WO2022124547A1 - 전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 전기영동 장치 - Google Patents

전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 전기영동 장치 Download PDF

Info

Publication number
WO2022124547A1
WO2022124547A1 PCT/KR2021/013884 KR2021013884W WO2022124547A1 WO 2022124547 A1 WO2022124547 A1 WO 2022124547A1 KR 2021013884 W KR2021013884 W KR 2021013884W WO 2022124547 A1 WO2022124547 A1 WO 2022124547A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
electrophoretic device
semiconductor
group
based compound
Prior art date
Application number
PCT/KR2021/013884
Other languages
English (en)
French (fr)
Inventor
정지영
김미선
김영민
박영우
박철진
윤진섭
김장혁
류동완
유은선
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2022124547A1 publication Critical patent/WO2022124547A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Definitions

  • the present disclosure relates to a curable composition for an electrophoretic device, a photosensitive cured film using the same, and an electrophoretic device including the photosensitive cured film.
  • the LED is a semiconductor having a structure in which an n-type semiconductor crystal in which a plurality of carriers are electrons and a p-type semiconductor crystal in which a plurality of carriers are holes using the characteristics of a compound semiconductor are bonded to each other. It is a semiconductor device that is converted into light and expressed.
  • LED semiconductors have high light conversion efficiency, so they consume very little energy, have a semi-permanent lifespan and are environmentally friendly, so they are called the revolution of light as a green material.
  • compound semiconductor technology high-brightness red, orange, green, blue and white LEDs have been developed, and by using them, many fields such as traffic lights, mobile phones, automobile headlights, outdoor electric signs, LCD BLU (back light unit), and indoor/outdoor lighting It is being applied in and active research continues at home and abroad.
  • GaN-based compound semiconductors with a wide bandgap are materials used for manufacturing LED semiconductors that emit light in green, blue, and ultraviolet regions, and since it is possible to manufacture white LED devices using blue LED devices, a lot of research on this is being done
  • One embodiment is to provide a curable composition (photosensitive composition) containing semiconductor nanorods that has good dielectrophoresis and can implement a fine line width through photosensitivity reaction.
  • Another embodiment is to provide a photosensitive cured film prepared using the curable composition.
  • Another embodiment is to provide an electrophoretic device including the photosensitive cured film.
  • One embodiment is (A) a semiconductor nanorod; (B) binder resin; (C) a photopolymerizable monomer; (D) a photoinitiator; And (E) provides a curable composition for an electrophoretic device comprising a solvent.
  • the semiconductor nanorods may have a diameter of 300 nm to 900 nm.
  • the semiconductor nanorods may have a length of 3.5 ⁇ m to 5 ⁇ m.
  • the semiconductor nanorods may include a GaN-based compound, an InGaN-based compound, or a combination thereof.
  • the semiconductor nanorod may have a surface coated with a metal oxide.
  • the metal oxide may include alumina, silica, or a combination thereof.
  • the semiconductor nanorods may be included in an amount of 0.01 wt% to 1 wt% based on the total amount of the curable composition.
  • the binder resin may include an acrylic resin, a cardo-based resin, an epoxy resin, or a combination thereof.
  • the binder resin may have a weight average molecular weight of 2,000 g/mol to 20,000 g/mol.
  • the photopolymerization initiator may include an oxime-based compound, an acetophenone-based compound, or a combination thereof.
  • the curable composition for an electrophoretic device may include, based on the total amount of the curable composition for an electrophoretic device, (A) 0.01 wt% to 1 wt% of the semiconductor nanorods; (B) 1 wt% to 40 wt% of the binder resin; (C) 1% to 10% by weight of the photopolymerizable monomer; (D) 0.1 wt% to 5 wt% of the photopolymerization initiator; and (E) the remaining amount of the solvent.
  • the curable composition for an electrophoretic device includes malonic acid; 3-amino-1,2-propanediol; silane-based coupling agent; leveling agent; fluorine-based surfactants; Or it may further include a combination thereof.
  • Another embodiment provides a photosensitive cured film prepared by using the curable composition for an electrophoretic device.
  • Another embodiment provides an electrophoretic device including the photosensitive cured film.
  • the composition according to an embodiment is a negative photosensitive composition (photoresist composition) including semiconductor nanorods, has good dielectric migration, and can perform a patterning process after dielectrophoresis. Time and process cost can be drastically reduced (improving fairness), and fine line width can be realized.
  • FIG. 1 is an example of a cross-sectional view of a semiconductor nanorod used in a curable composition for an electrophoretic device according to an embodiment.
  • Figure 2 shows the step of coating the curable composition for an electrophoretic device according to an embodiment comprising a semiconductor nanorod on an electrode
  • FIG. 4 is a cross-sectional view of a semiconductor nanorod aligned on an electrode
  • FIG. 8 shows a step of forming a fixed photosensitive cured film (photoresist fixed film) by post-baking after development
  • FIG. 9 is a cross-sectional view showing a state in which a photosensitive cured film fixed on a semiconductor nanorod aligned on an electrode is formed;
  • Example 10 is an optical micrograph (X500) showing the line width of a cured film obtained by patterning the composition according to Example 2;
  • 11 is an optical micrograph (X500) showing the line width of a cured film obtained by patterning the composition according to Example 3;
  • FIG. 13 is an optical micrograph (X500) showing the line width of a cured film obtained by patterning the composition according to Comparative Example 2.
  • alkyl group means a C1 to C20 alkyl group
  • alkenyl group means a C2 to C20 alkenyl group
  • cycloalkenyl group means a C3 to C20 cycloalkenyl group
  • heterocycloalkenyl group means a C3 to C20 heterocycloalkenyl group
  • aryl group means a C6 to C20 aryl group
  • arylalkyl group means a C6 to C20 arylalkyl group
  • alkylene group means a C1 to C20 alkylene group
  • arylene group means a C6 to C20 arylene group
  • alkylarylene group means a C6 to C20 alkylarylene group
  • heteroarylene group means a C3 to C20 hetero It means an arylene group
  • alkoxyylene group means a C1 to C20 alkoxyylene group
  • substitution means that at least one hydrogen atom is a halogen atom (F, Cl, Br, I), a hydroxy group, a C1 to C20 alkoxy group, a nitro group, a cyano group, an amine group, an imino group, Azido group, amidino group, hydrazino group, hydrazono group, carbonyl group, carbamyl group, thiol group, ester group, ether group, carboxyl group or a salt thereof, sulfonic acid group or a salt thereof, phosphoric acid or a salt thereof, C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 to C20 alkynyl group, C6 to C20 aryl group, C3 to C20 cycloalkyl group, C3 to C20 cycloalkenyl group, C3 to C20 cycloalkynyl group, C2 to C20 heterocycloal
  • F, Cl, Br, I
  • hetero means that at least one hetero atom among N, O, S and P is included in the formula.
  • (meth)acrylate means that both “acrylate” and “methacrylate” are possible
  • (meth)acrylic acid is “acrylic acid” and “methacrylic acid” “It means that both are possible.
  • the curable composition for an electrophoretic device includes (A) a semiconductor nanorod; (B) binder resin; (C) a photopolymerizable monomer; (D) a photoinitiator; and (E) a solvent, and when an electric field is applied to the composition coated on the electrode, the semiconductor nanorods are aligned, so complicated and expensive process costs such as u-LED and mini-LED can be dramatically reduced.
  • the semiconductor nanorod dispersion For electrophoresis of semiconductor nanorods, which are light emitting devices, the semiconductor nanorod dispersion should be inkjetted or slit coated. For large-area coating and panel production, a high dielectric permeability of the semiconductor nanorod solution is an essential parameter. . In addition, a cleaning process for a post-process after alignment of the semiconductor nanorods is absolutely necessary, but if there is no fixing film, there is a risk that the aligned semiconductor nanorods will be lost during cleaning. So far, there is no organic material used as such a fixed film. Such a fixed film needs to form a line having a thickness of 1.5 ⁇ m and a width of 2.0 ⁇ m to 4.0 ⁇ m.
  • One embodiment relates to a negative-type photoresist composition including semiconductor nanorods, which allows a patterning process to be performed after dielectrophoresis, thereby shortening the process.
  • the curable composition for an electrophoretic device is a negative photoresist composition including semiconductor nanorods, has good dielectric migration, can be patterned after dielectrophoresis, and can form a fixed film after post-baking Not only is it very advantageous in terms of fairness, but also it is possible to implement a thickness of 1.0 ⁇ m to 2.0 ⁇ m and a line width of 2.0 ⁇ m to 4.0 ⁇ m, so that it is possible to overcome the conventional limitations in terms of implementing a fine line width.
  • the semiconductor nanorods may include a GaN-based compound, an InGaN-based compound, or a combination thereof, and the surface thereof may be coated with a metal oxide.
  • the semiconductor nanorod solution semiconductor nanorod + solvent
  • it usually takes about 3 hours, which is insufficient time to perform the large-area inkjet process.
  • a metal oxide containing alumina, silica, or a combination thereof to form an insulating film (Al 2 O 3 , SiO x or a combination thereof)
  • compatibility with a solvent to be described later can be maximized.
  • the semiconductor nanorods may have a diameter of 300 nm to 900 nm, for example, 600 nm to 700 nm.
  • the semiconductor nanorods may have a length of 3.5 ⁇ m to 5 ⁇ m.
  • the surface coating of the metal oxide may be easy, and dispersion stability of the semiconductor nanorods may be maximized.
  • the semiconductor nanorods may be included in an amount of 0.01 wt% to 1 wt%, for example 0.01 wt% to 0.5 wt%, for example 0.01 wt% to 0.1 wt%, based on the total amount of the curable composition for the electrophoretic device.
  • the semiconductor nanorods When the semiconductor nanorods are included within the above range, dispersion in the composition is good, and the prepared pattern may have a fine line width.
  • the binder resin according to an embodiment may include an acrylic resin, a cardo-based resin, an epoxy resin, or a combination thereof.
  • the acrylic resin is a copolymer of a first ethylenically unsaturated monomer and a second ethylenically unsaturated monomer copolymerizable therewith, and may be a resin including one or more acrylic repeating units.
  • acrylic binder resin examples include polybenzyl methacrylate, (meth)acrylic acid/benzyl methacrylate copolymer, (meth)acrylic acid/benzyl methacrylate/styrene copolymer, (meth)acrylic acid/benzyl methacrylate/ 2-hydroxyethyl methacrylate copolymer, (meth)acrylic acid / benzyl methacrylate / styrene / 2-hydroxyethyl methacrylate copolymer and the like may be mentioned, but are not limited thereto, and these are single or two types. It is also possible to use a combination of the above.
  • the weight average molecular weight of the acrylic resin may be 5,000 g/mol to 15,000 g/mol. When the weight average molecular weight of the acrylic resin is within the above range, the adhesion to the substrate is excellent, the physical and chemical properties are good, and the viscosity is appropriate.
  • the acrylic resin may have an acid value of 80 mgKOH/g to 130 mgKOH/g. When the acid value of the acrylic resin is within the above range, the resolution of the pixel pattern is excellent.
  • cardo-based resin those used in a conventional curable resin (or photosensitive resin) composition may be used, and for example, those disclosed in Korean Patent Application Laid-Open No. 10-2018-0067243 may be used, but the present invention is not limited thereto.
  • the cardo-based resin may include, for example, a fluorene-containing compound such as 9,9-bis(4-oxiranylmethoxyphenyl)fluorene; Benzenetetracarboxylic acid dianhydride, naphthalenetetracarboxylic acid dianhydride, biphenyltetracarboxylic acid dianhydride, benzophenonetetracarboxylic acid dianhydride, pyromellitic dianhydride, cyclobutanetetracarboxylic acid dianhydride, phenol anhydride compounds such as rylenetetracarboxylic acid dianhydride, tetrahydrofurantetracarboxylic acid dianhydride, and tetrahydrophthalic anhydride; glycol compounds such as ethylene glycol, propylene glycol, and polyethylene glycol; alcohol compounds such as methanol, ethanol, propanol, n-butanol, cyclohexanol,
  • the weight average molecular weight of the cardo-based resin may be 500 g/mol to 50,000 g/mol, for example, 1,000 g/mol to 30,000 g/mol.
  • a pattern can be well formed without residue during the production of a cured film, there is no loss of film thickness during development of the solvent-type curable composition, and a good pattern can be obtained.
  • the binder resin is a cardo-based resin
  • the developability of the curable composition, particularly the photosensitive resin composition, including the binder resin is excellent, and the sensitivity during photocuring is good, so that it is excellent in fine pattern formation.
  • the epoxy resin is a monomer or oligomer that can be polymerized by heat, and may include a compound having a carbon-carbon unsaturated bond and a carbon-carbon cyclic bond.
  • the epoxy resin may include, but is not limited to, a bisphenol A-type epoxy resin, a bisphenol F-type epoxy resin, a phenol novolak-type epoxy resin, a cyclic aliphatic epoxy resin, and an aliphatic polyglycidyl ether.
  • bisphenyl epoxy resins include YX4000, YX4000H, YL6121H, YL6640, YL6677 of Yuka Shell Epoxy Co., Ltd.; Cresol novolak-type epoxy resins include EOCN-102, EOCN-103S, EOCN-104S, EOCN-1020, EOCN-1025, EOCN-1027, and Yukashell Epoxy (Co., Ltd.) )'s Epicoat 180S75;
  • Examples of the bisphenol A-type epoxy resin include Epicoat 1001, 1002, 1003, 1004, 1007, 1009, 1010 and 828 of Yuka Shell Epoxy Co., Ltd.;
  • Examples of the bisphenol F-type epoxy resin include Epicoat 807 and 834 of Yuka Shell Epoxy Co., Ltd.;
