WO2023163516A1 - 경화성 조성물, 이를 이용한 막 및 디스플레이 장치 - Google Patents

경화성 조성물, 이를 이용한 막 및 디스플레이 장치 Download PDF

Info

Publication number
WO2023163516A1
WO2023163516A1 PCT/KR2023/002576 KR2023002576W WO2023163516A1 WO 2023163516 A1 WO2023163516 A1 WO 2023163516A1 KR 2023002576 W KR2023002576 W KR 2023002576W WO 2023163516 A1 WO2023163516 A1 WO 2023163516A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
curable composition
unsubstituted
substituted
group
Prior art date
Application number
PCT/KR2023/002576
Other languages
English (en)
French (fr)
Inventor
류동완
김영권
정지영
최진희
Original Assignee
삼성디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성디스플레이 주식회사 filed Critical 삼성디스플레이 주식회사
Publication of WO2023163516A1 publication Critical patent/WO2023163516A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators

Definitions

  • the present disclosure relates to a curable composition, a film using the same, and a display device including the film.
  • LED is a semiconductor having a structure in which n-type semiconductor crystals in which many carriers are electrons and p-type semiconductor crystals in which many carriers are holes are bonded to each other by using the characteristics of compound semiconductors. It is a semiconductor device that is converted into light and displayed.
  • LED semiconductors have very low energy consumption due to their high light conversion efficiency, and are semi-permanent and environmentally friendly, so they are called the revolution of light as a green material.
  • compound semiconductor technology high-brightness red, orange, green, blue, and white LEDs have been developed, and these are used in many fields such as traffic lights, mobile phones, automobile headlights, outdoor signboards, LCD BLU (back light unit), and indoor and outdoor lighting. It has been applied in and active research is continuing at home and abroad.
  • GaN-based compound semiconductors with a wide bandgap are materials used in the manufacture of LED semiconductors that emit light in the green, blue, and ultraviolet regions, and since white LED devices can be manufactured using blue LED devices, many studies have been conducted on this. is being done
  • One embodiment is to provide a semiconductor nanorod-containing curable composition that can be cured at i-Line (365 nm), which is widely used in display manufacturing, and does not impair nanorod alignment characteristics in a dielectrophoretic process.
  • Another embodiment is to provide a film prepared using the curable composition.
  • Another embodiment is to provide a display device including the film.
  • One embodiment is (A) a semiconductor nanorod; (B) a photopolymerizable monomer containing a compound having an unsaturated carbon-carbon double bond; (C) a photopolymerization initiator comprising a compound represented by Formula 1 below; and (D) a solvent.
  • R 1 to R 5 are each independently a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C1 to C20 alkoxy group, a substituted or unsubstituted C6 to C20 aryl group or a substituted or unsubstituted C3 to C20 heterocyclic group,
  • R 4 and R 5 may be fused with each other to form a ring.
  • Formula 1 may be represented by Formula 1-1 or Formula 1-2 below.
  • X is CR a R b (R a and R b are each independently a hydrogen atom, a halogen atom, or a substituted or unsubstituted C1 to C10 alkyl group), O or S;
  • L 1 and L 2 are each independently a substituted or unsubstituted C1 to C20 alkylene group
  • R 1 to R 3 are each independently a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C1 to C20 alkoxy group, a substituted or unsubstituted C6 to C20 aryl group, a substituted or unsubstituted C3 to C20 heterocyclic group,
  • R 6 and R 7 are each independently a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, or a substituted or unsubstituted C6 to C20 aryl group.
  • the compound represented by Formula 1 may be represented by Formula 1-1-1, Formula 1-2-1 or Formula 1-2-2.
  • the semiconductor nanorod may have a diameter of 300 nm to 900 nm.
  • the semiconductor nanorod may have a length of 3.5 ⁇ m to 5 ⁇ m.
  • the semiconductor nanorod may include a GaN-based compound, an InGaN-based compound, or a combination thereof.
  • a surface of the semiconductor nanorod may be coated with a metal oxide.
  • the metal oxide may include alumina, silica, or a combination thereof.
  • the curable composition based on the total amount of the curable composition, the (A) semiconductor nanorod 0.01% to 10% by weight; 1% to 40% by weight of the (B) photopolymerizable monomer; 0.1% to 5% by weight of the (C) photopolymerization initiator; and (D) the remaining amount of the solvent.
  • the curable composition comprises malonic acid; 3-amino-1,2-propanediol; silane-based coupling agents; leveling agent; fluorine-based surfactants; or a combination thereof.
  • Another embodiment provides a film prepared using the curable composition.
  • Another embodiment provides a display device including the film.
  • the composition according to one embodiment is a curable composition containing semiconductor nanorods, has good dielectrophoresis, and can proceed with a patterning process after dielectrophoresis, thereby significantly reducing process time and process cost compared to conventional compositions. (improvement of fairness), and implementation of fine line width is also possible.
  • FIG. 1 is an example of a cross-sectional view of a semiconductor nanorod used in a curable composition according to an embodiment.
  • FIG. 2 shows a step of coating a curable composition including semiconductor nanorods on an electrode according to an embodiment
  • 3 shows a step of aligning (dietophoresis) semiconductor nanorods by applying an electric field
  • Figure 6 shows the step of exposure after coating the photoresist after prebaking
  • FIG. 9 is a cross-sectional view of a state in which a fixed film is formed on a semiconductor nanorod aligned on an electrode.
  • alkyl group means a C1 to C20 alkyl group
  • alkenyl group means a C2 to C20 alkenyl group
  • cycloalkenyl group means a C3 to C20 cycloalkenyl group
  • Heterocycloalkenyl group means a C3 to C20 heterocycloalkenyl group
  • aryl group means a C6 to C20 aryl group
  • arylalkyl group means a C6 to C20 arylalkyl group
  • alkylene group means a C1 to C20 alkylene group
  • arylene group means a C6 to C20 arylene group
  • alkylarylene group means a C6 to C20 alkylarylene group
  • heteroarylene group means a C3 to C20 hetero It means an arylene group
  • alkoxyylene group means a C1 to C20 alkoxyylene
  • substitution means that at least one hydrogen atom is a halogen atom (F, Cl, Br, I), a hydroxy group, a C1 to C20 alkoxy group, a nitro group, a cyano group, an amine group, an imino group, Azido group, amidino group, hydrazino group, hydrazono group, carbonyl group, carbamyl group, thiol group, ester group, ether group, carboxyl group or its salt, sulfonic acid group or its salt, phosphoric acid or its salt, C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 to C20 alkynyl group, C6 to C20 aryl group, C3 to C20 cycloalkyl group, C3 to C20 cycloalkenyl group, C3 to C20 cycloalkynyl group, C2 to C20 heterocycloalkyl group, C2
  • hetero means that at least one heteroatom of N, O, S, and P is included in the chemical formula.
  • (meth)acrylate means that both “acrylate” and “methacrylate” are possible
  • (meth)acrylic acid means “acrylic acid” and “methacrylic acid”. “That means both are possible.
  • the curable composition includes (A) semiconductor nanorods; (B) a photopolymerizable monomer containing a compound having an unsaturated carbon-carbon double bond; (C) a photopolymerization initiator comprising a compound represented by Formula 1 below; and (D) a solvent, and since the semiconductor nanorods are aligned when an electric field is applied to the composition coated on the electrode, the cost of complicated and expensive processes such as u-LED and mini-LED can be drastically reduced.
  • R 1 to R 5 are each independently a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C1 to C20 alkoxy group, a substituted or unsubstituted C6 to C20 aryl group or a substituted or unsubstituted C3 to C20 heterocyclic group,
  • R 4 and R 5 may be fused with each other to form a ring.
  • the semiconductor nanorod dispersion For the electrophoresis of semiconductor nanorods, which are light emitting devices, the semiconductor nanorod dispersion must be inkjetted or slit coated. For large-area coating and panel production, a high dielectric migration rate of the semiconductor nanorod solution is an essential parameter. . In addition, a cleaning process for post-processing after alignment of the semiconductor nanorods is absolutely necessary, but if there is no fixed film, there is a risk that the aligned semiconductor nanorods may be lost during cleaning, so a fixed film capable of fixing the semiconductor nanorods is required. Until now, organic materials used for such fixed membranes have not been found. Such a fixed film needs to form a line having a thickness of 3 ⁇ m to 5 ⁇ m and a width of 2.0 ⁇ m or less.
  • One embodiment is a curable composition including semiconductor nanorods, and relates to a material capable of shortening the process by allowing a patterning process to proceed after dielectrophoresis.
  • inorganic dispersions Quantum dots, pigments, dyes, light diffusing agents, etc.
  • photoinitiators acrylic (and/or cardo) binders, acrylic monomers, and organic solvents are included.
  • patterning was performed by dissolving the unexposed area (uncured area) using an alkali solution such as KOH or TMAH.
  • the curable composition according to an embodiment is a negative-type composition containing semiconductor nanorods and has good dielectrophoretic properties, a patterning process can be performed after dielectrophoresis, and a fixed film can be formed after post-baking. Not only is it very advantageous, but it can be cured in i-Line (365 nm), which is widely used in display manufacturing, and the nanorod alignment characteristics can not be hindered in the dielectrophoretic process.
  • the semiconductor nanorod may include a GaN-based compound, an InGaN-based compound, or a combination thereof, and may have a surface coated with a metal oxide.
  • the surface of the semiconductor nanorod is coated with a metal oxide containing alumina, silica, or a combination thereof to form an insulating film (Al 2 O 3 , SiO x or a combination thereof), thereby maximizing compatibility with the solvent described later. there is.
  • the semiconductor nanorod may have a diameter of 300 nm to 900 nm, for example, 600 nm to 700 nm.
  • the semiconductor nanorods may have a length of 3.5 ⁇ m to 5 ⁇ m.
  • the semiconductor nanorod has the above diameter and length, surface coating of the metal oxide may be facilitated, and dispersion stability of the semiconductor nanorod may be maximized.
  • the semiconductor nanorods may be included in an amount of 0.01 wt% to 10 wt%, for example, 0.01 wt% to 5 wt%, for example, 0.01 wt% to 3 wt%, based on the total amount of the curable composition.
  • the semiconductor nanorod is included within the above range, dispersibility in the composition is good, and the manufactured pattern may have a fine line width.
  • the photopolymerizable monomer includes a compound having an unsaturated carbon-carbon double bond.
  • the compound having an unsaturated carbon-carbon double bond may be a monofunctional or multifunctional ester of (meth)acrylic acid having at least one ethylenically unsaturated double bond.
  • the photopolymerizable monomer includes the compound having the ethylenically unsaturated double bond, sufficient polymerization occurs during exposure in the pattern formation process, thereby forming a pattern having excellent heat resistance, light resistance, and chemical resistance.
  • the compound having an unsaturated carbon-carbon double bond may be an acrylate-based compound, such as an aliphatic acrylate-based compound.
  • the compound having an unsaturated carbon-carbon double bond is an aromatic acrylate-based compound, dielectrophoretic properties may be slightly lowered compared to the case of using an aliphatic acrylate-based compound, and the compound having an unsaturated carbon-carbon double bond It may be desirable to use an aliphatic acrylate-based compound.
  • the compound having the unsaturated carbon-carbon double bond include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, and propylene glycol di(meth)acrylate.
  • Acrylates neopentyl glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, bisphenol A di(meth)acrylate, pentaerythritol Di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol hexa(meth)acrylate, dipentaerythritol di(meth)acrylate, dipenta Erythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, bisphenol A epoxy(meth)acrylate, ethylene glycol monomethyl ether (meth)acrylate , trimethylol propane tri(meth)acryl
  • Examples of commercially available products of the compound having the unsaturated carbon-carbon double bond are as follows.
  • Examples of monofunctional esters of (meth)acrylic acid include Aronix M- 101® , M- 111® , and M- 114® from Toagosei Chemical Industry Co., Ltd.; KAYARAD TC-110S ® of Nippon Kayaku Co., Ltd., the same TC-120S ® , etc.; Osaka Yuki Kagaku Kogyo Co., Ltd. V- 158® , V- 2311® , etc. are mentioned.
  • Examples of the bifunctional ester of (meth)acrylic acid include Aronix M- 210® , M- 240® , and M- 6200® of Toagosei Kagaku Kogyo Co., Ltd.; KAYARAD HDDA ® from Nippon Kayaku Co., Ltd., HX-220 ® , R-604 ® , etc.; Examples include V- 260® , V- 312® , and V-335 HP® of Osaka Yuki Kagaku Kogyo Co., Ltd.
  • Examples of the trifunctional ester of (meth)acrylic acid include Aronix M- 309® , M- 400® , M- 405® , M- 450® , and M from Toagosei Chemical Industry Co., Ltd. -7100 ® , M-8030 ® , M-8060 ® , etc.; KAYARAD TMPTA ® , Dong-DPCA-20 ® , Dong-30 ® , Dong-60 ® , Dong-120 ® and the like of Nippon Kayaku Co., Ltd.; V-295 ® , Dong-300 ® , Dong-360 ® , Dong-GPT ® , Dong-3PA ® , Dong-400 ® and the like of Osaka Yuki Kayaku Kogyo Co., Ltd. These products may be used alone or in combination of two or more.
  • At least one compound selected from the group consisting of Chemical Formulas M-1 to Chemical Formulas M-5 may be used, but is not necessarily limited thereto.
