WO2022177332A1 - 유기금속 화합물 및 폴리실록산 공중합체를 포함하는 감광성 조성물 및 그 제조방법 - Google Patents

유기금속 화합물 및 폴리실록산 공중합체를 포함하는 감광성 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2022177332A1
WO2022177332A1 PCT/KR2022/002381 KR2022002381W WO2022177332A1 WO 2022177332 A1 WO2022177332 A1 WO 2022177332A1 KR 2022002381 W KR2022002381 W KR 2022002381W WO 2022177332 A1 WO2022177332 A1 WO 2022177332A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
aromatic hydrocarbon
ether
acid
Prior art date
Application number
PCT/KR2022/002381
Other languages
English (en)
French (fr)
Inventor
차혁진
이응찬
김근수
Original Assignee
(주)휴넷플러스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)휴넷플러스 filed Critical (주)휴넷플러스
Priority to US18/274,934 priority Critical patent/US20240101765A1/en
Priority to JP2023549069A priority patent/JP2024507800A/ja
Priority to EP22756530.6A priority patent/EP4257632A1/en
Priority to CN202280015203.0A priority patent/CN116917378A/zh
Publication of WO2022177332A1 publication Critical patent/WO2022177332A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/30Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen phosphorus-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • C08G79/04Phosphorus linked to oxygen or to oxygen and carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages

Definitions

  • the present invention relates to a photosensitive composition comprising an organometallic compound and a polysiloxane copolymer, and a method for preparing the same, and more particularly, to a photosensitive composition comprising a copolymer of an organometallic compound and polysiloxane that can be used in a photosensitive material for a display or semiconductor and to a manufacturing method thereof.
  • optical elements such as a display, a light emitting diode, a solar cell, WHEREIN:
  • Various proposals for the improvement of the new light utilization efficiency and energy saving are made
  • a liquid crystal display there is known a method of increasing the aperture ratio of a display device by coating and forming a transparent flattening film on a TFT element and forming a pixel electrode on the flattening film.
  • Structure diagram of an organic EL device From a method in which a light emitting layer is deposited on a transparent pixel electrode formed on a substrate and light is emitted from the substrate side (bottom emission), a transparent pixel electrode on a planarization film coated on a TFT element and the above
  • the method of improving the aperture ratio similarly to a liquid crystal display is proposed by making light emission from the light emitting layer of a TFT element into a system (top emission) which is taken out on the opposite side.
  • a material for such a flattening film for TFT substrates a material obtained by combining an acrylic resin and a quinonediazide compound is known.
  • these materials do not rapidly deteriorate material properties at high temperatures of 200° C. or higher, but at 230° C. or higher, decomposition begins gradually, and the transparent film is colored due to a decrease in film thickness or high-temperature treatment of the substrate, resulting in a decrease in transmittance.
  • it cannot be used in a process of forming a film on the transparent film material at a high temperature using an apparatus such as PE-CVD.
  • acrylic materials cannot be said to be optimal materials for use in high-temperature processes or devices affected by impurities.
  • an acrylic material to which heat resistance is imparted generally has a high dielectric constant. For this reason, power consumption increases due to an increase in parasitic capacitance due to the insulating film, or the quality of image quality is deteriorated due to a delay of a driving signal of a liquid crystal element.
  • the capacitance can be reduced by, for example, increasing the film thickness, but it is common to form a uniform coating film with a film thickness of, for example, 5 microns or more on a large glass substrate by a slit coating method or the like. It is difficult to do this, and since the amount of material used also increases, it is not preferable to increase the film thickness.
  • Polysiloxane is known as a material with high heat resistance and high transparency.
  • Polysiloxane is a polymer composed of trifunctional siloxane structural unit RSi (O1.5). Chemically, it is an intermediate between inorganic silica (SiO2) and organic silicon (R2SiO), but it is soluble in organic solvents and the cured product is soluble in inorganic silica. It is a specific compound exhibiting characteristic high heat resistance.
  • the polymer having a siloxane skeleton generally has a low dielectric constant compared with an organic polymer, and is expected as a material for a low dielectric transparent insulating film.
  • an organic layer such as a light emitting layer is used with an inkjet head.
  • IJ inkjet
  • the inkjet (IJ) method is a printing method that does not use a substrate, the cost for manufacturing the substrate can be reduced, and since the material is used only in the required amount for the necessary part, the material cost can also be reduced.
  • dots of a desired pattern are formed by injecting an ink containing an organic layer material into a partition surrounded by a partition (hereinafter, also referred to as an "opening"), and drying and/or heating it.
  • the upper surface of the barrier rib formed along the outline of the dot needs to have ink repellency to prevent the mixing of ink between adjacent dots and to uniformly apply the ink in the dot formation.
  • the partition wall corresponding to the pattern of a dot is formed by the photolithographic method using the photosensitive resin composition containing the ink repellent agent.
  • polysiloxane has excellent heat resistance, transparency, and chemical stability, and is applied to printed circuit board materials, window cover film materials, photosensitive materials, and the like.
  • polysiloxane as a photosensitive material exhibits excellent physical properties such as flexibility, transparency, photosensitivity, and durability.
  • the coating solution containing polysiloxane shows a high taper angle and a steep inclination angle with respect to the substrate surface when forming a pattern, a low taper angle and a gentle round inclination angle required for the pixel define layer of OLED materials, etc. is difficult to implement.
  • there is a limitation in applying it to a process that requires a step according to height when forming a pattern such as a black column spacer.
  • the present invention is to provide a photosensitive composition comprising a copolymer of an organometallic compound and polysiloxane that can be used in a photosensitive material for a display or semiconductor, and a method for manufacturing the same.
  • the present invention provides a photosensitive composition comprising a copolymer having a structure of formula (1).
  • R 1 , R 2 are each C1 ⁇ C20 aliphatic hydrocarbon, C3 ⁇ C20 aromatic hydrocarbon, C4 ⁇ C20 aromatic hydrocarbon including N, O, S, F, C1 ⁇ including ether group C8 aliphatic hydrocarbon, C1 ⁇ C8 aromatic hydrocarbon including ether group, hydroxyl group (-OH) or ether group (-O-),
  • X is silicon (Si), titanium (Ti), germanium (Ge), zirconium (Zr), tin (Sn), lead (Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL)
  • Y is a carbonyl group (-COO-), a sulfonyl group (-SO 2 -), a phosphoryl group (-PO 3 -), or an ether group bonded to a neighboring silanol,
  • m is an integer from 1 to 100, n is from 1 to 100
  • the copolymer may include a structure of Formula 2 and a structure of Formula 3 below.
  • R 1 , R 2 are each C1 ⁇ C20 aliphatic hydrocarbon, C3 ⁇ C20 aromatic hydrocarbon, C4 ⁇ C20 aromatic hydrocarbon including N, O, S, F, C1 ⁇ including ether group C8 aliphatic hydrocarbon, C1 ⁇ C8 aromatic hydrocarbon including ether group, hydroxyl group (-OH) or ether group (-O-), Y is carbonyl group (-COO-), sulfonyl group (-SO 2 -) , a phosphoryl group (-PO 3 -) or an ether group bonded to a neighboring silanol, m is an integer from 1 to 100, n is an integer from 1 to 100)
  • R 3 , R 4 are each C1 ⁇ C20 aliphatic hydrocarbon, C3 ⁇ C20 aromatic hydrocarbon, C4 ⁇ C20 aromatic hydrocarbon including N, O, S, F, C1 ⁇ including ether group C8 aliphatic hydrocarbon, C1 ⁇ C8 aromatic hydrocarbon including ether group, hydroxyl group (-OH) or ether group (-O-),
  • Z is titanium (Ti), germanium (Ge), zirconium (Zr), Tin (Sn), lead (Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL)
  • Y is a carbonyl group (-COO-) , a sulfonyl group (-SO 2 -), a phosphoryl group (-PO 3 -) or an ether group bonded to a neighboring silanol, m is an integer from 1 to 100, n is an integer from 1 to 100)
  • the copolymer may include a structure of Formula 4 or Formula 5 below.
  • R 1 is a C1 to C20 aliphatic hydrocarbon, a C3 to C20 aromatic hydrocarbon, a C4 to C20 aromatic hydrocarbon including N, O, S, and F, and a C1 to C8 aliphatic hydrocarbon including an ether group.
  • X is silicon (Si), titanium (Ti), germanium (Ge), zirconium (Zr), tin (Sn), lead ( Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL)
  • Y is a carbonyl group (-COO-), a sulfonyl group (-SO 2 -), a phosphoryl group (-PO 3 -) or an ether group bonded to a neighboring silanol
  • m is an integer from 1 to 100
  • n is an integer from 1 to 100)
  • X is silicon (Si), titanium (Ti), germanium (Ge), zirconium (Zr), tin (Sn), lead (Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL),
  • Y is a carbonyl group (-COO-), a sulfonyl group (-SO 2 -), a phosphoryl group (-PO 3 -) or neighboring It is an ether group bonded to silanol, m is an integer from 1 to 100, n is an integer from 1 to 100)
  • the copolymer may include the structure of Formula 6.
  • R 1 is a C1 to C20 aliphatic hydrocarbon, a C3 to C20 aromatic hydrocarbon, a C4 to C20 aromatic hydrocarbon including N, O, S, and F, and a C1 to C8 aliphatic hydrocarbon including an ether group.
  • m is an integer from 1 to 100
  • n is an integer from 1 to 100
  • the weight ratio of Chemical Formula 2 and Chemical Formula 3 may be 1:9 to 9.9:0.1.
  • the photosensitive composition further comprises 1 to 10 parts by weight of a photosensitizer, 30 to 50 parts by weight of a solvent, 0.1 to 1 parts by weight of an adhesive aid, and 0.1 to 1 parts by weight of a surfactant relative to 100 parts by weight of the copolymer.
  • the present invention also comprises the steps of preparing a monomer mixture by adding and mixing a monomer having the structure of the following Chemical Formula 7 in a polymerization solvent;
  • R 1 , R 2 are each C1 ⁇ C20 aliphatic hydrocarbon, C3 ⁇ C20 aromatic hydrocarbon, C4 ⁇ C20 aromatic hydrocarbon including N, O, S, F, C1 ⁇ including ether group C8 aliphatic hydrocarbon, C1 ⁇ C8 aromatic hydrocarbon including ether group, hydroxyl group (-OH) or ether group (-O-),
  • X is silicon (Si), titanium (Ti), germanium (Ge), zirconium (Zr), tin (Sn), lead (Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL))
  • the copolymerization monomer is a compound containing a carbonyl group, a sulfonyl group or a phosphoryl group
  • the acid catalyst is selected from oxalic acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid and toluenesulfonic acid. It provides a method for preparing at least one photosensitive composition.
  • the monomer having the structure of Formula 7 may be a mixture of two or more monomers.
  • the photosensitive composition comprising the organometallic compound and the polysiloxane copolymer according to the present invention and the method for producing the same have excellent heat resistance, flexibility and transparency, and excellent storage stability, and in particular, the pattern shape can be adjusted according to the content of the non-silane copolymerized monomer.
  • the polysiloxane copolymer according to the present invention has silane-based functional groups as a basic structure, and the taper angle can be adjusted depending on the content of the non-silane-based copolymer monomer, and is a straight (vertical) or lying (smooth round pole) type, etc.
  • a pattern representing the shape of can be implemented.
  • the polysiloxane copolymer contains an organometallic compound having a structure similar to that of the polysiloxane copolymer, it is possible to realize high sensitivity and high resolution equivalent to or higher than that of the existing polysiloxane-based polymer while excellent in heat resistance and chemical resistance. Therefore, it can be usefully used not only in materials used for displays such as OLED or QLED, but also in semiconductor manufacturing fields such as EUV semiconductors.
  • FIG. 1 is a SEM photograph of a pattern made of a photosensitive composition according to an embodiment of the present invention.
  • FIG. 2 is a SEM photograph of a pattern made of the photosensitive composition according to an embodiment of the present invention.
  • FIG 3 is a SEM photograph of a pattern made of the photosensitive composition according to an embodiment of the present invention.
  • FIG. 6 is a graph of FR-IR analysis results according to an embodiment of the present invention.
  • each process constituting the method may occur differently from the specified order unless a specific order is clearly described in context. That is, each process may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • 'and/or' includes a combination of a plurality of listed items or any of a plurality of listed items.
  • 'A or B' may include 'A', 'B', or 'both A and B'.
  • the present invention relates to a photosensitive composition
  • a photosensitive composition comprising a copolymer having a structure of formula (1).
  • R 1 , R 2 are each C1 ⁇ C20 aliphatic hydrocarbon, C3 ⁇ C20 aromatic hydrocarbon, C4 ⁇ C20 aromatic hydrocarbon including N, O, S, F, C1 ⁇ including ether group C8 aliphatic hydrocarbon, C1 ⁇ C8 aromatic hydrocarbon including ether group, hydroxyl group (-OH) or ether group (-O-),
  • X is silicon (Si), titanium (Ti), germanium (Ge), zirconium (Zr), tin (Sn), lead (Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL)
  • Y is a carbonyl group (-COO-), a sulfonyl group (-SO 2 -), a phosphoryl group (-PO 3 -), or an ether group bonded to a neighboring silanol,
  • m is an integer from 1 to 100, n is from 1 to 100
  • the copolymer of Formula 1 of the present invention may be composed of a siloxane-based compound or an organometallic compound having a structure similar to the siloxane-based compound and a non-silane-based monomer represented by Y.
  • X is silicon (Si) in Formula 1
  • a polysiloxane-based copolymer may be formed in Formula 1
  • X is a metal atom
  • an organic compound-based copolymer may be formed.
  • siloxane-based polymers since only siloxane is used for the main skeleton of the polymer, when a pattern is formed with the coating solution containing the polysiloxane, it shows a high taper angle and a steep inclination angle with respect to the substrate surface. It is difficult to implement the low taper angle and the gentle round inclination angle required by the define layer). In addition, there is a limitation in applying it to a process that requires a step according to height when forming a pattern, such as a black column spacer.
  • the siloxane-based compound or an organometallic compound having a structure similar to the siloxane-based compound and a non-silane-based monomer are copolymerized, and in this case, the pattern shape can be adjusted according to the ratio of the non-silane-based monomer.
  • the copolymer according to the present invention has a siloxane-based compound or an organometallic compound functional groups having a structure similar to that of the siloxane-based compound as a basic structure, and the taper angle can be adjusted according to the content of the non-silane-based copolymer monomer, and a straight (vertical) A pattern representing a shape such as a straight shape) or a lying type (a gentle round shape) can be implemented.
  • the siloxane-based compound or the organometallic compound having a structure similar to the siloxane-based compound and the non-silane-based monomer are copolymerized in a ratio of 1:1 to have a low taper angle with respect to the substrate surface, , thus, when implementing the pattern, it is possible to implement a pattern in the form of lying close to the horizontal.
  • the proportion of the siloxane-based compound or the organometallic compound having a structure similar to that of the siloxane-based compound in the copolymer increases. In this case, the taper angle is increased to control the inclination angle of the pattern.
  • m when m is 100, since there is almost no effect by the non-silane-based monomer, it is possible to implement a linear pattern close to vertical. Therefore, m may be an integer from 1 to 100. When the m is less than 1, it may be difficult to form a copolymer, and when it exceeds 100, the effect of the non-silane-based compound does not appear and there may be no difference from the existing polysiloxane.
  • R1 and R2 refer to a functional group bonded to silicon (Si) or a metal atom, which is a central atom in the siloxane-based compound or an organometallic compound having a structure similar to the siloxane-based compound.
  • Si silicon
  • metal atom which is a central atom in the siloxane-based compound or an organometallic compound having a structure similar to the siloxane-based compound.
  • R1 and R2 are hydroxyl groups, they may be combined with an adjacent siloxane-based compound or an organometallic compound having a structure similar to that of the siloxane-based compound.
  • the hydroxyl group may be condensed by dehydration to form an ether group.
  • the formation of such an ether group may occur in both R1 and R2, but may only occur in either one of R1 or R2.
  • the ether group may be derived from a hydroxyl group as described above, but may also be formed by a condensation reaction of other hydrocarbons or hydrocarbons containing an ether group.
  • R1 and R2 may be combined with the same siloxane-based compound or an organometallic compound having a structure similar to the siloxane-based compound, but each other siloxane-based compound or an organic compound having a similar structure to the siloxane-based compound It is also possible to form a branched structure or a network structure by binding to a metal compound.
  • R1 and R2 are derived from a siloxane-based compound used for polymerization or an organometallic compound having a structure similar to the siloxane-based compound, and a siloxane-based compound or a structure similar to the siloxane-based compound when forming the copolymer
  • a siloxane-based compound or a structure similar to the siloxane-based compound when two or more siloxane-based compounds or an organometallic compound having a structure similar to the siloxane-based compound are mixed and used, different functional groups (R1 and R2) may be attached to each point even within the same copolymer molecule. Through this, physical properties such as viscosity, softening point, melting point, hardness, and elasticity of the copolymer can be controlled.
  • C1 ⁇ C20 aliphatic hydrocarbon C3 ⁇ C20 aromatic hydrocarbon, C4 ⁇ C20 aromatic hydrocarbon including N, O, S, F, including an ether group C1-C8 aliphatic hydrocarbons and C1-C8 aromatic hydrocarbons containing ether groups may be used.
  • Examples of the C1-C20 aliphatic hydrocarbon include methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, C11-C20 hydrocarbon, the C1-C20 aliphatic hydrocarbon isomer, the C1-C20 and derivatives of aliphatic hydrocarbons.
  • the main skeleton has a single bond, but a C1-C20 aliphatic hydrocarbon having 1 to 10 double bonds or triple bonds may be used.
  • C3-C20 aromatic hydrocarbon refers to a hydrocarbon having a cyclic structure in which both ends of the C1-C20 aliphatic hydrocarbon are bonded. Hydrocarbons can be used, and aromatic hydrocarbons that share some double bonds, such as benzene, can also be used.
  • the aromatic hydrocarbon may form one cyclic hydrocarbon, but may be an aromatic hydrocarbon in which two or more rings are bonded, such as naphthalene, or two or more rings are independently present.
  • the C3-C20 aromatic hydrocarbon may include isomers and derivatives in the same manner as the aliphatic hydrocarbon.
  • one or more carbon atoms may be substituted with N, O, S, or F.