  • Examples of the phenol no-block type epoxy resin include Epicoat 152, 154, 157H65 of Yuka Shell Epoxy Co., Ltd.
  • EPPN 201, 202 of Nippon Kayaku Co., Ltd. Other cyclic aliphatic epoxy resins include CIBA-GEIGY A.G's CY175, CY177 and CY179, U.C.C's ERL-4234, ERL-4299, ERL-4221 and ERL-4206, Showa Denko Co., Ltd. Shodyne 509 , CIBA-GEIGY A.G. Araldite CY-182, CY-192 and CY-184, Dainippon Ink Kogyo Co., Ltd. Epichron 200 and 400, Eucashell Epoxy Co., Ltd.
  • Examples of aliphatic polyglycidyl ethers include Epicoat 190P and 191P from Yuccal Epoxy Co., Ltd., Eporite 100MF from Kyoesha Yushi Chemical Co., Ltd., and Epiol TMP from Nippon Yushi Co., Ltd. can
  • the binder resin may be included in an amount of 1 wt% to 40 wt%, for example 5 wt% to 30 wt%, for example 10 wt% to 30 wt%, based on the total amount of the curable composition for the electrophoretic device.
  • the binder resin is included within the above range, luminance, heat resistance, and developability are excellent in manufacturing a display device, and crosslinking property is improved to obtain excellent surface smoothness.
  • the photopolymerizable monomer may be a monofunctional or polyfunctional ester of (meth)acrylic acid having at least one ethylenically unsaturated double bond.
  • the photopolymerizable monomer has the ethylenically unsaturated double bond, it is possible to form a pattern having excellent heat resistance, light resistance and chemical resistance by causing sufficient polymerization during exposure to light in the pattern forming process.
  • photopolymerizable monomer examples include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, neopentyl glycol Di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, bisphenol A di(meth)acrylate, pentaerythritol di(meth)acrylate , pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol hexa (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) Acrylate, dipentaerythritol penta (meth)
  • Examples of commercially available products of the photopolymerizable monomer are as follows.
  • Examples of the monofunctional ester of (meth)acrylic acid include Aronix M-101 ® , M-111 ® , M-114 ® by Toagosei Chemical Co., Ltd.; Nihon Kayaku Co., Ltd.'s KAYARAD TC-110S ® , Copper TC-120S ® , etc.; V-158 ® , V-2311 ® , etc. of Osaka Yuki Chemical High School Co., Ltd. are mentioned.
  • Examples of the bifunctional ester of (meth)acrylic acid Toagosei Chemical Co., Ltd.
  • the photopolymerizable monomer may be used after treatment with an acid anhydride in order to provide better developability.
  • the photopolymerizable monomer may be included in an amount of 1 wt% to 10 wt%, for example 5 wt% to 10 wt%, based on the total amount of the curable composition for an electrophoretic device.
  • the photopolymerizable monomer is included within the above range, curing occurs sufficiently upon exposure in the pattern forming process, and reliability is excellent, and the heat resistance, light resistance, chemical resistance, resolution and adhesion of the pattern are also excellent.
  • an acetophenone-based compound As the photopolymerization initiator, an acetophenone-based compound, a benzophenone-based compound, a thioxanthone-based compound, a benzoin-based compound, a triazine-based compound, or an oxime-based compound may be used.
  • the photopolymerization initiator may include an oxime-based compound, an acetophenone-based compound, or a combination thereof, but is not limited thereto.
  • acetophenone-based compound examples include 2,2'-diethoxyacetophenone, 2,2'-dibutoxyacetophenone, 2-hydroxy-2-methylpropiophenone, p-t-butyltrichloroacetophenone, p-t -Butyldichloroacetophenone, 4-chloroacetophenone, 2,2'-dichloro-4-phenoxyacetophenone, 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropane-1 -one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, etc. are mentioned.
  • benzophenone-based compound examples include benzophenone, benzoylbenzoic acid, methylbenzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4 '-bis(diethylamino)benzophenone, 4,4'-dimethylaminobenzophenone, 4,4'-dichlorobenzophenone, 3,3'-dimethyl-2-methoxybenzophenone, etc. are mentioned.
  • thioxanthone-based compound examples include thioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2- Chlorothioxanthone etc. are mentioned.
  • benzoin-based compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzyldimethyl ketal.
  • triazine-based compound examples include 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis(trichloromethyl)-s-triazine, 2-(3',4' -dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine , 2-(p-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis(trichloromethyl)-s-triazine , 2-Biphenyl-4,6-bis(trichloromethyl)-s-triazine, bis(trichloromethyl)-6-styryl-s-triazine, 2-(naphtho-1-yl)- 4,6-bis(trichlor
  • Examples of the oxime-based compound include O-acyloxime-based compound, 2-(O-benzoyloxime)-1-[4-(phenylthio)phenyl]-1,2-octanedione, 1-(O-acetyloxime) -1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone, O-ethoxycarbonyl- ⁇ -oxyamino-1-phenylpropan-1-one, etc.
  • O-acyloxime compound examples include 1,2-octanedione, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholin-4-yl-phenyl)-butane -1-one, 1-(4-phenylsulfanylphenyl)-butane-1,2-dione-2-oxime-O-benzoate,1-(4-phenylsulfanylphenyl)-octane-1,2- Dione-2-oxime-O-benzoate, 1-(4-phenylsulfanylphenyl)-octane-1-oneoxime-O-acetate, 1-(4-phenylsulfanylphenyl)-butan-1-oneoxime -O-acetate etc. can be used.
  • a carbazole-based compound in addition to the above compound, a carbazole-based compound, a diketone-based compound, a sulfonium borate-based compound, a diazo-based compound, an imidazole-based compound, or a biimidazole-based compound may be used.
  • the photopolymerization initiator may be used together with a photosensitizer that causes a chemical reaction by absorbing light to enter an excited state and then transferring the energy.
  • photosensitizer examples include tetraethylene glycol bis-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, dipentaerythritol tetrakis-3-mercaptopropionate, and the like. can be heard
  • the photopolymerization initiator may be included in an amount of 0.1 wt% to 5 wt%, for example 0.1 wt% to 1 wt%, based on the total amount of the curable composition for an electrophoretic device.
  • photopolymerization initiator is included within the above range, photopolymerization occurs sufficiently during exposure in the pattern forming process, and a decrease in transmittance due to the unreacted initiator can be prevented.
  • the solvent may be a material having compatibility with the semiconductor nanorods, the binder resin, the photopolymerizable monomer, and the photopolymerization initiator but not reacting.
  • the solvent examples include alcohols such as methanol and ethanol; ethers such as dichloroethyl ether, n-butyl ether, diisoamyl ether, methylphenyl ether, and tetrahydrofuran; glycol ethers such as ethylene glycol methyl ether, ethylene glycol ethyl ether, and propylene glycol methyl ether; cellosolve acetates such as methyl cellosolve acetate, ethyl cellosolve acetate, and diethyl cellosolve acetate; carbitols such as methylethyl carbitol, diethyl carbitol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, and diethylene glycol diethyl ether; propylene glycol alkyl ether acetates such as propylene glyco
  • N-methylpyrrolidone dimethyl sulfoxide, benzyl ethyl ether, dihexyl ether, acetnyl acetone, isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonanol, benzyl alcohol, benzyl acetate, There are ethyl benzoate, diethyl oxalate, diethyl maleate, ⁇ -butyrolactone, ethylene carbonate, propylene carbonate, phenyl cellosolve acetate, and the like, and these may be used alone or in combination of two or more.
  • glycol ethers such as ethylene glycol monoethyl ether; ethylene glycol alkyl ether acetates such as ethyl cellosolve acetate; esters such as 2-hydroxyethyl propionate; diethylene glycols such as diethylene glycol monomethyl ether; Propylene glycol alkyl ether acetates such as propylene glycol monomethyl ether acetate and propylene glycol propyl ether acetate can be used.
  • glycol ethers such as ethylene glycol monoethyl ether
  • ethylene glycol alkyl ether acetates such as ethyl cellosolve acetate
  • esters such as 2-hydroxyethyl propionate
  • diethylene glycols such as diethylene glycol monomethyl ether
  • Propylene glycol alkyl ether acetates such as propylene glycol monomethyl ether acetate and propylene glycol propyl ether acetate
  • the solvent may be included in a balance, for example, 40 wt% to 80 wt%, such as 45 wt% to 80 wt%, such as 50 wt% to 75 wt%, based on the total amount of the curable composition for the electrophoretic device.
  • a coating film having excellent applicability and flatness of the curable composition for an electrophoretic device may be obtained.
  • the curable composition for an electrophoretic device includes malonic acid; 3-amino-1,2-propanediol; silane-based coupling agent; leveling agent; fluorine-based surfactants; Or it may further include a combination thereof.
  • the curable composition for an electrophoretic device may further include a silane-based coupling agent having a reactive substituent such as a vinyl group, a carboxyl group, a methacryloxy group, an isocyanate group, and an epoxy group in order to improve adhesion to the substrate.
  • a silane-based coupling agent having a reactive substituent such as a vinyl group, a carboxyl group, a methacryloxy group, an isocyanate group, and an epoxy group in order to improve adhesion to the substrate.
  • silane-based coupling agent examples include trimethoxysilyl benzoic acid, ⁇ -methacryl oxypropyl trimethoxysilane, vinyl triacetoxysilane, vinyl trimethoxysilane, ⁇ -isocyanate propyl triethoxysilane, ⁇ -glycan Cydoxy propyl trimethoxysilane, ⁇ -epoxycyclohexylethyltrimethoxysilane, etc. are mentioned, and these can be used individually or in mixture of 2 or more types.
  • the silane-based coupling agent may be included in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the curable composition for an electrophoretic device. When the silane-based coupling agent is included within the above range, adhesion and storage properties are excellent.
  • the curable composition for an electrophoretic device may further include a surfactant, such as a fluorine-based surfactant, for improving coating properties and preventing defect formation, if necessary.
  • a surfactant such as a fluorine-based surfactant
  • BM-1000 ® of BM Chemie, BM-1100 ® , etc. Mecha Pack F 142D ® , F 172 ® , F 173 ® , F 183 ® and the like of Dai Nippon Inky Chemical High School Co., Ltd.; Sumitomo 3M Co., Ltd.'s Prorad FC-135 ® , copper FC-170C ® , copper FC-430 ® , copper FC-431 ® , etc.; Asahi Grass Co., Ltd.'s Saffron S-112 ® , Copper S-113 ® , S-131 ® , S-141 ® , S-145 ® and others; SH-28PA ® , Copper-190 ® , Copper-193 ® , SZ-6032 ® , SF-8428 ® , etc. of Toray Silicone Co., Ltd.; F-482, F-484, F-478
  • the fluorine-based surfactant may be used in an amount of 0.001 parts by weight to 5 parts by weight based on 100 parts by weight of the curable composition for an electrophoretic device.
  • the fluorine-based surfactant is included within the above range, coating uniformity is secured, stains do not occur, and wettability to a glass substrate is excellent.
  • a predetermined amount of other additives such as antioxidants and stabilizers may be further added to the curable composition for an electrophoretic device within a range that does not impair physical properties.
  • Another embodiment provides a photosensitive cured film prepared by using the above-described curable composition for an electrophoretic device.
  • the manufacturing method of the said photosensitive cured film is as follows.
  • a desired thickness for example, 1.2 ⁇ m to 3.5, by using a method such as spin or slit coating method, roll coating method, screen printing method, applicator method, etc.
  • a coating film is formed by heating (pre-baking) at a temperature of 70°C to 100°C for 1 minute to 10 minutes to remove the solvent.
  • a mask having a predetermined shape is interposed and then irradiated with actinic rays of 200 nm to 500 nm.
  • actinic rays 200 nm to 500 nm.
  • a light source used for irradiation a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, an argon gas laser, etc. may be used, and in some cases, an X-ray, an electron beam, etc. may be used.
  • the exposure amount varies depending on the type, compounding amount and dry film thickness of each component of the curable composition for an electrophoretic device, but, for example, 500 mJ/cm 2 or less (by a 365 nm sensor) when a high-pressure mercury lamp is used.
  • an image pattern is formed by dissolving and removing unnecessary portions using an alkaline aqueous solution as a developer so that only the exposed portions remain.
  • the image pattern obtained by the above development is cured by heating again or by irradiation with actinic rays, etc. (post-baking) can do it
  • Another embodiment provides an electrophoretic device including the photosensitive cured film.
  • the photosensitive cured film may be a fixed film fixed in the electrophoresis device.
  • the mixture was sufficiently stirred at room temperature for 30 minutes. Then, a photopolymerizable monomer, a binder resin, and an additive were added and stirred at room temperature for another hour. After stirring, the separated nanorods were added and sufficiently stirred for 1 hour to prepare a curable composition for an electrophoresis device containing the nanorods.
  • curable compositions for electrophoretic devices according to Examples 1 to 4 were prepared with the compositions shown in Table 1 below using the components mentioned below.
  • InGaN nano rod (diamater: 600 ⁇ 800nm, length: 3.5 ⁇ 5 ⁇ m)
  • Fluorine surfactant (F-554, DIC company)
  • the development temperature was 25 °C, potassium hydroxide (KOH) aqueous solution with a concentration of 0.043%, at this time, the BP (break point) was measured, and thereafter, 180 in a convection oven Hard-baking was performed at °C for 30 minutes, a patterned organic film was obtained, and the length of the line width was measured with an optical microscope (500 magnification), and it is shown in Table 2 and FIGS. 10 to 13 .
  • KOH potassium hydroxide
  • Example 1 Example 2 Example 3
  • Example 4 Comparative Example 1 Comparative Example 2 Line width ( ⁇ m) 3.0 3.0 2.0 2.5 6.5 9.5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials For Photolithography (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(A) 반도체 나노로드; (B) 바인더 수지; (C) 광중합성 단량체; (D) 광중합 개시제; 및 (E) 용매를 포함하는 전기영동 장치용 경화성 조성물, 이를 이용하여 제조된 감광성 경화막 및 상기 감광성 경화막을 포함하는 전기영동 장치가 제공된다.

