WO2014168393A1 - 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 - Google Patents

네가티브형 감광성 유-무기 하이브리드 절연막 조성물 Download PDF

Info

Publication number
WO2014168393A1
WO2014168393A1 PCT/KR2014/002991 KR2014002991W WO2014168393A1 WO 2014168393 A1 WO2014168393 A1 WO 2014168393A1 KR 2014002991 W KR2014002991 W KR 2014002991W WO 2014168393 A1 WO2014168393 A1 WO 2014168393A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
photosensitive organic
inorganic hybrid
weight
ether
Prior art date
Application number
PCT/KR2014/002991
Other languages
English (en)
French (fr)
Inventor
여태훈
윤혁민
이상훈
김진선
윤주표
김동명
황치용
김남이
변정현
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN201480020441.6A priority Critical patent/CN105190782B/zh
Publication of WO2014168393A1 publication Critical patent/WO2014168393A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Definitions

  • the present invention relates to a negative photosensitive organic-inorganic hybrid insulating film composition, and more particularly, to simplify the process and reduce the production cost by forming a dual structure of a conventional SiNx passivation / acrylic photosensitive organic insulating film as a single layer (layer)
  • a dual structure of a conventional SiNx passivation / acrylic photosensitive organic insulating film as a single layer (layer)
  • it enables low dielectric constant insulation to reduce power consumption, afterimage and crosstalk.
  • a double film made of SiNx passivation and an acrylic photosensitive organic insulating film is used for TFT type liquid crystal display device or integrated circuit device to insulate the wiring arranged between layers and to improve the aperture ratio. Since SiNx film is made through CVD process and acrylic photosensitive organic insulating film is made by photo process, production capacity problem is serious according to process time.
  • the opening ratio of the display is lowered, and as the size of the display increases, the area occupied by the deposition equipment in the production line is also significant, which acts as a large burden on the large equipment. Doing.
  • the acrylic photosensitive organic insulating layer is formed by the existing photo process alone, electric defects such as afterimage, crosstalk, and shift of threshold voltage are caused. This is known to be caused by current leakage due to a defect in the film which is a disadvantage of organic materials.
  • the present invention can form a dual structure of the existing SiNx passivation / acrylic photosensitive organic insulating film as a single layer can bring the process simplification and production cost reduction, sensitivity, resolution, process margin,
  • the low dielectric constant insulating film enables low power consumption, eliminates afterimage and crosstalk, and shifts in threshold voltages. By enabling low outgassing due to excellent heat resistance, it is possible to secure excellent panel reliability.
  • Non-photosensitive organic-inorganic hybrid that can be usefully applied not only to passivation insulating film and gate insulating film but also to flattening film in various displays. Insulating film composition, panel of display device using same Forming method, and a negative type photosensitive organic-is an object of the present invention to provide a display device comprising a cured product of the insulating inorganic hybrid composition in an insulating film.
  • the present invention provides a negative photosensitive organic-inorganic hybrid insulating film composition
  • Mw polystyrene reduced weight average molecular weight
  • each R 1 is independently a phenyl group or an alkyl group having 1 to 4 carbon atoms
  • each of R 2 is independently an alkoxy group having 1 to 4 carbon atoms, phenoxy, or acetoxy, and n is an integer of 1-3;
  • each R 3 is independently an alkoxy group, phenoxy or acetoxy group having 1 to 4 carbon atoms;
  • R 4 is each independently alkoxy group having 1 to 4 carbon atoms, phenoxy or acetoxy
  • R 5 is each independently an acrylic group or a vinyl group
  • R 6 is each independently an alkyl group having 1 to 4 carbon atoms
  • n is an integer of 1-3.
  • the negative photosensitive organic-inorganic hybrid insulating film composition Preferably, the negative photosensitive organic-inorganic hybrid insulating film composition
  • the present invention provides a pattern forming method of a display device, characterized in that using the negative photosensitive organic-inorganic hybrid insulating film composition.
  • the present invention also provides a display device comprising a cured product of the negative photosensitive organic-inorganic hybrid insulating film composition.
  • the cured product of the negative photosensitive organic-inorganic hybrid insulating film composition is applied as a passivation insulating film, a gate insulating film or a planarization film.
  • the negative photosensitive organic-inorganic hybrid insulating film composition according to the present invention can form a dual structure of a conventional SiNx passivation / acrylic photosensitive organic insulating film as a single layer, which can simplify the process and reduce the production cost, sensitivity, resolution, process margin,
  • the low dielectric constant insulating film enables low power consumption, eliminates afterimage and crosstalk, and shifts in threshold voltages.
  • the present invention provides a negative photosensitive organic-inorganic hybrid insulating film composition
  • a reactive silane comprising 1-3 phenyl groups or alkyl groups having 1 to 4 carbon atoms represented by the following Chemical Formula 1, ii) represented by the following Chemical Formula 2
  • a polystyrene reduced weight average molecular weight (Mw) of 1,000 to 20,000 obtained by hydrolysis and condensation polymerization of a reactive silane monomer comprising an acryl or vinyl group represented by the following formula (3) under a catalyst: coalescence; b) photoinitiators; And c) a polyfunctional monomer or oligomer having ethylenically unsaturated bonds:
  • R 1 is a phenyl group or an alkyl group having 1 to 4 carbon atoms
  • R 2 is each independently an alkoxy group having 1 to 4 carbon atoms, phenoxy, or acetoxy, and n is an integer of 1-3;
  • each R 3 is independently an alkoxy group, phenoxy or acetoxy group having 1 to 4 carbon atoms;
  • R 4 is each independently alkoxy group having 1 to 4 carbon atoms, phenoxy or acetoxy
  • R 5 is each independently an acrylic group or a vinyl group
  • R 6 is each independently an alkyl group having 1 to 4 carbon atoms
  • n is an integer of 1-3.
  • the negative photosensitive organic-inorganic hybrid insulating film composition may comprise a) i) 10 to 50 parts by weight of a reactive silane comprising 1-3 phenyl groups or alkyl groups having 1 to 4 carbon atoms represented by Chemical Formula 1, ii) the 20 to 50 parts by weight of a tetrafunctional reactive silane represented by Formula 2, and iii) 100 parts by weight of a siloxane copolymer composed of 10 to 40 parts by weight of a reactive silane including an acryl group or a vinyl group represented by Formula 3; b) 0.1 to 30 parts by weight of the photoinitiator based on 100 parts by weight of the siloxane copolymer of a); And c) 5 to 100 parts by weight of a polyfunctional monomer or oligomer having an ethylenically unsaturated bond with respect to 100 parts by weight of the siloxane copolymer of a).
  • a reactive silane comprising 1-3 phenyl groups or alkyl groups having
  • the siloxane oligomer compound of a) used in the present invention has problems such as afterimage, crosstalk, and shift of threshold voltage, which have previously been a problem in order to replace a double film made of SiNx passivation and an acrylic photosensitive organic insulating film with a single film. Not only can solve the problem, but also enables low outgassing due to excellent heat resistance is a binder that can secure excellent panel reliability.
  • the siloxane copolymer of a) is a) i) a reactive silane comprising 1-3 phenyl groups represented by Formula 1 or an alkyl group having 1 to 4 carbon atoms, ii) a tetrafunctional reactive silane represented by Formula 2, and iii)
  • a reactive silane monomer containing an acrylic group or a vinyl group represented by the following formula (3) can be obtained by hydrolysis and condensation polymerization under a catalyst.
  • Reactive silanes containing 1-3 phenyl groups represented by Formula 1 used in the present invention include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltributoxysilane, phenylmethyldimethoxysilane, Phenyltriacetoxysilane, phenyltriphenoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldiphenoxysilane, triphenylmethoxysilane, triphenylethoxysilane, methyltrimethoxysilane, methyl Triethoxysilane, methyltributoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltributoxysilane, diethyldimethoxysilane, triethyl
  • the reactive silane comprising 1-3 phenyl groups represented by Formula 1 or alkyl groups having 1 to 4 carbon atoms is preferably included in an amount of 10-50 parts by weight based on the total monomers. If the content is less than 10 parts by weight cracks (crack) or photoinitiator may be formed during the film formation, if the content exceeds 50 parts by weight it may be difficult to control the molecular weight is poor in the polymerization.
  • the tetrafunctional reactive silane represented by the formula (2) used in the present invention includes tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraphenoxysilane, tetraacetoxysilane, etc. It can mix and use 2 or more types.
  • the tetrafunctional reactive silane represented by Chemical Formula 2 is preferably included in an amount of 20-50 parts by weight based on the total monomers. If the content is less than 20 parts by weight, solubility in the aqueous alkali solution may be poor when the pattern of the photosensitive organic-inorganic insulating film composition is formed, and if it exceeds 50 parts by weight, the solubility in the aqueous alkali solution may be excessively large. .
  • Reactive silanes containing an acryl group or a vinyl group represented by the formula (3) used in the present invention include acryloxypropyltrimethoxysilane, acryloxymethyltrimethoxysilane, triacryloxymethylmethoxysilane, vinyl Trimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, methylvinyldimethoxysilane and the like can be used alone or in combination of two or more thereof.
  • the reactive silane including the acrylic group or the vinyl group represented by Chemical Formula 3 is preferably included in an amount of 10-40 parts by weight based on the total monomers. If the content is less than 10 parts by weight, a problem occurs that the sensitivity of the photosensitive organic-inorganic insulating film composition is slowed, or a monomer or oligomer having an ethylenically unsaturated compound is precipitated. Due to poor solubility in the aqueous alkali solution, residue may be generated in the space portion or contact hole of the pattern.
  • siloxane copolymer of a) used in the present invention in addition to the silane monomers of i), ii) and iii), further comprises iv) a reactive silane represented by the following formula (4), It can be condensation polymerization.
  • R 7 is each independently alkoxy group having 1 to 4 carbon atoms, phenoxy or acetoxy
  • R 8 is each independently alkyl group having 1 to 4 carbon atoms
  • R 9 is each independently hydrogen, epoxy group or hexenyl Group, a methacryl group, or an allyl group
  • n is an integer of 1-3.
  • reactive silane represented by Formula (iv) 4 include trimethoxysilane, triethoxysilane, trimethylethoxysilane, triethylphenoxysilane, trimethylmethoxysilane, methyltrimethoxysilane and methyltriethoxy Silane, methyltriphenoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriacetoxysilane, methyltriacetoxysilane, propyltrimethoxysilane, propyl tree Ethoxysilane, diisopropyldimethoxysilane, diisobutyldimethoxysilane, chloropropyltrimethoxysilane, chloropropyltriethoxysilane, chloropropylmethyldimethoxysilane, chloroisobutylmethylmethyl
  • the amount of use is preferably 10 to 50 parts by weight of the total silane monomers.
  • the amount used is within the above range, the adhesion and chemical resistance may be better.
  • the siloxane copolymer of a) used in the negative photosensitive organic-inorganic hybrid insulating film composition of the present invention is capable of bulk polymerization or solution polymerization of the above monomers with water and an acid or a base catalyst. It is obtained through the process of hydrolysis and condensation polymerization.
  • Acid catalysts that may be used during the polymerization include hydrochloric acid, nitric acid, sulfuric acid, oxalic acid, formic acid, acetic acid, propionic acid, butanoic acid, pentanic acid, and the like, and basic catalysts include ammonia, organic amines, and alkylammonium hydroxides. It may be used alone or in combination of two or more kinds at the same time or stepwise.
  • the siloxane copolymer of a) finally obtained preferably has a polystyrene reduced weight average molecular weight (Mw) of 1,000 to 20,000 through gel permeation chromatography (GPC).
  • Mw polystyrene reduced weight average molecular weight
  • GPC gel permeation chromatography
  • the photoinitiator of b) used in the present invention may use compounds such as triazine, benzoin, acetophenone, imidazole, oxime or oxanthone.
  • Specific examples of the photoinitiator include 2,4-bistrichloromethyl-6-p-methoxystyryl-s-triazine, 2-p-methoxystyryl-4,6-bistrichloromethyl-s-tri Azine, 2,4-trichloromethyl-6-triazine, 2,4-trichloromethyl-4-methylnaphthyl-6-triazine, 2- (o-chlorophenyl) -4,5-diphenyl imi Dazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenyl imidazole dimer, 2- (o-methoxyphenyl
  • the photoinitiator may be included in an amount of 0.1 to 30 parts by weight based on 100 parts by weight of the siloxane copolymer.
  • the content is less than 0.1 parts by weight, there is a problem in that the residual film ratio becomes worse due to low sensitivity, and when it exceeds 30 parts by weight, not-open is formed in the contact hole or space portion of the non-exposed part. There may be a problem that the depth of focus (DOF) margin is lowered.
  • DOF depth of focus
  • the c) polyfunctional monomer or oligomer having an ethylenically unsaturated bond used in the present invention may generally use a crosslinkable monomer or oligomer having at least two ethylenic double bonds.
  • polyfunctional monomer or oligomer having the ethylenically unsaturated bond of c) examples include 1,4-butanediol diacrylate, 1,3-butylene glycol diacrylate, ethylene glycol diacrylate and trimethylolpropanediacryl Rate, trimethylol propane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, dipentaerythritol hexadiacrylate, dipentaerythritol tridiacrylate, Dipentaerythritol diacrylate, sorbitol triacrylate, bisphenol A diacrylate derivative, dipentaerythritol polyacrylate, or methacrylates thereof, polyfunctional acrylate oligomers have 2 to 20 functional groups, and Patic urethane acrylate oligomer, And the like can be used Roman tick urethan
  • the polyfunctional monomer or oligomer having an ethylenically unsaturated bond is preferably included in an amount of 5 to 100 parts by weight based on 100 parts by weight of the siloxane copolymer. If the content is less than 5 parts by weight, there is a problem that it is difficult to implement the contact hole and pattern due to the low degree of hardening, and if it exceeds 100 parts by weight, there is a problem that the resolution of the contact hole and the pattern is reduced during development due to the high degree of hardening.
