟化点及び半田材の融点を表8に示す。また、熱収縮接続部品の性能は、試験例2と同様の熱収縮接続部品の性能評価の結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、熱収縮接続部品における半田材の融点が210℃以上240℃以下であり、封止材の軟化点が80℃以上170℃以下であるNo.61~No.66は、漏れ電流試験において良好な結果が得られた。一方、半田材の融点が210℃未満のNo.60、封止材の軟化点が80℃未満のNo.59、半田材の融点が210℃未満かつ封止材の軟化点が80℃未満のNo.58、半田材の融点が240℃超のNo.68、封止材の軟化点が170℃超のNo.67、半田材の融点が240℃超かつ封止材の軟化点が170℃超のNo.69は、いずれも熱収縮接続部品の漏れ電流試験の合格率が低下した。
<試験例9>
 試験例1のNo.3と同様にして熱収縮チューブNo.70~No.77を作製した。次に、熱収縮チューブと、融点223℃の半田材(Sn96.0質量%、Ag3.0質量%及びCu1.0質量%)と、軟化点110℃のTHV及び表9に記載の含有量のシリカを含む封止材(THV+シリカ)とを用いて、金属棒の長手方向の中央部にリング状の半田材、両端部にリング状の封止部を固定した。次に、半田部の領域にリード線の先端が来るように設置し、その外周に熱収縮チューブを設置した。そして、ヒートガンにより500℃の熱風をあててチューブを収縮することにより半田部及び封止部を固定し、冷却後に金属棒から取り出すことにより、熱収縮接続部品を作製した。チューブの長さは20mmとした。封止材は幅2mm厚み0.4mmとした。半田材は幅2.5mm厚み0.4mmとした。シリカの添加量により封止材の剪断粘度の調整を行った。250℃における剪断粘度を表9に示す。
 熱収縮接続部品の性能は、ETFE電線の被覆を削除した部分に熱収縮接続部品を設置して収縮し、溶液中で電圧を印加して漏れ電流が閾値以下であるかにより評価した。耐熱性の評価のため、収縮後の電線を215℃で750時間加熱した後に漏れ電流の評価を行った。浸漬する溶液は5%NaCl、0.5%界面活性剤の溶液とし、1kVの電圧を60秒間印加して漏れ電流を評価した。熱収縮接続部品の性能の評価結果を表9に示す。
 熱収縮接続部品の性能の評価基準は下記の通りである。
A:漏れ電流試験の合格率が90%以上である。
B:漏れ電流試験の合格率80%以上である。
C:漏れ電流試験の合格率75%以上である。
D:漏れ電流試験の合格率75%未満である。
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、封止材の250℃、剪断速度100/sにおける剪断粘度が、1000Pa・s以上2000Pa・s以下である場合に良好な熱収縮接続部品の特性が得られた。上記剪断粘度が1000Pa・sよりも低いNo.70は、熱収縮チューブの収縮時に軟化して形状が変化しやすくなり、封止性が低下するために熱収縮接続部品の漏れ電流試験の合格率が低下した。一方、上記剪断粘度が2000Pa・sよりも高いNo.77は、熱収縮チューブの収縮時に流動性が低いために隙間を充填する効果が低くなり、熱収縮接続部品の漏れ電流試験の合格率が低下した。
<試験例10>