  • the photopolymerizable monomer may be used after being treated with an acid anhydride to impart better developability.
  • the photopolymerizable monomer may be included in an amount of 1 wt% to 40 wt%, for example, 3 wt% to 30 wt%, for example, 5 wt% to 25 wt%, based on the total amount of the curable composition.
  • the photopolymerizable monomer When the photopolymerizable monomer is included within the above range, it has excellent electrophoretic properties and at the same time is sufficiently cured during exposure in the pattern forming process to form a pattern having excellent reliability, heat resistance, light resistance, chemical resistance, resolution and adhesion. can
  • the photopolymerization initiator according to an embodiment includes the compound represented by Formula 1 above.
  • Chemical Formula 1 may be represented by Chemical Formula 1-1 or Chemical Formula 1-2.
  • X is CR a R b (R a and R b are each independently a hydrogen atom, a halogen atom, or a substituted or unsubstituted C1 to C10 alkyl group), O or S;
  • L 1 and L 2 are each independently a substituted or unsubstituted C1 to C20 alkylene group
  • R 1 to R 3 are each independently a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, a substituted or unsubstituted C1 to C20 alkoxy group, a substituted or unsubstituted C6 to C20 aryl group, a substituted or unsubstituted C3 to C20 heterocyclic group,
  • R 6 and R 7 are each independently a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C3 to C20 cycloalkyl group, or a substituted or unsubstituted C6 to C20 aryl group.
  • the compound represented by Chemical Formula 1 may be represented by Chemical Formula 1-1-1, Chemical Formula 1-2-1, or Chemical Formula 1-2-2, but is not necessarily limited thereto.
  • the photopolymerization initiator may further include, in addition to the compound represented by Formula 1, an acetophenone-based compound, a benzophenone-based compound, a thioxanthone-based compound, a benzoin-based compound, a triazine-based compound, an oxime-based compound, and the like.
  • acetophenone-based compound examples include 2,2'-diethoxyacetophenone, 2,2'-dibutoxyacetophenone, 2-hydroxy-2-methylpropiophenone, p-t-butyltrichloroacetophenone, p-t -Butyldichloroacetophenone, 4-chloroacetophenone, 2,2'-dichloro-4-phenoxyacetophenone, 2-methyl-1-(4-(methylthio)phenyl)-2-morpholinopropane-1 -one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, etc. are mentioned.
  • benzophenone-based compound examples include benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4,4'-bis(dimethylamino)benzophenone, 4,4 '-bis(diethylamino)benzophenone, 4,4'-dimethylaminobenzophenone, 4,4'-dichlorobenzophenone, 3,3'-dimethyl-2-methoxybenzophenone, and the like.
  • thioxanthone-based compound examples include thioxanthone, 2-methylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2- Chlorothioxanthone etc. are mentioned.
  • benzoin-based compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzyldimethylketal.
  • triazine-based compound examples include 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis(trichloromethyl)-s-triazine, 2-(3',4' -Dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine , 2-(p-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis(trichloromethyl)-s-triazine , 2-biphenyl-4,6-bis(trichloromethyl)-s-triazine, bis(trichloromethyl)-6-styryl-s-triazine, 2-(naphtho-1-yl)- 4,6-bis(trichlor
  • Examples of the oxime-based compound include O-acyloxime-based compounds, 2-(O-benzoyloxime)-1-[4-(phenylthio)phenyl]-1,2-octanedione, 1-(O-acetyloxime) -1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone, O-ethoxycarbonyl- ⁇ -oxyamino-1-phenylpropan-1-one, etc.
  • O-acyloxime-based compound examples include 1,2-octanedione, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholin-4-yl-phenyl)-butane -1-one, 1-(4-phenylsulfanylphenyl)-butane-1,2-dione-2-oxime-O-benzoate, 1-(4-phenylsulfanylphenyl)-octane-1,2- Dione-2-oxime-O-benzoate, 1-(4-phenylsulfanylphenyl)-octan-1-one oxime-O-acetate, 1-(4-phenylsulfanylphenyl)-butan-1-one oxime -O-acetate, etc. can be used.
  • the photopolymerization initiator may further include a carbazole-based compound, a diketone compound, a sulfonium borate-based compound, a diazo-based compound, an imidazole-based compound, a biimidazole-based compound, and the like, in addition to the above compounds.
  • the photopolymerization initiator may be used together with a photosensitizer that causes a chemical reaction by transferring energy after absorbing light to an excited state.
  • photosensitizer examples include tetraethylene glycol bis-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, dipentaerythritol tetrakis-3-mercaptopropionate, and the like. can be heard
  • the photopolymerization initiator may be included in an amount of 0.1 wt % to 5 wt %, for example, 0.1 wt % to 3 wt %, based on the total amount of the curable composition.
  • electrophoretic properties are not impaired, photopolymerization sufficiently occurs during exposure in the pattern forming process, and transmittance reduction due to the unreacted initiator can be prevented.
  • the solvent materials that have compatibility with the semiconductor nanorods, the photopolymerizable monomer, and the photopolymerization initiator but do not react may be used.
  • the solvent examples include alcohols such as methanol and ethanol; ethers such as dichloroethyl ether, n-butyl ether, diisoamyl ether, methylphenyl ether, and tetrahydrofuran; glycol ethers such as ethylene glycol methyl ether, ethylene glycol ethyl ether, and propylene glycol methyl ether; Cellosolve acetates, such as methyl cellosolve acetate, ethyl cellosolve acetate, and diethyl cellosolve acetate; carbitols such as methyl ethyl carbitol, diethyl carbitol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, and diethylene glycol diethyl ether; propylene glycol alkyl ether acetates such as propy
  • glycol ethers such as ethylene glycol monoethyl ether; ethylene glycol alkyl ether acetates such as ethyl cellosolve acetate; esters such as 2-hydroxyethyl propionate; diethylene glycols such as diethylene glycol monomethyl ether; Propylene glycol alkyl ether acetates such as propylene glycol monomethyl ether acetate and propylene glycol propyl ether acetate may be used.
  • glycol ethers such as ethylene glycol monoethyl ether
  • ethylene glycol alkyl ether acetates such as ethyl cellosolve acetate
  • esters such as 2-hydroxyethyl propionate
  • diethylene glycols such as diethylene glycol monomethyl ether
  • Propylene glycol alkyl ether acetates such as propylene glycol monomethyl ether acetate and propylene glycol propyl ether acetate
  • the solvent is the balance, for example 55% to 91% by weight, for example 55% to 90% by weight, for example 55% to 85% by weight, for example 56% to 84% by weight, for example 57% by weight relative to the total amount of the curable composition. % to 83% by weight, such as 58% to 82% by weight, such as 59% to 81% by weight, such as 59% to 80% by weight.
  • the solvent is included within the above range, it is possible to obtain a coating film having excellent coatability of the curable composition and excellent flatness.
  • the curable composition according to one embodiment includes malonic acid; 3-amino-1,2-propanediol; silane-based coupling agents; leveling agent; fluorine-based surfactants; or a combination thereof.
  • the curable composition may further include a silane-based coupling agent having a reactive substituent such as a vinyl group, a carboxyl group, a methacryloxy group, an isocyanate group, or an epoxy group in order to improve adhesion to a substrate.
  • a silane-based coupling agent having a reactive substituent such as a vinyl group, a carboxyl group, a methacryloxy group, an isocyanate group, or an epoxy group in order to improve adhesion to a substrate.
  • silane-based coupling agent examples include trimethoxysilyl benzoic acid, ⁇ -methacryloxypropyl trimethoxysilane, vinyl triacetoxysilane, vinyl trimethoxysilane, ⁇ -isocyanate propyl triethoxysilane, ⁇ -glyc sidoxy propyl trimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and the like, and these may be used alone or in combination of two or more.
  • the silane-based coupling agent may be included in an amount of 0.01 part by weight to 10 parts by weight based on 100 parts by weight of the curable composition. When the silane-based coupling agent is included within the above range, adhesion, storability, and the like are excellent.
  • the curable composition may further include a surfactant, such as a fluorine-based surfactant, to improve coating properties and prevent formation of defects, if necessary.
  • a surfactant such as a fluorine-based surfactant
  • the fluorine-based surfactant may be used in an amount of 0.001 part by weight to 5 parts by weight based on 100 parts by weight of the curable composition.
  • the fluorine-based surfactant is included within the above range, coating uniformity is secured, stains do not occur, and wettability to a glass substrate is excellent.
  • antioxidants and stabilizers may be further added to the curable composition within a range that does not impair physical properties.
  • the curable composition may further include a binder resin.
  • the binder resin may include an acrylic binder resin, a cardo-based binder resin, or a combination thereof.
  • acrylic binder resin and the cardo-based resin any known resin commonly used in curable compositions or photosensitive compositions may be used, and the binder resin is not limited to a specific type.
  • the binder resin may be included in an amount of 1 wt % to 30 wt %, for example, 1 wt % to 20 wt %, based on the total amount of the curable composition. When the binder resin is included within the above range, curing shrinkage may be reduced.
  • Another embodiment provides a film prepared using the curable composition described above.
  • the manufacturing method of the membrane is as follows.
  • the curable composition described above is applied to a desired thickness, for example, 1.2 ⁇ m to 3.5 ⁇ m, by using a method such as a spin or slit coating method, a roll coating method, a screen printing method, an applicator method, or the like, on an electrode substrate subjected to a predetermined pretreatment.
  • a method such as a spin or slit coating method, a roll coating method, a screen printing method, an applicator method, or the like, on an electrode substrate subjected to a predetermined pretreatment.
  • nanorods are aligned by dielectrophoresis, and then heated (prebaked) at a temperature of 70° C. to 100° C. for 1 minute to 10 minutes to remove the solvent to form a coating film.
  • actinic rays of 200 nm to 500 nm are irradiated after another photoresist and a mask of a predetermined shape are interposed therebetween.
  • a light source used for irradiation a low pressure mercury lamp, a high pressure mercury lamp, an ultra high pressure mercury lamp, a metal halide lamp, an argon gas laser, etc. may be used, and in some cases, X-rays, electron beams, etc. may be used.
  • the exposure amount varies depending on the type, compounding amount, and dry film thickness of each component of the curable composition, but is, for example, 500 mJ/cm 2 or less (by a 365 nm sensor) when a high-pressure mercury lamp is used.
  • an alkaline aqueous solution is used as a developing solution to dissolve and remove unnecessary portions, thereby leaving only the exposed portion to form an image pattern.
  • the image pattern obtained by the above development is etched to obtain a pattern excellent in terms of heat resistance, light resistance, adhesion, crack resistance, chemical resistance, high strength, storage stability and the like to obtain a fixed organic film.
  • Another embodiment provides a display device including the film.
  • 40 ml of stearic acid (1.5 mM) is reacted at room temperature (23 ° C) for 4 hours on a nano rod patterned InGaN wafer (4 inch). After the reaction, soak in 50ml of acetone for 5 minutes to remove excess stearic acid, and additionally rinse the wafer surface using 40ml of acetone. Put the cleaned wafer into a 27kW bath type sonicator with 35ml of GBL, and use sonication for 5 minutes to separate the rod from the wafer surface. Put the separated rod into a FALCON tube for centrifugation and add 10ml of GBL to additionally wash the rod on the surface of the bath.
  • the mixture was sufficiently stirred at room temperature for 30 minutes. Subsequently, photopolymerizable monomers and additives were added and stirred at room temperature for another 1 hour. After stirring, the separated nanorods were added and sufficiently stirred for 1 hour to prepare a curable composition including the nanorods.
  • curable compositions according to Examples 1 to 8 and Comparative Examples 1 and 4 were prepared with the compositions shown in Tables 1 and 2 using the components mentioned below. Structures of photopolymerizable monomers and photopolymerization initiators are shown in Table 3 below.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Example 8
  • C photopolymerization initiator (C-1) 0.3 0.3 0.3 - - - - 0.3 (C-2) - - - 0.3 0.3 0.3 - - (C-3) - - - - - - - - - - (C-4) - - - - - - - - - (C-5) - - - - - - - - - (C-6) -
  • InGaN nano rod (diamater: 600 ⁇ 800nm, length: 3.5 ⁇ 5 ⁇ m)
  • Fluorinated surfactant F-554, DIC Co.
  • the method for measuring dielectrophoretic properties is as follows.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Bias Alignment (%) 94 93 91 90 89 89 90 85 83 77 76 65 Center Alignment (%) 88 82 86 84 88 85 85 76 64 70 65 61
  • Examples 1 to 8 which are curable compositions according to an embodiment, include the compound represented by Formula 1 as a photopolymerization initiator, a compound having a structure different from Formula 1 is used to initiate photopolymerization. Compared to Comparative Examples 1 to 4 including zero, it can be seen that dielectrophoretic properties are excellent. From this, it can be seen that the curable composition according to one embodiment has excellent dispersion stability and dielectrophoretic properties of semiconductor nanorods, and is suitable for large-area coating and panel production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