  • the negative photosensitive organic-inorganic hybrid insulating film composition of the present invention comprising the above components may be, if necessary, at least one selected from the group consisting of d) melamine crosslinking agents, e) silane coupling agents, f) plasticizers, and g) epoxy resins. It may further include an additive.
  • the melamine crosslinking agent of d) used in the present invention is used for improving adhesion to the lower substrate. It may be used alone or in combination of two or more from the group consisting of the formula (5).
  • R 10 to R 15 are each independently a hydrogen atom or —CH 2 OCH 3 , and at least one of R 10 to R 15 is —CH 2 OCH 3 .
  • the content of the melamine crosslinking agent represented by Chemical Formula 5 may be included in an amount of 0.1 to 30 parts by weight based on 100 parts by weight of the a) siloxane copolymer. If the content is less than 0.1 part by weight, the adhesive strength with the lower substrate is lowered. If the content is more than 30 parts by weight, the storage stability and developability are lowered, and the resolution is lowered.
  • the silane coupling agent of e) used in the present invention is used to improve the adhesion with the lower substrate, and (3-glycidoxypropyl) trimethoxysilane, (3-glycidoxypropyl) triethoxysilane , (3-glycidoxypropyl) methyldimethoxysilane, (3-glycidoxypropyl) methyldiethoxysilane, (3-glycidoxypropyl) dimethylethoxysilane, 3,4-epoxybutyltrimethoxysilane , 3,4-epoxybutyl triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, aminopropyl Trimethoxysilane, aminopropyltriethoxysilane, 3-triethoxysil-N- (1,3
  • the content of the silane coupling agent may include 0.1 to 30 parts by weight based on 100 parts by weight of the siloxane copolymer. If the content is less than 0.1 part by weight, the adhesive strength with the lower substrate is lowered. If the content is more than 30 parts by weight, the storage stability and developability are lowered, and the resolution is lowered.
  • the plasticizer of f) maintains film characteristics without cracks and maintains high sensitivity after curing by controlling the crosslinking density of the insulating film.
  • the said plasticizer is phthalate type, such as dioctyl phthalate and diisononyl phthalate, adipate type, such as dioctyl adipate, and phosphate type, such as tricresyl phosphate, 2,2,4-trimethyl-1,3-pentanediol mono Monoisobutyrate systems, such as isobutyrate, etc. can be used individually or in mixture of 2 or more types.
  • the plasticizer is contained in an amount of 0.5-20 parts by weight based on 100 parts by weight of the siloxane oligomer compound of a), and when the content is within the above range, it is easy to control the crosslinking density, and the heat resistance is excellent. It is advantageous because there is little generation of smoke.
  • the epoxy resin of g) functions to improve heat resistance, adhesion, and the like of the pattern obtained from the negative photosensitive organic-inorganic hybrid insulating film composition.
  • the epoxy resin examples include glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, heterocyclic epoxy resins, bisphenol A type epoxy resins, phenol novolak type epoxy resins, cresol novolak type epoxy resins, and cycloaliphatic epoxy resins. It can be used individually or in mixture of 2 or more types, It is preferable to use bisphenol-A epoxy resin, cresol novolak-type epoxy resin, or glycidyl ester type epoxy resin especially.
  • the epoxy resin is contained in an amount of 0.5 to 10 parts by weight based on 100 parts by weight of the siloxane copolymer of a).
  • the epoxy resin is in the above range, heat resistance, adhesion, and storage stability are excellent at the same time, and the negative photosensitive oil of the present invention is also used. -There is an advantage that there is no fear of precipitation on the inorganic hybrid insulating film composition.
  • the negative photosensitive organic-inorganic hybrid insulating film composition of the present invention includes h) a solvent, wherein the solvent of h) does not generate flatness and coating stain of the insulating film to form a uniform pattern profile. do.
  • Alcohol such as methanol, ethanol, benzyl alcohol, hexyl alcohol; Ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether, ethylene glycol ethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl Ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol butyl methyl ether, diethylene glycol butyl ethyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, diethylene glycol tertiary butyl ether, With tetraethylene glycol dimethyl ether and dipropylene glycol diethyl ether, diethylene glycol ethyl hexyl ether,
  • the solvent is preferably included so that the solid content of the entire negative photosensitive organic-inorganic hybrid insulating film composition is 10 to 50% by weight, and the composition having a solid content in the above range is filtered with a Millipore filter of 0.1 to 0.2 ⁇ m. Good to use later.
  • the solids content of the total negative photosensitive organic-inorganic hybrid insulating film composition is less than 10% by weight, there is a problem in that the coating thickness becomes thin and the coating flatness decreases. When the content exceeds 50% by weight, the coating thickness becomes thick. When coating, there is a problem that can give a coating equipment.
  • the present invention provides a display device comprising a pattern forming method of a display device, characterized in that using the negative photosensitive organic-inorganic hybrid insulating film composition and a cured body of the positive photosensitive organic-inorganic hybrid insulating film composition.
  • the pattern forming method according to the present invention is a method of forming an insulating film pattern in a display process, except that a process other than using a photo process using the negative photosensitive organic-inorganic hybrid insulating film composition is known. Of course, the methods can be applied.
  • a method of forming a pattern of a display device using the negative photosensitive organic-inorganic hybrid insulating film is as follows.
  • the negative photosensitive organic-inorganic hybrid insulating film of the present invention is applied to the surface of the substrate by spin coating, slit and spin coating, slit coating, roll coating, and the like, and the solvent is removed by prebaking to form a coating film.
  • the prebaking is preferably carried out for 1 to 3 minutes at a temperature of 100 ⁇ 120 °C.
  • a predetermined pattern is formed by irradiating visible light, ultraviolet rays, far ultraviolet rays, electron beams, X-rays, and the like on the formed coating film according to a previously prepared pattern, and developing with a developer to remove unnecessary portions.
  • aqueous alkali solution and the said developing solution specifically, inorganic alkalis, such as sodium hydroxide, potassium hydroxide, sodium carbonate, primary amines, such as ethylamine and n-propylamine, secondary amines, such as diethylamine and n-propylamine, etc.
  • Tertiary amines such as trimethylamine, methyldiethylamine, dimethylethylamine and triethylamine; alcohol amines such as dimethylethanolamine, methyldiethanolamine, and triethanolamine; tetramethylammonium hydroxide, tetraethylammonium hydroxide, and the like.
  • the aqueous solution of the quaternary ammonium salt, etc. can be used.
  • the developer is used by dissolving the alkaline compound at a concentration of 0.1 to 10 parts by weight, and may be added an appropriate amount of a water-soluble organic solvent and a surfactant such as methanol, ethanol and the like.
  • the pattern is applied to a heating apparatus such as an oven.
  • a heating apparatus such as an oven.
  • the dual structure of the existing SiNx passivation / acrylic photosensitive organic insulating film can be formed in one layer, thereby simplifying the process and reducing the production cost.
  • low dielectric constant insulating film enables lower power consumption, residual image and crosstalk, and shift in threshold voltage.
  • it is possible to secure excellent panel reliability by enabling low outgassing due to excellent heat resistance, which can be usefully applied to not only passivation insulating film and gate insulating film but also flattening film in various displays. have.
  • a mixed solution of 200 parts by weight of propylene glycol monoethyl acetate, 30 parts by weight of methacrylic acid, 30 parts by weight of styrene and 40 parts by weight of aryl methacrylate was added to a flask equipped with a cooler and a stirrer.
  • the liquid composition was sufficiently mixed at 600 rpm in a mixing vessel, and then 15 parts by weight of 2,2'-azobis (2,4-dimethylvaleronitrile) was added.
  • the polymerization mixture solution was slowly raised to 70 ° C., held at this temperature for 8 hours, cooled to room temperature, and 500 ppm of hydrobenzophenone was added as a polymerization inhibitor to obtain an acrylic copolymer having a solid content of 33 wt%.
  • the weight average molecular weight of the obtained acrylic copolymer was 10,000. In this case, the weight average molecular weight is a polystyrene converted average molecular weight measured using GPC.
  • Example 1 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • Example 3 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • Example 7 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • Example 8 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • Example 11 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • Irgacure819 (manufactured by Ciba) in place of the photoinitiator [1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazoyl-3-yl] -1- (O-acetyloxime) in Example 1 Except for using, it was prepared in the same manner as in Example 1.
  • Example 12 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • Example 1 Except for using triethylene glycol diacrylate in place of dipentaerythritol hexaacrylate as a polyfunctional monomer having an ethylenically unsaturated bond in Example 1, it was prepared in the same manner as in Example 1.
  • Example 13 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • Example 1 Except for using 10 parts by weight instead of 30 parts by weight of dipentaerythritol hexaacrylate as a multifunctional monomer having an ethylenically unsaturated bond in Example 1, was prepared in the same manner as in Example 1.
  • Example 14 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • Example 1 A polyfunctional monomer having an ethylenically unsaturated bond in Example 1 was prepared in the same manner as in Example 1, except that 100 parts by weight of dipentaerythritol hexaacrylate was used instead of 30 parts by weight.
  • Example 15 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • Example 1 A polyfunctional monomer having an ethylenically unsaturated bond in Example 1 was prepared in the same manner as in Example 1, except that 5 parts by weight of dipentaerythritol hexaacrylate was used instead of 30 parts by weight.
  • Comparative Example 1 Preparation of negative photosensitive organic-inorganic hybrid insulating film composition
  • a negative photosensitive acrylic insulating film prepared in the same manner as in Example 1, except that the acrylic copolymer (A) of Comparative Synthesis Example 3 was used instead of the siloxane copolymer (A) of Synthesis Example 1 in Example 1.
  • the composition coating solution was prepared.
  • Example 1 35 weight parts of the photoinitiator [1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazoyl-3-yl] -1- (O-acetyloxime) in Example 1 was replaced by 5 parts by weight. Except that the part was used, it was prepared in the same manner as in Example 1.
  • Example 1 A polyfunctional monomer having an ethylenically unsaturated bond in Example 1 was prepared in the same manner as in Example 1, except that 4 parts by weight of dipentaerythritol hexaacrylate was used instead of 30 parts by weight.
  • Example 1 A polyfunctional monomer having an ethylenically unsaturated bond in Example 1 was prepared in the same manner as in Example 1, except that 105 parts by weight of dipentaerythritol hexaacrylate was used instead of 30 parts by weight.
  • the sensitivity should be 50 mJ / cm 2 or less.
  • Process margin-A pattern film was formed in the same manner as in the above sensitivity measurement, but the CD change rate before and after curing was measured based on 10 ⁇ m Line & Space 1: 1 CD. At this time, (circle) and the case where the change rate is 0 to 10%, (triangle
  • Insulation-Insulation was determined based on the dielectric constant.
  • the dielectric constant was obtained by measuring the capacitance of the capacitor and the following equation. Specifically, after forming a negative photosensitive organic-inorganic hybrid insulating film in the same manner as in forming the sensitivity of the a) between the upper and lower metal electrodes patterned with gold of 1 cm 2 area, MIM (Metal / Insulator / The capacitance of the metal structure was measured through the impedance analyzer, and the dielectric constant was calculated by the following equation.
  • the dielectric constant was measured, and the case of 2.5 to 2.8 was represented by ⁇ , and the case of 2.8 to 3.2 was represented by ⁇ and 3.2 or more.
  • Heat resistance-Heat resistance was measured using TGA. Specifically, after sampling the pattern film formed during the sensitivity measurement of a), using a TGA was heated by 10 °C per minute from room temperature to 900 °C. (Circle) and the case where 5 weight% loss temperature is 300-350 degreeC, (triangle
  • A) Flatness-Lower step is 1.0 ⁇ 1.5 ⁇ m on the TFT substrate After the coating, developing and curing process under the above condition a), flatness was evaluated through the difference between the channel part and the pixel part of the TFT substrate. (Circle) and 5-10% of the case where the step difference is less than 5% of the thickness after coating, and ⁇ , the case of 10% or more are represented by ⁇ .
  • Negative photosensitive organic-inorganic hybrid insulating film composition according to the present invention was excellent in performance, such as sensitivity, resolution, process margin, transparency, heat discoloration resistance, flatness, etc. In addition, power consumption can be reduced, and afterimages, crosstalk, and threshold voltage shifts can be eliminated. In addition, it was possible to secure excellent panel reliability by enabling low outgassing due to excellent heat resistance. It can be seen that the negative photosensitive organic-inorganic hybrid insulating film is applicable to various display processes.
  • the negative photosensitive organic-inorganic hybrid insulating film composition according to the present invention can form a dual structure of a conventional SiNx passivation / acrylic photosensitive organic insulating film as a single layer, which can simplify the process and reduce the production cost, sensitivity, resolution, process margin,
  • the low dielectric constant insulating film enables low power consumption, eliminates afterimage and crosstalk, and shifts in threshold voltages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Materials For Photolithography (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 네가티브형 감광성 유-무기 하이브리드 절연막 조성물에 관한 것으로, 본 발명에 따른 네가티브형 감광성 유-무기 하이브리드 절연막 조성물은 기존의 SiNx 패시베이션(Passivation)/아크릴계 감광성 유기절연막의 이중구조를 하나의 층(layer)으로 형성하여 공정단순화 및 생산비 절감을 가져올 수 있고, 감도, 해상도, 공정마진, 투명성, 내열변색성, 평탄도 등의 성능이 우수할 뿐만 아니라, 특히 저 유전률 절연막을 가능하게 함으로써 소비전력을 낮출 수 있으며, 잔상 및 크로스토크(Crosstalk), 및 문턱 전압의 시프트(Shift) 현상을 없애 줄 수 있다. 또한, 뛰어난 내열성으로 인한 낮은 아웃개싱(Outgassing)을 가능하게 함으로써 우수한 패널(Panel) 신뢰성을 확보할 수 있다. 이를 통해 다양한 디스플레이에서 패시베이션 절연막, 게이트 절연막 뿐만 아니라 평탄화막 등에도 유용하게 적용할 수 있다.