Description

전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 전기영동 장치
본 기재는 전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 상기 감광성 경화막을포함하는 전기영동 장치에 관한 것이다.
LED는 1992년 일본 니치아사의 나카무라 등이 저온의 GaN 화합물 완충층을 적용하여 양질의 단결정 GaN 질화물 반도체를 융합시키는데 성공함으로써 개발이 활발하게 이루어져 왔다. LED는 화합물 반도체의 특성을 이용하여 다수의 캐리어가 전자인 n형 반도체 결정과 다수의 캐리어가 정공인 p형 반도체 결정이 서로 접합된 구조를 갖는 반도체로써, 전기신호를 원하는 영역의 파장대역을 가지는 빛으로 변환시켜 표출되는 반도체 소자이다.
이러한 LED 반도체는 광 변환 효율이 높기에 에너지 소비량이 매우 적으며 수명이 반영구적이고 환경 친화적이어서 그린 소재로서 빛의 혁명이라고 불린다. 최근에는 화합물 반도체 기술의 발달로 고휘도 적색, 주황, 녹색, 청색 및 백색 LED가 개발되었으며, 이를 활용하여 신호등, 핸드폰, 자동차 전조등, 옥외 전광판, LCD BLU(back light unit), 그리고 실내외 조명 등 많은 분야에서 응용되고 있으며 국내외에서 활발한 연구가 계속되고 있다. 특히 넓은 밴드갭을 갖는 GaN계 화합물 반도체는 녹색, 청색 그리고 자외선 영역의 빛을 방출하는 LED 반도체의 제조에 이용되는 물질이며, 청색 LED 소자를 이용하여 백색 LED 소자의 제작이 가능하므로 이에 대한 많은 연구가 이루어지고 있다.
이러한 일련의 연구들 중 LED의 크기를 나노 또는 마이크로 단위로 제작한 초소형 LED 소자를 이용한 연구가 활발히 이루어지고 있고, 이러한 초소형 LED 소자를 조명, 디스플레이에 등에 활용하기 위한 연구가 계속되고 있다. 이러한 연구에서 지속적으로 주목 받고 있는 부분은 초소형 LED 소자에 전원을 인가할 수 있는 전극, 활용 목적 및 전극이 차지하는 공간의 감소 등을 위한 전극 배치, 배치된 전극에 초소형 LED의 실장방법 등에 관한 것들이다.
이 중에서도 배치된 전극에 초소형 LED소자를 실장시키는 방법에 대한 부분은 초소형 LED 소자의 크기적 제약에 따라 전극 상에 초소형 LED 소자를 목적한 대로 배치 및 실장시키기 매우 어려운 난점이 여전히 상존하고 있다. 이는 초소형 LED 소자가 나노 스케일 또는 마이크로 스케일임에 따라 사람의 손으로 일일이 목적한 전극영역에 배치시키고 실장시킬 수 없기 때문이다.
최근 들어 나노 스케일의 초소형 LED 소자에 대한 요구가 갈수록 증대되고 있으며, 이를 위해 나노 스케일의 GaN계 화합물 반도체 또는 InGaN계 화합물 반도체를 로드로 제조하려는 시도가 있는데, 문제는 나노로드(nanorod) 자체는 용액(또는 중합성 화합물) 내에서의 분산 안정성이 크게 저하된다는 것이다. 이에 현재까지 반도체 나노로드의 용액(또는 중합성 화합물) 내 분산 안정성을 향상시킬 수 있는 기술에 대한 개발이 꾸준히 이루어지고 있으며, 그 결과 반도체 나노로드의 리간드 처리 기술이나 반도체 나노로드의 분산안정성을 향상시키는 용매에 대한 기술이 하나하나씩 소개되고 있는 상태이다.
그러나, 아직까지 반도체 나노로드를 포함하는 포토레지스트에 대해서는 그 어떠한 기술도 소개되지 않았으며, 이에 대한 배경지식 또한 전무한 상태이다.
일 구현예는 유전영동이 양호하며, 감광 반응을 통해 미세 선폭을 구현할 수 있는 반도체 나노로드 함유 경화성 조성물(감광성 조성물)을 제공하기 위한 것이다.
다른 일 구현예는 상기 경화성 조성물을 이용하여 제조된 감광성 경화막을 제공하기 위한 것이다.
또 다른 일 구현예는 상기 감광성 경화막을 포함하는 전기영동 장치를 제공하기 위한 것이다.
일 구현예는 (A) 반도체 나노로드; (B) 바인더 수지; (C) 광중합성 단량체; (D) 광중합 개시제; 및 (E) 용매를 포함하는 전기영동 장치용 경화성 조성물을 제공한다.
상기 반도체 나노로드는 300nm 내지 900nm의 직경을 가질 수 있다.
상기 반도체 나노로드는 3.5 ㎛ 내지 5 ㎛의 길이를 가질 수 있다.
상기 반도체 나노로드는 GaN계 화합물, InGaN계 화합물 또는 이들의 조합을 포함할 수 있다.
상기 반도체 나노로드는 그 표면이 금속 산화물로 코팅되어 있을 수 있다.
상기 금속 산화물은 알루미나, 실리카 또는 이들의 조합을 포함할 수 있다.
상기 반도체 나노로드는 상기 경화성 조성물 총량에 대하여 0.01 중량% 내지 1 중량%로 포함될 수 있다.
상기 바인더 수지는 아크릴계 수지, 카도계 수지, 에폭시 수지 또는 이들의 조합을 포함할 수 있다.
상기 바인더 수지는 2,000 g/mol 내지 20,000 g/mol의 중량평균분자량을 가질 수 있다.
상기 광중합 개시제는 옥심계 화합물, 아세토페논계 화합물 또는 이들의 조합을 포함할 수 있다.
상기 전기영동 장치용 경화성 조성물은, 상기 전기영동 장치용 경화성 조성물 총량에 대해, 상기 (A) 반도체 나노로드 0.01 중량% 내지 1 중량%; 상기 (B) 바인더 수지 1 중량% 내지 40 중량%; 상기 (C) 광중합성 단량체 1 중량% 내지 10 중량%; 상기 (D) 광중합 개시제 0.1 중량% 내지 5 중량%; 및 상기 (E) 용매 잔부량을 포함할 수 있다.
상기 전기영동 장치용 경화성 조성물은 말론산; 3-아미노-1,2-프로판디올; 실란계 커플링제; 레벨링제; 불소계 계면활성제; 또는 이들의 조합을 더 포함할 수 있다.
다른 일 구현예는 상기 전기영동 장치용 경화성 조성물을 이용하여 제조된 감광성 경화막을 제공한다.
또 다른 일 구현예는 상기 감광성 경화막을 포함하는 전기영동 장치를 제공한다.
기타 본 발명의 측면들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
일 구현예에 따른 조성물은 반도체 나노로드를 포함하는 네가티브형 감광성 조성물(포토레지스트조성물)로 유전 영동이 양호하며, 유전 영동 이후 패터닝 공정을 진해할 수 있기에, 기존 네가티브형 감광성 수지 조성물과 비교하여 공정시간 및 공정비용을 획기적으로 단축할 수 있으며(공정성 향상), 미세 선폭의 구현도 가능하다.
도 1은 일 구현예에 따른 전기영동 장치용 경화성 조성물에 사용되는 반도체 나노로드 단면도의 일 예이다.
도 2 내지 도 9는 반도체 나노로드의 정렬 및 패터닝 공정을 나타낸 것으로서,
도 2는 반도체 나노로드를 포함하는 일 구현예에 따른 전기영동 장치용 경화성 조성물을 전극 상에 코팅하는 단계를 나타낸 것이고,
도 3은 전기장을 걸어주어 반도체 나노로드를 정렬(유전영동)시키는 단계를 나타낸 것이고,
도 4는 전극 위에 정렬된 반도체 나노로드의 단면도를 나타낸 것이고,
도 5는 반도체 나노로드를 정렬시킨 후 프리베이킹하는 단계를 나타낸 것이고,
도 6은 프리베이킹 후 노광하는 단계를 나타낸 것이고,
도 7은 노광 후 현상하는 단계를 나타낸 것이고,
도 8은 현상 후 포스트베이킹하여, 고정된 감광성 경화막(포토레지스트 고정막)을 형성하는 단계를 나타낸 것이고,
도 9는 전극 위에 정렬된 반도체 나노로드 위에 고정된 감광성 경화막이 형성된 모습의 단면도를나타낸 것이고,
도 10은 실시예 2에 따른 조성물을 패터닝하여 얻어진 경화막의 선폭을 나타낸 광학현미경 사진(X500)이고,
도 11은 실시예 3에 따른 조성물을 패터닝하여 얻어진 경화막의 선폭을 나타낸 광학현미경 사진(X500)이고,
도 12는 비교예 1에 따른 조성물을 패터닝하여 얻어진 경화막의 선폭을 나타낸 광학현미경 사진(X500)이고,
도 13은 비교예 2에 따른 조성물을 패터닝하여 얻어진 경화막의 선폭을 나타낸 광학현미경 사진(X500)이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다.  다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. 
본 명세서에서 특별한 언급이 없는 한, "알킬기"란 C1 내지 C20 알킬기를 의미하고, "알케닐기"란 C2 내지 C20 알케닐기를 의미하고, "사이클로알케닐기"란 C3 내지 C20 사이클로알케닐기를 의미하고, "헤테로사이클로알케닐기"란 C3 내지 C20 헤테로사이클로알케닐기를 의미하고, "아릴기"란 C6 내지 C20 아릴기를 의미하고, "아릴알킬기"란 C6 내지 C20 아릴알킬기를 의미하며, "알킬렌기"란 C1 내지 C20 알킬렌기를 의미하고, "아릴렌기"란 C6 내지 C20 아릴렌기를 의미하고, "알킬아릴렌기"란 C6 내지 C20 알킬아릴렌기를 의미하고, "헤테로아릴렌기"란 C3 내지 C20 헤테로아릴렌기를 의미하고, "알콕실렌기"란 C1 내지 C20 알콕실렌기를 의미한다.
본 명세서에서 특별한 언급이 없는 한, "치환"이란 적어도 하나의 수소 원자가 할로겐 원자(F, Cl, Br, I), 히드록시기, C1 내지 C20 알콕시기, 니트로기, 시아노기, 아민기, 이미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 카르보닐기, 카르바밀기, 티올기, 에스테르기, 에테르기, 카르복실기 또는 그것의 염, 술폰산기 또는 그것의 염, 인산이나 그것의 염, C1 내지 C20 알킬기, C2 내지 C20 알케닐기, C2 내지 C20 알키닐기, C6 내지 C20 아릴기, C3 내지 C20 사이클로알킬기, C3 내지 C20 사이클로알케닐기, C3 내지 C20 사이클로알키닐기, C2 내지 C20 헤테로사이클로알킬기, C2 내지 C20 헤테로사이클로알케닐기, C2 내지 C20 헤테로사이클로알키닐기, C3 내지 C20 헤테로아릴기 또는 이들의 조합의 치환기로 치환된 것을 의미한다.
또한 본 명세서에서 특별한 언급이 없는 한, "헤테로"란, 화학식 내에 N, O, S 및 P 중 적어도 하나의 헤테로 원자가 적어도 하나 포함된 것을 의미한다.
또한 본 명세서에서 특별한 언급이 없는 한, "(메타)아크릴레이트"는 "아크릴레이트"와 "메타크릴레이트" 둘 다 가능함을 의미하며, "(메타)아크릴산"은 "아크릴산"과 "메타크릴산" 둘 다 가능함을 의미한다.
본 명세서에서 특별한 언급이 없는 한, "조합"이란 혼합 또는 공중합을 의미한다.
본 명세서 내 화학식에서 별도의 정의가 없는 한, 화학결합이 그려져야 하는 위치에 화학결합이 그려져있지 않은 경우는 상기 위치에 수소 원자가 결합되어 있음을 의미한다.
또한 본 명세서에서 특별한 언급이 없는 한, "*"는 동일하거나 상이한 원자 또는 화학식과 연결되는 부분을 의미한다.