(A) 반도체 나노로드; (B) 불포화 탄소-탄소 이중결합을 갖는 화합물을 포함하는 광중합성 단량체; (C) 특정 구조의 화합물을 포함하는 광중합 개시제; 및 (D) 용매를 포함하는 경화성 조성물, 이를 이용하여 제조된 막 및 상기 막을 포함하는 디스플레이 장치가 제공된다. [대표도] 도 1

Description

경화성 조성물, 이를 이용한 막 및 디스플레이 장치
본 기재는 경화성 조성물, 이를 이용한 막 및 상기 막을 포함하는 디스플레이 장치에 관한 것이다.
LED는 1992년 일본 니치아사의 나카무라 등이 저온의 GaN 화합물 완충층을 적용하여 양질의 단결정 GaN 질화물 반도체를 융합시키는데 성공함으로써 개발이 활발하게 이루어져 왔다. LED는 화합물 반도체의 특성을 이용하여 다수의 캐리어가 전자인 n형 반도체 결정과 다수의 캐리어가 정공인 p형 반도체 결정이 서로 접합된 구조를 갖는 반도체로써, 전기신호를 원하는 영역의 파장대역을 가지는 빛으로 변환시켜 표출되는 반도체 소자이다.
이러한 LED 반도체는 광 변환 효율이 높기에 에너지 소비량이 매우 적으며 수명이 반영구적이고 환경 친화적이어서 그린 소재로서 빛의 혁명이라고 불린다. 최근에는 화합물 반도체 기술의 발달로 고휘도 적색, 주황, 녹색, 청색 및 백색 LED가 개발되었으며, 이를 활용하여 신호등, 핸드폰, 자동차 전조등, 옥외 전광판, LCD BLU(back light unit), 그리고 실내외 조명 등 많은 분야에서 응용되고 있으며 국내외에서 활발한 연구가 계속되고 있다. 특히 넓은 밴드갭을 갖는 GaN계 화합물 반도체는 녹색, 청색 그리고 자외선 영역의 빛을 방출하는 LED 반도체의 제조에 이용되는 물질이며, 청색 LED 소자를 이용하여 백색 LED 소자의 제작이 가능하므로 이에 대한 많은 연구가 이루어지고 있다.
이러한 일련의 연구들 중 LED의 크기를 나노 또는 마이크로 단위로 제작한 초소형 LED 소자를 이용한 연구가 활발히 이루어지고 있고, 이러한 초소형 LED 소자를 조명, 디스플레이에 등에 활용하기 위한 연구가 계속되고 있다. 이러한 연구에서 지속적으로 주목 받고 있는 부분은 초소형 LED 소자에 전원을 인가할 수 있는 전극, 활용 목적 및 전극이 차지하는 공간의 감소 등을 위한 전극 배치, 배치된 전극에 초소형 LED의 실장방법 등에 관한 것들이다.
이 중에서도 배치된 전극에 초소형 LED소자를 실장시키는 방법에 대한 부분은 초소형 LED 소자의 크기적 제약에 따라 전극 상에 초소형 LED 소자를 목적한 대로 배치 및 실장시키기 매우 어려운 난점이 여전히 상존하고 있다. 이는 초소형 LED 소자가 나노 스케일 또는 마이크로 스케일임에 따라 사람의 손으로 일일이 목적한 전극영역에 배치시키고 실장시킬 수 없기 때문이다.
최근 들어 나노 스케일의 초소형 LED 소자에 대한 요구가 갈수록 증대되고 있으며, 이를 위해 나노 스케일의 GaN계 화합물 반도체 또는 InGaN계 화합물 반도체를 로드로 제조하려는 시도가 있는데, 문제는 나노로드(nanorod) 자체는 용액(또는 중합성 화합물) 내에서의 분산 안정성이 크게 저하된다는 것이다. 이에 현재까지 반도체 나노로드의 용액(또는 중합성 화합물) 내 분산 안정성을 향상시킬 수 있는 기술에 대한 개발이 꾸준히 이루어지고 있으며, 그 결과 반도체 나노로드의 리간드 처리 기술이나 반도체 나노로드의 분산안정성을 향상시키는 용매에 대한 기술이 하나하나씩 소개되고 있는 상태이다.
그러나, 아직까지 반도체 나노로드를 포함하는 경화성 조성물에 대해서는 그 어떠한 기술도 소개되지 않았으며, 이에 대한 배경지식 또한 전무한 상태이다.
일 구현예는 디스플레이 제조에 널리 사용되는 i-Line(365nm)에서 경화가 가능하면서 유전 영동 공정에서 나노로드 정렬 특성을 저해하지 않는 반도체 나노로드 함유 경화성 조성물을 제공하기 위한 것이다.
다른 일 구현예는 상기 경화성 조성물을 이용하여 제조된 막을 제공하기 위한 것이다.
또 다른 일 구현예는 상기 막을 포함하는 디스플레이 장치를 제공하기 위한 것이다.
일 구현예는 (A) 반도체 나노로드; (B) 불포화 탄소-탄소 이중결합을 갖는 화합물을 포함하는 광중합성 단량체; (C) 하기 화학식 1로 표시되는 화합물을 포함하는 광중합 개시제; 및 (D) 용매를 포함하는 경화성 조성물을 제공한다.
[화학식 1]
Figure PCTKR2023002576-appb-img-000001
상기 화학식 1에서,
R1 내지 R5는 각각 독립적으로 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴기 또는 치환 또는 비치환된 C3 내지 C20 헤테로고리기이고,
R4 및 R5는 서로 융합하여 고리를 형성할 수 있다.
상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2023002576-appb-img-000002
[화학식 1-2]
Figure PCTKR2023002576-appb-img-000003
상기 화학식 1-1 및 화학시 1-2에서,
X는 CRaRb(Ra 및 Rb는 각각 독립적으로 수소 원자, 할로겐 원자, 치환 또는 비치환된 C1 내지 C10 알킬기임), O 또는 S 이고,
L1 및 L2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬렌기이고,
R1 내지 R3은 각각 독립적으로 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C20 헤테로고리기이고,
R6 및 R7은 각각 독립적으로 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기 또는 치환 또는 비치환된 C6 내지 C20 아릴기이다.
상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1-1, 화학식 1-2-1 또는 화학식 1-2-2로 표시될 수 있다.
[화학식 1-1-1]
Figure PCTKR2023002576-appb-img-000004
[화학식 1-2-1]
Figure PCTKR2023002576-appb-img-000005
[화학식 1-2-2]
Figure PCTKR2023002576-appb-img-000006
상기 반도체 나노로드는 300nm 내지 900nm의 직경을 가질 수 있다.
상기 반도체 나노로드는 3.5 ㎛ 내지 5 ㎛의 길이를 가질 수 있다.
상기 반도체 나노로드는 GaN계 화합물, InGaN계 화합물 또는 이들의 조합을 포함할 수 있다.
상기 반도체 나노로드는 그 표면이 금속 산화물로 코팅되어 있을 수 있다.
상기 금속 산화물은 알루미나, 실리카 또는 이들의 조합을 포함할 수 있다.
상기 경화성 조성물은, 상기 경화성 조성물 총량에 대해, 상기 (A) 반도체 나노로드 0.01 중량% 내지 10 중량%; 상기 (B) 광중합성 단량체 1 중량% 내지 40 중량%; 상기 (C) 광중합 개시제 0.1 중량% 내지 5 중량%; 및 상기 (D) 용매 잔부량을 포함할 수 있다.
상기 경화성 조성물은 말론산; 3-아미노-1,2-프로판디올; 실란계 커플링제; 레벨링제; 불소계 계면활성제; 또는 이들의 조합을 더 포함할 수 있다.
다른 일 구현예는 상기 경화성 조성물을 이용하여 제조된 막을 제공한다.
또 다른 일 구현예는 상기 막을 포함하는 디스플레이 장치를 제공한다.
기타 본 발명의 측면들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
일 구현예에 따른 조성물은 반도체 나노로드를 포함하는 경화성 조성물로서, 유전 영동이 양호하며, 유전 영동 이후 패터닝 공정을 진행할 수 있기에, 기존 조성물과 비교하여 공정시간 및 공정비용을 획기적으로 단축할 수 있으며(공정성 향상), 미세 선폭의 구현도 가능하다.
도 1은 일 구현예에 따른 경화성 조성물에 사용되는 반도체 나노로드 단면도의 일 예이다.
도 2 내지 도 9는 반도체 나노로드의 정렬 및 패터닝 공정을 나타낸 것으로서,
도 2는 반도체 나노로드를 포함하는 일 구현예에 따른 경화성 조성물을 전극 상에 코팅하는 단계를 나타낸 것이고,
도 3은 전기장을 걸어주어 반도체 나노로드를 정렬(유전영동)시키는 단계를 나타낸 것이고,
도 4는 전극 위에 정렬된 반도체 나노로드의 단면도를 나타낸 것이고,
도 5는 반도체 나노로드를 정렬시킨 후 프리베이킹하는 단계를 나타낸 것이고,
도 6은 프리베이킹 후 포토레지스트를 코팅한 후, 노광하는 단계를 나타낸 것이고,
도 7은 노광 후 현상하는 단계를 나타낸 것이고,
도 8은 현상 후 에칭하여, 고정된 막을 형성하는 단계를 나타낸 것이고,
도 9는 전극 위에 정렬된 반도체 나노로드 위에 고정된 막이 형성된 모습의 단면도를 나타낸 것이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다.  다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. 
본 명세서에서 특별한 언급이 없는 한, "알킬기"란 C1 내지 C20 알킬기를 의미하고, "알케닐기"란 C2 내지 C20 알케닐기를 의미하고, "사이클로알케닐기"란 C3 내지 C20 사이클로알케닐기를 의미하고, "헤테로사이클로알케닐기"란 C3 내지 C20 헤테로사이클로알케닐기를 의미하고, "아릴기"란 C6 내지 C20 아릴기를 의미하고, "아릴알킬기"란 C6 내지 C20 아릴알킬기를 의미하며, "알킬렌기"란 C1 내지 C20 알킬렌기를 의미하고, "아릴렌기"란 C6 내지 C20 아릴렌기를 의미하고, "알킬아릴렌기"란 C6 내지 C20 알킬아릴렌기를 의미하고, "헤테로아릴렌기"란 C3 내지 C20 헤테로아릴렌기를 의미하고, "알콕실렌기"란 C1 내지 C20 알콕실렌기를 의미한다.
본 명세서에서 특별한 언급이 없는 한, "치환"이란 적어도 하나의 수소 원자가 할로겐 원자(F, Cl, Br, I), 히드록시기, C1 내지 C20 알콕시기, 니트로기, 시아노기, 아민기, 이미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 카르보닐기, 카르바밀기, 티올기, 에스테르기, 에테르기, 카르복실기 또는 그것의 염, 술폰산기 또는 그것의 염, 인산이나 그것의 염, C1 내지 C20 알킬기, C2 내지 C20 알케닐기, C2 내지 C20 알키닐기, C6 내지 C20 아릴기, C3 내지 C20 사이클로알킬기, C3 내지 C20 사이클로알케닐기, C3 내지 C20 사이클로알키닐기, C2 내지 C20 헤테로사이클로알킬기, C2 내지 C20 헤테로사이클로알케닐기, C2 내지 C20 헤테로사이클로알키닐기, C3 내지 C20 헤테로아릴기 또는 이들의 조합의 치환기로 치환된 것을 의미한다.
또한 본 명세서에서 특별한 언급이 없는 한, "헤테로"란, 화학식 내에 N, O, S 및 P 중 적어도 하나의 헤테로 원자가 적어도 하나 포함된 것을 의미한다.
또한 본 명세서에서 특별한 언급이 없는 한, "(메타)아크릴레이트"는 "아크릴레이트"와 "메타크릴레이트" 둘 다 가능함을 의미하며, "(메타)아크릴산"은 "아크릴산"과 "메타크릴산" 둘 다 가능함을 의미한다.