Description

네가티브형 감광성 유-무기 하이브리드 절연막 조성물
본 발명은 네가티브형 감광성 유-무기 하이브리드 절연막 조성물에 관한 것으로, 더욱 상세하게는 기존의 SiNx 패시베이션(Passivation)/아크릴계 감광성 유기절연막의 이중구조를 하나의 층(layer)으로 형성하여 공정단순화 및 생산비 절감을 가져올 수 있으며, 감도, 해상도, 공정마진, 투명성, 내열변색성, 평탄도 등의 성능이 우수할 뿐만 아니라, 특히 저 유전률 절연막을 가능하게 함으로써 소비전력을 낮출 수 있으며, 잔상 및 크로스토크(Crosstalk), 및 문턱 전압의 시프트(Shift) 현상을 없애 줄 수 있으며, 또한, 뛰어난 내열성으로 인한 낮은 아웃개싱(Outgassing)을 가능하게 함으로써 우수한 패널(Panel) 신뢰성을 확보할 수 있으며, 이를 통해 다양한 디스플레이(Display)에서 패시베이션 절연막, 게이트(Gate) 절연막 뿐만 아니라 평탄화막 등에도 유용하게 적용할 수 있는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물에 관한 것이다.
최근 TFT형 액정표시소자나 집적회로소자에는 층간에 배치되는 배선의 사이를 절연하고 개구율 향상을 위해서 SiNx 패시베이션(Passivation) 및 아크릴계 감광성 유기절연막으로 이루어진 이중막을 사용하고 있다. SiNx막의 경우 CVD공정을 통해 이루어지고, 아크릴계 감광성 유기절연막의 경우 포토(Photo)공정으로 이루어지다 보니 공정시간에 따른 생산능력문제가 심각하다.
종래 절연막에 있어서, 상기 CVD로 형성된 SiNx막을 단독으로 형성시 디스플레이의 개구율이 떨어지는 문제가 있으며, 디스플레이(Display)의 대형화에 따라 생산라인에서 증착장비가 차지하는 면적 또한 상당하여 설비대형화에 큰 부담으로 작용하고 있다. 또한, 기존 포토공정을 통한 아크릴계 감광성 유기절연막을 단독으로 형성시 잔상 및 크로스토크(Crosstalk), 문턱전압값의 시프트(Shift)현상 등 디스플레이에 전기적인 불량을 야기시킨다. 이는 유기물질만의 단점인 필름상의 결점으로 인한 전류누설(Current Leakage)이 원인인 것으로 알려져 있다.
이에 따라 최근 유-무기 하이브리드 기술을 기반으로 하여 포토공정만으로 형성이 가능한 단일층 절연막에 대한 필요성이 크게 요청되고 있으며, 이에 대한 기술개발이 활발히 이루어지고 있다.
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 기존의 SiNx 패시베이션/아크릴계 감광성 유기절연막의 이중구조를 하나의 층으로 형성하여 공정단순화 및 생산비 절감을 가져올 수 있으며, 감도, 해상도, 공정마진, 투명성, 내열변색성, 평탄도 등의 성능이 우수할 뿐만 아니라, 특히 저 유전률 절연막을 가능하게 함으로써 소비전력을 낮출 수 있고, 잔상 및 크로스토크, 및 문턱 전압의 시프트 현상을 없애 줄 수 있으며, 또한, 뛰어난 내열성으로 인한 낮은 아웃개싱을 가능하게 함으로써 우수한 패널 신뢰성을 확보할 수 있고, 이를 통해 다양한 디스플레이에서 패시베이션 절연막, 게이트 절연막 뿐만 아니라 평탄화막 등에도 유용하게 적용할 수 있는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물, 이를 이용한 디스플레이 소자의 패턴형성방법, 및 네가티브형 감광성 유-무기 하이브리드 절연막 조성물의 경화체를 절연막으로 포함하는 디스플레이 소자를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 네가티브형 감광성 유-무기 하이브리드 절연막 조성물에 있어서,
a)i) 하기 화학식 1로 표시되는 1-3개의 페닐기 또는 탄소수 1-4의 알킬기를 포함하는 반응성 실란, ii) 하기 화학식 2로 표시되는 4관능 반응성 실란, 및 iii) 하기 화학식 3으로 표시되는 아크릴기 또는 비닐기를 포함하는 반응성 실란 단량체를 촉매하에 가수분해 및 축합중합 하여 얻어진 폴리스티렌 환산중량평균분자량(Mw)이 1,000 내지 20,000인 실록산 공중합체;
b) 광개시제; 및
c) 에틸렌성 불포화 결합을 가지는 다관능성 모노머 또는 올리고머
를 포함하는 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물을 제공한다:
[화학식 1]
(R1)nSi(R2)4-n
상기 식에서, R1은 각각 독립적으로 페닐기 또는 탄소수 1-4의 알킬기이고, R2는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시, 또는 아세톡시이고, n은 1-3의 정수이며;
[화학식 2]
Si(R3)4
상기 식에서, R3는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시 또는 아세톡시기이며;
[화학식 3]
(R4)nSi[(R5)(R6)]4-n
상기 식에서, R4는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시 또는 아세톡시이고, R5는 각각 독립적으로 아크릴기 또는 비닐기이고, R6은 각각 독립적으로 탄소수 1-4의 알킬기이며, n은 1-3의 정수이다.
바람직하게는 상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물은
a)i) 상기 화학식 1로 표시되는 1-3개의 페닐기 또는 탄소수 1-4의 알킬기를 포함하는 반응성 실란 10 내지 50 중량부, ii) 상기 화학식 2로 표시되는 4관능 반응성 실란 20 내지 50 중량부, 및 iii) 상기 화학식 3으로 표시되는 아크릴기 또는 비닐기를 포함하는 반응성 실란 10 내지 40 중량부로 이루어진 실록산 공중합체 100 중량부;
b) 상기 a)의 실록산 공중합체 100 중량부에 대하여 상기 광개시제 0.1 내지 30 중량부; 및
c) 상기 a)의 실록산 공중합체 100 중량부에 대하여 에틸렌성 불포화 결합을 가지는 다관능성 모노머 또는 올리고머 5 내지 100 중량부를 포함하는 것을 특징으로 한다.
또한 본 발명은 상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물을 이용하는 것을 특징으로 하는 디스플레이 소자의 패턴형성방법을 제공한다.
또한 본 발명은 상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물의 경화체를 포함하는 것을 특징으로 하는 디스플레이 소자를 제공한다.
바람직하게는 상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물의 경화체는 패시베이션 절연막, 게이트 절연막 또는 평탄화막으로 적용된다.
본 발명에 따른 네가티브형 감광성 유-무기 하이브리드 절연막 조성물은 기존의 SiNx 패시베이션/아크릴계 감광성 유기절연막의 이중구조를 하나의 층으로 형성하여 공정단순화 및 생산비 절감을 가져올 수 있으며, 감도, 해상도, 공정마진, 투명성, 내열변색성, 평탄도 등의 성능이 우수할 뿐만 아니라, 특히 저 유전률 절연막을 가능하게 함으로써 소비전력을 낮출 수 있고, 잔상 및 크로스토크, 및 문턱 전압의 시프트 현상을 없애 줄 수 있으며, 또한, 뛰어난 내열성으로 인한 낮은 아웃개싱을 가능하게 함으로써 우수한 패널 신뢰성을 확보할 수 있으며, 이를 통해 다양한 디스플레이에서 패시베이션 절연막, 게이트 절연막 뿐만 아니라 평탄화막 등에도 유용하게 적용할 수 있다.
본 발명은 네가티브형 감광성 유-무기 하이브리드 절연막 조성물에 있어서, a) i) 하기 화학식 1로 표시되는 1-3개의 페닐기 또는 탄소수 1-4의 알킬기를 포함하는 반응성 실란, ii) 하기 화학식 2로 표시되는 4관능 반응성 실란, 및 iii) 하기 화학식 3으로 표시되는 아크릴기 또는 비닐기를 포함하는 반응성 실란 단량체를 촉매하에 가수분해 및 축합중합 하여 얻어진 폴리스티렌 환산중량평균분자량(Mw)이 1,000 내지 20,000인 실록산 공중합체; b) 광개시제; 및 c) 에틸렌성 불포화 결합을 가지는 다관능성 모노머 또는 올리고머를 포함하는 것을 특징으로 한다:
[화학식 1]
(R1)nSi(R2)4-n
상기 식에서, R1은 페닐기 또는 탄소수 1-4의 알킬기이고, R2는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시, 또는 아세톡시이고, n은 1-3의 정수이며;
[화학식 2]
Si(R3)4
상기 식에서, R3는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시 또는 아세톡시기이며;
[화학식 3]
(R4)nSi[(R5)(R6)]4-n
상기 식에서, R4는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시 또는 아세톡시이고, R5는 각각 독립적으로 아크릴기 또는 비닐기이고, R6은 각각 독립적으로 탄소수 1-4의 알킬기이며, n은 1-3의 정수이다.
바람직하게는 상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물은 a)i) 상기 화학식 1로 표시되는 1-3개의 페닐기 또는 탄소수 1-4의 알킬기를 포함하는 반응성 실란 10 내지 50 중량부, ii) 상기 화학식 2로 표시되는 4관능 반응성 실란 20 내지 50 중량부, 및 iii) 상기 화학식 3으로 표시되는 아크릴기 또는 비닐기를 포함하는 반응성 실란 10 내지 40 중량부로 이루어진 실록산 공중합체 100 중량부; b) 상기 a)의 실록산 공중합체 100 중량부에 대하여 상기 광개시제 0.1 내지 30 중량부; 및 c) 상기 a)의 실록산 공중합체 100 중량부에 대하여 에틸렌성 불포화 결합을 가지는 다관능성 모노머 또는 올리고머 5 내지 100 중량부를 포함하는 것을 특징으로 한다.
본 발명에 사용되는 상기 a)의 실록산 올리고머 화합물은 기존의 SiNx 패시베이션 및 아크릴계 감광성 유기절연막으로 이루어진 이중막을 단일막으로 대체하기 위해 기존에 문제가 되었던 잔상 및 크로스토크, 문턱전압의 시프트 현상과 같은 문제를 해결할 수 있을 뿐만 아니라, 뛰어난 내열성으로 인한 낮은 아웃개싱을 가능하게 함으로써 우수한 패널 신뢰성을 확보할 수 있는 바인더이다.
상기 a)의 실록산 공중합체는 a)i) 상기 화학식 1로 표시되는 1-3개의 페닐기 또는 탄소수 1-4의 알킬기를 포함하는 반응성 실란, ii) 상기 화학식 2로 표시되는 4관능 반응성 실란, 및 iii) 하기 화학식 3으로 표시되는 아크릴기 또는 비닐기를 포함하는 반응성 실란 단량체를 촉매하에 가수분해 및 축합중합 하여 얻을 수 있다.
본 발명에 사용되는 상기 i) 상기 화학식 1로 표시되는 1-3개의 페닐기를 포함하는 반응성 실란으로는 페닐트리메톡시실란, 페닐트리에톡시실란, 페닐트리부톡시실란, 페닐메틸디메톡시실란, 페닐트리아세톡시실란, 페닐트리페녹시실란, 디페닐디메톡시실란, 디페닐디에톡시실란, 디페닐디페녹시실란, 트리페닐메톡시실란, 트리페닐에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 메틸트리부톡시실란, 디메틸디메톡시실란, 트리메틸메톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 에틸트리부톡시실란, 디에틸디메톡시실란, 트리에틸메톡시실란, 부틸트리메톡시실란 등이 있으며, 단독 또는 2 종 이상 혼합하여 사용할 수 있다.
상기 i) 상기 화학식 1로 표시되는 1-3개의 페닐기 또는 탄소수 1-4의 알킬기를 포함하는 반응성 실란은 전체 총 단량체에 대하여 10-50 중량부로 포함되는 것이 바람직하다. 그 함량이 10 중량부 미만일 경우에는 필름형성시 크랙(Crack)이 생기거나 광개시제가 석출될 수 있으며, 50 중량부를 초과할 경우에는 중합시 반응성이 떨어져 분자량을 제어하기 어려울 수 있다.
본 발명에 사용되는 상기 ii) 상기 화학식 2로 표시되는 4관능 반응성 실란으로는 테트라메톡시실란, 테트라에톡시실란, 테트라부톡시실란, 테트라페녹시실란, 테트라아세톡시실란 등이 있으며, 단독 또는 2 종 이상 혼합하여 사용할 수 있다.
상기 ii) 상기 화학식 2로 표시되는 4관능 반응성 실란은 전체 총 단량체에 대하여 20-50 중량부로 포함되는 것이 바람직하다. 그 함량이 20 중량부 미만일 경우에는 감광성 유-무기 절연막 조성물의 패턴형성시 알칼리 수용액에 대한 용해성이 떨어져 불량을 발생시킬 수 있으며, 50 중량부를 초과할 경우에는 알칼리 수용액에 대한 용해성이 지나치게 커질 수 있다.
본 발명에 사용되는 상기 iii) 상기 화학식 3으로 표시되는 아크릴기 또는 비닐기를 포함하는 반응성 실란으로는 아크릴록시프로필트리메톡시실란, 아크릴록시메틸트리메톡시실란, 트리아크릴록시메틸메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 비닐트리아세톡시실란, 메틸비닐디메톡시실란 등이 있으며, 단독 또는 2 종 이상 혼합하여 사용할 수 있다.