 エチレン-テトラフルオロエチレン共重合体におけるフッ素含有量が表10に示す値となるようにエチレン-テトラフルオロエチレン共重合体樹脂の原料を選定し、照射量80kGyの条件で電子線照射により架橋を行ったことを除いては、試験例1のNo.2と同様にして熱収縮チューブNo.78~No.89を作製した。次に、熱収縮チューブと、融点223℃の半田材(Sn96.0質量%、Ag3.0質量%及びCu1.0質量%)と、THV70質量%、FKM30質量%及び表に記載の含有量のシリカを含む軟化点110℃の封止材とを用いて、金属棒の長手方向の中央部にリング状の半田材、両端部にリング状の封止部を固定した。次に、半田部の領域にリード線の先端が来るように設置し、その外周に熱収縮チューブを設置した。そして、ヒートガンにより500℃の熱風をあててチューブを収縮することにより半田部及び封止部を固定し、冷却後に金属棒から取り出すことにより、熱収縮接続部品を作製した。チューブの長さは20mmとした。封止材は幅2mm厚み0.4mmとした。半田材は幅2.5mm厚み0.4mmとした。シリカの添加量により封止材の剪断粘度の調整を行った。215℃における剪断粘度を表に示す。熱収縮接続部品の性能は、試験例9と同様に評価した。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、封止材の215℃、剪断速度0.01/sにおける剪断粘度が、7000Pa・s以上70000Pa・s以下であることにより、熱収縮接続部品の封止性能において良好な結果が得られた。一方、上記剪断粘度が7000Pa・s未満のNo.78では、高温で長期間保持された際に封止材が流れやすくなり、漏れ電流試験の合格率が低下した。剪断粘度が70000Pa・sよりも高いNo.89では、流動性が低いために隙間を充填する効果が低く、封止性が低下することにより漏れ電流試験の合格率が低下した。
<試験例11>
 試験例1のNo.2と同様にして熱収縮チューブNo.90~No.95を作製した。次に、熱収縮チューブと、融点223℃の半田材(Sn96.0質量%、Ag3.0質量%及びCu1.0質量%)と、表11に示す封止材(EVA、PVDF、THV)とを用いて、試験例9と同様に熱収縮接続部品No.90~No.95を作製した。封止材の融点は、樹脂の種類選定と比率調整により行った。熱収縮チューブNo.90~No.95の封止材の融点、並びに試験例9と同様の熱収縮接続部品の性能の評価結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、封止材の融点が110℃以上170℃以下である熱収縮接続部品No.91~No.94は、良好な熱収縮接続部品の特性が得られた。融点が110℃よりも低いNo.90では、熱収縮チューブの収縮時に柔らかく形状が変化しやすくなり、封止性が低下するために熱収縮接続部品の漏れ電流試験の合格率が低下した。また高温下で長期間保持された際に封止材が流れやすくなり、封止性を維持しにくいために熱収縮接続部品の漏れ電流試験の合格率が低下した。融点が170℃よりも高いNo.95では、熱収縮チューブの収縮時に流動性が低いために隙間を充填する効果が低く封止性が低下し、熱収縮接続部品の漏れ電流試験の合格率が低下した。
<試験例12>
 試験例1のNo.2~No.7のチューブを用いて、熱収縮接続部品No.96~No.103を作製した。次に、熱収縮チューブと、THV70質量%、FKM30質量%及び表12に記載の含有量のシリカを含む軟化点110℃の封止材とを用いて、金属棒の長手方向の端部にリング状の封止部を固定した。次にその外周に熱収縮チューブを設置した。そして、ヒートガンにより500℃の熱風をあててチューブを収縮することにより封止部を固定し、冷却後に金属棒から取り出すことにより、熱収縮接続部品No.96~No.103を作製した。チューブの長さは30mmとした。封止材は幅2mm厚み0.4mmとした。シリカの添加量により剪断粘度の調整を行った。250℃及び215℃における剪断粘度を表12に示す。