  • a circular carbon skeleton may be formed, but even when some atoms of these carbons are substituted, a circular molecule as described above may be formed. Therefore, in the present invention, C4 ⁇ C20 aromatic hydrocarbons including N, O, S, and F may be used.
  • the aliphatic hydrocarbon and the aromatic hydrocarbon may be directly bonded to the central atom of the copolymer to form a siloxane or an organometallic compound, but may be bonded using an ether group. That is, when the aliphatic hydrocarbon and the aromatic hydrocarbon have a hydroxyl group, they may be bonded to the siloxane or organometallic compound through condensation polymerization, and in this case, an ether bond may be formed through an oxygen atom.
  • two or more aliphatic hydrocarbons and the aromatic hydrocarbon hydrogen may form an ether bond, and then the bound molecule may be bound to the siloxane or organometallic compound.
  • R1 and R2 As specific examples of R1 and R2, -Me, -CH 2 Ph, -CH 2 NHPh, -n-Pr, -(CH 2 ) 2 (CF 2 )nCF 3 , -(CH 2 ) 2 -cC 6 H 11 , -(CH 2 ) 2 Ph, -(CH 2 ) 2 CF 3 , -(CH 2 ) 2 C 6 F 5 , -(CH 2 ) 2 C 6 H 4 -4-CH 2 Cl, -(CH 2 ) 2 C 6 H 4 -4-Br, -(CH 2 ) 2 OSiMe 2 Cl, -(CH 2 ) 2 SiMe 2 OMe, -(CH 2 ) 2 SiMe(OMe) 2 , -(CH 2 ) 2 Si(OMe), -(CH 2 ) 3 ,Ph, -(CH 2 ) 3 ,NH 2 , -(CH 2 ) 3 NHC(dO)(CH
  • Me is a methyl group
  • Et is an ethyl group
  • Bu is a butyl group
  • Pr is a propyl group
  • Ph is a phenol group
  • Cy is a cyclohexyl group
  • Ac is an acetyl group
  • n is an integer between 0 and 7 indicates
  • the copolymer when R1 or R2 of the copolymer is an ether group, the copolymer may be a compound of Formula 4 or 5 below.
  • R 1 is a C1 to C20 aliphatic hydrocarbon, a C3 to C20 aromatic hydrocarbon, a C4 to C20 aromatic hydrocarbon including N, O, S, and F, and a C1 to C8 aliphatic hydrocarbon including an ether group.
  • X is silicon (Si), titanium (Ti), germanium (Ge), zirconium (Zr), tin (Sn), lead ( Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL)
  • Y is a carbonyl group (-COO-), a sulfonyl group (-SO 2 -), a phosphoryl group (-PO 3 -) or an ether group bonded to a neighboring silanol
  • m is an integer from 1 to 100
  • n is an integer from 1 to 100)
  • X is silicon (Si), titanium (Ti), germanium (Ge), zirconium (Zr), tin (Sn), lead (Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL),
  • Y is a carbonyl group (-COO-), a sulfonyl group (-SO 2 -), a phosphoryl group (-PO 3 -) or neighboring It is an ether group bonded to silanol, m is an integer from 1 to 100, n is an integer from 1 to 100)
  • the copolymer When having the structure of Formula 4 or Formula 5, the copolymer may have a linear molecular structure.
  • the copolymer may be used in a mixture of a siloxane compound having a central atom of Si and an organometallic compound having a central atom of a metal. That is, the copolymer may include a structure of Formula 2 and a structure of Formula 3 below.
  • R 1 , R 2 are each C1 ⁇ C20 aliphatic hydrocarbon, C3 ⁇ C20 aromatic hydrocarbon, C4 ⁇ C20 aromatic hydrocarbon including N, O, S, F, C1 ⁇ including ether group C8 aliphatic hydrocarbon, C1 ⁇ C8 aromatic hydrocarbon including ether group, hydroxyl group (-OH) or ether group (-O-), Y is carbonyl group (-COO-), sulfonyl group (-SO 2 -) , a phosphoryl group (-PO 3 -) or an ether group bonded to a neighboring silanol, m is an integer from 1 to 100, n is an integer from 1 to 100)
  • R 3 , R 4 are each C1 ⁇ C20 aliphatic hydrocarbon, C3 ⁇ C20 aromatic hydrocarbon, C4 ⁇ C20 aromatic hydrocarbon including N, O, S, F, C1 ⁇ including ether group C8 aliphatic hydrocarbon, C1 ⁇ C8 aromatic hydrocarbon including ether group, hydroxyl group (-OH) or ether group (-O-),
  • Z is titanium (Ti), germanium (Ge), zirconium (Zr), Tin (Sn), lead (Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL)
  • Y is a carbonyl group (-COO-) , a sulfonyl group (-SO 2 -), a phosphoryl group (-PO 3 -) or an ether group bonded to a neighboring silanol, m is an integer from 1 to 100, n is an integer from 1 to 100)
  • the siloxane compound is known to be weak to heat, and thus it is known that it is difficult to use in a high-temperature process.
  • the compound of Formula 2 corresponds to a siloxane-based compound
  • the compound of Formula 3 corresponds to an organometallic compound.
  • the weight ratio of Chemical Formula 2 and Chemical Formula 3 may be 1:9 to 9.9:0.1, preferably 3:7 to 9.9:0.1, and more preferably 5:5 to 9.9 to 0.1.
  • the weight ratio of the compound of Formula 2 and the compound of Formula 3 may be determined by the weight ratio of the siloxane-based compound and the organometallic compound mixed during the initial synthesis. In this case, if the ratio of the organometallic compound is increased, heat resistance and chemical resistance may be increased, but transparency may be deteriorated, so it is preferable to use it by mixing it in an appropriate ratio.
  • the photosensitive composition may further include a photosensitizer, a solvent, an adhesion aid, and a surfactant in addition to the polysiloxane copolymer including the organometallic compound.
  • the photosensitizer is a photopolymerization initiator that photopolymerizes the copolymer by the supplied light, and a photosensitizer used in a general photosensitive polysiloxane-based compound may be used.
  • the photosensitizer is not particularly limited, but a triazine-based compound; biimidazole compounds; acetophenone-based compounds; 0-acyl oxime compounds; benzophenone compounds; thioxanthone-based compounds; phosphine oxide-based compounds; And one or more selected from the group consisting of coumarin-based compounds may be used.
  • Non-limiting examples of the photosensitizer include 2,4-trichloromethyl-(4'-methoxyphenyl)-6-triazine, 2,4-trichloromethyl-(4'-methoxystyryl)-6 -Triazine, 2,4-trichloromethyl-(piflonyl)-6-triazine, 2,4-trichloromethyl-(3',4'-dimethoxyphenyl)-6-triazine, 3- ⁇ 4-[2,4-bis(trichloromethyl)-s-triazin-6-yl]phenylthio ⁇ propanoic acid, 2,4-trichloromethyl-(4'-ethylbiphenyl)-6-tri triazine-based compounds such as azine and 2,4-trichloromethyl-(4'-methylbiphenyl)-6-triazine; 2,2'-bis(2-chlorophenyl)-4,4',5,5'-t
  • the photosensitizer may be included in an amount of 1 to 10 parts by weight based on 100 parts by weight of the copolymer.
  • photoinitiation may not occur or the sensitivity of the photosensitive composition may be reduced, and if included in an amount exceeding 10 parts by weight, physical properties of the photosensitive composition may be deteriorated.
  • the solvent is added to have fluidity by dissolving the photosensitive composition, and any solvent capable of preparing the photosensitive composition solution may be used without limitation.
  • the solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, acetone, acetonitrile, tetrahydrofuran, toluene, hexane, ethyl acetate, Cyclohexanone, methyl amyl ketone, butanediol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, butanediol monoethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol Dimethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether a
  • the solvent may be used in an amount of 30 to 50 parts by weight based on 100 parts by weight of the copolymer. When the solvent is mixed in less than 30 parts by weight, the viscosity of the photosensitive composition increases and it may be difficult to form a seamless pattern. .
  • the copolymer may be used by mixing an adhesive aid that assists the substrate to adhere and a surfactant that allows the copolymer to form a uniform pattern.
  • 0.1 to 1 part by weight of the adhesive aid and 0.1 to 1 part by weight of the surfactant may be used based on 100 parts by weight of the copolymer.
  • the copolymer may smoothly form a pattern, but if it is outside the above range, the pattern may be incomplete or the interface between the pattern and the substrate may be separated.
  • the present invention also comprises the steps of preparing a monomer mixture by adding and mixing a monomer having the structure of the following Chemical Formula 7 in a polymerization solvent;
  • R 1 , R 2 are each C1 ⁇ C20 aliphatic hydrocarbon, C3 ⁇ C20 aromatic hydrocarbon, C4 ⁇ C20 aromatic hydrocarbon including N, O, S, F, C1 ⁇ including ether group C8 aliphatic hydrocarbon, C1 ⁇ C8 aromatic hydrocarbon including ether group, hydroxyl group (-OH) or ether group (-O-),
  • X is silicon (Si), titanium (Ti), germanium (Ge), zirconium (Zr), tin (Sn), lead (Pb), bismuth (Bi), antimony (Sb), tellurium (Te), hafnium (Hf), indium (In) or aluminum (AL))
  • the copolymerization monomer is a compound containing a carbonyl group, a sulfonyl group or a phosphoryl group
  • the acid catalyst is selected from oxalic acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, perchloric acid, phosphoric acid, methanesulfonic acid, benzenesulfonic acid and toluenesulfonic acid. It relates to a method for preparing at least one photosensitive composition.
  • the monomer is a monomer having the structure of Chemical Formula 7, and as described above, when X is silicon (Si), it may be a silane-based monomer, and when X is a metal atom, it may be an organometallic monomer.
  • the copolymer having the structure of Formula 1 of the present invention can be formed by mixing and copolymerizing the Y compound, which is a non-silane-based monomer, with the compound having the structure of Formula 7 above.
  • silane-based monomer examples include trimethylmethoxysilane, triethylmethoxysilane, trimethylethoxysilane, triethylethoxysilane, trimethylpropoxysilane, triethylpropoxysilane, trimethylbutoxysilane, triethylbutoxy Silane, dimethyldimethoxysilane, diethyldimethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, methyltriethoxysilane, ethyltri Ethoxysilane, propyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, phenyltrimethoxysilane, diphenyl
  • a metal alkoxide-based compound such as side, tin butoxide, tin-tert-butoxide, lead methoxide, lead ethoxide, lead isopropoxide, peptoxide and lead-tert-butoxide may be used.
  • the silane-based monomer and the organometallic monomer it is possible to use a single component, but preferably, two or more kinds of monomers (monomers) may be mixed and used.
  • a single component monomer certain physical properties (transparency, flowability, miscellaneous property, etc.) may be excellent, but it may be difficult to be used as a material for forming a pattern that is used universally. Therefore, it is preferable to use a mixture of two or more, preferably three or more kinds of the above monomers so that they can be used universally while showing high physical properties.
  • a pattern having high transparency and high heat resistance and chemical resistance can be formed.
  • the monomer After the monomer is prepared as described above, it may be mixed with a polymerization solvent.
  • the polymerization solvent may be used without limitation as long as it is a solvent capable of performing polymerization of the monomer, but it is preferable to use the same solvent as the solvent used for preparing the photosensitive composition. Through this, it is possible to minimize the cost required for the separation of the polymerization solvent in the preparation of the photosensitive composition, and also to minimize the deterioration of physical properties due to the residual polymerization solvent.
  • the copolymer may be mixed.
  • the copolymer monomer is a part constituting the non-silane-based monomer, and acetic acid, sulfuric acid or phosphoric acid may be used.
  • acetate, sulfate, or phosphate may be used.
  • the pattern shape of the copolymer can be adjusted according to the mixing ratio of the polymerized monomer, 0.01 to 1 mole of the polymerized monomer may be mixed with respect to 1 mole of the monomer (silane-based monomer or organometallic monomer).
  • the polymerized monomer is mixed in a ratio of less than 0.01 mol, the effect of changing the pattern shape by copolymerization of the polymerized monomer may not appear. can be difficult to form.
  • an acid catalyst may be added dropwise to carry out the copolymerization reaction.
  • the acid catalyst may serve as a catalyst for the copolymerization reaction and at the same time maintain the pH during the reaction.
  • the acid catalyst may be added dropwise over 30 to 120 minutes at a temperature of 70° C. or less, preferably 50° C. or less, in order to suppress side reactions due to rapid reaction.
  • An appropriate copolymerization reaction may be performed within the above range, but outside the above range, a side reaction may be performed and physical properties may be deteriorated.
  • the same compound as the polymerization monomer may be used. That is, when phosphoric acid is used as the polymerization monomer, the phosphoric acid can act as an acid catalyst as well as a polymerization monomer. It is also possible to do both at the same time. The same can be applied to the sulfuric acid.
  • the acetic acid as a polymerization monomer or using an acetate, sulfate, or phosphate as a polymerization monomer
  • the pH required for the reaction cannot be maintained by the dropwise addition as described above, so after mixing the polymerization monomer, an additional acid catalyst is added dropwise. A copolymerization reaction can be carried out.
  • a photosensitive composition is prepared by mixing 1 to 10 parts by weight of a photosensitizer, 30 to 50 parts by weight of a solvent, 0.1 to 1 parts by weight of an adhesive aid, and 0.1 to 1 parts by weight of a surfactant relative to 100 parts by weight of the copolymer.
  • the photosensitive composition of the present invention can be used for positive or negative photosensitivity. That is, the photosensitive composition can be used in positive mode and negative mode.
  • PTMS was phenyltrimethoxysilane
  • MTMS was methyltrimethoxysilane
  • TEOS was tetraethoxysilane
  • ETMS was ethyltrimethoxysilane
  • TPOS was Tetrapropoxysilane
  • TEOTi tetraethoxytitanium
  • TEOGe tetraethoxygermanium
  • TEOZr tetraethoxygermanium
  • TPOTi tetrapropoxytitanium
  • TBOTi tetrabutoxytitanium
  • the weight average molecular weight and ADR (2.38% tetramethylammonium hydroxide (TMAH) developer) of the copolymer synthesized in the ratio of Example 1 were measured, respectively.
  • Example weight average molecular weight ADR( ⁇ ) 1-1 3,678 1,248 1-2 3,957 1,259 1-3 3,554 1,295 1-4 3,827 1,309 1-5 3,647 1,228 1-6 3,558 1,195 1-7 3,651 1,198 1-8 3,786 1,120 1-9 3,916 1,045 1-10 3,702 1,146 1-11 3,804 1,101 1-12 3,758 1,195 1-13 3,696 1,155
  • the photosensitive resin composition was applied on a glass substrate by spin coating, heat treatment (hot plate) was performed at 110° C. for 90 seconds to form a thin film having a thickness of 2 ⁇ m.
  • the thickness of the formed thin film was measured with a stylus-type film thickness meter (Veeco, DEKTAK150). Then, the thin film was exposed to a high-pressure mercury lamp through a mask and then spray-developed with a TMAH 2.38% developer to obtain a pattern.
  • the photosensitive resin composition was applied on a glass substrate by spin coating, heat treatment (hot plate) was performed at 110° C. for 90 seconds to form a thin film having a thickness of 2 ⁇ m.
  • heat treatment hot plate
  • the thickness after development and the thickness change after post-bake at 250 °C/60 min were measured using a contact thickness meter (DEKTAK 6M, manufacturer VECCO, USA) to determine the remaining film rate. measured.
  • Examples 2-1 to 2-6 of the present invention have high physical properties and thus can be used as a photosensitive composition.
  • Examples 2-7 to 2-13 using the organometallic compound although the transmittance was slightly decreased, it was confirmed that the heat resistance was improved.
  • Examples 3-1 to 3-6 of the present invention have high physical properties and thus can be used as a photosensitive composition.
  • the transmittance was slightly decreased, but it was confirmed that the heat resistance was improved.
  • Example 1 In order to confirm the effect of the change of the copolymerization monomer and the acid catalyst during the preparation of Example 1, a copolymer was prepared in the same manner using the monomers of Examples 1-4, but by changing the type and content of the copolymerization monomer and the acid catalyst. prepared. In this case, the ratio of the copolymerized monomer and the acid catalyst used is shown in Table 5 below.
  • the photosensitive resin composition was applied on a glass substrate by spin coating, heat treatment (hot plate) was performed at 90-110° C. for 90 seconds to form a thin film having a thickness of 2 ⁇ m. Then, the thin film was exposed to a high-pressure mercury lamp through a mask and then spray-developed with a TMAH 2.38% developer to obtain a pattern. Thereafter, the taper angle of the pattern obtained through post-baking at 250° C./60 min was measured through FE-SEM.
  • heat treatment hot plate
  • Example Sensitivity Residual film rate after development Remaining film rate after PB heat resistance permeability taper angle 5-1 80 84 89 371 97 66 5-2 80 84 90 380 97 67 5-3 - - - - - - 5-4 75 80 87 390 97 66 5-5 80 84 89 388 97 67 5-6 80 85 90 382 97 65 5-7 80 85 91 368 97 66 5-8 50 70 90 365 97 67
  • Examples 5-1 and 5-2 of the present invention were found to have appropriate physical properties and taper angle.
  • polymerization failed because it was difficult to maintain the pH with the acid catalyst as the weak acid acetic acid was used as the acid catalyst.
  • copolymerization was performed even in the case of Examples 5-5 in which phosphoric acid was used as a copolymerization monomer and hydrochloric acid was used as an acid catalyst (FIG. 2).
  • Example 2-6 in which the use of the acid catalyst was suppressed, it was confirmed that the taper angle was sharpened due to the decrease in phosphoric acid added as a copolymerization monomer during the reaction, and the physical properties were also reduced ( FIG. 3 ).
  • the taper angle of the pattern can be adjusted by adjusting the mixing ratio of the copolymerized monomers.
  • Example Sensitivity Residual film rate after development Remaining film rate after PB heat resistance permeability taper angle 6-1 20 93 84 412 99 39.4 6-2 30 92 86 417 98 38.4 6-3 - - - - - 6-4 20 94 87 418 97 42.8 6-5 20 93 85 419 98 56.3 6-6 30 84 71 324 91 68.4 6-7 30 95 88 415 98 80.5 6-8 20 94 84 417 97 18
  • Example 5 Almost the same results as in Example 5 were obtained, and it was confirmed that the taper angle was also adjustable.
  • Example 2 instead of the polysiloxane copolymer of Example 1 as a binder resin, 30% by weight of benzyl methacrylate, 10% by weight of methyl methacrylate, and 10% by weight of methacrylic acid in the presence of propylene glycol monomethyl ether acetate (PGMEA) 30%
  • PMEA propylene glycol monomethyl ether acetate
  • a photosensitive resin composition was prepared in the same manner as in Examples except for using an acrylic resin polymerized with a solid content (weight average molecular weight of 13,000).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Materials For Photolithography (AREA)