일 구현예에 따른 전기영동 장치용 경화성 조성물은 (A) 반도체 나노로드; (B) 바인더 수지; (C) 광중합성 단량체; (D) 광중합 개시제; 및 (E) 용매를 포함하며, 전극 위에 코팅된 조성물에 전기장을 가하면 상기 반도체 나노로드가 정렬하기에, u-LED, mini-LED 등의 복잡하고 비싼 공정 비용을 획기적으로 줄일 수 있다.
발광 소자인 반도체 나노로드의 전기 영동을 위하여는 반도체 나노로드 분산액을 잉크젯팅 혹은 슬릿 코팅(slit coating)하여야 하는데, 대면적 코팅 및 패널 생산을 위해서는 반도체 나노로드 용액의 높은 유전 영동률이 필수적인 파라미터이다. 또한 반도체 나노로드의 정렬 후 후공정을 위한 세정 공정이 반드시 필요하나, 고정막이 없을 경우, 정렬된 반도체 나노로드가 세정 시 소실 우려가 있어, 반도체 나노로드를 고정시킬 수 있는 고정막이 필요하게 되었으나, 현재까지 이러한 고정막으로 사용되는 유기 재료는 전무한 상태이다. 이러한 고정막은 두께 1.5㎛, 폭 2.0㎛ 내지 4.0㎛의 라인 형성이 필요하다.
일 구현예는 반도체 나노로드를 포함하는 네가티브형 포토레지스트 조성물로서, 유전 영동 이후 패터닝 공정을 진행할 수 있게 하여 공정을 단축할 수 있도록 하는 재료에 대한 것이다.
기존 디스플레이 및 전자 재료에서 쓰이던 포토레지스트 조성물의 경우 무기분산액(양자점, 안료, 염료, 광확산제 등), 광개시제, 아크릴 바인더, 아크릴 모노머 및 유기용매(PGMEA, GBL, PGME, ethyl acetate, IPA 등)를 포함하며, 특히 컬러 레지스트의 경우 두께 2.5㎛ 내지 10㎛, 선폭 20㎛ 내지 100㎛까지 패턴 특성을 갖는 것이 대부분이었으며, 공정성 측면에서 불리할 뿐만 아니라, 미세선폭을 구현함에 있어서도 재료적인 부분 때문에 한계가 분명히 존재하였다.
그러나, 일 구현예에 따른 전기영동 장치용 경화성 조성물은 반도체 나노로드를 포함하는 네가티브형 포토레지스트 조성물로서 유전 영동이 양호하며, 유전 영동 이후 패터닝 공정을 진행할 수 있고, 포스트베이킹 후 고정막 형성이 가능하기에 공정성 측면에서 매우 유리할 뿐만 아니라, 두께 1.0㎛ 내지 2.0㎛, 선폭 2.0㎛ 내지 4.0㎛를 구현할 수 있어 미세선폭 구현 측면에서도 종래의 한계를 뛰어넘을 수 있다.
이하에서 각 성분에 대하여 구체적으로 설명한다.
(A) 반도체 나노로드
상기 반도체 나노로드는 GaN계 화합물, InGaN계 화합물 또는 이들의 조합을 포함할 수 있으며, 그 표면이 금속 산화물로 코팅되어 있을 수 있다.
반도체 나노로드 용액(반도체 나노로드 + 용매)의 분산 안정성을 위해서는 보통 3시간 정도의 시간이 필요한데, 이는 대면적 잉크젯(Inkjet) 공정을 수행하기에는 턱없이 부족한 시간이다. 이에 반도체 나노로드 표면을 알루미나, 실리카 또는 이들의 조합을 포함하는 금속 산화물로 코팅시켜 절연막(Al2O3, SiOx 또는 이들의 조합)을 형성시킴으로써, 후술하는 용매와의 상용성을 극대화시킬 수 있다.
예컨대, 상기 반도체 나노로드는 300nm 내지 900nm, 예컨대 600nm 내지 700nm의 직경을 가질 수 있다.
예컨대, 상기 반도체 나노로드는 3.5 ㎛ 내지 5 ㎛의 길이를 가질 수 있다.
상기 반도체 나노로드가 상기 직경 및 길이를 갖는 경우, 상기 금속 산화물의 표면 코팅이 용이할 수 있어, 반도체 나노로드의 분산 안정성이 극대화될 수 있다.
상기 반도체 나노로드는 상기 전기영동 장치용 경화성 조성물 총량에 대해 0.01 중량% 내지 1 중량%, 예컨대 0.01 중량 % 내지 0.5 중량%, 예컨대 0.01 중량% 내지 0.1 중량%로 포함될 수 있다. 반도체 나노로드가 상기 범위 내로 포함될 경우, 조성물 내 분산성이 양호하고, 제조된 패턴은 미세선폭을 가질 수 있다.
(B) 바인더 수지
일 구현예에 따른 상기 바인더 수지는 아크릴계 수지, 카도계 수지, 에폭시 수지 또는 이들의 조합을 포함할 수 있다.
상기 아크릴계 수지는 제1 에틸렌성 불포화 단량체 및 이와 공중합 가능한 제2 에틸렌성 불포화 단량체의 공중합체로, 하나 이상의 아크릴계 반복단위를 포함하는 수지일 수 있다.
상기 아크릴계 바인더 수지의 구체적인 예로는 폴리벤질메타크릴레이트, (메타)아크릴산/벤질메타크릴레이트 공중합체, (메타)아크릴산/벤질메타크릴레이트/스티렌 공중합체, (메타)아크릴산/벤질메타크릴레이트/2-히드록시에틸메타크릴레이트 공중합체, (메타)아크릴산/벤질메타크릴레이트/스티렌/2-히드록시에틸메타크릴레이트 공중합체 등을 들 수 있으나, 이에 한정되는 것은 아니며, 이들을 단독 또는 2종 이상을 배합하여 사용할 수도 있다.
상기 아크릴계 수지의 중량평균 분자량은 5,000 g/mol 내지 15,000g/mol 일 수 있다. 상기 아크릴계 수지의 중량평균 분자량이 상기 범위 내일 경우, 기판과의 밀착성이 우수하고 물리적, 화학적 물성이 좋으며, 점도가 적절하다.
상기 아크릴계 수지의 산가는 80 mgKOH/g 내지 130 mgKOH/g 일 수 있다. 상기 아크릴계 수지의 산가가 상기 범위 내일 경우 픽셀 패턴의 해상도가 우수하다.
상기 카도계 수지는 통상적인 경화성 수지(또는 감광성 수지)조성물에 사용되는 것을 사용할 수 있으며, 예컨대 한국 공개특허 10-2018-0067243호에 제시된 것을 사용할 수 있으나, 이에 한정되지 않는다.
상기 카도계 수지는 예컨대, 9,9-비스(4-옥시라닐메톡시페닐)플루오렌 등의 플루오렌 함유 화합물; 벤젠테트라카르복실산 디무수물, 나프탈렌테트라카르복실산 디무수물, 비페닐테트라카르복실산 디무수물, 벤조페논테트라카르복실산 디무수물, 피로멜리틱 디무수물, 사이클로부탄테트라카르복실산 디무수물, 페릴렌테트라카르복실산 디무수물, 테트라히드로푸란테트라카르복실산 디무수물, 테트라하이드로프탈산 무수물 등의 무수물 화합물; 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜 등의 글리콜 화합물; 메탄올, 에탄올, 프로판올, n-부탄올, 사이클로헥산올, 벤질알코올 등의 알코올 화합물; 프로필렌글리콜 메틸에틸아세테이트, N-메틸피롤리돈 등의 용매류 화합물; 트리페닐포스핀 등의 인 화합물; 및 테트라메틸암모늄 클로라이드, 테트라에틸암모늄 브로마이드, 벤질디에틸아민, 트리에틸아민, 트리부틸아민, 벤질트리에틸암모늄 클로라이드 등의 아민 또는 암모늄염 화합물 중에서 둘 이상을 혼합하여 제조할 수 있다.
상기 카도계 수지의 중량평균 분자량은 500 g/mol 내지 50,000 g/mol, 예컨대 1,000 g/mol 내지 30,000 g/mol 일 수 있다. 상기 카도계 수지의 중량평균 분자량이 상기 범위 내일 경우 경화막 제조 시 잔사 없이 패턴 형성이 잘되며, 용매형 경화성 조성물의 현상 시 막두께의 손실이 없고, 양호한 패턴을 얻을 수 있다.
상기 바인더 수지가 카도계 수지일 경우, 이를 포함하는 경화성 조성물, 특히 감광성 수지 조성물의 현상성이 우수하고, 광경화 시 감도가 좋아 미세 패턴 형성성이 우수하다.
상기 에폭시 수지는 열에 의해서 중합될 수 있는 모노머(monomer) 또는 올리고머(oligomer)로서, 탄소-탄소 불포화 결합 및 탄소-탄소 고리형 결합을 가지는 화합물 등을 포함할 수 있다.
상기 에폭시 수지로는 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 고리형 지방족 에폭시 수지 및 지방족 폴리글리시딜 에테르 등을 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다.
이러한 화합물의 시판품으로, 비스페닐 에폭시 수지에는 유까쉘 에폭시(주)社의 YX4000, YX4000H, YL6121H, YL6640, YL6677; 크레졸 노볼락형 에폭시 수지에는 크레졸 노블락형 에폭시 수지에는 닛본 가야꾸(주)社의 EOCN-102, EOCN-103S, EOCN-104S, EOCN-1020, EOCN-1025, EOCN-1027 및 유까쉘 에폭시(주)社의 에피코트 180S75; 비스페놀 A형 에폭시 수지에는 유까쉘 에폭시(주)社의 에피코트 1001, 1002, 1003, 1004, 1007, 1009, 1010 및 828; 비스페놀 F형 에폭시 수지에는 유까쉘 에폭시(주)社의 에피코트 807 및 834; 페놀 노블락형 에폭시 수지에는 유까쉘 에폭시(주)社의 에피코트 152, 154, 157H65 및 닛본 가야꾸(주)社의 EPPN 201, 202; 그 밖의 고리형 지방족 에폭시 수지에는 CIBA-GEIGY A.G 社의 CY175, CY177 및 CY179, U.C.C 社의 ERL-4234, ERL-4299, ERL-4221 및 ERL-4206, 쇼와 덴꼬(주)社의 쇼다인 509, CIBA-GEIGY A.G 社의 아랄다이트 CY-182, CY-192 및 CY-184, 다이닛본 잉크 고교(주)社의 에피크론 200 및 400, 유까쉘 에폭시(주)社의 에피코트 871, 872 및 EP1032H60, 셀라니즈 코팅(주)社의 ED-5661 및 ED-5662; 지방족 폴리글리시딜에테르에는 유까쉘 에폭시(주)社의 에피코트 190P 및 191P, 교에샤 유시 가가꾸 고교(주)社의 에포라이트 100MF, 닛본 유시(주)社의 에피올 TMP 등을 들 수 있다.
상기 바인더 수지는 상기 전기영동 장치용 경화성 조성물 총량에 대해 1 중량% 내지 40 중량%, 예컨대 5 중량% 내지 30 중량%, 예컨대 10 중량% 내지 30 중량%로 포함될 수 있다. 상기 바인더 수지가 상기 범위 내로 포함될 경우, 디스플레이 장치 제조 시 휘도, 내열성 및 현상성이 우수하며, 가교성이 개선되어 우수한 표면 평활도를 얻을 수 있다. 
(C) 광중합성 단량체
상기 광중합성 단량체는, 적어도 1개의 에틸렌성 불포화 이중결합을 가지는 (메타)아크릴산의 일관능 또는 다관능 에스테르가 사용될 수 있다.
상기 광중합성 단량체는 상기 에틸렌성 불포화 이중결합을 가짐으로써, 패턴 형성 공정에서 노광시 충분한 중합을 일으킴으로써 내열성, 내광성 및 내화학성이 우수한 패턴을 형성할 수 있다.