상기 iii) 상기 화학식 3으로 표시되는 아크릴기 또는 비닐기를 포함하는 반응성 실란은 전체 총 단량체에 대하여 10-40 중량부로 포함되는 것이 바람직하다. 그 함량이 10 중량부 미만일 경우에는 감광성 유-무기 절연막 조성물의 패턴형성시 감도가 느려지거나 에틸렌성 불포화 겨합을 가지는 모노머 또는 올리고머 등이 석출되는 문제가 발생되며, 40 중량부를 초과할 경우에는 비노광부의 알칼리 수용액에 대한 용해성이 떨어져 해상도가 떨어지거나 패턴의 스페이스 부 또는 컨텍홀(Contact Hole)에 잔사가 발생될 수 있다.
또한 본 발명에 사용되는 a)의 실록산 공중합체는 상기 i), ii) 및iii)의 실란 단량체와 더불어 iv) 하기 화학식 4로 표시되는 반응성 실란을 추가로 포함하여 산 또는 염기 촉매 하에 가수분해 및 축합중합 할 수 있다.
[화학식 4]
(R7)nSi[(R8)(R9)]4-n
상기 식에서, R7는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시 또는 아세톡시이고, R8는 각각 독립적으로 탄소수 1-4의 알킬기이고, R9는 각각 독립적으로 수소, 에폭시기, 헥세닐기, 메타크릴기 또는 알릴기이며, n은 1-3의 정수이다.
상기 iv) 화학식 4로 표시되는 반응성 실란의 구체적인 예로는 트리메톡시실란, 트리에톡시실란, 트리메틸에톡시실란, 트리에틸페녹시실란, 트리메틸메톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 메틸트리페녹시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 에틸트리아세톡시실란, 메틸트리아세톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 디이소프로필디메톡시실란, 디이소부틸디메톡시실란, 클로로프로필트리메톡시실란, 클로로프로필트리에톡시실란, 클로로프로필메틸디메톡시실란, 클로로이소부틸메틸디메톡시실란, 트리플루오로프로필트리메톡시실란, 트리플루오로프로필메틸디메톡시실란, i-부틸트리메톡시실란, i-부틸트리에톡시실란, n-부틸트리메톡시실란, n-부틸트리에톡시실란, n-부틸메틸디메톡시실란, n-헥실트리메톡시실란, n-헥실트리에톡시실란, n-옥틸트리메톡시실란, 데실트리메톡시실란, 시클로헥실메틸디메톡시실란, 시클로헥실에틸디메톡시실란, 디시클로펜틸디메톡시실란, t-부틸에틸디메톡시실란, t-부틸프로필디메톡시실란, 디시클로헥실디메톡시실란, i-옥틸트리메톡시실란, n-옥틸트리에톡시실란, 글리시독시프로필트리메톡시실란, 글리시독시프로필트리에톡시실란, 글리시독시프로필메틸디메톡시실란, 글리시독시프로필디에톡시실란, 에폭시시클로헥실에틸트리메톡시실란, 메타크릴록시프로필트리메톡시실란, 아릴트리메톡시실란, 헥세닐트리메톡시실란 등이 있으며, 단독 또는 2 종 이상 혼합하여 사용할 수 있다.
상기 iv) 화학식 4로 표시되는 반응성 실란 또는 이들의 혼합물을 사용할 경우 사용량은 전체 총 실란 단량체의 10 내지 50 중량부인 것이 바람직하다. 사용량이 상기 범위 내인 경우 접착력 및 내화학성이 더욱 양호해 질 수 있다.
본 발명의 네가티브형 감광성 유-무기 하이브리드 절연막 조성물에 사용되는 a)의 실록산 공중합체는 상기와 같은 단량체를 물과 산 또는 염기 촉매하에 벌크(Bulk) 중합 또는 용액(Solution) 중합을 할 수 있으며, 가수분해 및 축합중합의 과정 등을 거쳐 얻어진다.
상기와 같은 중합시 사용될 수 있는 산촉매로는 염산, 질산, 황산, 옥살산, 포름산, 아세트산, 프로피온산, 부탄산, 펜탄산 등이 있고, 염기촉매로는 암모니아, 유기아민 및 알킬암모늄 하이드로옥사이드염 등이 있으며, 단독 또는 2종 이상을 혼합하여 동시에 또는 단계적으로 사용할 수 있다.
최종적으로 얻어진 a)의 실록산 공중합체는 겔 투과 크로마토그래피(GPC)를 통하여 폴리스티렌 환산중량평균분자량(Mw)이 1,000 내지 20,000인 것이 바람직하다. 상기 폴리스티렌 환산중량평균분자량이 1,000 미만인 경우 네가티브형 감광성 유-무기 하이브리드 절연막 평가시 감도, 잔막율 등이 저하되는 문제점이 있으며, 20,000을 초과하는 경우에는 네가티브형 감광성 유-무기 하이브리드 절연막의 해상도가 저하되거나 패턴의 현상성이 뒤떨어진다는 문제점이 있다.
또한 본 발명에 사용되는 상기 b)의 광개시제는 트리아진계, 벤조인계, 아세토페논계, 이미다졸계, 옥심계 또는 트산톤계 등의 화합물들을 사용할 수 있다. 광개시제의 구체적인 예로는, 2,4-비스트리클로로메틸-6-p-메톡시스티릴-s-트리아진, 2-p-메톡시스티릴-4,6-비스트리클로로메틸-s-트리아진, 2,4-트리클로로메틸-6-트리아진, 2,4-트리클로로메틸-4-메틸나프틸-6-트리아진, 2-(o-클로로페닐)-4,5-디페닐 이미다졸 이량체, 2-(o-클로로페닐)-4,5-디(m-메톡시페닐) 이미다졸 이량체, 2-(o-플루오르페닐)-4,5-디페닐 이미다졸 이량체, 2-(o-메톡시페닐)-4,5-디페닐 이미다졸 이량체, 2-(o-메톡시페닐)-4,5-디페닐 이마다졸 이량체, 2,4-디(p-메톡시 페닐)-5-페닐 이미다졸 이량체, 2-(2,4-디메톡시페닐)-4,5-디페닐 이미다졸 이량체, 또는 2-(p-메틸머캅토페닐)-4,5-디페닐 이미다졸 이량체 등의 2,4,5-트리 아릴 이미다졸 이량체, [1-[9-에틸-6-(2-메틸벤조일)-9H-카바조일-3-일]-1-(O-아세틸옥심), 벤조페논, p-(디에틸아미노)벤조페논노, 2,2-디클로로-4-페녹시아세토페논, 2,2-디에톡시아세토페논, 2-도데실티오크산톤, 2,4-디메틸티오크산톤, 2,4-디에틸티오크산톤, 2,2-비스-2-클로로페닐-4,5,4,5-테트라페닐-2-1,2-비이미다졸, 시바 스페셜 케미칼사의 Irgacure 369, Irgacure 651, Irgacure 907, Darocur TPO, Irgacure 819, OXE-02, OXE-01, 아데카사의 N-1919, NCI-831, NCI-930 등의 화합물을 사용할 수 있으며, 이들은 단독 또는 2 종 이상을 더 혼합하여 사용할 수 있다.
상기 광개시제의 함량은 상기 a) 실록산 공중합체 100 중량부에 대하여 0.1 내지 30 중량부로 포함하는 것이 좋다. 또한, 그 함량이 0.1 중량부 미만일 경우에는 낮은 감도로 인해 잔막율이 나빠지게 된다는 문제점이 있으며, 30 중량부를 초과할 경우에는 비노광부의 컨텍홀 또는 스페이스 부분에 낫-오픈(Not-open)이 발생할 수 있으며, DOF(depth of focus) 마진이 저하된다는 문제점이 있다.
또한 본 발명에 사용되는 상기 c) 에틸렌성 불포화 결합을 가지는 다관능성 모노머 또는 올리고머는 일반적으로 적어도 2 개 이상의 에틸렌계 이중 결합을 가지는 가교성 모노머 또는 올리고머를 사용할 수 있다.
상기 c)의 에틸렌성 불포화 결합을 가지는 다관능성 모노머 또는 올리고머의 예로는, 1,4-부탄디올디아크릴레이트, 1,3-부틸렌글리콜디아크릴레이트, 에틸렌글리콜디아크릴레이트, 트리메틸올프로판디아크릴레이트, 트리메틸올프로판트리아크릴레이트, 펜타에리스리톨트리아크릴레이트, 펜타에리스리톨테트라아크릴레이트, 트리에틸렌글리콜디아크릴레이트, 폴리에틸렌글리콜디아크릴레이트, 디펜타에리스리톨헥사디아크릴레이트 , 디펜타에리스리톨트리디아크릴레이트, 디펜타에리스리톨디아크릴레이트, 솔비톨트리아크릴레이트, 비스페놀 A 디아크릴레이트 유도체, 디펜타아리스리톨폴리아크릴레이트, 또는 이들의 메타크릴레이트류, 다관능 아크릴레이트 올리고머는 2 내지 20개의 관능기를 가지며, 알리파틱 우레탄 아크릴레이트 올리고머, 아로마틱 우레탄 아크릴레이트 올리고머, 에폭시 아크릴레이트 올리고머, 에폭시 메타크릴레이트 올리고머, 폴리에스터 아크릴레이트 올리고머, 실리콘 아크릴레이트 올리고머, 멜라민 아크릴레이트 올리고머, 덴드리틱 아크릴레이트 올리고머 등을 사용할 수 있다.
상기 에틸렌성 불포화 결합을 가지는 다관능성 모노머 또는 올리고머는 a) 실록산 공중합체 100 중량부에 대하여 5 내지 100 중량부로 포함되는 것이 바람직하다. 그 함량이 5 중량부 미만일 경우에는 낮은 경화도로 인하여 컨텍 홀 및 패턴 구현이 어렵다는 문제점이 있으며, 100 중량부를 초과할 경우에는 높은 경화도로 인해 현상시 컨텍 홀 및 패턴의 해상력이 저하된다는 문제점이 있다.
상기와 같은 성분으로 이루어지는 본 발명의 네가티브형 감광성 유-무기 하이브리드 절연막 조성물은 필요에 따라 d)의 멜라민 가교제, e) 실란커플링제, f) 가소제, g) 에폭시 수지로 이루어진 군에서 선택된 1종 이상의 첨가제를 추가로 포함할 수 있다.
본 발명에 사용되는 상기 d)의 멜라민 가교제는 하부 기판과의 접착력 향상을 위해서 사용한다. 하기 화학식 5로 이루어진 군으로부터 단독 또는 2종 이상을 혼합하여 사용할 수 있다.
[화학식 5]
Figure PCTKR2014002991-appb-I000001
상기 식에서, R10 내지 R15는 각각 독립적으로 수소원자이거나 -CH2OCH3이며, 상기 R10 내지 R15 중 적어도 하나는 -CH2OCH3이다.
상기 화학식 5로 표시되는 멜라민 가교제의 함량은 상기 a) 실록산 공중합체 100 중량부에 대하여 0.1 내지 30 중량부로 포함하는 것이 좋다. 그 함량이 0.1 중량부 미만일 경우에는 하부 기판과의 접착력이 저하되고, 30 중량부를 초과할 경우에는, 저장안정성 및 현상성이 떨어지고, 해상도가 저하된다는 문제점이 있다.
또한 본 발명에 사용되는 상기 e)의 실란 커플링제는 하부 기판과의 접착력 향상을 위해서 사용하며, (3-글리시드옥시프로필)트리메톡시실란, (3-글리시드옥시프로필)트리에톡시실란, (3-글리시드옥시프로필)메틸디메톡시실란, (3-글리시드옥시프로필)메틸디에톡시실란, (3-글리시드옥시프로필)디메틸에톡시실란, 3,4-에폭시부틸트리메톡시실란, 3,4-에폭시부틸트리에톡시실란, 2-(3,4-에폭시시크로헥실)에틸트리메톡시실란, 2-(3,4-에폭시시크로헥실)에틸트리에톡시실란, 아미노프로필트리메톡시실란, 아미노프로필트리에톡시실란, 3-트리에톡시실리-N-(1,3 디메틸-부틸리덴)프로필아민, N-2(아미노에틸)3-아미노프로필트리메톡시실란, N-2(아미노에틸)3-아미노프로필트리에톡시실란, N-2(아미노에틸)3-아미노프로필메틸디메톡시실란, N-페닐-3-아미노프로필트리메톡시실란 또는 (3-이소시아네이트프로필)트리에톡시실란 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 실란 커플링제의 함량은 상기 a) 실록산 공중합체 100 중량부에 대하여 0.1 내지 30 중량부로 포함하는 것이 좋다. 그 함량이 0.1 중량부 미만일 경우에는 하부 기판과의 접착력이 저하되고, 30 중량부를 초과할 경우에는, 저장안정성 및 현상성이 떨어지고, 해상도가 저하된다는 문제점이 있다.
상기 f)의 가소제는 절연막의 Crosslinking Density를 조절하여 경화공정 후, 크랙(Crack)이 없는 필름특성을 유지시켜주며, 고감도 특성을 유지시켜 준다.
상기 가소제는 디옥틸프탈레이트, 디이소노닐프탈레이트 등의 프탈레이트계, 디옥틸아디페이트 등의 아디페이트계, 트리크레실포스페이트 등의 포스페이트계, 2,2,4-트리메틸-1,3-펜탄디올 모노이소부티레이트 등의 모노이소부티레이트계 등을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 가소제는 a)의 실록산 올리고머 화합물 100 중량부에 대하여 0.5-20 중량부로 포함되는 것이 바람직하며, 그 함량이 상기 범위 내인 경우 가교밀도(Crosslinking Density)의 조절이 용이하고, 내열성이 우수하며, 공정시 연기(Fume)의 발생이 적어 유리하다.
상기 g)의 에폭시 수지는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물로부터 얻어지는 패턴의 내열성, 접착력 등을 향상시키는 작용을 한다.
상기 에폭시 수지로는 글리시딜 에스테르형 에폭시 수지, 글리시딜 아민형 에폭시 수지, 복소환식 에폭시 수지, 비스페놀 A 형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 환상지방족 에폭시 수지 등을 단독 또는 2종 이상 혼합하여 사용할 수 있으며, 특히 비스페놀 A 형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 또는 글리시딜 에스테르형 에폭시 수지를 사용하는 것이 바람직하다.
상기 에폭시 수지는 상기 a)의 실록산 공중합체 100 중량부에 대하여 0.5 내지 10 중량부로 포함되는 것이 바람하며, 상기 범위 내일 경우 내열성, 접착력, 저장안정성이 동시에 우수하며, 또한 본 발명의 네가티브형 감광성 유-무기 하이브리드 절연막 조성물상에서 석출우려가 없어지는 장점이 있다.
또한 본 발명의 네가티브형 감광성 유-무기 하이브리드 절연막 조성물은 h) 용매를 포함하는 바, 상기 h)의 용매는 절연막의 평탄성과 코팅얼룩을 발생하지 않게 하여 균일한 패턴 프로파일(pattern profile)을 형성하게 한다.