본 명세서에서 특별한 언급이 없는 한, "조합"이란 혼합 또는 공중합을 의미한다.
본 명세서 내 화학식에서 별도의 정의가 없는 한, 화학결합이 그려져야 하는 위치에 화학결합이 그려져있지 않은 경우는 상기 위치에 수소 원자가 결합되어 있음을 의미한다.
또한 본 명세서에서 특별한 언급이 없는 한, "*"는 동일하거나 상이한 원자 또는 화학식과 연결되는 부분을 의미한다.
일 구현예에 따른 경화성 조성물은 (A) 반도체 나노로드; (B) 불포화 탄소-탄소 이중결합을 갖는 화합물을 포함하는 광중합성 단량체; (C) 하기 화학식 1로 표시되는 화합물을 포함하는 광중합 개시제; 및 (D) 용매를 포함하며, 전극 위에 코팅된 조성물에 전기장을 가하면 상기 반도체 나노로드가 정렬하기에, u-LED, mini-LED 등의 복잡하고 비싼 공정 비용을 획기적으로 줄일 수 있다.
[화학식 1]
Figure PCTKR2023002576-appb-img-000007
상기 화학식 1에서,
R1 내지 R5는 각각 독립적으로 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴기 또는 치환 또는 비치환된 C3 내지 C20 헤테로고리기이고,
R4 및 R5는 서로 융합하여 고리를 형성할 수 있다.
발광 소자인 반도체 나노로드의 전기 영동을 위하여는 반도체 나노로드 분산액을 잉크젯팅 혹은 슬릿 코팅(slit coating)하여야 하는데, 대면적 코팅 및 패널 생산을 위해서는 반도체 나노로드 용액의 높은 유전 영동률이 필수적인 파라미터이다. 또한 반도체 나노로드의 정렬 후 후공정을 위한 세정 공정이 반드시 필요하나, 고정막이 없을 경우, 정렬된 반도체 나노로드가 세정 시 소실 우려가 있어, 반도체 나노로드를 고정시킬 수 있는 고정막이 필요하게 되었으나, 현재까지 이러한 고정막으로 사용되는 유기 재료는 전무한 상태이다. 이러한 고정막은 두께 3㎛ 내지 5㎛, 폭 2.0㎛ 이하의 라인 형성이 필요하다.
일 구현예는 반도체 나노로드를 포함하는 경화성 조성물로서, 유전 영동 이후 패터닝 공정을 진행할 수 있게 하여 공정을 단축할 수 있도록 하는 재료에 대한 것이다.
기존 디스플레이 및 전자 재료에서 쓰이던 감광성 수지 조성물의 경우 무기분산액(양자점, 안료, 염료, 광확산제 등), 광개시제, 아크릴계(및/또는 카도계) 바인더, 아크릴 모노머 및 유기용매를 포함하며, 아크릴계나 카도계 고분자 바인더의 카르복실기의 산도(acidity)를 이용하여 패턴 노광 후 KOH나 TMAH 등의 알칼리 용액을 이용하여 비노광부(비경화부)를 용해하여 패터닝을 만들었다. 이 때 노광 시 광중합 반응을 일으키는 광중합 개시제가 필요한데, 종래의 광중합 개시제들은 강한 극성이나 이온성을 띠고 이는 것이 많아, 특히 유전 영동 공정에서 나노로드의 정렬에 악영향을 줄 가능성이 높다.
그러나, 일 구현예에 따른 경화성 조성물은 반도체 나노로드를 포함하는 네가티브형 조성물로서 유전 영동 특성이 양호하며, 유전 영동 이후 패터닝 공정을 진행할 수 있고, 포스트베이킹 후 고정막 형성이 가능하기에 공정성 측면에서 매우 유리할 뿐만 아니라, 디스플레이 제조에 널리 사용되는 i-Line(365nm)에서 경화가 가능하면서 유전 영동 공정에서 나노로드 정렬 특성을 저해하지 않을 수 있다.
이하에서 각 성분에 대하여 구체적으로 설명한다.
(A) 반도체 나노로드
상기 반도체 나노로드는 GaN계 화합물, InGaN계 화합물 또는 이들의 조합을 포함할 수 있으며, 그 표면이 금속 산화물로 코팅되어 있을 수 있다.
반도체 나노로드 용액(반도체 나노로드 + 용매)의 분산 안정성을 위해서는 보통 3시간 정도의 시간이 필요한데, 이는 대면적 잉크젯(Inkjet) 공정을 수행하기에는 턱없이 부족한 시간이다. 이에 반도체 나노로드 표면을 알루미나, 실리카 또는 이들의 조합을 포함하는 금속 산화물로 코팅시켜 절연막(Al2O3, SiOx 또는 이들의 조합)을 형성시킴으로써, 후술하는 용매와의 상용성을 극대화시킬 수 있다.
예컨대, 상기 반도체 나노로드는 300nm 내지 900nm, 예컨대 600nm 내지 700nm의 직경을 가질 수 있다.
예컨대, 상기 반도체 나노로드는 3.5 ㎛ 내지 5 ㎛의 길이를 가질 수 있다.
상기 반도체 나노로드가 상기 직경 및 길이를 갖는 경우, 상기 금속 산화물의 표면 코팅이 용이할 수 있어, 반도체 나노로드의 분산 안정성이 극대화될 수 있다.
상기 반도체 나노로드는 상기 경화성 조성물 총량에 대해 0.01 중량% 내지 10 중량%, 예컨대 0.01 중량 % 내지 5 중량%, 예컨대 0.01 중량% 내지 3 중량%로 포함될 수 있다. 반도체 나노로드가 상기 범위 내로 포함될 경우, 조성물 내 분산성이 양호하고, 제조된 패턴은 미세선폭을 가질 수 있다.
(B) 광중합성 단량체
상기 광중합성 단량체는 불포화 탄소-탄소 이중결합을 갖는 화합물을 포함한다. 예컨대, 상기 불포화 탄소-탄소 이중결합을 갖는 화합물은 적어도 1개의 에틸렌성 불포화 이중결합을 가지는 (메타)아크릴산의 일관능 또는 다관능 에스테르가 사용될 수 있다.
상기 광중합성 단량체는 상기 에틸렌성 불포화 이중결합을 가지는 화합물을 포함함으로써, 패턴 형성 공정에서 노광시 충분한 중합을 일으킴으로써 내열성, 내광성 및 내화학성이 우수한 패턴을 형성할 수 있다.
예컨대, 상기 불포화 탄소-탄소 이중결합을 갖는 화합물은 아크릴레이트계 화합물, 예컨대 지방족 아크릴레이트계 화합물일 수 있다. 상기 불포화 탄소-탄소 이중결합을 갖는 화합물이 방향족 아크릴레이트계 화합물일 경우 지방족 아크릴레이트계 화합물을 사용하는 경우 대비 유전 영동 특성이 조금 저하될 수 있는 바, 상기 불포화 탄소-탄소 이중결합을 갖는 화합물은 지방족 아크릴레이트계 화합물을 사용하는 것이 바람직할 수 있다.
상기 불포화 탄소-탄소 이중결합을 갖는 화합물의 구체적인 예로는, 에틸렌 글리콜 디(메타)아크릴레이트, 디에틸렌 글리콜 디(메타)아크릴레이트, 트리에틸렌 글리콜 디(메타)아크릴레이트, 프로필렌 글리콜 디(메타)아크릴레이트, 네오펜틸 글리콜 디(메타)아크릴레이트, 1,4-부탄디올 디(메타)아크릴레이트, 1,6-헥산디올 디(메타)아크릴레이트, 비스페놀A 디(메타)아크릴레이트, 펜타에리트리톨 디(메타)아크릴레이트, 펜타에리트리톨 트리(메타)아크릴레이트, 펜타에리트리톨 테트라(메타)아크릴레이트, 펜타에리트리톨 헥사(메타)아크릴레이트, 디펜타에리트리톨 디(메타)아크릴레이트, 디펜타에리트리톨 트리(메타)아크릴레이트, 디펜타에리트리톨 펜타(메타)아크릴레이트, 디펜타에리트리톨 헥사(메타)아크릴레이트, 비스페놀A 에폭시(메타)아크릴레이트, 에틸렌 글리콜 모노메틸에테르 (메타)아크릴레이트, 트리메틸올 프로판 트리(메타)아크릴레이트, 트리스(메타)아크릴로일옥시에틸 포스페이트, 노볼락에폭시 (메타)아크릴레이트 등을 들 수 있다.
상기 불포화 탄소-탄소 이중결합을 갖는 화합물의 시판되는 제품을 예로 들면 다음과 같다. 상기 (메타)아크릴산의 일관능 에스테르의 예로는, 도아 고세이 가가꾸 고교(주)社의 아로닉스 M-101®, 동 M-111®, 동 M-114® 등; 니혼 가야꾸(주)社의 KAYARAD TC-110S®, 동 TC-120S® 등; 오사카 유끼 가가꾸 고교(주)社의 V-158®, V-2311® 등을 들 수 있다. 상기 (메타)아크릴산의 이관능 에스테르의 예로는, 도아 고세이 가가꾸고교(주)社의 아로닉스 M-210®, 동 M-240®, 동 M-6200® 등; 니혼 가야꾸(주)社의 KAYARAD HDDA®, 동 HX-220®, 동 R-604® 등; 오사카 유끼 가가꾸 고교(주)社의 V-260®, V-312®, V-335 HP® 등을 들 수 있다. 상기 (메타)아크릴산의 삼관능 에스테르의 예로는, 도아 고세이 가가꾸 고교(주)社의 아로닉스 M-309®, 동 M-400®, 동 M-405®, 동 M-450®, 동 M-7100®, 동 M-8030®, 동 M-8060® 등; 니혼 가야꾸(주)社의 KAYARAD TMPTA®, 동 DPCA-20®, 동-30®, 동-60®, 동-120® 등; 오사카 유끼 가야꾸 고교(주)社의 V-295®, 동-300®, 동-360®, 동-GPT®, 동-3PA®, 동-400® 등을 들 수 있다. 상기 제품을 단독 사용 또는 2종 이상 함께 사용할 수 있다.
예컨대, 상기 불포화 탄소-탄소 이중결합을 갖는 화합물로 하기 화학식 M-1 내지 화학식 M-5로 이루어진 군에서 선택된 적어도 하나 이상의 화합물을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
[화학식 M-1]
Figure PCTKR2023002576-appb-img-000008
[화학식 M-2]
Figure PCTKR2023002576-appb-img-000009
[화학식 M-3]
Figure PCTKR2023002576-appb-img-000010
[화학식 M-4]
Figure PCTKR2023002576-appb-img-000011
[화학식 M-5]
Figure PCTKR2023002576-appb-img-000012
상기 광중합성 단량체는 보다 우수한 현상성을 부여하기 위하여 산무수물로 처리하여 사용할 수도 있다.
상기 광중합성 단량체는 상기 경화성 조성물 총량에 대해 1 중량% 내지 40 중량%, 예컨대 3 중량% 내지 30 중량%, 예컨대 5 중량% 내지 25 중량%로 포함될 수 있다. 상기 광중합성 단량체가 상기 범위 내로 포함될 경우, 우수한 전기 영동 특성을 가짐과 동시에 패턴 형성 공정에서 노광 시 경화가 충분히 일어나 신뢰성이 우수하며, 내열성, 내광성, 내화학성, 해상도 및 밀착성이 우수한 패턴을 형성할 수 있다.
(C) 광중합 개시제
일 구현예에 따른 광중합 개시제는 상기 화학식 1로 표시되는 화합물을 포함한다.
예컨대, 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시될 수 있다.
[화학식 1-1]
Figure PCTKR2023002576-appb-img-000013
[화학식 1-2]
Figure PCTKR2023002576-appb-img-000014
상기 화학식 1-1 및 화학시 1-2에서,
X는 CRaRb(Ra 및 Rb는 각각 독립적으로 수소 원자, 할로겐 원자, 치환 또는 비치환된 C1 내지 C10 알킬기임), O 또는 S 이고,
L1 및 L2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬렌기이고,
R1 내지 R3은 각각 독립적으로 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C20 헤테로고리기이고,
R6 및 R7은 각각 독립적으로 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기 또는 치환 또는 비치환된 C6 내지 C20 아릴기이다.
상기 화학식 1-1 또는 화학식 1-2로 표시되는 화합물은 나노로드 및 아크릴계 광중합성 단량체와 함께 사용될 때, 경화성 조성물의 유전 영동 특성을 양호하게 할 수 있다.