상기 광중합성 단량체의 구체적인 예로는, 에틸렌 글리콜 디(메타)아크릴레이트, 디에틸렌 글리콜 디(메타)아크릴레이트, 트리에틸렌 글리콜 디(메타)아크릴레이트, 프로필렌 글리콜 디(메타)아크릴레이트, 네오펜틸 글리콜 디(메타)아크릴레이트, 1,4-부탄디올 디(메타)아크릴레이트, 1,6-헥산디올 디(메타)아크릴레이트, 비스페놀A 디(메타)아크릴레이트, 펜타에리트리톨 디(메타)아크릴레이트, 펜타에리트리톨 트리(메타)아크릴레이트, 펜타에리트리톨 테트라(메타)아크릴레이트, 펜타에리트리톨 헥사(메타)아크릴레이트, 디펜타에리트리톨 디(메타)아크릴레이트, 디펜타에리트리톨 트리(메타)아크릴레이트, 디펜타에리트리톨 펜타(메타)아크릴레이트, 디펜타에리트리톨 헥사(메타)아크릴레이트, 비스페놀A 에폭시(메타)아크릴레이트, 에틸렌 글리콜 모노메틸에테르 (메타)아크릴레이트, 트리메틸올 프로판 트리(메타)아크릴레이트, 트리스(메타)아크릴로일옥시에틸 포스페이트, 노볼락에폭시 (메타)아크릴레이트 등을 들 수 있다.
상기 광중합성 단량체의 시판되는 제품을 예로 들면 다음과 같다. 상기 (메타)아크릴산의 일관능 에스테르의 예로는, 도아 고세이 가가꾸 고교(주)社의 아로닉스 M-101®, 동 M-111®, 동 M-114® 등; 니혼 가야꾸(주)社의 KAYARAD TC-110S®, 동 TC-120S® 등; 오사카 유끼 가가꾸 고교(주)社의 V-158®, V-2311® 등을 들 수 있다. 상기 (메타)아크릴산의 이관능 에스테르의 예로는, 도아 고세이 가가꾸고교(주)社의 아로닉스 M-210®, 동 M-240®, 동 M-6200® 등; 니혼 가야꾸(주)社의 KAYARAD HDDA®, 동 HX-220®, 동 R-604® 등; 오사카 유끼 가가꾸 고교(주)社의 V-260®, V-312®, V-335 HP® 등을 들 수 있다. 상기 (메타)아크릴산의 삼관능 에스테르의 예로는, 도아 고세이 가가꾸 고교(주)社의 아로닉스 M-309®, 동 M-400®, 동 M-405®, 동 M-450®, 동 M-7100®, 동 M-8030®, 동 M-8060® 등; 니혼 가야꾸(주)社의 KAYARAD TMPTA®, 동 DPCA-20®, 동-30®, 동-60®, 동-120® 등; 오사카 유끼 가야꾸 고교(주)社의 V-295®, 동-300®, 동-360®, 동-GPT®, 동-3PA®, 동-400® 등을 들 수 있다. 상기 제품을 단독 사용 또는 2종 이상 함께 사용할 수 있다.
상기 광중합성 단량체는 보다 우수한 현상성을 부여하기 위하여 산무수물로 처리하여 사용할 수도 있다.
상기 광중합성 단량체는 전기영동 장치용 경화성 조성물 총량에 대하여 1 중량% 내지 10 중량%, 예컨대 5 중량% 내지 10 중량%로 포함될 수 있다. 광중합성 단량체가 상기 범위 내로 포함될 경우, 패턴 형성 공정에서 노광 시 경화가 충분히 일어나 신뢰성이 우수하며, 패턴의 내열성, 내광성, 내화학성, 해상도 및 밀착성 또한 우수하다.
(D) 광중합 개시제
상기 광중합 개시제는 아세토페논계 화합물, 벤조페논계 화합물, 티오크산톤계 화합물, 벤조인계 화합물, 트리아진계 화합물, 옥심계 화합물 등을 사용할 수 있다.
예컨대, 상기 광중합 개시제는 옥심계 화합물, 아세토페논계 화합물 또는 이들의 조합을 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 아세토페논계 화합물의 예로는, 2,2'-디에톡시아세토페논, 2,2'-디부톡시아세토페논, 2-히드록시-2-메틸프로피오페논, p-t-부틸트리클로로아세토페논, p-t-부틸디클로로아세토페논, 4-클로로아세토페논, 2,2'-디클로로-4-페녹시아세토페논, 2-메틸-1-(4-(메틸티오)페닐)-2-모폴리노프로판-1-온, 2-벤질-2-디메틸아미노-1-(4-모폴리노페닐)-부탄-1-온 등을 들 수 있다.
상기 벤조페논계 화합물의 예로는, 벤조페논, 벤조일안식향산, 벤조일안식향산메틸, 4-페닐벤조페논, 히드록시벤조페논, 아크릴화벤조페논, 4,4'-비스(디메틸아미노)벤조페논, 4,4'-비스(디에틸아미노)벤조페논, 4,4'-디메틸아미노벤조페논, 4,4'-디클로로벤조페논, 3,3'-디메틸-2-메톡시벤조페논 등을 들 수 있다.
상기 티오크산톤계 화합물의 예로는, 티오크산톤, 2-메틸티오크산톤, 이소프로필티오크산톤, 2,4-디에틸티오크산톤, 2,4-디이소프로필티오크산톤, 2-클로로티오크산톤 등을 들 수 있다.
상기 벤조인계 화합물의 예로는, 벤조인, 벤조인 메틸 에테르, 벤조인 에틸 에테르, 벤조인 이소프로필 에테르, 벤조인 이소부틸 에테르, 벤질디메틸케탈 등을 들 수 있다.
상기 트리아진계 화합물의 예로는, 2,4,6-트리클로로-s-트리아진, 2-페닐-4,6-비스(트리클로로메틸)-s-트리아진, 2-(3',4'-디메톡시스티릴)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(4'-메톡시나프틸)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(p-메톡시페닐)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(p-톨릴)-4,6-비스(트리클로로메틸)-s-트리아진, 2-비페닐-4,6-비스(트리클로로메틸)-s-트리아진, 비스(트리클로로메틸)-6-스티릴-s-트리아진, 2-(나프토-1-일)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(4-메톡시나프토-1-일)-4,6-비스(트리클로로메틸)-s-트리아진, 2-4-비스(트리클로로메틸)-6-피페로닐-s-트리아진, 2-4-비스(트리클로로메틸)-6-(4-메톡시스티릴)-s-트리아진 등을 들 수 있다.
상기 옥심계 화합물의 예로는 O-아실옥심계화합물, 2-(O-벤조일옥심)-1-[4-(페닐티오)페닐]-1,2-옥탄디온, 1-(O-아세틸옥심)-1-[9-에틸-6-(2-메틸벤조일)-9H-카르바졸-3-일]에탄온, O-에톡시카르보닐-α-옥시아미노-1-페닐프로판-1-온등을사용할수있다. 상기 O-아실옥심계화합물의구체적인예로는, 1,2-옥탄디온, 2-디메틸아미노-2-(4-메틸벤질)-1-(4-모르폴린-4-일-페닐)-부탄-1-온, 1-(4-페닐술파닐페닐)-부탄-1,2-디온-2-옥심-O-벤조에이트,1-(4-페닐술파닐페닐)-옥탄-1,2-디온-2-옥심-O-벤조에이트, 1-(4-페닐술파닐페닐)-옥탄-1-온옥심-O-아세테이트, 1-(4-페닐술파닐페닐)-부탄-1-온옥심-O-아세테이트 등을 사용할 수 있다.
상기 광중합 개시제는 상기 화합물 이외에도 카바졸계 화합물, 디케톤류 화합물, 술포늄보레이트계 화합물, 디아조계 화합물, 이미다졸계 화합물, 비이미다졸계 화합물 등을 사용할 수 있다.
상기 광중합 개시제는 빛을 흡수하여 들뜬 상태가 된 후 그 에너지를 전달함으로써 화학반응을 일으키는 광증감제와 함께 사용될 수도 있다.
상기 광증감제의 예로는, 테트라에틸렌글리콜비스-3-머캡토프로피오네이트, 펜타에리트리톨테트라키스-3-머캡토프로피오네이트, 디펜타에리트리톨테트라키스-3-머캡토프로피오네이트 등을 들 수 있다.
상기 광중합 개시제는 상기 전기영동 장치용 경화성 조성물 총량에 대하여 0.1 중량% 내지 5 중량%, 예컨대 0.1 중량% 내지 1 중량%로 포함될 수 있다. 상기 광중합 개시제가 상기 범위 내로 포함될 경우, 패턴 형성 공정에서 노광 시 광중합이 충분히 일어나고, 미반응 개시제로 인한 투과율의 저하를 막을 수 있다.
(E) 용매
상기 용매는 상기 반도체 나노로드, 상기 바인더 수지, 상기 광중합성 단량체 및 상기 광중합 개시제와의 상용성을 가지되 반응하지 않는 물질들이 사용될 수 있다.
상기 용매의 예로는, 메탄올, 에탄올 등의 알코올류; 디클로로에틸 에테르, n-부틸 에테르, 디이소아밀 에테르, 메틸페닐 에테르, 테트라히드로퓨란 등의 에테르류; 에틸렌 글리콜 메틸에테르, 에틸렌 글리콜 에틸에테르, 프로필렌 글리콜 메틸에테르 등의 글리콜 에테르류; 메틸 셀로솔브 아세테이트, 에틸 셀로솔브 아세테이트, 디에틸 셀로솔브 아세테이트 등의 셀로솔브 아세테이트류; 메틸에틸 카르비톨, 디에틸 카르비톨, 디에틸렌 글리콜 모노메틸에테르, 디에틸렌 글리콜 모노에틸에테르, 디에틸렌 글리콜 디메틸에테르, 디에틸렌 글리콜 메틸에틸에테르, 디에틸렌 글리콜 디에틸에테르 등의 카르비톨류; 프로필렌 글리콜 메틸에테르 아세테이트, 프로필렌 글리콜 프로필에테르 아세테이트 등의 프로필렌 글리콜 알킬에테르 아세테이트류; 톨루엔, 크실렌 등의 방향족 탄화수소류; 메틸에틸케톤, 사이클로헥사논, 4-히드록시-4-메틸-2-펜타논, 메틸-n-프로필케톤, 메틸-n-부틸케논, 메틸-n-아밀케톤, 2-헵타논 등의 케톤류; 초산 에틸, 초산-n-부틸, 초산 이소부틸 등의 포화 지방족 모노카르복실산 알킬 에스테르류; 메틸 락테이트, 에틸 락테이트 등의 락트산 알킬 에스테르류; 메틸 히드록시아세테이트, 에틸 히드록시아세테이트, 부틸 히드록시아세테이트 등의 히드록시아세트산 알킬 에스테르류; 메톡시메틸 아세테이트, 메톡시에틸 아세테이트, 메톡시부틸 아세테이트, 에톡시메틸 아세테이트, 에톡시에틸 아세테이트 등의 아세트산 알콕시알킬 에스테르류; 메틸 3-히드록시프로피오네이트, 에틸 3-히드록시프로피오네이트 등의 3-히드록시프로피온산 알킬 에스테르류; 메틸 3-메톡시프로피오네이트, 에틸 3-메톡시프로피오네이트, 에틸 3-에톡시프로피오네이트, 메틸 3-에톡시프로피오네이트 등의 3-알콕시프로피온산 알킬 에스테르류; 메틸 2-히드록시프로피오네이트, 에틸 2-히드록시프로피오네이트, 프로필 2-히드록시프로피오네이트 등의 2-히드록시프로피온산 알킬 에스테르류; 메틸 2-메톡시프로피오네이트, 에틸 2-메톡시프로피오네이트, 에틸 2-에톡시프로피오네이트, 메틸 2-에톡시프로피오네이트 등의 2-알콕시프로피온산 알킬 에스테르류; 메틸 2-히드록시-2-메틸프로피오네이트, 에틸 2-히드록시-2-메틸프로피오네이트 등의 2-히드록시-2-메틸프로피온산 알킬 에스테르류; 메틸 2-메톡시-2-메틸프로피오네이트, 에틸 2-에톡시-2-메틸프로피오네이트 등의 2-알콕시-2-메틸프로피온산 알킬 에스테르류; 2-히드록시에틸 프로피오네이트, 2-히드록시-2-메틸에틸 프로피오네이트, 히드록시에틸 아세테이트, 메틸 2-히드록시-3-메틸부타노에이트 등의 에스테르류; 또는 피루빈산 에틸 등의 케톤산 에스테르류의 화합물이 있으며, 또한 N-메틸포름아미드, N,N-디메틸포름아미드, N-메틸포름아닐리드, N-메틸아세트아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈, 디메틸술폭시드, 벤질에틸에테르, 디헥실에테르, 아세트닐아세톤, 이소포론, 카프론산, 카프릴산, 1-옥탄올, 1-노난올, 벤질알코올, 초산 벤질, 안식향산 에틸, 옥살산 디에틸, 말레인산 디에틸, γ부티로락톤, 에틸렌 카보네이트, 프로필렌 카보네이트, 페닐 셀로솔브 아세테이트 등이 있으며, 이들 단독으로 사용되거나 2종 이상을 혼합하여 사용할 수 있다.