Abstract

본 발명은 디스플레이 또는 반도체용 감광재료에 사용할 수 있는 유기금속 화합물 및 폴리실록산의 공중합체를 포함하는 감광성 조성물 및 그 제조방법을 제공한다.

Description

유기금속 화합물 및 폴리실록산 공중합체를 포함하는 감광성 조성물 및 그 제조방법
본 발명은 유기금속 화합물 및 폴리실록산 공중합체를 포함하는 감광성 조성물 및 그 제조방법에 관한 것으로, 더욱 상세하게는 디스플레이 또는 반도체용 감광재료에 사용할 수 있는 유기금속 화합물 및 폴리실록산의 공중합체를 포함하는 감광성 조성물 및 그 제조방법에 관한 것이다.
최근, 디스플레이·발광 다이오드·태양 전지 등의 광학 소자에 있어서, 새로운 광 이용 효율의 향상이나 에너지 절약을 위한 다양한 제안이 이루어지고 있다. 예를 들면, 액정 디스플레이에 있어서 투명한 평탄화막을 TFT소자 위에 피복 형성하고, 이 평탄화막 위에 화소 전극을 형성시킴으로써 표시 장치의 개구율을 올리는 방법이 알려져 있다. 유기 EL 디바이스의 구성도 기판 위에 형성한 투명 화소 전극 위에 발광층을 증착 형성하고, 발광을 기판측에서 취출하는 방식(보텀 에미션)부터, TFT 소자 위에 피복 형성된 평탄화막 위의 투명 화소 전극 및 그 위의 발광층으로부터의 발광을 TFT 소자와는 반대측에 취출하는 방식(탑 에미션)으로 함으로써, 액정 디스플레이와 마찬가지로 개구율을 향상시키는 방법이 제안되고 있다.
또한, 디스플레이의 고해상화·대형화 및 고화질화·3D 표시 등에 따라, 배선 위에서의 신호 지연이 문제가 되고 있다. 화상 정보의 재기록 속도(프레임 주파수)의 고속화에 의해 TFT로의 입력 시그널은 짧아졌지만, 고해상화의 요구로부터 배선 저항을 내리기 위한 배선 폭의 확장에는 제한이 있다. 이 때문에, 배선 두께를 크게 함으로써 신호 지연의 문제 해결이 제안되고 있다.
이러한 TFT 기판용 평탄화막의 재료로서 아크릴계 수지와 퀴논디아지드 화합물을 조합한 재료가 알려져 있다. 그렇지만, 이들 재료는 200℃ 이상의 고온에서 재료 특성이 급격하게 열화되는 것은 아니지만, 230℃ 이상에서는 서서히 분해가 시작되고, 막 두께의 저하나 기판의 고온 처리에 의해 투명막이 착색하여 투과율이 저하한다는 문제가 있다. 특히, 당해 투명막 재료 위에 PE-CVD 등의 장치를 사용하여 고온으로 막 형성하는 프로세스에는 사용할 수 없다. 또한, 유기 EL 소자에 있어서도 분해물은 유기 EL 소자의 발광 효율이나 수명에 대하여 악영향을 주기 때문에, 아크릴계 재료는 고온 프로세스나 불순물이 영향을 주는 디바이스에 사용하기 위해서는 최적의 재료라고는 할 수 없다. 또한, 내열성을 부여한 아크릴 재료는 일반적으로 유전율이 높아진다. 이 때문에, 절연막에 의한 기생 용량이 커짐으로써 소비 전력이 커지거나, 액정 소자 구동 신호의 지연 등으로 화질의 품질에 문제를 준다. 유전율이 큰 절연 재료에서도, 예를 들면 막 두께를 크게 함으로써 용량을 작게 할 수는 있지만, 대형 유리 기판 위에 슬릿 코트법 등에 의해, 예를 들면 5미크론 이상의 막 두께로 균일한 도포막을 형성하는 것은 일반적으로는 곤란하며, 재료 사용량도 많아지기 때문에 막 두께를 크게 하는 것은 바람직하지 못하다.
고내열성, 고투명성의 재료로서 폴리실록산이 알려져 있다. 폴리실록산은 3관능성의 실록산 구조 단위 RSi(O1.5)로 이루어지는 중합체로, 화학 구조적으로는 무기 실리카(SiO2)와 유기 실리콘(R2SiO)의중간적 존재이지만, 유기 용제에 가용이면서 경화물은 무기 실리카에 특징적인 높은 내열성을 나타내는 특이적인 화합물이다. 또한, 실록산 골격의 중합체는 일반적으로 유기 중합체와 비교하면 유전율이 작고, 저유전 투명 절연막의 재료로서 기대되고 있다.
한편 유기 EL (Electro-Luminescence) 소자, 양자점 디스플레이, TFT (Thin Film Transistor) 어레이, 박막 태양전지 등의 광학 소자의 제조에 있어서, 패턴을 구현하는 방법 중 하나로, 발광층 등의 유기층을 잉크젯 헤드를 사용하여 도트로 형성하는 잉크젯 (IJ) 방법이 이용되어 오고 있다.
잉크젯 (IJ) 법은, 기판을 이용하지 않는 인쇄법이어서, 기판을 제작하기 위한 비용을 삭감할 수 있고, 또 필요한 부분에 필요한 양만 재료를 사용하기 때문에, 재료 비용도 저감할 수 있다는 등의 이점을 갖는다.
이러한 잉크젯 방법은 격벽으로 둘러싸인 구획(이하, 「개구부」라고도 한다.)내에 유기층의 재료를 포함하는 잉크를 주입하고, 이를 건조 및/또는 가열함으로써 원하는 패턴의 도트를 형성한다.
잉크젯 방식으로 패턴 인쇄시, 인접하는 도트 사이에 있어서 잉크의 혼합을 방지하고, 도트 형성에 있어서 잉크의 균일 도포를 위해, 도트의 윤곽을 따라 형성된 격벽 상면은 발잉크성을 가질 필요가 있다. 이를 위해서, 발잉크제를 포함시킨 감광성 수지 조성물을 사용하여 포토리소그래피법에 의해 도트의 패턴에 대응하는 격벽을 형성하고 있다.
또한 폴리실록산은 우수한 내열성, 투명성 및 화학적 안정성 등을 가져 인쇄회로기판 소재, 윈도우 커버필름 소재, 감광성 소재 등에 적용되고 있다. 특히 감광성 소재로써의 폴리실록산은 유연성, 투명성, 감광성, 내구성 등에서 우수한 물성을 나타낸다. 다만, 이러한 폴리실록산을 포함하는 코팅액으로 패턴 형성 시 기판면을 기준으로 높은 테이퍼 각도와 급경사각을 나타내기 때문에 OLED 소재의 격벽 재료(Pixel define layer) 등에서 요구되는 낮은 테이퍼 각도와 완만하고 둥근 형태의 경사각을 구현하는 것이 어렵다. 또한 블랙컬럼스페이서(Black column spacer) 등과 같이 패턴 형성 시 높낮이에 따른 단차를 요구하는 공정에도 적용하는데 한계가 있다.
전술한 문제를 해결하기 위하여, 본 발명은 디스플레이 또는 반도체용 감광재료에 사용할 수 있는 유기금속 화합물 및 폴리실록산의 공중합체를 포함하는 감광성 조성물 및 그 제조방법을 제공하고자 한다.
상술한 문제를 해결하기 위해, 본 발명은 화학식 1의 구조를 가지는 공중합체를 포함하는 감광성 조성물을 제공한다.
[화학식 1]
Figure PCTKR2022002381-appb-I000001
(상기 화학식 1에서, R1, R2는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고, X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
일 실시예에 있어서, 상기 공중합체는 하기의 화학식 2의 구조 및 화학식 3의 구조를 포함할 수 있다.
[화학식 2]
Figure PCTKR2022002381-appb-I000002
(상기 화학식 2에서, R1, R2는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
[화학식 3]
Figure PCTKR2022002381-appb-I000003
(상기 화학식 3에서, R3, R4는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고, Z는 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
일 실시예에 있어서, 상기 공중합체는 하기의 화학식 4 또는 화학식 5의 구조를 포함할 수 있다.
[화학식 4]
Figure PCTKR2022002381-appb-I000004
(상기 화학식 4에서, R1은 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소 또는 하이드록시기(-OH)이고, X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
[화학식 5]
Figure PCTKR2022002381-appb-I000005
(상기 화학식 5에서, X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
일 실시예에 있어서, 상기 공중합체는 화학식 6의 구조를 포함할 수 있다.
[화학식 6]
Figure PCTKR2022002381-appb-I000006
(상기 화학식 6에서, R1은 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고, m은 1~100의 정수, n은 1~100의 정수)
일 실시예에 있어서, 상기 화학식 2와 상기 화학식 3의 중량비는 1:9~9.9:0.1일 수 있다.
일 실시예에 있어서, 상기 감광성 조성물은 상기 공중합체 100중량부 대비 감광제 1~10중량부, 용매 30~50중량부, 접착조제 0.1~1중량부 및 계면활성제 0.1~1중량부를 추가로 포함할 수 있다.
본 발명은 또한 중합용매에 하기의 화학식 7의 구조를 가지는 단량체를 투입하고 혼합하여 단량체 혼합물을 제조하는 단계;
[화학식 7]
Figure PCTKR2022002381-appb-I000007
(상기 화학식 7에서, R1, R2는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고, X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL))
상기 단량체 혼합물에 공중합 단량체를 혼합한 다음, 산촉매를 적가하여 공중합체를 제조하는 단계; 및 상기 공중합체 100중량부 대비 감광제 1~10중량부, 용매 30~50중량부, 접착조제 0.1~1중량부 및 계면활성제 0.1~1중량부를 혼합하여 감광성 조성물을 제조하는 단계를 포함하며, 상기 공중합 단량체는 카르보닐기, 설포닐기 또는 포스포릴기를 포함하는 화합물이며, 상기 산촉매는 옥살산, 불산, 염산, 브롬화수소산, 황산, 질산, 과염소산, 인산, 메탄설폰산, 벤젠설폰산 및 톨루엔설폰산에서 선택되는 1종 이상인 상기 감광성 조성물 제조방법을 제공한다.
일 실시예에 있어서, 상기 화학식 7의 구조를 가지는 단량체는 2종 이상의 단량체가 혼합되어 있는 것일 수 있다.
본 발명에 의한 유기금속 화합물 및 폴리실록산 공중합체를 포함하는 감광성 조성물 및 그 제조방법은 내열성, 유연성 및 투명성이 우수하고 보관 안정성이 뛰어나며, 특히 비실란계 공중합 단량체의 함량에 따라 패턴 모양을 조절할 수 있다. 구체적으로 본 발명에 따른 폴리실록산 공중합체는 실란계 작용기들을 기본 구조로 하면서 비실란계 공중합 단량체의 함량에 따라 taper 각의 조절이 가능하며 일직선형(수직일자형)이나 누워있는형(완만한 둥극 형태) 등의 모양을 나타내는 패턴을 구현할 수 있다.
또한 본 발명의 경우 폴리실록산 공중합체에 폴리실록산 공중합체와 유사한 구조를 가지는 유기금속화합물을 포함함에 따라 내열성 및 내화학성이 우수하면서도 기존의 폴리실록산계 고분자와 동등 또는 그이상의 고감도 및 고해상도의 구현이 가능하다. 따라서, OLED 또는 QLED와 같은 디스플레이에 사용되는 소재뿐만 아니라 EUV용 반도체와 같은 반도체 제조분야에서도 유용하게 사용될 수 있다.
도 1은 본 발명의 일 실시예에 의한 감광성 조성물로 제조된 패턴의 SEM사진이다.
도 2는 본 발명의 일 실시예에 의한 감광성 조성물로 제조된 패턴의 SEM사진이다.
도 3은 본 발명의 일 실시예에 의한 감광성 조성물로 제조된 패턴의 SEM사진이다.
도 4는 본 발명의 일 실시예에 의한 감광성 조성물로 제조된 패턴의 SEM사진이다.
도 5는 본 발명의 일 실시예에 의한, 1H-NMR분석결과 그래프이다.
도 6은 본 발명의 일 실시예에 의한 FR-IR분석결과 그래프이다.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, “포함하다” 또는 “가지다”등의 용어는 기술되는 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또, 방법 또는 제조 방법을 수행함에 있어서, 상기 방법을 이루는 각 과정들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 과정들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에 개시된 기술은 여기서 설명되는 구현예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 구현예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 기술의 기술적 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 위에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명의 사상을 다양한 다른 형태로 구현할 수 있을 것이다. 그리고 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다.
본 명세서에서, '및/또는' 이라는 용어는 복수의 기재된 항목들의 조합 또는 복수의 기재된 항목들 중의 어느 항목을 포함한다. 본 명세서에서, 'A 또는 B'는, 'A', 'B', 또는 'A와 B 모두'를 포함할 수 있다.
본 발명은 화학식 1의 구조를 가지는 공중합체를 포함하는 감광성 조성물에 관한 것이다.
[화학식 1]
Figure PCTKR2022002381-appb-I000008
(상기 화학식 1에서, R1, R2는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고, X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
본 발명의 화학식 1의 공중합체의 경우 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물과 Y로 표현되는 비실란계 단량체로 구성될 수 있다. 이때 상기 화학식 1에서 상기 X가 규소(Si)인 경우 상기 화학식 1의 경우 폴리실록산계 공중합체를 구성할 수 있으며, X가 금속원자인 경우 유기화합물계 공중합체를 구성할 수 있다.
기존의 실록산계 폴리머의 경우 폴리머의 주골격에 실록산 만을 사용하고 있으므로, 상기 폴리실록산을 포함하는 코팅액으로 패턴 형성 시 기판면을 기준으로 높은 테이퍼 각도와 급경사각을 나타내기 때문에 OLED 소재의 격벽 재료(Pixel define layer) 등에서 요구되는 낮은 테이퍼 각도와 완만하고 둥근 형태의 경사각을 구현하는 것이 어렵다. 또한 블랙 컬럼 스페이서(Black column spacer) 등과 같이 패턴 형성 시 높낮이에 따른 단차를 요구하는 공정에도 적용하는데 한계가 있다.
하지만 본 발명의 경우 상기 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물과 비실란계 단량체를 공중합시키고 있으며, 이때 상기 비실란계 단량체의 비율에 따라 패턴 모양을 조절할 수 있다. 구체적으로 본 발명에 따른 공중합체는 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물 작용기들을 기본 구조로 하면서 비실란계 공중합 단량체의 함량에 따라 taper 각의 조절이 가능하며 일직선형(수직일자형)이나 누워있는형(완만한 둥근 형태) 등의 모양을 나타내는 패턴을 구현할 수 있다.
이때 상기 m이 1인 경우 상기 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물과 상기 비실란계 단량체가 1:1의 비율로 공중합되어 기판면을 기준으로 낮은 테이퍼 각을 가질 수 있으며, 이에 따라 상기 패턴을 구현할 때, 수평에 가깝게 누워있는 형태의 패턴을 구현할 수 있다. 상기 m이 상승함에 따라 상기 공중합체에서 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물의 비율이 높아지게 되며, 이 경우 상기 테이퍼 각이 높아지게 되어 상기 패턴의 경사각을 조절할 수 있다. 또한 상기 m이 100인 경우 상기 비실란계 단량체에 의한 효과가 거의 없으므로 수직에 가까운 일직선형의 패턴을 구현할 수 있다. 따라서 상기 m은 1~100의 정수일 수 있다. 상기 m이 1미만인 경우 공중합을 형성하기 어려울 수 있으며, 100을 초과하는 경우 상기 비실란계 화합물의 영향이 나타나지 않아 기존의 폴리실록산과 차이가 없을 수 있다.
상기 R1 및 R2는 상기 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물에서 중심원자인 규소(Si)또는 금속원자에 결합된 작용기를 의미하는 것으로 구체적으로는 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)일 수 있다.
특히 상기 R1 및 R2가 하이드록시기인 경우 인접하는 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물과 결합할 수 있다. 이때 상기 하이드록시기는 탈수 축합되어 에테르기를 형성할 수 있다. 이러한 에테르기의 형성은 상기 R1 및 R2 모두에서 일어날 수 있지만, R1 또는 R2 중 어느 하나에서만 일어날 수도 있다. 아울러 상기 에테르기의 경우 상기와 같이 하이드록시기에서 유래될 수도 있지만, 다른 탄화수소 또는 에테르기를 포함하는 탄화수소의 축합반응에 의해서도 형성될 수 있다. 또한 상기와 같은 축합반응에서 상기 R1 및 R2는 동일한 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물과 결합될 수도 있지만 각각 다른 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물에 결합되어 분지형 구조 또는 망상구조를 형성하는 것도 가능하다.
상기 R1 및 R2는 상기 하이드록시기 또는 에테르기 외에도 다양한 탄화수소가 결합될 수 있다. 이 R1 및 R2는 중합에 사용되는 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물에서 유래되는 것으로, 상기 공중합체를 형성할 때 하나의 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물을 사용하는 경우 상기 R1 및 R2가 분자내에서 동일하게 결합될 수 있다. 하지만 2종 이상의 실록산계 화합물 또는 상기 실록산계 화합물과 유사한 구조를 가지는 유기금속화합물을 혼합하여 사용하는 경우 동일한 공중합체 분자내에서도 각 지점에 따라 상이한 작용기(R1 및 R2)가 부착되는 것도 가능하다. 이를 통하여 상기 공중합체의 점도, 연화점, 융점, 경도, 탄성과 같은 물성을 조절할 수 있다.
상기 하이드록시기 또는 에테르기를 제외한 R1 및 R2의 예로서, C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소를 사용할 수 있다.
상기 C1~C20의 지방족 탄화수소의 예로서 메탄, 에탄, 프로판, 부탄, 펜탄, 헥산, 헵탄, 옥탄, 노난, 데칸, C11~C20의 탄화수소, 상기 C1~C20의 지방족 탄화수소의 이성질체, 상기 C1~C20의 지방족 탄화수소의 유도체등을 포함할 수 있다. 아울러 상기 C1~C20의 지방족 탄화수소의 경우 주골격이 단일결합을 가지고 있지만, 이중결합 또는 삼중결합이 1~10개 존재하는 C1~C20의 지방족 탄화수소가 사용될 수도 있다.