 熱収縮接続部品の性能は、ETFE電線の被覆を削除した部分に圧着スリーブと熱収縮接続部品を設置し、削除部分にリード線の先端が来るように設置した状態で、圧着工具により圧着スリーブ部分を圧着して固定し、その後に加熱収縮し、溶液中で電圧を印加して漏れ電流が閾値以下であるかにより評価した。圧着スリーブは銅基材に厚さ8μmのニッケルをメッキし、長さが15mmのものを用いた。耐熱性の評価のため、収縮後の電線を215℃で750時間加熱した後に漏れ電流の評価を行った。浸漬する溶液は5%NaCl、0.5%界面活性剤の溶液とし、1kVの電圧を60秒間印加して漏れ電流を評価した。熱収縮接続部品の性能の評価結果を表12に示す。
 熱収縮接続部品の性能の評価基準は下記の通りである。
A:漏れ電流試験の合格率が90%以上である。
B:漏れ電流試験の合格率80%以上である。
C:漏れ電流試験の合格率75%以上である。
D:漏れ電流試験の合格率75%未満である。
Figure JPOXMLDOC01-appb-T000012
 表12に示すように、熱収縮チューブの250℃以上280℃以下における貯蔵弾性率が0.8MPa以上2.8MPa以下であり、封止材の250℃、剪断速度100/sにおける剪断粘度が、1000Pa・s以上2000Pa・s以下であり、封止材の215℃、剪断速度0.01/sにおける剪断粘度が、7000Pa・s以上70000Pa・s以下である熱収縮接続部品No.96~No.103は、良好な封止性能が得られた。
<試験例13>
 試験例13では、添加剤として無機物を添加した場合の熱収縮チューブを評価した。表2に示す無機物を混合した点以外は、試験例1のNo.2と同様にして熱収縮チューブNo.104~No.110を作製した。この熱収縮チューブNo.104~No.110について、試験例1と同様の膨張性能及び収縮性能に加え、強度及び設備汚染についても評価した。評価結果を表13に示す。
 強度及び設備汚染は、下記の方法で評価した。
(1)強度
 強度は、ASTM D-638に従い、引張速度を50mm/分とした引張試験により測定した。強度は、下記の基準で評価した。
A:特に優れる。
B:優れる。
(2)設備汚染
 上記設備汚染の評価は、熱収縮チューブ製造後の設備について下記の基準で評価した。
A:汚染なし。
B:わずかに汚染あり。
C:やや汚染あり。
D:汚染が著しい。
Figure JPOXMLDOC01-appb-T000013
 表13に示すように、無機物の含有量を1質量%以下とすることで、熱収縮チューブの膨張特性、収縮特性及び強度を良好に維持できるとともに、設備汚染を抑制することができることがわかる。
 以上の結果より、当該熱収縮チューブは、高耐熱性の絶縁電線の熱収縮接続部品用途として耐熱性及び熱収縮性能に優れることが示された。
1 熱収縮チューブ
2 半田部
3 封止部
5 導体接続部
6、16 導体
7、17 絶縁層
8、18 絶縁電線
11 収縮後の熱収縮チューブ
12 溶融後の半田部
13 溶融後の封止部
23 接地用絶縁電線の素線
24 接地用絶縁電線の絶縁層
25 接地用絶縁電線
27 編組体
28 圧着スリーブ
40、50、51、53、54 熱収縮接続部品
100 接続後の電線束