상기 용매 중 혼화성(miscibility) 및 반응성 등을 고려한다면, 좋게는 에틸렌 글리콜 모노에틸 에테르 등의 글리콜 에테르류; 에틸 셀로솔브 아세테이트 등의 에틸렌 글리콜 알킬에테르 아세테이트류; 2-히드록시에틸 프로피오네이트 등의 에스테르류; 디에틸렌 글리콜 모노메틸 에테르 등의 디에틸렌 글리콜류; 프로필렌 글리콜 모노메틸에테르 아세테이트, 프로필렌 글리콜 프로필에테르 아세테이트 등의 프로필렌 글리콜 알킬에테르 아세테이트류가 사용될 수 있다.
상기 용매는 상기 전기영동 장치용 경화성 조성물 총량에 대하여 잔부량, 예컨대 40 중량% 내지 80 중량%, 예컨대 45 중량% 내지 80 중량%, 예컨대 50 중량% 내지 75 중량%로 포함될 수 있다. 상기 용매가 상기 범위 내로 포함될 경우 전기영동 장치용 경화성 조성물의 도포성이 우수하고, 평탄성이 우수한 도막을 얻을 수 있다.
(F) 기타 첨가제
일 구현예에 따른 전기영동 장치용 경화성 조성물은 말론산; 3-아미노-1,2-프로판디올; 실란계 커플링제; 레벨링제; 불소계 계면활성제; 또는 이들의 조합을 더 포함할 수 있다.
예컨대, 전기영동 장치용 경화성 조성물은 기판과의 밀착성 등을 개선하기 위해 비닐기, 카르복실기, 메타크릴옥시기, 이소시아네이트기, 에폭시기 등의 반응성 치환기를 갖는 실란계 커플링제를 더 포함할 수 있다.
상기 실란계 커플링제의 예로는, 트리메톡시실릴 벤조산, γ-메타크릴 옥시프로필 트리메톡시실란, 비닐 트리아세톡시실란, 비닐 트리메톡시실란, γ-이소시아네이트 프로필 트리에톡시실란, γ-글리시독시 프로필 트리메톡시실란, β-에폭시사이클로헥실에틸트리메톡시실란 등을 들 수 있으며, 이들을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 실란계 커플링제는 상기 전기영동 장치용 경화성 조성물 100 중량부에 대하여 0.01 중량부내지 10 중량부로 포함될 수 있다. 실란계 커플링제가 상기 범위 내로 포함될 경우 밀착성, 저장성 등이 우수하다.
또한 상기 전기영동 장치용 경화성 조성물은 필요에 따라 코팅성 향상 및 결점 생성 방지 효과를 위해 계면 활성제, 예컨대 불소계 계면활성제를 더 포함할 수 있다.
상기 불소계 계면활성제로는, BM Chemie社의 BM-1000®, BM-1100® 등; 다이 닛폰 잉키 가가꾸 고교(주)社의 메카 팩 F 142D®, 동 F 172®, 동 F 173®, 동 F 183® 등; 스미토모 스리엠(주)社의 프로라드 FC-135®, 동 FC-170C®, 동 FC-430®, 동 FC-431® 등; 아사히 그라스(주)社의 사프론 S-112®, 동 S-113®, 동 S-131®, 동 S-141®, 동 S-145® 등; 도레이 실리콘(주)社의 SH-28PA®, 동-190®, 동-193®, SZ-6032®, SF-8428® 등; DIC(주)社의 F-482, F-484, F-478, F-554 등의 명칭으로 시판되고 있는 불소계 계면활성제를 사용할 수 있다.
상기 불소계 계면활성제는 상기 전기영동 장치용 경화성 조성물 100 중량부에 대하여 0.001 중량부 내지 5 중량부로 사용될 수 있다. 상기 불소계 계면활성제가 상기 범위 내로 포함될 경우 코팅 균일성이 확보되고, 얼룩이 발생하지 않으며, 유리 기판에 대한 습윤성(wetting)이 우수하다.
또한 상기 전기영동 장치용 경화성 조성물은 물성을 저해하지 않는 범위 내에서 산화방지제, 안정제 등의 기타 첨가제가 일정량 더 첨가될 수도 있다.
다른 일 구현예는 전술한 전기영동 장치용 경화성 조성물을 이용하여 제조된 감광성 경화막을 제공한다.
상기 감광성 경화막의 제조 방법은 다음과 같다.
(1) 도포 및 도막 형성 단계
전술한 전기영동 장치용 경화성 조성물을 소정의 전처리를 한 전극 기판 상에 스핀 또는 슬릿 코트법, 롤 코트법, 스크린 인쇄법, 어플리케이터법 등의 방법을 사용하여 원하는 두께, 예를 들어 1.2㎛ 내지 3.5㎛의 두께로 도포한 후, 70℃내지 100℃의 온도에서 1분 내지 10분 동안 가열(프리베이킹)하여 용매를 제거함으로써 도막을 형성한다.
(2) 노광 단계
상기 얻어진 도막에 필요한 패턴 형성을 위해 소정 형태의 마스크를 개재한 뒤, 200nm 내지 500nm의 활성선을 조사한다. 조사에 사용되는 광원으로는 저압 수은등, 고압 수은등, 초고압 수은등, 금속 할로겐화물 램프, 아르곤 가스 레이저 등을 사용할 수 있으며, 경우에 따라 X선, 전자선 등도 이용할 수 있다.
노광량은 상기 전기영동 장치용 경화성 조성물 각 성분의 종류, 배합량 및 건조 막 두께에 따라 다르지만, 예를 들어 고압 수은등을 사용할 경우 500 mJ/cm2 이하(365 nm 센서에 의함)이다.
(3) 현상 단계
상기 노광 단계에 이어, 알칼리성 수용액을 현상액으로 이용하여 불필요한 부분을 용해, 제거함으로써 노광 부분만을 잔존시켜 화상 패턴을 형성시킨다.
(4) 후처리 단계
상기 현상에 의해 수득된 화상 패턴을 내열성, 내광성, 밀착성, 내크랙성, 내화학성, 고강도, 저장 안정성 등의 면에서 우수한 패턴을 얻기 위해, 다시 가열하거나 활성선 조사 등을 행하여 경화(포스트베이킹)시킬 수 있다.
또 다른 일 구현예는 상기 감광성 경화막을 포함하는 전기영동 장치를 제공한다.
상기 감광성 경화막은 상기 전기영동 장치 내에 고정되어 있는 고정막일 수 있다.
이하, 본 발명의 바람직한 실시예를 기재한다. 다만, 하기의 실시예는 본 발명의 바람직한 일 실시예일뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
(전기영동 장치용 경화성 조성물 제조)
1. 반도체 나노로드의 분리
나노로드(nano rod) 패터닝된 InGaN wafer(4 inch)에 stearic acid(1.5mM) 40ml을 상온에서 24시간 동안 반응시킨다. 반응 후 50ml의 아세톤에 5분 동안 담가 과량의 stearic acid를 제거하고, 추가로 acetone 40ml을 이용하여 wafer 표면을 rinse한다. 세정된 wafer를 27kW bath type sonicator에 35ml의 GBL과 함께 넣고, 5분 동안 sonication을 이용하여 로드를 wafer 표면에서 분리한다. 분리된 로드를 원심분리기 전용 FALCON tube에 넣고 10ml의 GBL을 추가하여 bath 표면의 로드를 추가 세척한다. 4000rpm에서 10분간 원심분리하여 상층액은 버리고 침전물은 아세톤(40ml)에 재분산하여 10㎛ mesh filter를 이용하여 이물을 걸러낸다. 추가 원심분리(4000rpm, 10분) 후 침전물은 건조 오븐에서 건조(100℃, 1시간) 후 무게를 측정하여 준비하였다.
2. 전기영동 장치용 경화성 조성물 제조
용매에 광중합 개시제를 용해시킨 후, 30분 동안 상온에서 충분히 교반하였다. 이어서, 광중합성 단량체, 바인더 수지 및 첨가제를 첨가하여 다시 1시간 동안 상온에서 교반하였다. 교반 후 분리 해 놓은 나노로드를 투입하여 1시간 동안 충분히 교반하여 Nano rod가 포함된 전기영동 장치용 경화성 조성물을 제조하였다.
구체적으로, 하기 언급된 구성성분들을 이용하여 하기 표 1에 나타낸 조성으로 각 실시예 1 내지 실시예 4, 비교예 1 및 비교예 2에 따른 전기영동 장치용 경화성 조성물을 제조하였다.
(단위: g)
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2
(A) 반도체 나노로드 0.05 0.05 0.05 0.05 0.05 0.05
(B) 바인더 수지 (B-1) 27.1 23.2 27.1 23.2 - -
(B-2) - - - - 27.1 23.2
(C) 광중합성 단량체 5.8 7.7 5.8 7.7 5.8 7.7
(D) 광중합 개시제 (D-1) 0.6 0.6 0.3 0.3 0.3 0.3
(D-2) - - 0.3 0.3 0.3 0.3
(E) 용매 66.3 68.3 66.3 68.3 66.3 68.3
(F) 첨가제 0.15 0.15 0.15 0.15 0.15 0.15
(A) 반도체 나노로드
InGaN nano rod(diamater: 600~800nm, length: 3.5~5㎛)
(B) 바인더 수지
(B-1) 카도계 바인더 수지 (TA01, 타코마社)
(B-2) 아크릴계 바인더 수지 (SM-CRB-400H, 에스엠에스㈜)
(C) 광중합 개시제
(C-1) 옥심계 개시제(PBG304, Tronyl社)
(C-1) 아세토페논계 개시제(PBG304, Tronyl社)
(D) 광중합성 단량체
펜타에리트리톨헥사메타크릴레이트(DPHA, Nippon Kayaku社)
(E) 용매
프로필렌 글리콜 모노메틸에테르 아세테이트(PGMEA, Daicel Chemical社)
(F) 기타 첨가제
불소계 계면활성제 (F-554, DIC社)
평가: 패턴 특성 확인
실시예 1 내지 실시예 4, 비교예 1 및 비교예 2에서 제조된 전기영동 장치용 경화성 조성물을 각각 3ml씩 취해, 전극이 놓인 유리 기판 위에 스핀 코팅기(Mikasa社, Opticoat MS-A150)를 사용하여 1.5~2.0㎛ 두께로 코팅한 후, 열판(hot-plate)을 이용하여 100℃에서 1분 동안 프리베이킹(Pre-baking)을 하고, 노광기(Ushio社, ghi broadband)를 이용하여 30mJ/cm2의 출력(power), 100㎛ Print gap으로 UV를 조사해, 1차 피막을 형성하였다. 이어서, 현상기(SVS社, SSP-200)를 사용하여 현상온도 25℃, 0.043% 농도의 수산화 칼륨(KOH) 수용액으로 현상하였고, 이때 BP(break point)를 측정하고, 이 후, convection oven에서 180℃로 30분 동안 하드-베이킹(Hard-baking)을 진행하여, 패터닝된 유기막을 얻어 광학 현미경(500 배율)으로 선폭의 길이를 측정하여 표 2 및 도 10 내지 도 13에 나타내었다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2
선폭 (㎛) 3.0 3.0 2.0 2.5 6.5 9.5
상기 표 2 및 도 10 내지 도 13에서 보는 바와 같이, 실시예 1 내지 실시예 4의 경우, 비교예 1 및 비교예 2 대비 미세선폭 구현이 우수함을 확인할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.  그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
(부호의 설명)
1 전극
2 반도체 나노로드
3 포토레지스트 고정막

Claims (14)

  1. (A) 반도체 나노로드;
    (B) 바인더 수지;
    (C) 광중합성 단량체;
    (D) 광중합 개시제; 및
    (E) 용매
    를 포함하는 전기영동 장치용 경화성 조성물.
  2. 제1항에 있어서,
    상기 반도체 나노로드는 300nm 내지 900nm의 직경을 가지는 전기영동 장치용 경화성 조성물.
  3. 제1항에 있어서,
    상기 반도체 나노로드는 3.5 ㎛ 내지 5 ㎛의 길이를 가지는 전기영동 장치용 경화성 조성물.
  4. 제1항에 있어서,
    상기 반도체 나노로드는 GaN계 화합물, InGaN계 화합물 또는 이들의 조합을 포함하는 전기영동 장치용 경화성 조성물.
  5. 제1항에 있어서,
    상기 반도체 나노로드는 그 표면이 금속 산화물로 코팅된 전기영동 장치용 경화성 조성물.
  6. 제5항에 있어서,
    상기 금속 산화물은 알루미나, 실리카 또는 이들의 조합을 포함하는 전기영동 장치용 경화성 조성물.
  7. 제1항에 있어서,
    상기 반도체 나노로드는 상기 경화성 조성물 총량에 대하여 0.01 중량% 내지 1 중량%로 포함되는 전기영동 장치용 경화성 조성물.
  8. 제1항에 있어서,
    상기 바인더 수지는 아크릴계 수지, 카도계 수지, 에폭시 수지 또는 이들의 조합을 포함하는 전기영동 장치용 경화성 조성물.
  9. 제1항에 있어서,
    상기 바인더 수지는 2,000 g/mol 내지 20,000 g/mol의 중량평균분자량을 가지는 전기영동 장치용 경화성 조성물.
  10. 제1항에 있어서,
    상기 광중합 개시제는 옥심계 화합물, 아세토페논계 화합물 또는 이들의 조합을 포함하는 전기영동 장치용 경화성 조성물.
  11. 제1항에 있어서,
    상기 전기영동 장치용 경화성 조성물은, 상기 전기영동 장치용 경화성 조성물 총량에 대해,
    상기 (A) 반도체 나노로드 0.01 중량% 내지 1 중량%;
    상기 (B) 바인더 수지 1 중량% 내지 40 중량%;
    상기 (C) 광중합성 단량체 1 중량% 내지 10 중량%;
    상기 (D) 광중합 개시제 0.1 중량% 내지 5 중량%; 및
    상기 (E) 용매 잔부량
    을 포함하는 전기영동 장치용 경화성 조성물.
  12. 제1항에 있어서,
    상기 전기영동 장치용 경화성 조성물은 말론산; 3-아미노-1,2-프로판디올; 실란계 커플링제; 레벨링제; 불소계 계면활성제; 또는 이들의 조합을 더 포함하는 전기영동 장치용 경화성 조성물.
  13. 제1항 내지 제12항 중 어느 한 항의 전기영동 장치용 경화성 조성물을 이용하여 제조된 감광성 경화막.
  14. 제13항의 감광성 경화막을 포함하는 전기영동 장치.
PCT/KR2021/013884 2020-12-08 2021-10-08 전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 전기영동 장치 WO2022124547A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0170672 2020-12-08
KR1020200170672A KR102648366B1 (ko) 2020-12-08 2020-12-08 전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 전기영동 장치

Publications (1)

Publication Number Publication Date
WO2022124547A1 true WO2022124547A1 (ko) 2022-06-16

Family

ID=81973713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013884 WO2022124547A1 (ko) 2020-12-08 2021-10-08 전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 전기영동 장치

Country Status (3)

Country Link
KR (1) KR102648366B1 (ko)
TW (1) TWI813044B (ko)
WO (1) WO2022124547A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240033956A (ko) * 2022-09-06 2024-03-13 삼성에스디아이 주식회사 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280044A (ja) * 2002-03-26 2003-10-02 Toppan Printing Co Ltd 電気泳動表示パネル用前面基板及びその製造方法
KR20120009607A (ko) * 2010-07-19 2012-02-02 동우 화인켐 주식회사 전자종이 반사판용 감광성 수지 조성물, 이를 이용하여 제조된 전자종이용 반사판 및 전자종이
KR20120089520A (ko) * 2010-12-16 2012-08-13 코오롱인더스트리 주식회사 전기영동 디스플레이 장치의 제조 방법
KR20140000735A (ko) * 2012-06-22 2014-01-06 엘지디스플레이 주식회사 퀀텀 로드 발광 표시장치 및 이의 제조방법
KR101688011B1 (ko) * 2014-01-14 2016-12-20 제일모직주식회사 컬러필터용 감광성 수지 조성물 및 이를 이용한 컬러필터

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519946B1 (ko) * 2015-12-31 2023-04-07 엘지디스플레이 주식회사 퀀텀 로드, 퀀텀 로드 필름 및 퀀텀 로드 표시장치
KR101974841B1 (ko) * 2016-12-07 2019-05-03 삼성에스디아이 주식회사 감광성 수지 조성물, 이를 이용하여 제조된 감광성 수지막 및 컬러필터
KR101976659B1 (ko) * 2016-12-12 2019-05-09 삼성에스디아이 주식회사 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 컬러필터
JP7098873B2 (ja) * 2016-12-15 2022-07-12 Dic株式会社 被表面修飾半導体ナノ結晶及びこれを用いたカラーフィルタ
KR102237366B1 (ko) * 2017-12-07 2021-04-06 삼성에스디아이 주식회사 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 컬러필터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280044A (ja) * 2002-03-26 2003-10-02 Toppan Printing Co Ltd 電気泳動表示パネル用前面基板及びその製造方法
KR20120009607A (ko) * 2010-07-19 2012-02-02 동우 화인켐 주식회사 전자종이 반사판용 감광성 수지 조성물, 이를 이용하여 제조된 전자종이용 반사판 및 전자종이
KR20120089520A (ko) * 2010-12-16 2012-08-13 코오롱인더스트리 주식회사 전기영동 디스플레이 장치의 제조 방법
KR20140000735A (ko) * 2012-06-22 2014-01-06 엘지디스플레이 주식회사 퀀텀 로드 발광 표시장치 및 이의 제조방법
KR101688011B1 (ko) * 2014-01-14 2016-12-20 제일모직주식회사 컬러필터용 감광성 수지 조성물 및 이를 이용한 컬러필터

Also Published As

Publication number Publication date
TW202223013A (zh) 2022-06-16
TWI813044B (zh) 2023-08-21
KR102648366B1 (ko) 2024-03-14
KR20220081133A (ko) 2022-06-15

Similar Documents

Publication Publication Date Title
WO2019083112A1 (ko) 양자점 함유 조성물, 양자점 제조방법 및 컬러필터
WO2017069501A1 (ko) 수지 조성물 및 이를 이용하여 제조된 블랙뱅크를 포함하는 디스플레이 장치
WO2013094827A1 (en) Photosensitive resin composition for color filter and color filter using the same
WO2015005546A1 (ko) 흑색 감광성 수지 조성물 및 이를 이용한 차광층
KR102504790B1 (ko) 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치
WO2022124547A1 (ko) 전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 전기영동 장치
KR20120089914A (ko) 감광성 수지 조성물 및 이를 이용한 차광층
KR20150061388A (ko) 감광성 수지 조성물 및 이를 이용한 차광층
KR102562336B1 (ko) 전기영동 장치용 잉크 조성물, 이를 이용한 수지막 및 디스플레이 장치
WO2012044070A2 (en) Photosensitive resin composition for organic insulator
WO2019164157A1 (ko) 화합물, 이를 포함하는 색재 조성물 및 이를 포함하는 수지 조성물
KR102087261B1 (ko) 감광성 수지 조성물, 이를 이용한 블랙 화소 격벽층 및 디스플레이 장치
WO2023163516A1 (ko) 경화성 조성물, 이를 이용한 막 및 디스플레이 장치
KR102504788B1 (ko) 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막 및 상기 경화막을 포함하는 컬러필터
KR20220023000A (ko) 경화성 조성물, 이를 이용한 경화막 및 경화막을 포함하는 디스플레이 장치
KR20220119931A (ko) 잉크 조성물, 이를 이용한 경화막 및 디스플레이 장치
KR20210044044A (ko) 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막 및 상기 경화막을 포함하는 컬러필터
WO2021210783A1 (ko) 감광성 수지 조성물, 이를 이용하여 제조된 감광성 수지막 및 컬러필터
WO2019146814A1 (ko) 흑색 감광성 수지 조성물, 이로부터 제조된 화상표시장치용 블랙 매트릭스, 컬럼 스페이서 및 블랙 매트릭스 일체형 컬럼 스페이서
WO2024053992A1 (ko) 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치
WO2022092556A1 (ko) 전기영동 장치용 경화성 조성물, 이를 이용한 경화막 및 디스플레이 장치
WO2020218676A1 (ko) 차광용 격벽 조성물, 이를 이용하여 제조된 차광용 격벽 및 디스플레이 장치
WO2021187853A1 (ko) 감광성 수지 조성물, 이를 이용하여 제조된 감광성 수지막 및 디스플레이 장치
WO2024085390A1 (ko) 화소정의층의 제조 방법
WO2024085388A1 (ko) 화소정의층의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903594

Country of ref document: EP

Kind code of ref document: A1