C3~C20의 방향족 탄화수소는 상기 C1~C20의 지방족탄화수소의 양단이 결합되어 고리형의 구조를 가지는 탄화수소를 의미하는 것으로 단순히 단일결합으로 구성된 방향족 탄화수소이외에도 이중결합 또는 삼중결합을 1~10개 가지는 방향족 탄화수소를 사용할 수 있으며, 또한 벤젠과 같이 일부 이중결합을 공유하는 방향족 탄화수소가 사용될 수 있다. 아울러 상기 방향족 탄화수소의 경우 고리형 탄화수소를 1개 형성할 수도 있지만, 나프탈렌과 같이 2개 이상의 고리가 결합되어 있거나, 2개 이상의 고리가 독립적으로 존재하는 방향족 탄화수소일 수도 있다. 아울러 상기 C3~C20의 방향족 탄화수소는 상기 지방족 탄화수소와 동일하게 이성질체 및 유도체를 포함할 수 있다.
또한 상기 방향족 탄화수소의 경우 하나이상의 탄소원자가 N, O, S, F로 치환된 것일 수 있다. 상기 방향족 탄화수소의 경우 원형의 탄소골격을 형성할 수 있지만, 이러한 탄소중 일부 원자가 치환되는 경우에도 상기와 같은 원형의 분자를 구성할 수 있다. 따라서 본 발명의 경우 N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소를 사용할 수도 있다.
또한 상기 지방족 탄화수소와 상기 방향족 탄화수소는 상기 공중합체의 중심원자에 그대로 결합되어 실록산 또는 유기금속 화합물을 형성할 수도 있지만, 에테르기를 이용하여 결합될 수도 있다. 즉 상기 지방족 탄화수소와 상기 방향족 탄화수가 하이드록시기를 가지고 있는 경우 축합중합을 통하여 상기 실록산 또는 유기금속 화합물과 결합될 수 있으며, 이때 산소원자를 사이에 두고 결합하는 에테르 결합을 구성할 수도 있다. 아울러 이외에도 2종이상의 지방족 탄화수소와 상기 방향족 탄화수소수소가 에테르 결합을 한 다음, 이 결합된 분자가 상기 실록산 또는 유기금속 화합물에 결합되어 있을 수도 있다.
상기 R1 및 R2의 구체적인 예로서, -Me, -CH2Ph, -CH2NHPh, -n-Pr, -(CH2)2(CF2)nCF3, -(CH2)2-c-C6H11, -(CH2)2Ph, -(CH2)2CF3, -(CH2)2C6F5, -(CH2)2C6H4-4-CH2Cl, -(CH2)2C6H4-4-Br, -(CH2)2OSiMe2Cl, -(CH2)2SiMe2OMe, -(CH2)2SiMe(OMe)2, -(CH2)2Si(OMe), -(CH2)3,Ph, -(CH2)3,NH2, -(CH2)3NHC(dO)(CH2)2CO2H, -i-Bu, -(CH2)3,Cp, -(CH2)3,C6H4-4-OMe, -(CH2)3N[CH2CH(OH)CH2OH]2, -(CH2)3,OH, -(CH2)3,OCH2CH(O)CH2, -(CH2)3OC(=O)CBr(CH2Br)Me, -(CH2)3,SH, -(CH2)3,Cl, -(CH2)3,I, -Cy, -C6H4NO2, -C6H4NH, -C6H4NHC(=O)CMe2Br, -C6H4SO3 -C6H4PO(OH)OPh, -C6H4Br, -OSiMe2H, -OSiMe, -OSiMe2(CH2)2Ph, -OSiMe2(CH2)2C6H4-3-C(CF3)2OH, -OSiMe2(CH2)2C6H4-4-OH, -OSiMe2(CH2)2C6H4-4-CH2COMe, -OSiMe2(CH2)2C6H4-4-OAc, -OSiMe2(CH2)2C6H4-4-Cl, -OSiMe2(CH2)2C6H4-4-Br, -OSiMe2(CH2)2SiMe(OMe)2, -OSiMe2(CH2)3C6H4-2-OH, -OSiMe2(CH2)3OH, -OSiMe2(CH2)3OC(=O)-C6H4-4-NH2, -OSiMe2(CH2)3OCH2CH2OC(dO)-C6H4-4-NH2, -OSiMe2CH2CHMe-C6H4-4-CMe2NCO, -OSiMe2(CH2)3OCH2CH(O)CH2, -OSiMe2(CH2)3O(CH2)2[O(CH2)2]nOH, -OSiMe2(CH2)3O(CH2)2[O(CH2)2]nMe, -OSiMe2(CH2)3OCF2CHFCF3, -OSiMe3-n(OEt)n, -OSiMe2OSiMe2H, -OSnMe3, -(CH2)3NH2, -(CH2)3NHCH2CH(OH)CH2OPh, -(CH2)3N[CH2CH(OH)CH2OPh]2, -(CH2)3N[CH2CH(OH)CH2OPh]{(CH2)2N[CH2CH(OH)CH2OPh]2}, -(CH2)3OCH2CH(O)CH2, -(CH2)3SH, -(CH2)3Cl, -(CH2)2CHMe2, -(CH2)2CMe2CO2Me, -(CH2)2(CH2)3CF3, -n-C6H13, -CH2CH(Et)(CH2)3Me, -n-Oct, -(CH2)2(CF2)5CF3, -c-C5H9, -Ph, -C6H4-2-Me, -C6H4-3-Me, -C6H4-4-Me, -C6H4-4-Cl, -C6H4-2-Et, -C6H4-2-NHNHPh 또는 -(i-Oct)6[(CH2)3NH2]일 수 있다. 상기 R1, R2에서 Me는 메틸기 Et는 에틸기, Bu는 부틸기, Pr은 프로필기를 의미하며, Ph는 페놀기, Cy는 사이클로 핵실기, Ac는 아세틸기를 나타내며, 상기 n은 0~7사이의 정수를 나타낸다.
또한 상기 공중합체의 R1 또는 R2가 에테르기인 경우 상기 공중합체는 하기의 화학식 4 또는 5의 화합물일 수 있다.
[화학식 4]
Figure PCTKR2022002381-appb-I000009
(상기 화학식 4에서, R1은 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소 또는 하이드록시기(-OH)이고, X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
[화학식 5]
Figure PCTKR2022002381-appb-I000010
(상기 화학식 5에서, X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
상기 화학식 4 또는 화학식 5의 구조를 가지는 경우 상기 공중합체는 선형 분자구조를 가질 수 있다.
상기 공중합체는 중심원자가 Si인 실록산화합물 및 중심원자가 금속인 유기금속 화합물이 혼합되어 사용될 수 있다. 즉 상기 공중합체는 하기의 화학식 2의 구조 및 화학식 3의 구조를 포함할 수 있다.
[화학식 2]
Figure PCTKR2022002381-appb-I000011
(상기 화학식 2에서, R1, R2는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
[화학식 3]
Figure PCTKR2022002381-appb-I000012
(상기 화학식 3에서, R3, R4는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고, Z는 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고, Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고, m은 1~100의 정수, n은 1~100의 정수)
일반적으로 상기 실록산 화합물의 경우 열에 약한 것으로 알려져 있으며, 따라서 고온공정에서는 사용이 어려운 것으로 알려져 있다. 하지만 본 발명의 경우 상기 실록산계 화합물에 내열성이 높은 유기금속화합물을 혼합하여 사용하는 것으로 물성의 변화를 최소화 하면서도 높은 내열성을 가지는 것이 가능하다. 이때 상기 화학식 2의 화합물은 실록산계 화합물에 해당하며, 상기 화학식 3의 화합물은 유기금속 화합물에 해당한다.
상기 화학식 2와 상기 화학식 3의 중량비는 1:9~9.9:0.1, 바람직하게는 3:7~9.9:0.1, 더욱 바람직하게는 5:5~9.9~0.1일 수 있다. 상기 화학식 2의 화합물과 상기 화학식 3의 화합물의 중량비는 최초 합성시 혼합되는 실록산계 화합물 및 유기금속화합물의 중량비에 의하여 결정될 수 있다. 이때 상기 유기금속 화합물의 비율이 높아지게 되면 내열성 및 내화학성이 높아질 수 있지만, 투명도가 떨어질 수 있으므로 적절한 비율로 혼합하여 사용하는 것이 바람직하다.
상기 감광성 조성물은 상기 유기금속화합물을 포함하는 폴리실록산 공중합체 외에도 감광제, 용매, 접착조제 및 계면활성제를 추가로 포함할 수 있다.
상기 감광제는 공급되는 빛에 의하여 상기 공중합체를 광중합시키는 광중합 개시제로 일반적인 감광성 폴리실록산계 화합물에 사용되는 감광제를 사용할 수 있다. 구체적으로 상기 감광제는 특별히 한정되지 않으나, 트리아진계화합물; 비이미다졸 화합물; 아세토페논계 화합물; 0-아실옥심계 화합물; 벤조페논계 화합물; 티옥산톤계 화합물; 포스핀옥사이드계 화합물; 및 쿠마린계 화합물로 이루어지는 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 감광제의 비제한적인 예로는, 2,4-트리클로로메틸-(4'-메톡시페닐)-6-트리아진, 2,4-트리클로로메틸-(4'-메톡시스티릴)-6-트리아진, 2,4-트리클로로메틸-(피플로닐)-6-트리아진, 2,4-트리클로로메틸-(3',4'-디메톡시페닐)-6-트리아진, 3-{4-[2,4-비스(트리클로로메틸)-s-트리아진-6-일]페닐티오} 프로판산, 2,4-트리클로로메틸-(4'-에틸비페닐)-6-트리아진, 2,4-트리클로로메틸-(4'-메틸비페닐)-6-트리아진 등의 트리아진계 화합물; 2,2'-비스(2-클로로페닐)-4,4',5,5'-테트라페닐 비이미다졸, 2,2'-비스(2,3-디클로로페닐)-4,4',5,5'-테트라페닐비이미다졸 등의 비이미다졸 화합물; 2-히드록시-2-메틸-1-페닐프로판-1-온, 1-(4-이소프로필페닐)-2-하이드록시-2-메틸프로판-1-온, 4-(2-히드록시에톡시)-페닐 (2-히드록시)프로필 케톤, 1-히드록시시클로헥실 페닐 케톤, 2,2-디메톡시-2-페닐 아세토페논, 2-메틸-(4-메틸티오페닐)-2-몰폴리노-1-프로판-1-온(Irgacure-907), 2-벤질-2-디메틸아미노-1-(4-몰폴리노페닐)-부탄-1-온(Irgacure-369) 등의 아세토페논계 화합물; Ciba Geigy 社의 Irgacure OXE 01, Irgacure OXE 02와 같은 O-아실옥심계 화합물; 4,4'-비스(디메틸아미노)벤조페논, 4,4'-비스(디에틸아미노)벤조페논 등의 벤조페논계 화합물; 2,4-디에틸 티옥산톤, 2-클로로 티옥산톤, 이소프로필 티옥산톤, 디이소프로필 티옥산톤 등의 티옥산톤계 화합물; 2,4,6-트리메틸벤조일 디페닐포스핀 옥사이드, 비스(2,6-디메톡시벤조일)-2,4,4-트리메틸펜틸 포스핀 옥사이드, 비스(2,6-디클로로벤조일) 프로필 포스핀 옥사이드 등의 포스핀 옥사이드계 화합물; 3,3'-카르보닐비닐-7-(디에틸아미노)쿠마린, 3-(2-벤조티아졸일)-7-(디에틸아미노)쿠마린, 3-벤조일-7-(디에틸아미노)쿠마린, 3-벤조일-7-메톡시-쿠마린, 10,10'-카르보닐비스[1,1,7,7-테트라메틸-2,3,6,7-테트라하이드로-1H,5H,11H-Cl]-벤조피라노[6,7,8-ij]-퀴놀리진-11-온 등의 쿠마린계 화합물; 4-나프토퀴논 디아지드 설폰산 또는 5-나프토퀴논 디아지드 설폰산 등의 퀴논계 화합물 등을 단독 사용하거나 둘 이상을 혼합하여 사용하는 것이 가능하다
상기 감광제는 상기 공중합체 100중량부 대비 1~10중량부가 포함될 수 있다. 상기 감광제가 1중량부 미만으로 포함되는 경우 광개시가 일어나지 않거나 감광성 조성물의 감도가 저하될 수 있으며, 10중량부를 초과하여 포함되는 경우 상기 감광성 조성물의 물성이 떨어질 수 있다.
상기 용매는 상기 감광성 조성물을 용해하여 유동성을 가지도록 첨가되는 것으로 상기 감광성조성물 용액을 제조할 수 있는 용매라면 제한없이 사용될 수 있다. 상기 용매의 예로서, 메탄올, 에탄올, 1-프로판올, 2-프로판올, 1-부탄올, 2-부탄올, 2-메틸-1-프로판올, 아세톤, 아세토니트릴, 테트라하이드로퓨란, 톨루엔, 헥산, 아세트산에틸, 시클로헥사논, 메틸아밀케톤, 부탄디올모노메틸에테르, 프로필렌글리콜모노메틸에테르, 에틸렌글리콜모노메틸에테르, 부탄디올모노에틸에테르, 프로필렌글리콜모노에틸에테르, 에틸렌글리콜모노에틸에테르, 프로필렌글리콜디메틸에테르, 디에틸렌글리콜디메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노에틸에테르아세테이트, 피루브산에틸, 아세트산부틸, 3-메톡시프로피온산메틸, 3-에톡시프로피온산에틸, 아세트산t-부틸, 프로피온산t-부틸, 프로필렌글리콜모노t-부틸에테르아세테이트 및 γ-부티로락톤으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 용매는 상기 공중합체 100중량부 대비 30~50중량부가 사용될 수 있다. 상기 용매가 30중량부 미만으로 혼합되는 경우 상기 감광성 조성물의 점도가 높아져 원활한 패턴의 형성이 어려울 수 있으며 50중량부를 초과하는 경우 상기 감광성 조성물에 흐름성이 생겨 원하지 않는 부분까지 패턴이 생성될 수 있다.
이외에도 상기 공중합체가 기판이 부착되는 것을 보조하는 접착조제 및 상기 공중합체가 균일한 패턴을 형성할 수 있도록 하는 계명활성제를 혼합하여 사용할 수 있다. 이때 상기 공중합체 100중량부 대비 상기 접착조제 0.1~1중량부 및 상기 계면활성제 0.1~1중량부를 사용할 수 있다. 상기 범위내에서는 상기 공중합체가 원활하게 패턴을 형성할 수 있지만, 상기 범위를 벗어나는 경우 패턴의 형성이 불완전하거나 패턴과 기판의 계면이 분리될 수 있다.
이하 본 발명을 상기 감광성 조성물 제조방법을 통하여 상세히 설명한다.
본 발명은 또한 중합용매에 하기의 화학식 7의 구조를 가지는 단량체를 투입하고 혼합하여 단량체 혼합물을 제조하는 단계;
[화학식 7]
Figure PCTKR2022002381-appb-I000013
(상기 화학식 7에서, R1, R2는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고, X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL))
상기 단량체 혼합물에 공중합 단량체를 혼합한 다음, 산촉매를 적가하여 공중합체를 제조하는 단계; 및 상기 공중합체 100중량부 대비 감광제 1~10중량부, 용매 30~50중량부, 접착조제 0.1~1중량부 및 계면활성제 0.1~1중량부를 혼합하여 감광성 조성물을 제조하는 단계를 포함하며, 상기 공중합 단량체는 카르보닐기, 설포닐기 또는 포스포릴기를 포함하는 화합물이며, 상기 산촉매는 옥살산, 불산, 염산, 브롬화수소산, 황산, 질산, 과염소산, 인산, 메탄설폰산, 벤젠설폰산 및 톨루엔설폰산에서 선택되는 1종 이상인 상기 감광성 조성물 제조방법에 관한 것이다.
상기 단량체는 상기 화학식 7의 구조를 가지는 단량체로 위에서 살펴본 바와 같이 상기 X가 실리콘(Si)인 경우 실란계 모노머일 수 있으며 상기 X가 금속원자인 경우 유기금속계 모노머일 수 있다. 상기 화학식 7의 구조를 가지는 화합물에 비실란계 모노머인 Y화합물을 혼합하여 공중합시키는 것으로 본 발명의 화학식 1의 구조를 가지는 공중합체의 형성이 가능하다.
상기 실란계 모노머의 예로서, 트리메틸메톡시실란, 트리에틸메톡시실란, 트리메틸에톡시실란, 트리에틸에톡시실란, 트리메틸프로폭시실란, 트리에틸프로폭시실란, 트리메틸부톡시실란, 트리에틸부톡시실란, 디메틸디메톡시실란, 디에틸디메톡시실란, 디메틸디에톡시실란, 디에틸디에톡시실란, 메틸트리메톡시실란, 에틸트리메톡시실란, 프로필트리메톡시실란, 메틸트리에톡시실란, 에틸트리에톡시실란, 프로필트리에톡시실란, 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라부톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 페닐트리에톡시실란, 디페닐디에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 3-아크릴옥시프로필트리메톡시실란, 3-아크릴옥시프로필트리에톡시실란, 3-트리메톡시실릴프로필 메타아크릴레이트, 3-트리에톡시실릴프로필 메타아크릴레이트 및 비닐트리프로폭시실란으로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있다.
또한 상기 유기 금속계 모노머의 일 예로서 티타늄메톡사이드, 티타늄에톡사이드, 티타늄이소프로폭록사이드, 티타늄부톡사이드, 티타늄-tert-부톡사이드, 게르마늄메톡사이드, 게르마늄에톡사이드, 게르마늄이소프로폭사이드, 게르마늄부톡사이드, 게르마늄-tert-부톡사이드, 지르코늄메톡사이드, 지르코늄에톡사이드, 지르코늄이소프로폭록사이드, 지르코늄부톡사이드, 지르코늄-tert-부톡사이드, 주석메톡사이드, 주석에톡사이드, 주석이소프로폭록사이드, 주석부톡사이드, 주석-tert-부톡사이드, 납메톡사이드, 납에톡사이드, 납이소프로폭록사이드, 납부톡사이드, 납-tert-부톡사이드와 같은 금속알콕사이드계 화합물을 사용할 수 있다.
또한 상기 실란계 모노머와 상기 유기금속계 모노머의 경우 단일성분을 사용하는 것도 가능하지만, 바람직하게는 2종 이상의 단량체(모노머)를 혼합하여 사용할 수 있다. 단일성분의 단량체를 사용하는 경우 특정 물성(투명도, 흐름성, 잡척성 등)이 뛰어날 수는 있지만, 범용적으로 사용되는 패턴형성용 물질로서 사용되기는 어려울 수 있다. 따라서 상기 단량체를 2종 이상, 바람직하게는 3종 이상을 혼합하여 사용하는 것으로 높은 물성을 보이면서도 범용적으로 사용할 수 있도록 조합하는 것이 바람직하다. 특히 위에서 살펴본 바와 같이 상기 실란계 모노머와 상기 유기금속계 모노머를 적절한 비율로 조합하여 사용하는 경우 높은 투명도를 가지면서도 내열성 및 내화학성이 높은 패턴을 형성할 수 있다.
상기와 같이 단량체가 준비된 이후 중합용매에 혼합할 수 있다. 상기 중합용매는 상기 단량체의 중합을 실시할 수 있는 용매라면 제한없이 사용할 수 있지만, 바람직하게는 상기 감광성 조성물의 제조에 사용되는 용매와 동일한 것을 사용하는 것이 바람직하다. 이를 통하여 상기 감광성 조성물의 제조시 중합용 용매의 분리에 필요한 비용을 최소화할 수 있으며, 잔류 중합용매에 의한 물성저하 역시 최소화할 수 있다.
상기와 같이 중합용 용매와 상기 단량체의 혼합이 완료된 이후 상기 공중합 량체를 혼합할 수 있다. 상기 공중합 단량체는 위에서 살펴본 바와 같이 비실란계 모노머를 구성하는 부분으로, 아세트산, 황산 또는 인산이 사용될 수 있으며, 이외에서 아세트산염, 황산염 또는 인산염을 사용하는 것도 가능하다.
위에서 살펴본 바와 같이 상기 중합단량체의 혼합비에 따라 상기 공중합체의 패턴형상을 조절할 수 있으므로 상기 중합단량체는 상기 단량체(실란계 모노머 또는 유기금속계 모노머) 1몰 대비 0.01~1몰이 혼합될 수 있다. 상기 중합단량체가 0.01몰 미만의 비율로 혼합되는 경우 상기 중합단량체의 공중합에 의한 패턴 형상변경효과가 나타나지 않을 수 있으며, 1몰을 초과하여 혼합되는 경우 상기 생성되는 패턴의 테이퍼각이 낮아져 정상작인 패턴의 형성이 어려울 수 있다.