상기 용매로는 메탄올, 에탄올, 벤질알코올, 헥실알코올 등의 알코올류; 에틸렌글리콜메틸에테르아세테이트, 에틸렌글리콜에틸에테르아세테이트, 에틸렌글리콜메틸에테르프로피오네이트, 에틸렌글리콜에틸에테르프로피오네이트, 에틸렌글리콜메틸에테르, 에틸렌글리콜에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌 글리콜모노에틸에테르, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜메틸에틸에테르, 디에틸렌글리콜부틸메틸에테르, 디에틸렌글리콜부틸에틸에테르, 트리에틸렌글리콜디메틸에테르, 트리에틸렌글리콜부틸메틸에테르, 디에틸렌글리콜터셔리부틸에테르, 테트라에틸렌글리콜디메틸에테르 및 디프로필렌글리콘디에틸에테르로, 디에틸렌글리콜에틸헥실에테르, 디에틸렌글리콜메틸헥실에테르, 디프로필렌글리콜부틸메틸에테르, 디프로필렌글리콜에틸헥실에테르, 디프로필렌글리콜메틸헥실에테르, 프로필렌글리콜메틸에테르 아세테이트, 프로필렌글리콜에틸에테르아세테이트, 프로필렌글리콜프로필 에테르아세테이트, 프로필렌글리콜메틸에테르프로피오네이트, 프로필렌글리콜에틸에테르프로피오네이트, 프로필렌글리콜프로필에테르프로피오네이트, 프로필렌글리콜메틸에테르, 프로필렌글리콜에틸에테르, 프로필렌글리콜프로필에테르, 프로필렌글리콜부틸에테르, 디프로필렌글리콜디메틸에테르, 디포로필렌글리콜 디에틸에테르, 부틸렌글리콜모노메틸 에테르, 부틸렌글리콜모노에틸에테르, 디부틸렌글리콜디메틸에테르 및 디부틸렌글리콜디에틸에테르, 메틸베타메톡시프로피오네이트, 에틸베타에톡시프로피오네이트 등을 사용할 수 있으며, 이들은 필요에 따라 1종 이상 혼합 사용이 가능하다.
상기 용매는 전체 네가티브형 감광성 유-무기 하이브리드 절연막 조성물의 고형분 함량이 10 내지 50 중량%가 되도록 포함되는 것이 바람직하며, 상기 범위의 고형분을 가지는 조성물은 0.1 ~ 0.2 ㎛의 밀리포아필터 등으로 여과한 뒤 사용하는 것이 좋다. 상기 전체 네가티브형 감광성 유-무기 하이브리드 절연막 조성물의 고형분 함량이 10 중량% 미만일 경우에는 코팅두께가 얇게 되고, 코팅평판성이 저하된다는 문제점이 있으며, 50 중량%를 초과할 경우에는 코팅두께가 두꺼워지고, 코팅시 코팅장비에 무리를 줄 수 있다는 문제점이 있다.
또한, 본 발명은 상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물을 이용하는 것을 특징으로 하는 디스플레이 소자의 패턴형성방법과 상기 포지티브형 감광성 유-무기 하이브리드 절연막 조성물의 경화체를 포함하는 것을 특징으로 하는 디스플레이 소자를 제공하는 바, 본 발명에 따른 패턴형성방법은 디스플레이 공정에서 절연막 패턴을 형성하는 방법에 있어서, 상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물을 사용하여 포토공정을 이용하는 것을 제외하고는 다른 공정은 공지의 방법들이 적용될 수 있음은 물론이다.
구체적인 일예로 상기 네가티브형 감광성 유-무기 하이브리드 절연막을 이용하여 디스플레이 소자의 패턴을 형성하는 방법은 다음과 같다.
먼저 본 발명의 네가티브형 감광성 유-무기 하이브리드 절연막을 스핀코팅, 슬릿앤스핀코팅, 슬릿코팅, 롤코팅 등으로 기판표면에 도포하고, 프리베이크에 의해 용매를 제거하여 도포막을 형성한다. 이때, 상기 프리베이크는 100 ~ 120℃의 온도에서 1 ~ 3 분간 실시하는 것이 바람직하다.
그 다음, 미리 준비된 패턴에 따라 가시광선, 자외선, 원자외선, 전자선, 엑스선 등을 상기 형성된 도포막에 조사하고, 현상액으로 현상하여 불필요한 부분을 제거함으로써 소정의 패턴을 형성한다.
상기 현상액은 알칼리 수용액을 사용하는 것이 좋으며, 구체적으로 수산화나트륨, 수산화칼륨, 탄산나트륨 등의 무기 알칼리류 에틸아민, n-프로필아민 등의 1급 아민류 디에틸아민, n-프로필아민 등의 2급 아민류 트리메틸아민, 메틸디에틸아민, 디메틸에틸아민, 트리에틸아민 등의 3급 아민류 디메틸에탄올아민, 메틸디에탄올아민, 트리에탄올아민 등의 알콜아민류 또는 테트라메틸암모늄히드록시드, 테트라에틸암모늄히드록시드 등의 4급 암모늄염의 수용액 등을 사용할 수 있다. 이때, 상기 현상액은 알칼리성 화합물을 0.1 내지 10 중량부의 농도로 용해시켜 사용되며, 메탄올, 에탄올 등과 같은 수용성 유기용매 및 계면활성제를 적정량 첨가할 수도 있다.
또한, 상기와 같은 현상액으로 현상한 후 초순수로 30 ~ 90 초간 세정하여 불필요한 부분을 제거하고 건조하여 패턴을 형성하고, 상기 형성된 패턴에 자외선 등의 빛을 조사한 후, 패턴을 오븐 등의 가열장치에 의해 150 ~ 400℃의 온도에서 30 ~ 90 분간 가열처리하여 최종 패턴을 얻을 수 있다.
본 발명에 따른 디스플레이의 패턴형성방법은 1회의 포토공정을 이용하여 절연막을 형성함으로써 기존의 SiNx 패시베이션/아크릴계 감광성 유기절연막의 이중구조를 하나의 층으로 형성하여 공정단순화 및 생산비 절감을 가져올 수 있으며, 감도, 해상도, 공정마진, 투명성, 내열변색성, 평탄도 등의 성능이 우수할 뿐만 아니라, 특히 저 유전률 절연막을 가능하게 함으로써 소비전력을 낮출 수 있고, 잔상 및 크로스토크, 및 문턱 전압의 시프트 현상을 없애 줄 수 있으며, 또한, 뛰어난 내열성으로 인한 낮은 아웃개싱을 가능하게 함으로써 우수한 패널 신뢰성을 확보할 수 있으며, 이를 통해 다양한 지스플레이에서 패시베이션 절연막, 게이트 절연막 뿐만 아니라 평탄화막 등에도 유용하게 적용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
[합성예]
합성예 1 : 실록산 공중합체(A)의 제조
냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 페닐트리에톡시실란 30 중량부, 테트라에톡시실란 50 중량부 및 아크릴록시프로필트리메톡시실란 20 중량부를 넣고, 용매로 에탄올 100 중량부를 넣고, 질소치환한 후 완만히 교반하였다. 상기 반응 용액에 추가로 초순수 40 중량부와 촉매로 옥살산을 3 중량부 투입한 후 다시 완만히 교반하였다. 1 시간 후 상기 반응용액을 60℃까지 승온시켜 10 시간 동안 이 온도를 유지하여 용액중합 후, 상온으로 냉각시켜 반응을 종결하였다. 추가로 0℃이하로 급냉하여 반응물의 침전이 일어나도록 하였다. 또한 미반응 실란이 함유된 상층액을 제거한 후, 진공건조를 통하여 반응 중에 생성된 알코올류의 용매 및 잔류수분을 제거하였다. 최종적으로 겔투과 크로마토그래피(GPC) 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 12,000인 실록산 공중합체(A)를 제조하였다.
합성예 2 : 실록산 공중합체(B)의 제조
냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 페닐트리에톡시실란 30 중량부, 테트라에톡시실란 50 중량부 및 아크릴록시프로필트리메톡시실란 20 중량부를 넣고, 용매를 넣지 않고, 질소치환한 후 완만히 교반하였다. 상기 반응 용액에 추가로 초순수 40 중량부와 촉매로 질산을 2 중량부 투입한 후 다시 완만히 교반하였다. 1 시간 후 상기 반응용액을 60℃까지 승온시켜 10 시간 동안 이 온도를 유지하여 벌크 중합후, 상온으로 냉각시켜 반응을 종결하였다. 추가로 0℃이하로 급냉하여 반응물의 침전이 일어나도록 하였다. 또한 미반응 실란이 함유된 상승액을 제거한 후, 진공건조를 통하여 반응 중에 생성된 알코올류의 용매 및 잔류수분을 제거하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 20,000인 실록산 공중합체를 제조하였다.
합성예 3 : 실록산 공중합체(C)의 제조
상기 합성예 1에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 디페닐디메톡시실란 40 중량부, 테트라페녹시실란 40 중량부 및 비닐트리에톡시실란 20 중량부를 넣은 것을 제외하고는 상기 합성예 1과 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 13,000인 실록산 공중합체를 제조하였다.
합성예 4 : 실록산 공중합체(D)의 제조
상기 합성예 1에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 트리에틸메톡시실란 40 중량부, 테트라메톡시실란 40 중량부, 비닐트리에톡시실란 10 중량부 및 글리시독시프로필트리에톡시실란 10 중량부를 넣은 것을 제외하고는 상기 합성예 1과 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 12,000인 실록산 공중합체를 제조하였다.
합성예 5 : 실록산 공중합체(E)의 제조
상기 합성예 1에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 트리페닐메톡시실란 30 중량부, 테트라부톡시실란 30 중량부, 비닐트리메톡시실란 20 중량부 및 n-헥실트리메톡시실란 20 중량부를 넣은 것을 제외하고는 상기 합성예 1과 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 6,000인 실록산 공중합체를 제조하였다.
합성예 6 : 실록산 공중합체(F)의 제조
상기 합성예 2에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 트리메틸메톡시실란 30 중량부, 테트라부톡시실란 50 중량부 및 아크릴록시메틸트리메톡시실란 20 중량부를 넣은 것을 제외하고는 상기 합성예 2와 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 16,000인 실록산 공중합체를 제조하였다.
합성예 7 : 실록산 공중합체(G)의 제조
상기 합성예 1에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 페닐트리에톡시실란 50 중량부, 테트라에톡시실란 20 중량부 및 아크릴록시에틸트리메톡시실란 30 중량부를 넣은 것을 제외하고는 상기 합성예 1과 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 1,000인 실록산 공중합체를 제조하였다.
합성예 8 : 실록산 공중합체(H)의 제조
상기 합성예 2에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 페닐트리에톡시실란 10 중량부, 테트라에톡시실란 50 중량부 및 아크릴록시프로필트리메톡시실란 40 중량부를 넣은 것을 제외하고는 상기 합성예 2와 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 20,000인 실록산 공중합체를 제조하였다.
합성예 9 : 실록산 공중합체(I)의 제조
상기 합성예 2에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 페닐트리에톡시실란 50 중량부, 테트라에톡시실란 40 중량부 및 아크릴록시프로필트리메톡시실란 10 중량부를 넣은 것을 제외하고는 상기 합성예 2와 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 16,000인 실록산 공중합체를 제조하였다.
비교합성예 1 : 실록산 공중합체(J)의 제조
상기 합성예 1에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 메틸트리에톡시실란 50 중량부 및 테트라에톡시실란 50 중량부를 넣은 것을 제외하고는 상기 합성예 2와 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 14,000인 실록산 공중합체를 제조하였다.
비교합성예 2 : 실록산 공중합체(K)의 제조
상기 합성예 1에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 메틸트리에톡시실란 45 중량부, 테트라에톡시실란 50 중량부, 아크릴록시프로필트리메톡시실란 5 중량부를 넣은 것을 제외하고는 상기 합성예 1과 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 14,500인 실록산 공중합체를 제조하였다.
비교합성예 3 : 실록산 공중합체(L)의 제조
상기 합성예 1에서 냉각관과 교반기를 구비한 플라스크에 반응성 실란으로 각각 메틸트리에톡시실란 20 중량부, 테트라에톡시실란 30 중량부 및 아크릴록시프로필트리메톡시실란 50 중량부를 넣은 것을 제외하고는 상기 합성예 1와 동일한 방법으로 실시하였다. 최종적으로 GPC 분석결과, 폴리스타이렌 환산중량평균분자량(MW)이 7,500인 실록산 공중합체를 제조하였다
비교합성예 4 : 아크릴 공중합체(A)의 제조
냉각기와 교반기가 구비된 플라스크에 프로필렌글리콜모노에틸아세테이트 200 중량부, 메타크릴산 30 중량부, 스티렌 30 중량부 및 아릴메타크릴레이트 40 중량부의 혼합 용액을 투입하였다. 상기 액상 조성물을 혼합 용기에서 600 rpm으로 충분히 혼합한 뒤, 2,2'-아조비스(2,4-디메틸발레로니트릴) 15 중량부를 첨가하였다. 상기 중합혼합용액을 70℃까지 천천히 상승시켜, 이 온도로 8 시간 동안 유지 후 상온으로 냉각하고 중합금지제로 하이드로벤조페논을 500 ppm 첨가하여 고형분 농도가 33 중량%인 아크릴계 공중합체를 얻었다. 얻어진 아크릴계 공중합체의 중량평균분자량은 10,000이었다. 이때, 중량평균분자량은 GPC을 사용하여 측정한 폴리스타이렌 환산평균분자량이다.
[실시예]