예컨대, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1-1, 화학식 1-2-1 또는 화학식 1-2-2로 표시될 수 있으나, 반드시 이에 한정되는 것은 아니다.
[화학식 1-1-1]
Figure PCTKR2023002576-appb-img-000015
[화학식 1-2-1]
Figure PCTKR2023002576-appb-img-000016
[화학식 1-2-2]
Figure PCTKR2023002576-appb-img-000017
한편, 상기 광중합 개시제는 상기 화학식 1로 표시되는 화합물 외에, 아세토페논계 화합물, 벤조페논계 화합물, 티오크산톤계 화합물, 벤조인계 화합물, 트리아진계 화합물, 옥심계 화합물 등을 더 포함할 수 있다.
상기 아세토페논계 화합물의 예로는, 2,2'-디에톡시아세토페논, 2,2'-디부톡시아세토페논, 2-히드록시-2-메틸프로피오페논, p-t-부틸트리클로로아세토페논, p-t-부틸디클로로아세토페논, 4-클로로아세토페논, 2,2'-디클로로-4-페녹시아세토페논, 2-메틸-1-(4-(메틸티오)페닐)-2-모폴리노프로판-1-온, 2-벤질-2-디메틸아미노-1-(4-모폴리노페닐)-부탄-1-온 등을 들 수 있다.
상기 벤조페논계 화합물의 예로는, 벤조페논, 벤조일안식향산, 벤조일안식향산메틸, 4-페닐벤조페논, 히드록시벤조페논, 아크릴화벤조페논, 4,4'-비스(디메틸아미노)벤조페논, 4,4'-비스(디에틸아미노)벤조페논, 4,4'-디메틸아미노벤조페논, 4,4'-디클로로벤조페논, 3,3'-디메틸-2-메톡시벤조페논 등을 들 수 있다.
상기 티오크산톤계 화합물의 예로는, 티오크산톤, 2-메틸티오크산톤, 이소프로필티오크산톤, 2,4-디에틸티오크산톤, 2,4-디이소프로필티오크산톤, 2-클로로티오크산톤 등을 들 수 있다.
상기 벤조인계 화합물의 예로는, 벤조인, 벤조인 메틸 에테르, 벤조인 에틸 에테르, 벤조인 이소프로필 에테르, 벤조인 이소부틸 에테르, 벤질디메틸케탈 등을 들 수 있다.
상기 트리아진계 화합물의 예로는, 2,4,6-트리클로로-s-트리아진, 2-페닐-4,6-비스(트리클로로메틸)-s-트리아진, 2-(3',4'-디메톡시스티릴)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(4'-메톡시나프틸)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(p-메톡시페닐)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(p-톨릴)-4,6-비스(트리클로로메틸)-s-트리아진, 2-비페닐-4,6-비스(트리클로로메틸)-s-트리아진, 비스(트리클로로메틸)-6-스티릴-s-트리아진, 2-(나프토-1-일)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(4-메톡시나프토-1-일)-4,6-비스(트리클로로메틸)-s-트리아진, 2-4-비스(트리클로로메틸)-6-피페로닐-s-트리아진, 2-4-비스(트리클로로메틸)-6-(4-메톡시스티릴)-s-트리아진 등을 들 수 있다.
상기 옥심계 화합물의 예로는 O-아실옥심계화합물, 2-(O-벤조일옥심)-1-[4-(페닐티오)페닐]-1,2-옥탄디온, 1-(O-아세틸옥심)-1-[9-에틸-6-(2-메틸벤조일)-9H-카르바졸-3-일]에탄온, O-에톡시카르보닐-α-옥시아미노-1-페닐프로판-1-온등을사용할수있다. 상기 O-아실옥심계화합물의구체적인예로는, 1,2-옥탄디온, 2-디메틸아미노-2-(4-메틸벤질)-1-(4-모르폴린-4-일-페닐)-부탄-1-온, 1-(4-페닐술파닐페닐)-부탄-1,2-디온-2-옥심-O-벤조에이트,1-(4-페닐술파닐페닐)-옥탄-1,2-디온-2-옥심-O-벤조에이트, 1-(4-페닐술파닐페닐)-옥탄-1-온옥심-O-아세테이트, 1-(4-페닐술파닐페닐)-부탄-1-온옥심-O-아세테이트 등을 사용할 수 있다.
상기 광중합 개시제는 상기 화합물 이외에도 카바졸계 화합물, 디케톤류 화합물, 술포늄보레이트계 화합물, 디아조계 화합물, 이미다졸계 화합물, 비이미다졸계 화합물 등을 더 포함할 수 있다.
상기 광중합 개시제는 빛을 흡수하여 들뜬 상태가 된 후 그 에너지를 전달함으로써 화학반응을 일으키는 광증감제와 함께 사용될 수도 있다.
상기 광증감제의 예로는, 테트라에틸렌글리콜비스-3-머캡토프로피오네이트, 펜타에리트리톨테트라키스-3-머캡토프로피오네이트, 디펜타에리트리톨테트라키스-3-머캡토프로피오네이트 등을 들 수 있다.
상기 광중합 개시제는 상기 경화성 조성물 총량에 대하여 0.1 중량% 내지 5 중량%, 예컨대 0.1 중량% 내지 3 중량%로 포함될 수 있다. 상기 광중합 개시제가 상기 범위 내로 포함될 경우, 전기 영동 특성을 저해하지 않음과 동시에, 패턴 형성 공정에서 노광 시 광중합이 충분히 일어나고, 미반응 개시제로 인한 투과율의 저하를 막을 수 있다.
(D) 용매
상기 용매는 상기 반도체 나노로드, 상기 광중합성 단량체 및 상기 광중합 개시제와의 상용성을 가지되 반응하지 않는 물질들이 사용될 수 있다.
상기 용매의 예로는, 메탄올, 에탄올 등의 알코올류; 디클로로에틸 에테르, n-부틸 에테르, 디이소아밀 에테르, 메틸페닐 에테르, 테트라히드로퓨란 등의 에테르류; 에틸렌 글리콜 메틸에테르, 에틸렌 글리콜 에틸에테르, 프로필렌 글리콜 메틸에테르 등의 글리콜 에테르류; 메틸 셀로솔브 아세테이트, 에틸 셀로솔브 아세테이트, 디에틸 셀로솔브 아세테이트 등의 셀로솔브 아세테이트류; 메틸에틸 카르비톨, 디에틸 카르비톨, 디에틸렌 글리콜 모노메틸에테르, 디에틸렌 글리콜 모노에틸에테르, 디에틸렌 글리콜 디메틸에테르, 디에틸렌 글리콜 메틸에틸에테르, 디에틸렌 글리콜 디에틸에테르 등의 카르비톨류; 프로필렌 글리콜 메틸에테르 아세테이트, 프로필렌 글리콜 프로필에테르 아세테이트 등의 프로필렌 글리콜 알킬에테르 아세테이트류; 톨루엔, 크실렌 등의 방향족 탄화수소류; 메틸에틸케톤, 사이클로헥사논, 4-히드록시-4-메틸-2-펜타논, 메틸-n-프로필케톤, 메틸-n-부틸케논, 메틸-n-아밀케톤, 2-헵타논 등의 케톤류; 초산 에틸, 초산-n-부틸, 초산 이소부틸 등의 포화 지방족 모노카르복실산 알킬 에스테르류; 메틸 락테이트, 에틸 락테이트 등의 락트산 알킬 에스테르류; 메틸 히드록시아세테이트, 에틸 히드록시아세테이트, 부틸 히드록시아세테이트 등의 히드록시아세트산 알킬 에스테르류; 메톡시메틸 아세테이트, 메톡시에틸 아세테이트, 메톡시부틸 아세테이트, 에톡시메틸 아세테이트, 에톡시에틸 아세테이트 등의 아세트산 알콕시알킬 에스테르류; 메틸 3-히드록시프로피오네이트, 에틸 3-히드록시프로피오네이트 등의 3-히드록시프로피온산 알킬 에스테르류; 메틸 3-메톡시프로피오네이트, 에틸 3-메톡시프로피오네이트, 에틸 3-에톡시프로피오네이트, 메틸 3-에톡시프로피오네이트 등의 3-알콕시프로피온산 알킬 에스테르류; 메틸 2-히드록시프로피오네이트, 에틸 2-히드록시프로피오네이트, 프로필 2-히드록시프로피오네이트 등의 2-히드록시프로피온산 알킬 에스테르류; 메틸 2-메톡시프로피오네이트, 에틸 2-메톡시프로피오네이트, 에틸 2-에톡시프로피오네이트, 메틸 2-에톡시프로피오네이트 등의 2-알콕시프로피온산 알킬 에스테르류; 메틸 2-히드록시-2-메틸프로피오네이트, 에틸 2-히드록시-2-메틸프로피오네이트 등의 2-히드록시-2-메틸프로피온산 알킬 에스테르류; 메틸 2-메톡시-2-메틸프로피오네이트, 에틸 2-에톡시-2-메틸프로피오네이트 등의 2-알콕시-2-메틸프로피온산 알킬 에스테르류; 2-히드록시에틸 프로피오네이트, 2-히드록시-2-메틸에틸 프로피오네이트, 히드록시에틸 아세테이트, 메틸 2-히드록시-3-메틸부타노에이트 등의 에스테르류; 또는 피루빈산 에틸 등의 케톤산 에스테르류의 화합물이 있으며, 또한 N-메틸포름아미드, N,N-디메틸포름아미드, N-메틸포름아닐리드, N-메틸아세트아미드, N,N-디메틸아세트아미드, N-메틸피롤리돈, 디메틸술폭시드, 벤질에틸에테르, 디헥실에테르, 아세트닐아세톤, 이소포론, 카프론산, 카프릴산, 1-옥탄올, 1-노난올, 벤질알코올, 초산 벤질, 안식향산 에틸, 옥살산 디에틸, 말레인산 디에틸, γ-부티로락톤(GBL), 에틸렌 카보네이트, 프로필렌 카보네이트, 페닐 셀로솔브 아세테이트 등이 있으며, 이들 단독으로 사용되거나 2종 이상을 혼합하여 사용할 수 있다.
상기 용매 중 혼화성(miscibility) 및 반응성 등을 고려한다면, 좋게는 에틸렌 글리콜 모노에틸 에테르 등의 글리콜 에테르류; 에틸 셀로솔브 아세테이트 등의 에틸렌 글리콜 알킬에테르 아세테이트류; 2-히드록시에틸 프로피오네이트 등의 에스테르류; 디에틸렌 글리콜 모노메틸 에테르 등의 디에틸렌 글리콜류; 프로필렌 글리콜 모노메틸에테르 아세테이트, 프로필렌 글리콜 프로필에테르 아세테이트 등의 프로필렌 글리콜 알킬에테르 아세테이트류가 사용될 수 있다.
상기 용매는 상기 경화성 조성물 총량에 대하여 잔부량, 예컨대 55 중량% 내지 91 중량%, 예컨대 55 중량% 내지 90 중량%, 예컨대 55 중량% 내지 85 중량%, 예컨대 56 중량% 내지 84 중량%, 예컨대 57 중량% 내지 83 중량%, 예컨대 58 중량% 내지 82 중량%, 예컨대 59 중량% 내지 81 중량%, 예컨대 59 중량% 내지 80 중량%로 포함될 수 있다. 상기 용매가 상기 범위 내로 포함될 경우 경화성 조성물의 도포성이 우수하고, 평탄성이 우수한 도막을 얻을 수 있다.
(E) 기타 첨가제
일 구현예에 따른 경화성 조성물은 말론산; 3-아미노-1,2-프로판디올; 실란계 커플링제; 레벨링제; 불소계 계면활성제; 또는 이들의 조합을 더 포함할 수 있다.
예컨대, 상기 경화성 조성물은 기판과의 밀착성 등을 개선하기 위해 비닐기, 카르복실기, 메타크릴옥시기, 이소시아네이트기, 에폭시기 등의 반응성 치환기를 갖는 실란계 커플링제를 더 포함할 수 있다.
상기 실란계 커플링제의 예로는, 트리메톡시실릴 벤조산, γ-메타크릴 옥시프로필 트리메톡시실란, 비닐 트리아세톡시실란, 비닐 트리메톡시실란, γ-이소시아네이트 프로필 트리에톡시실란, γ-글리시독시 프로필 트리메톡시실란, β-(3,4-에폭시사이클로헥실)에틸트리메톡시실란 등을 들 수 있으며, 이들을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 실란계 커플링제는 상기 경화성 조성물 100 중량부에 대하여 0.01 중량부내지 10 중량부로 포함될 수 있다. 실란계 커플링제가 상기 범위 내로 포함될 경우 밀착성, 저장성 등이 우수하다.
또한 상기 경화성 조성물은 필요에 따라 코팅성 향상 및 결점 생성 방지 효과를 위해 계면 활성제, 예컨대 불소계 계면활성제를 더 포함할 수 있다.