Claims (15)

  1.  エチレン-テトラフルオロエチレン共重合体を主成分とし、
     融点が210℃以上250℃以下であり、
     250℃以上280℃以下における貯蔵弾性率が0.8MPa以上2.8MPa以下である熱収縮チューブ。
  2.  上記エチレン-テトラフルオロエチレン共重合体におけるフッ素の含有量が58質量%以上62質量%以下である請求項1に記載の熱収縮チューブ。
  3.  上記エチレン-テトラフルオロエチレン共重合体中のエチレン単位数mに対するテトラフルオロエチレン単位数nの比率n/mが、1.02以上1.20以下である請求項1又は請求項2に記載の熱収縮チューブ。
  4.  25℃における貯蔵弾性率が、500MPa以上900MPa以下である請求項1、請求項2又は請求項3に記載の熱収縮チューブ。
  5.  表面の算術平均粗さRaが0.10μm以上2.00μm以下である請求項1から請求項4のいずれか1項に記載の熱収縮チューブ。
  6.  波長1μmの赤外線の透過率が90.0%以上99.0%以下である請求項1から請求項5のいずれか1項に記載の熱収縮チューブ。
  7.  素線が絶縁層により被覆された絶縁電線を接続するための熱収縮接続部品であって、
     請求項1から請求項6のいずれか1項に記載の熱収縮チューブと、
     上記熱収縮チューブにおける両端側の内周面に配設される1対の封止部と
     を備える熱収縮接続部品。
  8.  上記封止部を構成する封止材の250℃、剪断速度100/sにおける剪断粘度が、1000Pa・s以上2000Pa・s以下である請求項7に記載の熱収縮接続部品。
  9.  上記封止部を構成する封止材の215℃、剪断速度0.01/sにおける剪断粘度が、7000Pa・s以上70000Pa・s以下である請求項7又は請求項8に記載の熱収縮接続部品。
  10.  上記熱収縮チューブにおける上記1対の封止部の間の内周面に配設される半田部をさらに備える請求項7、請求項8又は請求項9に記載の熱収縮接続部品。
  11.  上記半田部を構成する半田材の融点が210℃以上240℃以下であり、
     上記封止材の軟化点が80℃以上170℃以下である請求項10に記載の熱収縮接続部品。
  12.  上記封止材の融点が110℃以上170℃以下である請求項11に記載の熱収縮接続部品。
  13.  上記封止材における波長1μmの赤外線の透過率が1.0%以上30.0%以下である請求項8から請求項12のいずれか1項に記載の熱収縮接続部品。
  14.  熱収縮チューブを製造する方法であって、
     エチレン-テトラフルオロエチレン共重合体を主成分とする樹脂組成物をチューブ状に押出成形する工程と、
     上記押出成形工程により形成されるチューブを照射により架橋する工程と、
     上記架橋工程後のチューブを温度250℃以上280℃以下の温度下で加熱する工程と、
     上記チューブの内側の圧力を外側よりも50kPa以上高くしてチューブを膨張する工程と
     を備えており、
     上記熱収縮チューブの250℃以上280℃以下における貯蔵弾性率が0.8MPa以上2.8MPa以下であり、融点が210℃以上250℃以下である熱収縮チューブの製造方法。
  15.  請求項1から請求項6のいずれか1項に記載の熱収縮チューブにおける両端側の内周面に封止部を配設する工程と、
     上記熱収縮チューブを収縮させることにより封止部を固定する工程と
     を備えており、
     上記封止部を構成する封止材の軟化点が80℃以上170℃以下である熱収縮接続部品の製造方法。
PCT/JP2022/002302 2021-02-24 2022-01-21 熱収縮チューブ、熱収縮接続部品、熱収縮チューブの製造方法及び熱収縮接続部品の製造方法 WO2022181142A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/276,027 US20240106221A1 (en) 2021-02-24 2022-01-21 Heat shrinkable tube, heat shrinkable coupling component, method of manufacturing heat shrinkable tube, and method of manufacturing heat shrinkable coupling component
EP22759184.9A EP4299284A4 (en) 2021-02-24 2022-01-21 HEAT-SHRINKABLE TUBE, HEAT-SHRINKABLE COUPLING COMPONENT, PRODUCTION METHOD FOR HEAT-SHRINKABLE TUBE, AND PRODUCTION METHOD FOR HEAT-SHRINKABLE COUPLING COMPONENT
JP2023502173A JP7406043B2 (ja) 2021-02-24 2022-01-21 熱収縮チューブ、熱収縮接続部品、熱収縮チューブの製造方法及び熱収縮接続部品の製造方法
JP2023211529A JP2024041760A (ja) 2021-02-24 2023-12-14 熱収縮接続部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021027985 2021-02-24
JP2021-027985 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181142A1 true WO2022181142A1 (ja) 2022-09-01