상기와 같이 단량체와 중합단량체의 혼합이 완료된 이후 산촉매를 적가하여 공중합반응을 수행할 수 있다. 이때 상기 산촉매는 상기 공중합반응의 촉매로 사용됨과 동시에 상기 반응시 pH를 유지하는 역할을 수행할 수 있다. 또한 상기 산촉매는 급격한 반응으로 인한 부반응을 억제하기 위하여 70℃이하, 바람직하게는 50℃이하의 온도에서 30~120분에 걸쳐 적가될 수 있다. 상기 범위내에서는 적절한 공중합반응이 수행될 수 있지만, 상기 범위를 벗어나는 경우 부반응이 수행되어 물성이 떨어질 수 있다.
또한 상기 산촉매의 경우 상기 중합단량체와 동일한 화합물이 사용될 수도 있다. 즉 상기 중합단량체로서 인산을 사용하는 경우 상기 인산은 중합단량체임과 동시에 산촉매로 작용할 수 있으며, 이때 상기 중합단량체를 혼합하는 과정을 생략하고 상기 적가를 수행하는 것으로 중합단량체의 공급과 산촉매의 적가를 동시에 수행하는 것도 가능하다. 이는 상기 황산에도 동일하게 적용될 수 있다. 하지만 상기 초산을 중합단량체로 사용하거나 초산염, 황산염, 인산염을 중합단량체로서 사용하는 경우 상기와 같은 적가에 의하여 반응시 필요한 pH를 유지할 수 없으므로, 중합단량체를 혼합한 다음, 추가적인 산촉매를 적가하는 것으로 상기 공중합반응을 수행할 수 있다.
상기와 같이 공중합이 완료된 이후 상기 공중합체 100중량부 대비 감광제 1~10중량부, 용매 30~50중량부, 접착조제 0.1~1중량부 및 계면활성제 0.1~1중량부를 혼합하여 감광성 조성물을 제조할 수 있다.
또한 본 발명의 감광성 조성물은 양성 또는 음성 감광에 사용될 수 있다. 즉 상기 감광성 조성물은 Positive mode와 Negative mode에 사용될 수 있다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.
실시예 1
실란계 화합물 및 유기금속화합물에 의한 효과를 확인하기 위한 실험을 실시하였다.
질소 분위기 하에서 프로필렌글리콜모노메틸에테르아세테이트(PGMEA) 200 mL가 들어있는 1 L Jacked 반응기에 실란계 화합물 및 유기금속화합물을 하기 표 1에 나타난 바와 같이 투입하고 혼합하였다.
실시예 PTMS MTMS TEOS ETMS TPOS TEOTi TEOGe TEOZr TPOTi TBOTi
1-1 381.3 - - - - - - - - -
1-2 - 457.2 - - - - - - - -
1-3 - - 375.6 - - - - - - -
1-4 127.1 152.4 125.2 - - - - - - -
1-5 127.1 - 125.2 164.8 - - - - - -
1-6 127.1 152.4 - - 142.8 - - - - -
1-7 95.3 114.3 93.9 - - 105.9 - - - -
1-8 95.3 114.3 93.9 - - - 116.3 - - -
1-9 95.3 114.3 93.9 - - - - 124.8 - -
1-10 95.3 114.3 93.9 - - 52.9 58.1 - - -
1-11 95.3 114.3 93.9 - - 52.9 - 62.4 - -
1-12 95.3 114.3 93.9 - - - - - 121.4 -
1-13 95.3 114.3 93.9 - - - - - - 138.5
상기 표 1에서 각 성분은 중량(g)을 기준으로 투입하였으며, PTMS는 페닐트리메톡시실란, MTMS는 메틸트리메톡시실란, TEOS는 테트라에톡시실란, ETMS는 에틸트리메톡시실란, TPOS는 테트라프로폭시실란, TEOTi는 테트라에톡시티타늄, TEOGe는 테트라에톡시게르마늄, TEOZr은 테트라에톡시게르마늄, TPOTi는 테트라프로폭시티타늄, TBOTi는 테트라부톡시티타늄을 각각 의미한다.
혼합용액을 10 분 동안 교반한 후, 탈이온수에 0.5 %로 녹아 있는 85 % 인산 수용액 160 g(공중합 단량체 및 산촉매)을 50 ℃ 이하의 반응 온도에서 약 1 시간에 걸쳐 서서히 적가하여 반응시켰다. 이후, 반응액을 10 분 동안 교반하고, 80 ℃로 승온시킨 후 8 시간 동안 교반하여 실록산계 공중합체를 중합하였다.
실험예 1
상기 실시예 1의 비율로 합성된 공중합체의 중량평분 분자량 및 ADR(2.38 % 테트라메틸암모늄하이드록사이드(TMAH) 현상액)을 각각 측정하였다.
실시예 중량평균 분자량 ADR(Å)
1-1 3,678 1,248
1-2 3,957 1,259
1-3 3,554 1,295
1-4 3,827 1,309
1-5 3,647 1,228
1-6 3,558 1,195
1-7 3,651 1,198
1-8 3,786 1,120
1-9 3,916 1,045
1-10 3,702 1,146
1-11 3,804 1,101
1-12 3,758 1,195
1-13 3,696 1,155
상기 표 2에 나타난 바와 같이 본 발명의 실시예 1-1~1-13의 경우 공중합체로 형성되는 것을 확인할 수 있었으며, 또한 물성역시 실록산으로 형성되는 1-1과 유사하여 감광성 조성물에 사용될 수 있는 것으로 나타났다.
또한 상기 실시예 1-4의 구조 및 성분을 확인하기 위한 실험을 실시하였다. 상기 실시예 4에서 제조된 화합물을 이용하여 1H-NMR과 FT-IR분석을 실시하였다.
도 5에 나타난 바와 같이 1H-NMR 분석결과 본 발명에 사용된 PTMS 및 MTMS의 페닐기와 메틸기가 관찰되고 있었다. 다만 TEOS는 가수분해시 수소(H)가 포함되지 않으므로 NMR분석결과에 나타나지 않고 있으며, 본 발명의 경우 용매와 혼합되어 제조되므로 용매로 사용된 PGMEA의 피크가 크게 나타나고 있음을 확인할 수 있었다.
FT-IR분석결과의 경우 도 6에 나타난 바와 같이 중심원자인 Si에 결합되어 있는 각 작용기의 피크를 확인할 수 있었으며, 따라서 본 발명의 경우 화학식 1의 구조를 가지고 있다는 것을 확인할 수 있었다(1000~2000cm-1사이의 다른 peak는 PGMEA에 의한 peak임).
실시예 2
실시예 1 에서 제조한 폴리실록산 공중합체(바인더 수지) 5.5 g, SR399(sartomer)(가교성 화합물) 1.65 g, TPM-P07(타코마테크놀러지 주식회사)(광중합개시제) 0.5 g, 프로필렌글리콜모노메틸에테르아세테이트(PGMEA)(유기 용매) 7.5 g, KBM403(shin etsu)(접착조제) 0.03 g, FZ-2122(DOW)(계면활성제) 0.08 g을 반응기에 투입하고 상온에서 3 시간 동안 교반시킨 후, 5.0 um 필터로 여과하는 과정을 거쳐 감광성 수지 조성물(고형분 함량 25%)을 제조하였다.
실험예 2
상기 실시예 2에서 제조된 감광성 수지 조성물에 대하여 감도(mJ/㎠), 현상후 잔막률(%), Postbreak(PB) 후 잔막률(%), 내열성(℃), 투과도(%)를 각각 시험하였다. 그 각각의 실험방법은 다음과 같다.
(1) 감도
유리 기판 상에 감광성 수지 조성물을 스핀코팅으로 도포한 후, 110 ℃에서 90 초 동안 열처리(핫플레이트)하여 두께 2 μm의 박막을 형성하였다. 형성된 박막의 두께를 촉침식 막두께 측정기(Veeco 社, DEKTAK150)로 측정하였다. 다음 상기 박막에 마스크를 통하여 고압 수은등으로 노광한 후 TMAH 2.38% 현상액으로 스프레이 현상하여 패턴을 얻었다.
(2) 현상 후 잔막율
유리 기판 상에 감광성 수지 조성물을 스핀코팅으로 도포한 후, 110 ℃에서 90 초 동안 열처리(핫플레이트)하여 두께 2 μm의 박막을 형성하였다. 이후 포토리소그라피 공정을 진행한 후 접촉식 두께측정기(DEKTAK 6M, 제조사 VECCO, 미국)를 사용하여 현상 전후의 두께 변화를 측정하여 현상 후 잔막율을 측정하였다.
(3) Postbake(PB) 후 잔막율
유리 기판 상에 감광성 수지 조성물을 스핀코팅으로 도포한 후, 110 ℃에서 90 초 동안 열처리(핫플레이트)하여 두께 2 μm의 박막을 형성하였다. 이후 포토리소그라피 공정을 진행한 후 접촉식 두께측정기(DEKTAK 6M, 제조사 VECCO, 미국)를 사용하여 현상 후의 두께와 250 ℃/60 min의 포스트베이크(Postbake)를 거친 후의 두께 변화를 측정하여 잔막율을 측정하였다.
(4) 내열성
유리 기판 상에 감광성 수지 조성물을 스핀코팅으로 도포한 후, 9110 ℃에서 90 초 동안 열처리(핫플레이트)하여 두께 2 μm의 박막을 형성하였다. 이후, 250 ℃/60min의 포스트베이크를 거쳐 경화막을 얻었으며, 얻어진 경화막을 TGA 분석 장비를 통해 5% 분해온도를 측정하였다.
(5) 투과도
유리 기판 상에 감광성 수지 조성물을 스핀코팅으로 도포한 후, 110 ℃에서 90 초 동안 열처리(핫플레이트)하여 두께 2 μm의 박막을 형성하였다. 이후, 250 ℃/60min의 포스트베이크를 거쳐 경화막을 얻었으며, 얻어진 경화막을 UV-spectrometer를 사용하여 400 내지 800 nm까지의 파장을 갖는 광에 대한 평균 투과율을 측정하였다.
각각의 실험결과를 하기의 표 3이 기재하였다.
실시예 감도 현상후 잔막률 PB후 잔막률 내열성 투과도
2-1 80 85 90 355 97
2-2 80 84 91 350 97
2-3 80 86 94 350 97
2-4 80 85 88 372 97
2-5 85 87 87 369 97
2-6 85 88 88 360 97
2-7 85 87 86 381 91
2-8 85 87 88 384 93
2-9 90 90 89 379 92
2-10 85 88 90 383 92
2-11 85 87 89 384 94
2-12 85 88 90 384 92
2-13 85 88 88 385 92
표 3에 나타난 바와 같이 본 발명의 실시예 2-1~2-6의 경우 높은 물성을 가지고 있어 감광성 조성물로 사용할 수 있음을 확인하였다. 또한 유기금속화합물을 사용한 실시예 2-7~2-13의 경우에도 투과도가 약간 감소하였지만 내열성이 향상되는 것을 확인할 수 있었다.
실시예 3
실시예 1 에서 제조한 폴리실록산 공중합체(바인더 수지) 20 g, 디아조나프토퀴논화합물(감광제) 1 g, 프로필렌글리콜모노메틸에테르아세테이트(PGMEA)(유기 용매) 8 g, KBM403(shin etus)(접착조제) 0.1 g, FZ-2122(DOW)(계면활성제) 0.14 g을 반응기에 투입하고 상온에서 3 시간 동안 교반시킨 후, 5.0 um 필터로 여과하는 과정을 거쳐 감광성 수지 조성물(고형분 함량 25%)을 제조하였다.
실험예 3
상기 실시예 3에서 제조된 감광성 수지 조성물에 대하여 감도(mJ/㎠), 현상후 잔막률(%), Postbreak(PB) 후 잔막률(%), 내열성(℃), 투과도(%)를 각각 시험하였다. 그 각각의 실험방법은 상기 실험예 2와 동일하게 실시하였으며, 결과를 하기의 표 4에 나타내었다.
실시예 감도 현상후 잔막률 PB후 잔막률 내열성 투과도
3-1 30 85 81 415 98
3-2 30 84 79 376 99
3-3 30 89 74 355 97
3-4 20 94 86 428 98
3-5 20 94 86 415 98
3-6 20 93 87 421 97
3-7 30 94 89 498 91
3-8 20 95 85 494 93
3-9 20 94 84 485 92
3-10 30 93 89 488 92
3-11 30 92 86 489 94
3-12 20 92 88 495 92
3-13 20 93 87 493 92
표 4에 나타난 바와 같이 본 발명의 실시예 3-1~3-6의 경우 높은 물성을 가지고 있어 감광성 조성물로 사용할 수 있음을 확인하였다. 또한 유기금속화합물을 사용한 실시예 3-7~3-13의 경우에도 투과도가 약간 감소하였지만 내열성이 향상되는 것을 확인할 수 있었다.
실시예 4
상기 실시예 1의 제조시 공중합 단량체와 산촉매의 변화에 따른 효과를 확인하기 위하여 실시예 1-4의 단량체를 이용하여 동일한 방법으로 공중합체를 제조하되, 공중합 단량체와 산촉매의 종류와 함량을 변경하여 제조하였다. 이때 사용된 공중합 단량체 및 산촉매의 비율을 하기의 표 5와 같다.
실시예 인산(g) 황산(g) 초산(g) 염산(g)
4-1 공중합 단량체 60 - - -
산촉매 100 - - -
4-2 공중합 단량체 - 60 - -
산촉매 - 100 - -
4-3 공중합 단량체 - - 60 -
산촉매 - - 100 -
4-4 공중합 단량체 - - 60 -
산촉매 - - - 100
4-5 공중합 단량체 60 - - -
산촉매 - - - 100
4-6 공중합 단량체 60 - - -
산촉매 50 - - -
4-7 공중합 단량체 10 - - -
산촉매 100 - - -
4-8 공중합 단량체 100 - - -
산촉매 100 - - -
실시예 5
상기 실시예 4에서 제조한 폴리실록산 공중합체(바인더 수지) 5.5 g, SR399(sartomer)(가교성 화합물) 1.65 g, TPM-P07(타코마테크놀러지 주식회사)(광중합개시제) 0.5 g, 프로필렌글리콜모노메틸에테르아세테이트(PGMEA)(유기 용매) 7.5 g, KBM403(shin etsu)(접착조제) 0.03 g, FZ-2122(DOW)(계면활성제) 0.08 g을 반응기에 투입하고 상온에서 3 시간 동안 교반시킨 후, 5.0 um 필터로 여과하는 과정을 거쳐 감광성 수지 조성물(고형분 함량 25%)을 제조하였다.
실험예 4
상기 실시예 5의 공중합체를 이용하여 감도(mJ/㎠), 현상후 잔막률(%), Postbreak(PB) 후 잔막률(%), 내열성(℃), 투과도(%)를 각각 시험하였으며, 다음과 같은 방법으로 기판에 패턴을 형성한 다음 이를 관찰하여 테이퍼각(°)을 측정하였다.
(6)Taper각 측정
유리 기판 상에 감광성 수지 조성물을 스핀코팅으로 도포한 후, 90-110 ℃에서 90 초 동안 열처리(핫플레이트)하여 두께 2 μm의 박막을 형성하였다. 다음 상기 박막에 마스크를 통하여 고압 수은등으로 노광한 후 TMAH 2.38% 현상액으로 스프레이 현상하여 패턴을 얻었다.이후, 250 ℃/60min의 포스트베이크를 통해 얻어진 패턴의 taper각을 FE-SEM을 통해 측정하였다.
하기의 표 6에 각각의 실험결과를 나타내었다.
실시예 감도 현상후 잔막률 PB후 잔막률 내열성 투과도 테이퍼각
5-1 80 84 89 371 97 66
5-2 80 84 90 380 97 67
5-3 - - - - - -
5-4 75 80 87 390 97 66
5-5 80 84 89 388 97 67
5-6 80 85 90 382 97 65
5-7 80 85 91 368 97 66
5-8 50 70 90 365 97 67
표 6 및 도 1에 나타난 바와 같이 본 발명의 실시예 5-1, 5-2의 경우 적절한 물성 및 테이퍼 각을 가지는 것으로 나타났다. 하지만 실시예 5-3의 경우 약산인 아세트산을 산촉매로 사용함에 따라 산촉매로 pH를 유지하기 어려워 중합에 실패하였으며, 산촉매를 염산으로 변경한 실시예 5-4의 경우 정상적으로 합성이 되는 것을 확인하였다. 또한 공중합 단량체로 인산을 사용하고 산촉매로서 염산을 사용한 실시예 5-5의 경우에도 공중합이 수행되는 것을 확인하였다(도 2).
또한 산촉매의 사용을 억제한 실시예 2-6의 경우 반응시 공중합 단량체로 첨가되는 인산이 줄어들어 테이퍼각이 급격해지는 것을 확인할 수 있었으며, 물성역시 감소되는 것을 확인하였다(도 3).
공중합 단량체를 적게 사용한 실시예 2-7의 경우 상기 표 5에 나타난 바와 같이 테이퍼각이 커지는 것을 확인(도 4)하였으며, 공중합 단량체를 과량으로 사용한 실시예 2-8의 경우 테이퍼각이 줄어드는 것을 확인할 수 있었다. 따라서 상기 공중합 단량체의 혼합비를 조절하는 것으로 패턴의 테이퍼각을 조절할 수 있다.
실시예 6
상기 실시예 4에서 제조한 폴리실록산 공중합체(바인더 수지) 20 g, 디아조나프토퀴논화합물(감광제) 1 g, 프로필렌글리콜모노메틸에테르아세테이트(PGMEA)(유기 용매) 8 g, KBM403(shin etus)(접착조제) 0.1 g, FZ-2122(DOW)(계면활성제) 0.14 g을 반응기에 투입하고 상온에서 3 시간 동안 교반시킨 후, 5.0 um 필터로 여과하는 과정을 거쳐 감광성 수지 조성물(고형분 함량 25%)을 제조하였다.
실험예 5
상기 실시예 6의 공중합체를 이용하여 감도(mJ/㎠), 현상후 잔막률(%), Postbreak(PB) 후 잔막률(%), 내열성(℃), 투과도(%), 테이퍼각(°)을 각각 실험예 4와 동일하게 시험하였다. 하기의 표 7에 각각의 실험결과를 나타내었다.
실시예 감도 현상후 잔막률 PB후 잔막률 내열성 투과도 테이퍼각
6-1 20 93 84 412 99 39.4
6-2 30 92 86 417 98 38.4
6-3 - - - - - -
6-4 20 94 87 418 97 42.8
6-5 20 93 85 419 98 56.3
6-6 30 84 71 324 91 68.4
6-7 30 95 88 415 98 80.5
6-8 20 94 84 417 97 18
상기 실시예 5와 거의 동일한 결과가 도출되었으며, 테이퍼각 역시 조절가능하다는 것을 확인할 수 있었다.
비교예 1
바인더 수지로 실시예 1의 폴리실록산 공중합체 대신에, 벤질메타크릴레이트 30 중량%, 메틸메타크릴레이트 10 중량%, 메타크릴산 10 중량%를 프로필렌글리콜모노메틸에테르아세테이트(PGMEA) 존재 하에 30%의 고형분으로 중합한 아크릴 수지(중량평균분자량 13,000)를 사용하는 것을 제외하고는 실시예들과 동일한 과정을 거쳐 감광성 수지 조성물을 제조하였다.
비교예 2
비교예 1에서 사용된 아크릴 수지 5.5 g, 디아조나프토퀴논화합물(감광제) 1 g, 프로필렌글리콜모노메틸에테르아세테이트(PGMEA) 8 g, KBM403(접착조제) 0.1 g, FZ-2122(계면활성제) 0.14 g을 반응기에 투입하고 상온에서 3 시간 동안 교반시킨 후, 5.0 um 필터로 여과하는 과정을 거쳐 감광성 수지 조성물(고형분 함량 25%)을 제조하였다.
비교실험예 1
상기 비교예 1 및 2에서 제조된 감광성 수지 조성물을 이용하여 감도(mJ/㎠), 현상후 잔막률(%), Postbreak(PB) 후 잔막률(%), 내열성(℃), 투과도(%), 테이퍼각(°)을 측정하고 그 결과를 하기의 표 8에 나타내었다.
비교예 감도 현상후 잔막률 PB후 잔막률 내열성 투과도 테이퍼각
1 120 80 85 230 97 25
2 100 80 85 230 97 16
표 8에 나타난 바와 같이 기존의 방법과 동일한 수지를 사용한 비교예의 경우 감도가 떨어지는 것을 확인할 수 있었으며, 그 테이퍼각 역시 작게 나타나는 것을 확인할 수 있었다. 아울러 내열성에 있어서도 본 발명의 실시예에 비하여 낮은 온도를 가지는 것으로 나타나 본 발명의 실시예가 높은 내열성을 보이는 것을 확인할 수 있었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (8)