상기 불소계 계면활성제로는, BM Chemie社의 BM-1000®, BM-1100® 등; 다이 닛폰 잉키 가가꾸 고교(주)社의 메카 팩 F 142D®, 동 F 172®, 동 F 173®, 동 F 183® 등; 스미토모 스리엠(주)社의 프로라드 FC-135®, 동 FC-170C®, 동 FC-430®, 동 FC-431® 등; 아사히 그라스(주)社의 사프론 S-112®, 동 S-113®, 동 S-131®, 동 S-141®, 동 S-145® 등; 도레이 실리콘(주)社의 SH-28PA®, 동-190®, 동-193®, SZ-6032®, SF-8428® 등; DIC(주)社의 F-482, F-484, F-478, F-554 등의 명칭으로 시판되고 있는 불소계 계면활성제를 사용할 수 있다.
상기 불소계 계면활성제는 상기 경화성 조성물 100 중량부에 대하여 0.001 중량부 내지 5 중량부로 사용될 수 있다. 상기 불소계 계면활성제가 상기 범위 내로 포함될 경우 코팅 균일성이 확보되고, 얼룩이 발생하지 않으며, 유리 기판에 대한 습윤성(wetting)이 우수하다.
또한 상기 경화성 조성물은 물성을 저해하지 않는 범위 내에서 산화방지제, 안정제 등의 기타 첨가제가 일정량 더 첨가될 수도 있다.
바인더 수지
상기 경화성 조성물은 바인더 수지를 더 포함할 수도 있다.
상기 바인더 수지는 아크릴계 바인더 수지, 카도계 바인더 수지 또는 이들의 조합을 포함할 수 있다.
상기 아크릴계 바인더 수지 및 카도계 수지는 경화성 조성물 또는 감광성 조성물에 통상적으로 사용되는 알려진 수지라면 어느 것이든 사용할 수 있으며, 상기 바인더 수지가 특정한 종류로 한정되는 것은 아니다.
상기 바인더 수지는 경화성 조성물 총량에 대하여 1 중량% 내지 30 중량%, 예컨대, 1 중량% 내지 20 중량%로 포함될 수 있다. 바인더 수지가 상기 범위 내로 포함되는 경우 경화 수축율을 낮출 수 있다.
다른 일 구현예는 전술한 경화성 조성물을 이용하여 제조된 막을 제공한다.
상기 막의 제조 방법은 다음과 같다.
(1) 도포 및 도막 형성 단계
전술한 경화성 조성물을 소정의 전처리를 한 전극 기판 상에 스핀 또는 슬릿 코트법, 롤 코트법, 스크린 인쇄법, 어플리케이터법 등의 방법을 사용하여 원하는 두께, 예를 들어 1.2㎛ 내지 3.5㎛의 두께로 도포한 후, 유전 영동시켜 나노로드를 정렬시킨 후, 70℃ 내지 100℃의 온도에서 1분 내지 10분 동안 가열(프리베이킹)하여 용매를 제거함으로써 도막을 형성한다.
(2) 노광 단계
상기 얻어진 도막에 필요한 패턴 형성을 위해 다른 포토레지스트 및 소정 형태의 마스크를 개재한 뒤, 200nm 내지 500nm의 활성선을 조사한다. 조사에 사용되는 광원으로는 저압 수은등, 고압 수은등, 초고압 수은등, 금속 할로겐화물 램프, 아르곤 가스 레이저 등을 사용할 수 있으며, 경우에 따라 X선, 전자선 등도 이용할 수 있다.
노광량은 상기 경화성 조성물 각 성분의 종류, 배합량 및 건조 막 두께에 따라 다르지만, 예를 들어 고압 수은등을 사용할 경우 500 mJ/cm2 이하(365 nm 센서에 의함)이다.
(3) 현상 단계
상기 노광 단계에 이어, 알칼리성 수용액을 현상액으로 이용하여 불필요한 부분을 용해, 제거함으로써 노광 부분만을 잔존시켜 화상 패턴을 형성시킨다.
(4) 에칭 단계
상기 현상에 의해 수득된 화상 패턴을 내열성, 내광성, 밀착성, 내크랙성, 내화학성, 고강도, 저장 안정성 등의 면에서 우수한 패턴을 얻기 위해 에칭하여, 고정 유기막을 얻는다.
또 다른 일 구현예는 상기 막을 포함하는 디스플레이 장치를 제공한다.
이하, 본 발명의 바람직한 실시예를 기재한다. 다만, 하기의 실시예는 본 발명의 바람직한 일 실시예일뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
(경화성 조성물 제조)
1. 반도체 나노로드의 분리
나노로드(nano rod) 패터닝된 InGaN wafer(4 inch)에 stearic acid(1.5mM) 40ml을 상온(23℃)에서 4시간 동안 반응시킨다. 반응 후 50ml의 아세톤에 5분 동안 담가 과량의 stearic acid를 제거하고, 추가로 acetone 40ml을 이용하여 wafer 표면을 rinse한다. 세정된 wafer를 27kW bath type sonicator에 35ml의 GBL과 함께 넣고, 5분 동안 sonication을 이용하여 로드를 wafer 표면에서 분리한다. 분리된 로드를 원심분리기 전용 FALCON tube에 넣고 10ml의 GBL을 추가하여 bath 표면의 로드를 추가 세척한다. 4000rpm에서 10분간 원심분리하여 상층액은 버리고 침전물은 아세톤(40ml)에 재분산하여 10㎛ mesh filter를 이용하여 이물을 걸러낸다. 추가 원심분리(4000rpm, 10분) 후 침전물은 건조 오븐에서 건조(100℃, 1시간) 후 무게를 측정하여 준비하였다.
2. 경화성 조성물 제조
용매에 광중합 개시제를 용해시킨 후, 30분 동안 상온에서 충분히 교반하였다. 이어서, 광중합성 단량체 및 첨가제를 첨가하여 다시 1시간 동안 상온에서 교반하였다. 교반 후 분리해 놓은 나노로드를 투입하여 1시간 동안 충분히 교반하여 나노로드가 포함된 경화성 조성물을 제조하였다.
구체적으로, 하기 언급된 구성성분들을 이용하여 하기 표 1 및 표 2에 나타낸 조성으로 각 실시예 1 내지 실시예 8 및 비교예 1 및 비교예 4에 따른 경화성 조성물을 제조하였다. 광중합성 단량체 및 광중합 개시제의 구조를 하기 표 3에 나타내었다.
(단위: g)
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 실시예 8
(A) 반도체 나노로드 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
(B) 광중합성 단량체 (B-1) 20.00 - - 20.00 - - 20.00 -
(B-2) - 20.00 - - 20.00 - - -
(B-3) - - 20.00 - - 20.00 - -
(B-4) - - - - - - - 20.00
(C) 광중합 개시제 (C-1) 0.3 0.3 0.3 - - - - 0.3
(C-2) - - - 0.3 0.3 0.3 - -
(C-3) - - - - - - 0.3 -
(C-4) - - - - - - - -
(C-5) - - - - - - - -
(C-6) - - - - - - - -
(C-7) - - - - - - - -
(C-8) - - - - - - - -
(D) 용매 79.49 79.49 79.49 79.49 79.49 79.49 79.49 79.49
(E) 첨가제 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(단위: g)
비교예 1 비교예 2 비교예 3 비교예 4
(A) 반도체 나노로드 0.20 0.20 0.20 0.20
(B) 광중합성 단량체 (B-1) 20.00 20.00 20.00 20.00
(B-2) - - - -
(B-3) - - - -
(C) 광중합 개시제 (C-1) - - - -
(C-2) - - - -
(C-3) - - - -
(C-4) 0.3 - - -
(C-5) - 0.3 - -
(C-6) - - 0.3 -
(C-7) - - - 0.3
(D) 용매 79.49 79.49 79.49 79.49
(E) 첨가제 0.01 0.01 0.01 0.01
(A) 반도체 나노로드
InGaN nano rod(diamater: 600~800nm, length: 3.5~5㎛)
(B) 광중합성 단량체
하기 표 3 참조
(C) 광중합 개시제
하기 표 3 참조
(D) 용매
트리에틸-2-아세틸시트레이트(Aldrich社)
(F) 기타 첨가제
불소계 계면활성제 (F-554, DIC社)
종류 기호 화학구조 이름, 제조사
광중합성 단량체 (B-1)
Figure PCTKR2023002576-appb-img-000018
DPHA (Nippon Kayaku社)
(B-2)
Figure PCTKR2023002576-appb-img-000019
PE044 (한농)
(B-3)
Figure PCTKR2023002576-appb-img-000020
TP003 (한농)
(B-4)
Figure PCTKR2023002576-appb-img-000021
Photomer 4028 (IGMresins 社)
광중합 개시제 (C-1)
Figure PCTKR2023002576-appb-img-000022
Omnirad 907 (IGMresins 社)
(C-2)
Figure PCTKR2023002576-appb-img-000023
Omnirad 369 (IGMresins 社)
(C-3)
Figure PCTKR2023002576-appb-img-000024
Omnirad 379 (IGMresins 社)
(C-4)
Figure PCTKR2023002576-appb-img-000025
Omnirad TPO-L (IGMresins 社)
(C-5)
Figure PCTKR2023002576-appb-img-000026
PBG305 (Tronly社)
(C-6)
Figure PCTKR2023002576-appb-img-000027
PBG304 (Tronly社)
(C-7)
Figure PCTKR2023002576-appb-img-000028
Omnirad 819 (IGMresins 社)
평가: 유전 영동 특성
상기 실시예 1 내지 실시예 8 및 비교예 1 내지 비교예 4의 나노로드 함유 경화성 조성물 각각에 대하여 Turbiscan을 이용하여 상기 경화성 조성물들의 유전 영동 특성(편향 정렬도, 중앙 정렬도)을 각각 측정하고, 그 결과를 하기 표 4에 나타내었다.
구체적으로, 유전 영동 특성의 측정방법은 다음과 같다.
먼저 Thin-film Gold basic interdigitated linear electrodes (ED-cIDE4-Au, Micrux社)에 상기 경화성 조성물 500㎕ 도포 후 electric field (25KHz, ±30v)를 인가한 다음 1분간 대기한다. 이 후 hot plate를 이용하여 용매를 건조 후 현미경을 이용하여 전극 사이 중앙에 정렬된 개수(ea.)와 비정렬된 개수(ea.)를 확인하여 유전 영동 특성을 평가하였다.
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 실시예 8 비교예 1 비교예 2 비교예 3 비교예 4
편향 정렬도(%) 94 93 91 90 89 89 90 85 83 77 76 65
중앙 정렬도(%) 88 82 86 84 88 85 85 76 64 70 65 61
상기 표 4에서 보는 바와 같이, 일 구현예에 따른 경화성 조성물인 실시예 1 내지 실시예 8은 화학식 1로 표시되는 화합물을 광중합 개시제로 포함하기에, 상기 화학식 1과 상이한 구조를 가지는 화합물을 광중합 개시제로 포함하는 비교예 1 내지 비교예 4와 비교하여 유전 영동 특성이 우수한 것을 확인할 수 있다. 이로부터 일 구현예에 따른 경화성 조성물은 반도체 나노로드의 분산 안정성 및 유전 영동 특성이 매우 우수하여, 대면적 코팅 및 패널 생산에 적합함을 알 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.  그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
[부호의 설명]
1 전극
2 반도체 나노로드
3 고정 유기막

Claims (12)

  1. (A) 반도체 나노로드;
    (B) 불포화 탄소-탄소 이중결합을 갖는 화합물을 포함하는 광중합성 단량체;
    (C) 하기 화학식 1로 표시되는 화합물을 포함하는 광중합 개시제; 및
    (D) 용매
    를 포함하는 경화성 조성물:
    [화학식 1]
    Figure PCTKR2023002576-appb-img-000029
    상기 화학식 1에서,
    R1 내지 R5는 각각 독립적으로 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴기 또는 치환 또는 비치환된 C3 내지 C20 헤테로고리기이고,
    R4 및 R5는 서로 융합하여 고리를 형성할 수 있다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2로 표시되는 경화성 조성물:
    [화학식 1-1]
    Figure PCTKR2023002576-appb-img-000030
    [화학식 1-2]
    Figure PCTKR2023002576-appb-img-000031
    상기 화학식 1-1 및 화학시 1-2에서,
    X는 CRaRb(Ra 및 Rb는 각각 독립적으로 수소 원자, 할로겐 원자, 치환 또는 비치환된 C1 내지 C10 알킬기임), O 또는 S 이고,
    L1 및 L2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬렌기이고,
    R1 내지 R3은 각각 독립적으로 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴기, 치환 또는 비치환된 C3 내지 C20 헤테로고리기이고,
    R6 및 R7은 각각 독립적으로 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기 또는 치환 또는 비치환된 C6 내지 C20 아릴기이다.
  3. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1-1, 화학식 1-2-1 또는 화학식 1-2-2로 표시되는 경화성 조성물.
    [화학식 1-1-1]
    Figure PCTKR2023002576-appb-img-000032
    [화학식 1-2-1]
    Figure PCTKR2023002576-appb-img-000033
    [화학식 1-2-2]
    Figure PCTKR2023002576-appb-img-000034
  4. 제1항에 있어서,
    상기 반도체 나노로드는 300nm 내지 900nm의 직경을 가지는 경화성 조성물.
  5. 제1항에 있어서,
    상기 반도체 나노로드는 3.5 ㎛ 내지 5 ㎛의 길이를 가지는 경화성 조성물.
  6. 제1항에 있어서,
    상기 반도체 나노로드는 GaN계 화합물, InGaN계 화합물 또는 이들의 조합을 포함하는 경화성 조성물.
  7. 제1항에 있어서,
    상기 반도체 나노로드는 그 표면이 금속 산화물로 코팅된 경화성 조성물.
  8. 제7항에 있어서,
    상기 금속 산화물은 알루미나, 실리카 또는 이들의 조합을 포함하는 경화성 조성물.
  9. 제1항에 있어서,
    상기 경화성 조성물은, 상기 경화성 조성물 총량에 대해,
    상기 (A) 반도체 나노로드 0.01 중량% 내지 10 중량%;
    상기 (B) 광중합성 단량체 1 중량% 내지 40 중량%;
    상기 (C) 광중합 개시제 0.1 중량% 내지 5 중량%; 및
    상기 (D) 용매 잔부량
    을 포함하는 경화성 조성물.
  10. 제1항에 있어서,
    상기 경화성 조성물은 말론산; 3-아미노-1,2-프로판디올; 실란계 커플링제; 레벨링제; 불소계 계면활성제; 또는 이들의 조합을 더 포함하는 경화성 조성물.
  11. 제1항 내지 제10항 중 어느 한 항의 경화성 조성물을 이용하여 제조된 막.
  12. 제11항의 막을 포함하는 디스플레이 장치.
PCT/KR2023/002576 2022-02-23 2023-02-23 경화성 조성물, 이를 이용한 막 및 디스플레이 장치 WO2023163516A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0023891 2022-02-23
KR1020220023891A KR20230126562A (ko) 2022-02-23 2022-02-23 경화성 조성물, 이를 이용한 막 및 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2023163516A1 true WO2023163516A1 (ko) 2023-08-31