Family

ID=83049055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002302 WO2022181142A1 (ja) 2021-02-24 2022-01-21 熱収縮チューブ、熱収縮接続部品、熱収縮チューブの製造方法及び熱収縮接続部品の製造方法

Country Status (4)

Country Link
US (1) US20240106221A1 (ja)
EP (1) EP4299284A4 (ja)
JP (2) JP7406043B2 (ja)
WO (1) WO2022181142A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325692A (ja) * 1992-05-19 1993-12-10 Sumitomo Electric Ind Ltd チューブおよび熱収縮チューブ
JPH0733938A (ja) * 1993-07-21 1995-02-03 Sumitomo Electric Ind Ltd フッ素樹脂組成物とそれからのチューブおよび熱収縮チューブ
WO2010038800A1 (ja) 2008-09-30 2010-04-08 株式会社レイテック 成形加工が可能なポリテトラフルオロエチレン樹脂と応用製品およびその製造方法
CN106317598A (zh) * 2016-08-30 2017-01-11 上海电缆研究所 一种交联氟塑料热缩套管及其制备方法
CN106700218A (zh) * 2016-12-12 2017-05-24 广州凯恒科塑有限公司 一种氟聚合物热缩套管及其制备方法
JP2017213794A (ja) * 2016-06-01 2017-12-07 住友電工ファインポリマー株式会社 熱収縮チューブ、その製造方法及びソルダースリーブ
CN109337188A (zh) * 2018-10-08 2019-02-15 深圳市沃尔核材股份有限公司 一种辐照交联耐高温热缩套管及生产方法
WO2019097820A1 (ja) * 2017-11-20 2019-05-23 住友電工ファインポリマー株式会社 耐熱性2層熱収縮チューブ及び被覆対象物の被覆方法
JP2021027985A (ja) 2019-07-18 2021-02-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 熱パターンを採取するためのセンサおよび二重積分方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5325692B2 (ja) 2009-07-30 2013-10-23 株式会社ジェッター タバコの吸殻回収装置
JP5559561B2 (ja) * 2010-02-10 2014-07-23 住友電気工業株式会社 熱収縮チューブ用樹脂組成物並びにこれを用いた架橋チューブ及び熱収縮チューブ
WO2023140035A1 (ja) * 2022-01-21 2023-07-27 住友電工ファインポリマー株式会社 熱収縮接続部品および熱収縮接続部品の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325692A (ja) * 1992-05-19 1993-12-10 Sumitomo Electric Ind Ltd チューブおよび熱収縮チューブ
JPH0733938A (ja) * 1993-07-21 1995-02-03 Sumitomo Electric Ind Ltd フッ素樹脂組成物とそれからのチューブおよび熱収縮チューブ
WO2010038800A1 (ja) 2008-09-30 2010-04-08 株式会社レイテック 成形加工が可能なポリテトラフルオロエチレン樹脂と応用製品およびその製造方法
JP2017213794A (ja) * 2016-06-01 2017-12-07 住友電工ファインポリマー株式会社 熱収縮チューブ、その製造方法及びソルダースリーブ
CN106317598A (zh) * 2016-08-30 2017-01-11 上海电缆研究所 一种交联氟塑料热缩套管及其制备方法
CN106700218A (zh) * 2016-12-12 2017-05-24 广州凯恒科塑有限公司 一种氟聚合物热缩套管及其制备方法
WO2019097820A1 (ja) * 2017-11-20 2019-05-23 住友電工ファインポリマー株式会社 耐熱性2層熱収縮チューブ及び被覆対象物の被覆方法
CN109337188A (zh) * 2018-10-08 2019-02-15 深圳市沃尔核材股份有限公司 一种辐照交联耐高温热缩套管及生产方法
JP2021027985A (ja) 2019-07-18 2021-02-25 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 熱パターンを採取するためのセンサおよび二重積分方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4299284A4

Also Published As

Publication number Publication date
EP4299284A1 (en) 2024-01-03
JPWO2022181142A1 (ja) 2022-09-01
JP2024041760A (ja) 2024-03-27
JP7406043B2 (ja) 2023-12-26
US20240106221A1 (en) 2024-03-28
EP4299284A4 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
US4940179A (en) Device for forming a solder connection
JP6613147B2 (ja) 熱回復部品、電線束、及び絶縁電線被覆方法
US7220916B2 (en) Electric heating cable or tape having insulating sheaths that are arranged in a layered structure
CN110198840B (zh) 耐热双层热收缩管和用于覆盖待覆盖的物体的方法
IE54432B1 (en) Winding or insulating tape made of a high temperature-resistant synthetic resin
CN110462754B (zh) 低烟无卤自动调节发热电缆
JP2014073637A (ja) 熱収縮チューブ
WO2023140035A1 (ja) 熱収縮接続部品および熱収縮接続部品の製造方法
CN104903397B (zh) 耐热阻燃橡胶组合物、绝缘线和橡胶管
US10109947B2 (en) System and method for sealing electrical terminals
EP2092611B1 (en) Product and method for wire seal
WO2022181142A1 (ja) 熱収縮チューブ、熱収縮接続部品、熱収縮チューブの製造方法及び熱収縮接続部品の製造方法
JP6816299B2 (ja) 電気端子を封止するためのシステムおよび方法
WO2005005564A1 (ja) 接着性組成物、その製造方法、成形物、及び熱収縮性チューブの製造方法
CA2589141A1 (en) Cable manufacturing process
EP3664575A1 (en) Improving flammability of heating cable
WO2023139861A1 (ja) 熱収縮接続部品
JP6734122B2 (ja) 熱収縮チューブ、その製造方法及び熱収縮スリーブ
JP6940029B2 (ja) 電気絶縁ケーブル、センサ一体型ハーネス
CN112509755A (zh) 用于制造海底电缆的方法以及这样制造的电缆
Yamasaki et al. Dual wall heat-shrinkable tubing with hot-melt inner layer
JPWO2022181142A5 (ja)
JP2021057953A (ja) 熱収縮チューブ及び電線束
JP2003281945A (ja) 気密電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276027

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023502173

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022759184

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759184

Country of ref document: EP

Effective date: 20230925