  1. 화학식 1의 구조를 가지는 공중합체를 포함하는 감광성 조성물.
    [화학식 1]
    Figure PCTKR2022002381-appb-I000014
    (상기 화학식 1에서,
    R1, R2는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고,
    X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고,
    Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고,
    m은 1~100의 정수,
    n은 1~100의 정수)
  2. 제1항에 있어서,
    상기 공중합체는 하기의 화학식 2의 구조 및 화학식 3의 구조를 포함하는 것을 특징으로 하는 감광성 조성물.
    [화학식 2]
    Figure PCTKR2022002381-appb-I000015
    (상기 화학식 2에서,
    R1, R2는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고,
    Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고,
    m은 1~100의 정수,
    n은 1~100의 정수)
    [화학식 3]
    Figure PCTKR2022002381-appb-I000016
    (상기 화학식 3에서,
    R3, R4는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고,
    Z는 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고,
    Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고,
    m은 1~100의 정수,
    n은 1~100의 정수)
  3. 제1항에 있어서,
    상기 공중합체는 하기의 화학식 4 또는 화학식 5의 구조를 포함하는 것을 특징으로 하는 감광성 조성물.
    [화학식 4]
    Figure PCTKR2022002381-appb-I000017
    (상기 화학식 4에서,
    R1은 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소 또는 하이드록시기(-OH)이고,
    X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고,
    Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고,
    m은 1~100의 정수,
    n은 1~100의 정수)
    [화학식 5]
    Figure PCTKR2022002381-appb-I000018
    (상기 화학식 5에서,
    X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL)이고,
    Y는 카르보닐기(-COO-), 설포닐기(-SO2-), 포스포릴기(-PO3-) 또는 이웃하는 실란올과 결합된 에테르기이고,
    m은 1~100의 정수,
    n은 1~100의 정수)
  4. 제1항에 있어서,
    상기 공중합체는 화학식 6의 구조를 포함하는 것을 특징으로 하는 감광성 조성물.
    [화학식 6]
    Figure PCTKR2022002381-appb-I000019
    (상기 화학식 6에서
    R1은 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고,
    m은 1~100의 정수,
    n은 1~100의 정수)
  5. 제2항에 있어서,
    상기 화학식 2와 상기 화학식 3의 중량비는 1:9~9.9:0.1인 감광성 조성물.
  6. 제1항에 있어서,
    상기 감광성 조성물은 상기 공중합체 100중량부 대비 감광제 1~10중량부, 용매 30~50중량부, 접착조제 0.1~1중량부 및 계면활성제 0.1~1중량부를 추가로 포함하는 감광성 조성물.
  7. 중합용매에 하기의 화학식 7의 구조를 가지는 단량체를 투입하고 혼합하여 단량체 혼합물을 제조하는 단계;
    [화학식 7]
    Figure PCTKR2022002381-appb-I000020
    (상기 화학식 7에서,
    R1, R2는 각각 C1~C20의 지방족 탄화수소, C3~C20의 방향족 탄화수소, N, O, S, F를 포함하는 C4~C20의 방향족 탄화수소, 에테르기를 포함하는 C1~C8의 지방족 탄화수소, 에테르기를 포함하는 C1~C8의 방향족 탄화수소, 하이드록시기(-OH) 또는 에테르기(-O-)이고,
    X는 규소(Si), 티타늄(Ti), 게르마늄(Ge), 지르코늄(Zr), 주석(Sn), 납(Pb), 비스무트(Bi), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 인듐(In) 또는 알루미늄(AL))
    상기 단량체 혼합물에 공중합 단량체를 혼합한 다음, 산촉매를 적가하여 공중합체를 제조하는 단계; 및
    상기 공중합체 100중량부 대비 감광제 1~10중량부, 용매 30~50중량부, 접착조제 0.1~1중량부 및 계면활성제 0.1~1중량부를 혼합하여 감광성 조성물을 제조하는 단계;
    를 포함하며,
    상기 공중합 단량체는 카르보닐기, 설포닐기 또는 포스포릴기를 포함하는 화합물이며,
    상기 산촉매는 옥살산, 불산, 염산, 브롬화수소산, 황산, 질산, 과염소산, 인산, 메탄설폰산, 벤젠설폰산 및 톨루엔설폰산에서 선택되는 1종 이상인 제1항 내지 제6항 중 어느 한 항의 감광성 조성물 제조방법.
  8. 제7항에 있어서,
    상기 화학식 7의 구조를 가지는 단량체는 2종 이상의 단량체가 혼합되어 있는 것인 감광성 조성물 제조방법.
PCT/KR2022/002381 2021-02-18 2022-02-17 유기금속 화합물 및 폴리실록산 공중합체를 포함하는 감광성 조성물 및 그 제조방법 WO2022177332A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/274,934 US20240101765A1 (en) 2021-02-18 2022-02-17 Photosensitive composition comprising organic metal compound and polysiloxane copolymer, and preparation method therefor
JP2023549069A JP2024507800A (ja) 2021-02-18 2022-02-17 有機金属化合物とポリシロキサン共重合体とを含む感光性組成物及びその製造方法
EP22756530.6A EP4257632A1 (en) 2021-02-18 2022-02-17 Photosensitive composition comprising organic metal compound and polysiloxane copolymer, and preparation method therefor
CN202280015203.0A CN116917378A (zh) 2021-02-18 2022-02-17 包含有机金属化合物及聚硅氧烷共聚物的感光性组成物及制备该感光性组成物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210021710 2021-02-18
KR10-2021-0021710 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022177332A1 true WO2022177332A1 (ko) 2022-08-25