실시예 1 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 합성예 1에서 제조한 실록산 공중합체(A) 100 중량부, 광개시제로는 [1-[9-에틸-6-(2-메틸벤조일)-9H-카바조일-3-일]-1-(O-아세틸옥심) 5 중량부, 에틸렌성 불포화 결합을 가지는 다관능성 모노머로 디펜타에리스리톨헥사아크릴레이트 30 중량부를 혼합하였다. 상기 혼합물에 고형분 농도가 30 중량%가 되도록 프로필렌글리콜모노에틸아세테이트를 가하여 용해시킨 후, 0.2 ㎛의 밀리포아필터로 여과하여 네가티브 감광성 유-무기 하이브리드 절연막 조성물 코팅 용액을 제조하였다.
실시예 2 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A) 대신에 합성예 2의 실록산 공중합체(B)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 3 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A) 대신에 합성예 2의 실록산 공중합체(C)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 4 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A) 대신에 합성예 2의 실록산 공중합체(D)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 5 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A) 대신에 합성예 2의 실록산 공중합체(E)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 6 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A) 대신에 합성예 2의 실록산 공중합체(F)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 7 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A) 대신에 합성예 2의 실록산 공중합체(G)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 8 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A) 대신에 합성예 2의 실록산 공중합체(H)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 9 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A) 대신에 합성예 2의 실록산 공중합체(I)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 10 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 광개시제인 [1-[9-에틸-6-(2-메틸벤조일)-9H-카바조일-3-일]-1-(O-아세틸옥심)을 대신하여 2-(o-클로로페닐)-4,5-디(m-메톡시페닐) 이미다졸 이량체(HABI-1311, (주)대림화학 제조)를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 11 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 광개시제인 [1-[9-에틸-6-(2-메틸벤조일)-9H-카바조일-3-일]-1-(O-아세틸옥심)을 대신하여 Irgacure819 (Ciba 제조)를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 12 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 에틸렌성 불포화 결합을 가지는 다관능성 모노머로 디펜타에리스리톨헥사아크릴레이트를 대신하여 트리에틸렌글리콜디아크릴레이트를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 13 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 에틸렌성 불포화 결합을 가지는 다관능성 모노머로 디펜타에리스리톨헥사아크릴레이트 30 중량부를 대신하여 10 중량부를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 14 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 에틸렌성 불포화 결합을 가지는 다관능성 모노머로 디펜타에리스리톨헥사아크릴레이트를 30 중량부를 대신하여 100 중량부를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하였다.
실시예 15 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 에틸렌성 불포화 결합을 가지는 다관능성 모노머로 디펜타에리스리톨헥사아크릴레이트를 30 중량부를 대신하여 5 중량부를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하였다.
비교예 1 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A)를 대신하여 비교합성예 1의 실록산 공중합체(J)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
비교예 2 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A)를 대신하여 비교합성예 2의 실록산 공중합체(K)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
비교예 3 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A)를 대신하여 비교합성예 2의 실록산 공중합체(L)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하였다.
비교예 4 : 네가티브형 감광성 아크릴계 절연막 조성물 제조
상기 실시예 1에서 합성예 1의 실록산 공중합체(A)를 대신하여 비교합성예 3의 아크릴 공중합체(A)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 제조하여 네가티브형 감광성 아크릴계 절연막 조성물 코팅 용액을 제조하였다.
비교예 5 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 광개시제인 [1-[9-에틸-6-(2-메틸벤조일)-9H-카바조일-3-일]-1-(O-아세틸옥심)을 5 중량부를 대신하여 35 중량부를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하였다.
비교예 6 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 에틸렌성 불포화 결합을 가지는 다관능성 모노머로 디펜타에리스리톨헥사아크릴레이트를 30 중량부를 대신하여 4 중량부를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하였다.
비교예 7 : 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 제조
상기 실시예 1에서 에틸렌성 불포화 결합을 가지는 다관능성 모노머로 디펜타에리스리톨헥사아크릴레이트를 30 중량부를 대신하여 105 중량부를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 제조하였다.
시험예
글래스(glass) 기판 상에 스핀코터를 사용하여 상기 실시예 1 내지 15 및 비교예 1내지 7에서 제조한 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 및 네가티브형 감광성 아크릴계 절연막 조성물을 도포한 뒤, 100℃로 2 분간 핫 플레이트상에서 프리베이크하여 두께가 4.0 ㎛인 막을 형성하였다. 상기 막에 대하여 감도, 해상도, 공정마진, 투과도, 내열변색성, 절연성, 내열성 등의 물성을 다음과 같이 측정하여 하기 표 1에 나타내었다.
가) 감도 - 위와 같이 형성된 막에 소정의 패턴 마스크(pattern mask)를 사용하여 365 ㎚에서의 강도가 20 ㎽/㎠인 자외선을 감도가 10 ㎛ Line & Space 1:1 CD기준 Dose량을 조사한 후, 테트라메틸 암모늄히드록시드 2.38 중량%의 수용액으로 23℃에서 1 분간 현상한 후, 초순수로 1 분간 세정하였다.
그 다음, 오븐속에서 230℃로 60 분간 경화시켜 두께가 3.0 ㎛인 패턴 막을 얻었다.
이때, 감도가 50 mJ/cm2 이하이어야 한다.
나) 해상도 - 상기 가)의 감도 측정시 형성된 패턴막의 최소 크기로 측정하였다.
다) 공정마진 - 상기 가)의 감도 측정시와 동일한 방법으로 패턴막을 형성하되 10 ㎛ Line & Space 1:1 CD기준으로 경화 전,후의 CD변화율을 측정하였다. 이때, 변화율이 0 ~ 10%인 경우를 ○, 10 ~ 20%인 경우를 △, 20%를 넘는 경우를 × 로 표시하였다.
라) 투명성 - 투명성의 평가는 상기 가)의 감도 측정시 형성된 패턴막의 400 ㎚에서의 투과율을 분광광도계를 이용하여 측정하였다. 이때의 투과율이 90% 이상인 경우를 ○, 85 ~ 90%인 경우를 △, 80% 미만은 경우를 × 로 표시하였다.
마) 내열변색성 - 상기 라)의 투명성 평가시의 측정 기판을 300℃의 오븐에서 40 분동안 추가로 경화하여 경화전,후에 있어서의 패턴막의 400 nm 투과율 변화에 의한 내열변색성을 평가하였다. 이때의 변화율이 5% 미만인 경우를 ○, 5 ~ 10%인 경우를 △, 10%를 넘는 경우를 × 로 표시하였다.
바) 절연성 - 절연성은 유전상수를 기준으로 판단하였다. 유전상수는 캐퍼시터의 정전 용량을 측정하여, 아래의 식을 통해 구하였다. 구체적으로, 1 cm2의 면적의 Gold로 패턴된 상,하 금속전극 사이에 상기 가)의 감도 측정시 형성시와 동일한 방법으로 네거티브형 감광성 유-무기 하이브리드 절연막을 형성 후 MIM(Metal/Insulator/Metal)구조로 이루어진 소자를 임피던스 어넬라이저를 통해 정전용량을 측정하였고, 아래의 식을 통해 각각의 유전상수를 계산하였다.
C(정전용량) =
ε0(진공유전률)*εr(유전체박막비유전율)*A(유효면적)/d(유전체박막두께)
상기 유전상수를 측정하여 2.5 ~ 2.8인 경우를 ○, 2.8 ~ 3.2 인 경우를 △, 3.2이상인 경우를 × 로 나타내었다.
사) 내열성 - 내열성은 TGA를 이용하여 측정하였다. 구체적으로, 상기 가)의 감도 측정시 형성된 패턴막을 샘플링 한 후, TGA를 이용하여 상온에서 900℃까지 분당 10℃씩 승온하였다. 5 중량% 손실 온도가 350℃ 초과인 경우를 ○, 5 중량% 손실 온도가 300-350℃인 경우를 △, 5 중량% 손실 온도가 300℃ 미만인 경우를 × 로 나타내었다.
아) 평탄도 - 하부 단차가 1.0 ~ 1.5㎛ TFT 기판위에 상기 가)의 조건으로 코팅, 현상, 경화공정을 진행후, TFT 기판의 Channel부와 Pixel부 단차차이를 통해 평탄도를 평가하였다. 이때의 단차 차이가 코팅후 두께대비 5% 미만인 경우를 ○, 5 ~ 10%인 경우를 △, 10% 이상인 경우를 × 로 표시하였다.
표 1
구분 감도(mJ/cm2) 해상도(㎛) 공정마진 투과도 내열변색성 절연성 내열성 평탄도
실시예 1 45 7
실시예 2 40 8
실시예 3 47 8
실시예 4 50 7
실시예 5 49 8
실시예 6 47 7
실시예 7 46 8
실시예 8 50 8
실시예 9 47 7
실시예 10 46 7
실시예 11 48 7
실시예 12 49 8
실시예 13 48 7
실시예 14 44 8
실시예 15 47 8
비교예 1 85 7 × × ×
비교예 2 75 7 × ×
비교예 3 39 12 × × × ×
비교예 4 48 8 × × × ×
비교예 5 47 15 × × × × ×
비교예 6 75 7 × × × ×
비교예 7 35 15 × × × ×
본 발명에 따른 네가티브형 감광성 유-무기 하이브리드 절연막 조성물은 감도, 해상도, 공정마진, 투명성, 내열변색성, 평탄도 등의 성능이 모두 우수하였으며, 특히 절연성이 비교예 1 내지 7과 비교하여 우수함으로써, 소비전력을 낮출 수 있으며, 잔상 및 크로스토크, 문턱전압의 시프트 현상을 없애 줄 수 있다. 또한, 뛰어난 내열성으로 인한 낮은 아웃개싱을 가능하게 함으로써 우수한 패널 신뢰성을 확보할 수 있었다. 이를 통한 다양한 디스플레이 공정에서 네가티브형 감광성 유-무기 하이브리드 절연막이 적용가능함을 알 수 있었다.
본 발명에 따른 네가티브형 감광성 유-무기 하이브리드 절연막 조성물은 기존의 SiNx 패시베이션/아크릴계 감광성 유기절연막의 이중구조를 하나의 층으로 형성하여 공정단순화 및 생산비 절감을 가져올 수 있으며, 감도, 해상도, 공정마진, 투명성, 내열변색성, 평탄도 등의 성능이 우수할 뿐만 아니라, 특히 저 유전률 절연막을 가능하게 함으로써 소비전력을 낮출 수 있고, 잔상 및 크로스토크, 및 문턱 전압의 시프트 현상을 없애 줄 수 있으며, 또한, 뛰어난 내열성으로 인한 낮은 아웃개싱을 가능하게 함으로써 우수한 패널 신뢰성을 확보할 수 있으며, 이를 통해 다양한 디스플레이에서 패시베이션 절연막, 게이트 절연막 뿐만 아니라 평탄화막 등에도 유용하게 적용할 수 있다.

Claims (17)

  1. a)i) 하기 화학식 1로 표시되는 1-3개의 페닐기 또는 탄소수 1-4의 알킬기를 포함하는 반응성 실란, ii) 하기 화학식 2로 표시되는 4관능 반응성 실란, 및 iii) 하기 화학식 3으로 표시되는 아크릴기 또는 비닐기를 포함하는 반응성 실란 단량체를 촉매하에 가수분해 및 축합중합 하여 얻어진 폴리스티렌 환산중량평균분자량(Mw)이 1,000 내지 20,000인 실록산 공중합체;
    b) 광개시제; 및
    c) 에틸렌성 불포화 결합을 가지는 다관능성 모노머 또는 올리고머
    를 포함하는 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물:
    [화학식 1]
    (R1)nSi(R2)4-n
    상기 식에서, R1은 페닐기 또는 탄소수 1-4의 알킬기이고, R2는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시, 또는 아세톡시이고, n은 1-3의 정수이며;
    [화학식 2]
    Si(R3)4
    상기 식에서, R3는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시 또는 아세톡시기이며;
    [화학식 3]
    (R4)nSi[(R5)(R6)]4-n
    상기 식에서, R4는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시 또는 아세톡시이고, R5는 각각 독립적으로 아크릴기 또는 비닐기이고, R6은 각각 독립적으로 탄소수 1-4의 알킬기이며, n은 1-3의 정수이다.
  2. 제1항에 있어서,
    a)i) 상기 화학식 1로 표시되는 1-3개의 페닐기 또는 탄소수 1-4의 알킬기를 포함하는 반응성 실란 10 내지 50 중량부, ii) 상기 화학식 2로 표시되는 4관능 반응성 실란 20 내지 50 중량부, 및 iii) 상기 화학식 3으로 표시되는 아크릴기 또는 비닐기를 포함하는 반응성 실란 10 내지 40 중량부로 이루어진 실록산 공중합체 100 중량부;
    b) 상기 a)의 실록산 공중합체 100 중량부에 대하여 상기 광개시제 0.1 내지 30 중량부; 및
    c) 상기 a)의 실록산 공중합체 100 중량부에 대하여 에틸렌성 불포화 결합을 가지는 다관능성 모노머 또는 올리고머 5 내지 100 중량부를 포함하는 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물.
  3. 제1항에 있어서,
    상기 a)의 실록산 공중합체가 iv) 하기 화학식 4로 표시되는 반응성 실란을 10-50 중량부를 추가로 포함하여 촉매하에 가수분해 및 축합중합된 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물:
    [화학식 4]
    (R7)nSi[(R8)(R9)]4-n
    상기 식에서, R7는 각각 독립적으로 탄소수 1-4의 알콕시기, 페녹시 또는 아세톡시이고, R8는 각각 독립적으로 탄소수 1-4의 알킬기이고, R9는 각각 독립적으로 수소, 에폭시기, 헥세닐기, 메타크릴기 또는 알릴기이며, n은 1-3의 정수이다.
  4. 제1항에 있어서,
    상기 b)의 광개시제가 2,4-비스트리클로로메틸-6-p-메톡시스티릴-s-트리아진, 2-p-메톡시스티릴-4,6-비스트리클로로메틸-s-트리아진, 2,4-트리클로로메틸-6-트리아진, 2,4-트리클로로메틸-4-메틸나프틸-6-트리아진, 2-(o-클로로페닐)-4,5-디페닐 이미다졸 이량체, 2-(o-클로로페닐)-4,5-디(m-메톡시페닐) 이미다졸 이량체, 2-(o-플루오르페닐)-4,5-디페닐 이미다졸 이량체, 2-(o-메톡시페닐)-4,5-디페닐 이미다졸 이량체, 2-(o-메톡시페닐)-4,5-디페닐 이마다졸 이량체, 2,4-디(p-메톡시 페닐)-5-페닐 이미다졸 이량체, 2-(2,4-디메톡시페닐)-4,5-디페닐 이미다졸 이량체, 2-(p-메틸머캅토페닐)-4,5-디페닐 이미다졸 이량체, [1-[9-에틸-6-(2-메틸벤조일)-9H-카바조일-3-일]-1-(O-아세틸옥심), 벤조페논, p-(디에틸아미노)벤조페논, 2,2-디클로로-4-페녹시아세토페논, 2,2-디에톡시아세토페논, 2-도데실티오크산톤, 2,4-디메틸티오크산톤, 2,4-디에틸티오크산톤, 2,2-비스-2-클로로페닐-4,5,4,5-테트라페닐-2-1,2-비이미다졸, Irgacure 369, Irgacure 651, Irgacure 907, Darocur TPO, Irgacure 819, OXE-02, OXE-01, N-1919, NCI-831 및 NCI-930로 이루어지는 군에서 선택된 1종 이상인 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물.
  5. 제1항에 있어서,
    상기 c)의 에틸렌성 불포화 결합을 가지는 다관능성 모노머가 1,4-부탄디올디아크릴레이트, 1,3-부틸렌글리콜디아크릴레이트, 에틸렌글리콜디아크릴레이트, 트리메틸올프로판디아크릴레이트, 트리메틸올프로판트리아크릴레이트, 펜타에리스리톨트리아크릴레이트, 펜타에리스리톨테트라아크릴레이트, 트리에틸렌글리콜디아크릴레이트, 폴리에틸렌글리콜디아크릴레이트, 디펜타에리스리톨헥사디아크릴레이트 , 디펜타에리스리톨트리디아크릴레이트, 디펜타에리스리톨디아크릴레이트, 솔비톨트리아크릴레이트, 비스페놀 A 디아크릴레이트 유도체, 디펜타아리스리톨폴리아크릴레이트 및 이들의 메타크릴레이트류로 이루어지는 군에서 선택된 1종 이상인 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물.
  6. 제1항에 있어서,
    상기 c)의 에틸렌성 불포화 결합을 가지는 다관능성 올리고머가 알리파틱 우레탄 아크릴레이트 올리고머, 아로마틱 우레탄 아크릴레이트 올리고머, 에폭시 아크릴레이트 올리고머, 에폭시 메타크릴레이트 올리고머, 폴리에스터 아크릴레이트 올리고머, 실리콘 아크릴레이트 올리고머, 멜라민 아크릴레이트 올리고머 및 덴드리틱 아크릴레이트 올리고머로 이루어지는 군에서 선택된 1종 이상인 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물.
  7. 제1항에 있어서,
    상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물이 하기 화학식 5로 이루어지는 군으로부터 선택되는 1종 이상의 d) 멜라민 가교제를 추가로 포함하는 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물:
    [화학식 5]
    Figure PCTKR2014002991-appb-I000002
    상기 식에서, R10 내지 R15는 각각 독립적으로 수소원자이거나 -CH2OCH3이며, 상기 R10 내지 R15 중 적어도 하나는 -CH2OCH3이다.
  8. 제1항에 있어서,
    상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물이 (3-글리시드옥시프로필)트리메톡시실란, (3-글리시드옥시프로필)트리에톡시실란, (3-글리시드옥시프로필)메틸디메톡시실란, (3-글리시드옥시프로필)메틸디에톡시실란, (3-글리시드옥시프로필)디메틸에톡시실란, 3,4-에폭시부틸트리메톡시실란, 3,4-에폭시부틸트리에톡시실란, 2-(3,4-에폭시시크로헥실)에틸트리메톡시실란, 2-(3,4-에폭시시크로헥실)에틸트리에톡시실란, 아미노프로필트리메톡시실란, 아미노프로필트리에톡시실란, 3-트리에톡시실리-N-(1,3 디메틸-부틸리덴)프로필아민, N-2(아미노에틸)3-아미노프로필트리메톡시실란, N-2(아미노에틸)3-아미노프로필트리에톡시실란, N-2(아미노에틸)3-아미노프로필메틸디메톡시실란, N-페닐-3-아미노프로필트리메톡시실란 및 (3-이소시아네이트프로필)트리에톡시실란으로 이루어지는 군으로부터 선택되는 1종 이상의 e) 실란커플링제를 추가로 포함하는 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물.
  9. 제1항에 있어서,
    상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물이 디옥틸프탈레이트, 디이소노닐프탈레이트, 디옥틸아디페이트, 트리크레실포스페이트, 및 2,2,4-트리메틸-1,3-펜탄디올 모노이소부티레이트, 2,2,4-트리메틸-1,3-펜탄디올 디이소부티레이트로 이루어지는 군으로부터 선택되는 1종 이상의 f) 가소제를 추가로 포함하는 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물.
  10. 제1항에 있어서,
    상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물이 글리시딜 에스테르형 에폭시 수지, 글리시딜 아민형 에폭시 수지 또는 복소환식 에폭시 수지, 비스페놀 A 형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지 및 환상지방족 에폭시 수지로 이루어진 군에서 선택된 1종 이상의 g) 에폭시 수지를 추가로 포함하는 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물.
  11. 제1항에 있어서,
    상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물이 상기 a) 실록산 공중합체 100 중량부에 대하여, d)의 멜라민 가교제 0.1-30 중량부, e) 실란커플링제 0.1-30 중량부, f) 가소제 0.5-20 중량부, g) 에폭시 수지 0.5-10 중량부로 이루어지는 군으로부터 선택되는 1 종 이상의 첨가제를 추가로 포함하는 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물.
  12. 제1항에 있어서,
    상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물이 메탄올, 에탄올, 벤질알코올, 헥실알코올 등의 알코올류, 에틸렌글리콜메틸에테르아세테이트, 에틸렌글리콜에틸에테르아세테이트, 에틸렌글리콜메틸에테르프로피오네이트, 에틸렌글리콜에틸에테르프로피오네이트, 에틸렌글리콜메틸에테르, 에틸렌글리콜에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌 글리콜모노에틸에테르, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜메틸에틸에테르, 디에틸렌글리콜부틸메틸에테르, 디에틸렌글리콜부틸에틸에테르, 트리에틸렌글리콜디메틸에테르, 트리에틸렌글리콜부틸메틸에테르, 디에틸렌글리콜터셔리부틸에테르, 테트라에틸렌글리콜디메틸에테르 및 디프로필렌글리콘디에틸에테르로, 디에틸렌글리콜에틸헥실에테르, 디에틸렌글리콜메틸헥실에테르, 디프로필렌글리콜부틸메틸에테르, 디프로필렌글리콜에틸헥실에테르, 디프로필렌글리콜메틸헥실에테르, 프로필렌글리콜메틸에테르 아세테이트, 프로필렌글리콜에틸에테르아세테이트, 프로필렌글리콜프로필 에테르아세테이트, 프로필렌글리콜메틸에테르프로피오네이트, 프로필렌글리콜에틸에테르프로피오네이트, 프로필렌글리콜프로필에테르프로피오네이트, 프로필렌글리콜메틸에테르, 프로필렌글리콜에틸에테르, 프로필렌글리콜프로필에테르, 프로필렌글리콜부틸에테르, 디프로필렌글리콜디메틸에테르, 디포로필렌글리콜 디에틸에테르, 부틸렌글리콜모노메틸 에테르, 부틸렌글리콜모노에틸에테르, 디부틸렌글리콜디메틸에테르 및 디부틸렌글리콜디에틸에테르, 메틸베타메톡시프로피오네이트, 에틸베타에톡시프로피오네이트로 이루어지는 군으로부터 선택되는 1종 이상의 h) 용매를 추가로 포함하는 것을 특징으로 하는 네가티브형 감광성 유-무기 하이브리드 절연막 조성물.
  13. 디스플레이 소자의 패턴형성방법에 있어서, 제1항 내지 제12항 중 어느 한 항 기재의 네가티브형 감광성 유-무기 하이브리드 절연막 조성물을 사용하는 것을 특징으로 하는 디스플레이 소자의 패턴형성방법.
  14. 제13항에 있어서,
    상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물을 TFT-LCD, OLED, 또는 O-TFT의 패시베이션(Passivation) 절연막으로 이용하는 것을 특징으로 하는 디스플레이 소자의 패턴형성방법.
  15. 제13항에 있어서,
    상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물을 TFT-LCD, OLED, 또는 O-TFT의 게이트(Gate) 절연막으로 이용하는 것을 특징으로 하는 디스플레이 소자의 패턴형성방법.
  16. 제13항에 있어서,
    상기 네가티브형 감광성 유-무기 하이브리드 절연막 조성물을 TFT-LCD, OLED, 또는 O-TFT의 평탄화막으로 이용하는 것을 특징으로 하는 디스플레이 소자의 패턴형성방법.
  17. 제1항 내지 제12항 중 어느 한 항 기재의 네가티브형 감광성 유무기 하이브리드 절연막 조성물의 경화체를 포함하는 것을 특징으로 하는 디스플레이 소자.
PCT/KR2014/002991 2013-04-10 2014-04-07 네가티브형 감광성 유-무기 하이브리드 절연막 조성물 WO2014168393A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480020441.6A CN105190782B (zh) 2013-04-10 2014-04-07 负型感光性有机‑无机混合绝缘膜组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130039061A KR102059489B1 (ko) 2013-04-10 2013-04-10 네가티브형 감광성 유-무기 하이브리드 절연막 조성물
KR10-2013-0039061 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014168393A1 true WO2014168393A1 (ko) 2014-10-16

Family

ID=51689748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002991 WO2014168393A1 (ko) 2013-04-10 2014-04-07 네가티브형 감광성 유-무기 하이브리드 절연막 조성물

Country Status (4)

Country Link
KR (1) KR102059489B1 (ko)
CN (1) CN105190782B (ko)
TW (1) TWI616722B (ko)
WO (1) WO2014168393A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10525406B2 (en) 2017-05-30 2020-01-07 Saudi Arabian Oil Company Polymer blended membranes for sour gas separation
CN114539888A (zh) * 2022-02-27 2022-05-27 上谷新材料(苏州)有限公司 一种可剥离双重固化涂层及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960622B1 (ko) * 2015-01-14 2019-03-20 닛뽕소다 가부시키가이샤 유기 박막 트랜지스터

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090019621A (ko) * 2007-08-21 2009-02-25 주식회사 동진쎄미켐 패턴형성용 네가티브 포토레지스트 조성물
KR20100066808A (ko) * 2008-12-10 2010-06-18 주식회사 동진쎄미켐 포지티브형 감광성 유-무기 하이브리드 절연막 조성물

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100911889B1 (ko) * 2007-07-16 2009-08-11 한국전기연구원 유무기 하이브리드 감광성 수지 조성물 및 이의 경화체를이용한 액정표시소자
KR101044548B1 (ko) * 2007-12-28 2011-06-27 주식회사 삼양사 유-무기 복합 양성 포토레지스트 조성물
JP5240459B2 (ja) * 2008-02-19 2013-07-17 Jsr株式会社 感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズならびにそれらの形成方法
KR20120021488A (ko) * 2010-08-03 2012-03-09 주식회사 동진쎄미켐 네가티브 감광성 수지 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090019621A (ko) * 2007-08-21 2009-02-25 주식회사 동진쎄미켐 패턴형성용 네가티브 포토레지스트 조성물
KR20100066808A (ko) * 2008-12-10 2010-06-18 주식회사 동진쎄미켐 포지티브형 감광성 유-무기 하이브리드 절연막 조성물

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10525406B2 (en) 2017-05-30 2020-01-07 Saudi Arabian Oil Company Polymer blended membranes for sour gas separation
US11311837B2 (en) 2017-05-30 2022-04-26 Saudi Arabian Oil Company Polymer blended membranes for sour gas separation
CN114539888A (zh) * 2022-02-27 2022-05-27 上谷新材料(苏州)有限公司 一种可剥离双重固化涂层及其制备方法

Also Published As

Publication number Publication date
CN105190782A (zh) 2015-12-23
TWI616722B (zh) 2018-03-01
KR102059489B1 (ko) 2019-12-26
TW201447483A (zh) 2014-12-16
CN105190782B (zh) 2017-07-21
KR20140122421A (ko) 2014-10-20

Similar Documents

Publication Publication Date Title
WO2010068027A2 (ko) 포지티브형 감광성 유-무기 하이브리드 절연막 조성물
WO2015108386A1 (ko) 신규한 β-옥심에스테르 플루오렌 화합물, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물
WO2018159975A1 (ko) 고분자 수지 화합물 및 이를 포함하는 블랙 뱅크용 감광성 수지 조성물
WO2013165207A1 (ko) 신규한 옥심에스테르 플로렌 화합물, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물
WO2014119849A1 (ko) 감광성 수지 조성물 및 이를 이용한 패턴 형성 방법
WO2017142153A1 (ko) 폴리실세스퀴옥산 수지 조성물 및 이를 포함하는 차광용 블랙 레지스트 조성물
WO2016076652A1 (ko) 액정디스플레이 패널용 블랙매트릭스 포토레지스트 조성물
WO2017039159A1 (ko) 저온 경화 조성물, 그로부터 형성된 경화막, 및 상기 경화막을 갖는 전자 장치
WO2020139042A2 (ko) 카바졸 멀티 베타 옥심에스테르 유도체 화합물 및 이를 포함하는 광중합 개시제와 포토레지스트 조성물
WO2015160229A1 (ko) 폴리실세스퀴옥산 공중합체 및 이를 포함하는 감광성 수지 조성물
WO2012064074A1 (en) Photosensitive resin composition, and dielectric insulating film and electronic device using the same
WO2013027936A2 (ko) 흑색 감광성 수지 조성물 및 이를 구비한 화상표시장치
WO2014168393A1 (ko) 네가티브형 감광성 유-무기 하이브리드 절연막 조성물
WO2015199449A1 (ko) 차광용 감광성 수지 조성물 및 이로부터 형성된 차광층
WO2017086590A1 (en) Method for preparing column spacer
WO2012044070A2 (en) Photosensitive resin composition for organic insulator
WO2015064958A1 (ko) 신규한 옥심에스테르 비페닐 화합물, 이를 포함하는 광개시제 및 감광성 수지 조성물
WO2022182157A1 (ko) 격벽 형성용 감광성 수지 조성물, 이를 이용하여 제조된 격벽 구조물 및 상기 격벽 구조물을 포함하는 표시 장치
WO2022177332A1 (ko) 유기금속 화합물 및 폴리실록산 공중합체를 포함하는 감광성 조성물 및 그 제조방법
WO2018034460A1 (en) Photosensitive resin composition and cured film prepared therefrom
WO2017078267A1 (en) Photosensitive resin composition and cured film prepared therefrom
WO2022065886A1 (ko) 저굴절 열경화성 조성물, 이로부터 형성된 광학 부재 및 표시장치
WO2017090879A1 (en) Photosensitive resin composition and cured film prepared therefrom
WO2021256814A1 (ko) 봉지재 조성물 및 발광 소자
WO2017078272A1 (en) Photosensitive resin composition and cured film prepared therefrom

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020441.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782115

Country of ref document: EP

Kind code of ref document: A1