Family

ID=87766441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002576 WO2023163516A1 (ko) 2022-02-23 2023-02-23 경화성 조성물, 이를 이용한 막 및 디스플레이 장치

Country Status (2)

Country Link
KR (1) KR20230126562A (ko)
WO (1) WO2023163516A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170073671A (ko) * 2014-12-04 2017-06-28 쇼와 덴코 가부시키가이샤 반도체 나노 입자 함유 경화성 조성물, 경화물, 광학 재료 및 전자 재료
WO2017175545A1 (ja) * 2016-04-06 2017-10-12 富士フイルム株式会社 組成物、膜、硬化膜、光学センサおよび膜の製造方法
WO2020204073A1 (ja) * 2019-04-02 2020-10-08 Jsr株式会社 硬化膜形成用組成物、波長変換膜、発光表示素子、及び波長変換膜の形成方法
KR20210114761A (ko) * 2020-03-11 2021-09-24 삼성에스디아이 주식회사 전기영동 장치용 잉크 조성물, 이를 이용한 수지막 및 디스플레이 장치
KR20210133044A (ko) * 2020-04-28 2021-11-05 삼성에스디아이 주식회사 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170073671A (ko) * 2014-12-04 2017-06-28 쇼와 덴코 가부시키가이샤 반도체 나노 입자 함유 경화성 조성물, 경화물, 광학 재료 및 전자 재료
WO2017175545A1 (ja) * 2016-04-06 2017-10-12 富士フイルム株式会社 組成物、膜、硬化膜、光学センサおよび膜の製造方法
WO2020204073A1 (ja) * 2019-04-02 2020-10-08 Jsr株式会社 硬化膜形成用組成物、波長変換膜、発光表示素子、及び波長変換膜の形成方法
KR20210114761A (ko) * 2020-03-11 2021-09-24 삼성에스디아이 주식회사 전기영동 장치용 잉크 조성물, 이를 이용한 수지막 및 디스플레이 장치
KR20210133044A (ko) * 2020-04-28 2021-11-05 삼성에스디아이 주식회사 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치

Also Published As

Publication number Publication date
KR20230126562A (ko) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2019083112A1 (ko) 양자점 함유 조성물, 양자점 제조방법 및 컬러필터
WO2013094827A1 (en) Photosensitive resin composition for color filter and color filter using the same
WO2015005546A1 (ko) 흑색 감광성 수지 조성물 및 이를 이용한 차광층
WO2015122567A1 (ko) 신규한 염료 화합물, 상기 염료 화합물을 포함하는 감광성 수지 조성물, 및 컬러 필터
WO2021221335A1 (ko) 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치
WO2013100276A1 (en) Photosensitive resin composition for color filter and color filter using the same
WO2022124547A1 (ko) 전기영동 장치용 경화성 조성물, 이를 이용한 감광성 경화막 및 전기영동 장치
WO2023163516A1 (ko) 경화성 조성물, 이를 이용한 막 및 디스플레이 장치
WO2021075740A1 (ko) 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막 및 상기 경화막을 포함하는 컬러필터
WO2019164157A1 (ko) 화합물, 이를 포함하는 색재 조성물 및 이를 포함하는 수지 조성물
WO2022092465A1 (ko) 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치
WO2020022670A1 (ko) 바인더 수지, 감광성 수지 조성물, 감광재, 컬러필터 및 디스플레이 장치
WO2021221304A1 (ko) 화합물, 이를 포함하는 반사방지 필름 및 디스플레이 장치
WO2019107687A1 (ko) 착색제 조성물, 착색제 분산액, 감광성 수지 조성물, 컬러필터 및 액정 표시 장치
WO2020218709A1 (ko) 양자점 함유 경화성 조성물, 이를 이용한 수지막 및 디스플레이 장치
WO2022092556A1 (ko) 전기영동 장치용 경화성 조성물, 이를 이용한 경화막 및 디스플레이 장치
WO2024053992A1 (ko) 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치
WO2023244086A1 (ko) 잉크 조성물, 이를 이용한 막, 전기영동 장치 및 디스플레이 장치
WO2024029959A1 (ko) 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치
WO2022215892A1 (ko) 잉크 조성물, 이를 이용한 막 및 디스플레이 장치
WO2024085390A1 (ko) 화소정의층의 제조 방법
WO2023244082A1 (ko) 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치
WO2024085388A1 (ko) 화소정의층의 제조 방법
WO2024085389A1 (ko) 화소정의층의 제조 방법
WO2015108240A1 (ko) 컬러필터용 감광성 수지 조성물 및 이를 이용한 컬러필터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760390

Country of ref document: EP

Kind code of ref document: A1