Family

ID=82930966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002381 WO2022177332A1 (ko) 2021-02-18 2022-02-17 유기금속 화합물 및 폴리실록산 공중합체를 포함하는 감광성 조성물 및 그 제조방법

Country Status (7)

Country Link
US (1) US20240101765A1 (ko)
EP (1) EP4257632A1 (ko)
JP (1) JP2024507800A (ko)
KR (1) KR20220118346A (ko)
CN (1) CN116917378A (ko)
TW (1) TWI826935B (ko)
WO (1) WO2022177332A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102710054B1 (ko) * 2022-09-16 2024-09-24 삼성에스디아이 주식회사 반도체 포토레지스트용 조성물 및 이를 이용한 패턴 형성 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0143859B1 (ko) 1994-07-26 1998-07-01 박홍기 액정 디스플레이 칼라필터용 감광성 수지 조성물
WO2004031200A1 (fr) * 2002-10-01 2004-04-15 Rhodia Chimie Phosphates de silanoxyle, leur preparation et leur utilisation dans la synthese de polyorganosiloxanes lineaires
KR100655945B1 (ko) 1997-05-22 2007-12-24 히따찌 케미칼 컴퍼니, 리미티드 전계방출디스플레이패널용형광체패턴의제조방법,전계방출디스플레이패널용감광성소자,전계방출디스플레이패널용형광체패턴및전계방출디스플레이패널
KR20180014961A (ko) * 2016-08-02 2018-02-12 삼성에스디아이 주식회사 감광성 수지 조성물, 그로부터 형성된 경화막, 및 경화막을 갖는 소자
CN109705354A (zh) * 2019-01-22 2019-05-03 浙江新安化工集团股份有限公司 一种乙烯基三氟丙基硅胶的制备方法
WO2019129802A1 (en) * 2017-12-28 2019-07-04 Merck Patent Gmbh Photosensitive siloxane composition and pattern forming method using the same
KR20190122656A (ko) * 2017-03-15 2019-10-30 도레이 카부시키가이샤 감광성 실록산 수지 조성물, 경화막 및 터치패널용 부재

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0143859B1 (ko) 1994-07-26 1998-07-01 박홍기 액정 디스플레이 칼라필터용 감광성 수지 조성물
KR100655945B1 (ko) 1997-05-22 2007-12-24 히따찌 케미칼 컴퍼니, 리미티드 전계방출디스플레이패널용형광체패턴의제조방법,전계방출디스플레이패널용감광성소자,전계방출디스플레이패널용형광체패턴및전계방출디스플레이패널
WO2004031200A1 (fr) * 2002-10-01 2004-04-15 Rhodia Chimie Phosphates de silanoxyle, leur preparation et leur utilisation dans la synthese de polyorganosiloxanes lineaires
KR20180014961A (ko) * 2016-08-02 2018-02-12 삼성에스디아이 주식회사 감광성 수지 조성물, 그로부터 형성된 경화막, 및 경화막을 갖는 소자
KR20190122656A (ko) * 2017-03-15 2019-10-30 도레이 카부시키가이샤 감광성 실록산 수지 조성물, 경화막 및 터치패널용 부재
WO2019129802A1 (en) * 2017-12-28 2019-07-04 Merck Patent Gmbh Photosensitive siloxane composition and pattern forming method using the same
CN109705354A (zh) * 2019-01-22 2019-05-03 浙江新安化工集团股份有限公司 一种乙烯基三氟丙基硅胶的制备方法

Also Published As

Publication number Publication date
CN116917378A (zh) 2023-10-20
JP2024507800A (ja) 2024-02-21
TWI826935B (zh) 2023-12-21
KR20220118346A (ko) 2022-08-25
TW202300566A (zh) 2023-01-01
EP4257632A1 (en) 2023-10-11
US20240101765A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2013165207A1 (ko) 신규한 옥심에스테르 플로렌 화합물, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물
WO2010068027A2 (ko) 포지티브형 감광성 유-무기 하이브리드 절연막 조성물
WO2017069501A1 (ko) 수지 조성물 및 이를 이용하여 제조된 블랙뱅크를 포함하는 디스플레이 장치
WO2014157881A1 (ko) 레지스트 하층막 조성물 및 이를 이용한 패턴 형성 방법
WO2017039159A1 (ko) 저온 경화 조성물, 그로부터 형성된 경화막, 및 상기 경화막을 갖는 전자 장치
WO2018159975A1 (ko) 고분자 수지 화합물 및 이를 포함하는 블랙 뱅크용 감광성 수지 조성물
WO2016076652A1 (ko) 액정디스플레이 패널용 블랙매트릭스 포토레지스트 조성물
WO2020139042A2 (ko) 카바졸 멀티 베타 옥심에스테르 유도체 화합물 및 이를 포함하는 광중합 개시제와 포토레지스트 조성물
WO2011081323A2 (ko) 포토레지스트 하층막용 조성물 및 이를 이용하는 반도체 소자의 제조 방법
WO2022177332A1 (ko) 유기금속 화합물 및 폴리실록산 공중합체를 포함하는 감광성 조성물 및 그 제조방법
WO2013018988A1 (ko) 불소계 수지 및 이를 포함하는 감광성 수지 조성물
WO2012064074A1 (en) Photosensitive resin composition, and dielectric insulating film and electronic device using the same
WO2017209449A1 (ko) 광활성 화합물, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물
WO2013100276A1 (en) Photosensitive resin composition for color filter and color filter using the same
WO2015199449A1 (ko) 차광용 감광성 수지 조성물 및 이로부터 형성된 차광층
WO2012044070A2 (en) Photosensitive resin composition for organic insulator
WO2022124547A1 (ko) 전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 전기영동 장치
WO2014168393A1 (ko) 네가티브형 감광성 유-무기 하이브리드 절연막 조성물
WO2021177654A1 (ko) 신규한 옥심에스테르 카바졸 유도체 화합물
WO2018034460A1 (en) Photosensitive resin composition and cured film prepared therefrom
WO2017078267A1 (en) Photosensitive resin composition and cured film prepared therefrom
KR20070115305A (ko) 접착력이 우수한 감광성 수지 조성물
WO2017090879A1 (en) Photosensitive resin composition and cured film prepared therefrom
WO2019146814A1 (ko) 흑색 감광성 수지 조성물, 이로부터 제조된 화상표시장치용 블랙 매트릭스, 컬럼 스페이서 및 블랙 매트릭스 일체형 컬럼 스페이서
WO2023163516A1 (ko) 경화성 조성물, 이를 이용한 막 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022756530

Country of ref document: EP

Effective date: 20230705

WWE Wipo information: entry into national phase

Ref document number: 18274934

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280015203.0

Country of ref document: CN

Ref document number: 2023549069

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE