WO2022092465A1 - 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치 - Google Patents

전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치 Download PDF

Info

Publication number
WO2022092465A1
WO2022092465A1 PCT/KR2021/006339 KR2021006339W WO2022092465A1 WO 2022092465 A1 WO2022092465 A1 WO 2022092465A1 KR 2021006339 W KR2021006339 W KR 2021006339W WO 2022092465 A1 WO2022092465 A1 WO 2022092465A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
ink composition
group
unsubstituted
substituted
Prior art date
Application number
PCT/KR2021/006339
Other languages
English (en)
French (fr)
Inventor
윤진섭
류동완
김미선
김영민
김장혁
박영우
박철진
정지영
유은선
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US18/002,426 priority Critical patent/US20230227994A1/en
Publication of WO2022092465A1 publication Critical patent/WO2022092465A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • C25D13/06Electrophoretic coating characterised by the process with organic material with polymers
    • C25D13/08Electrophoretic coating characterised by the process with organic material with polymers by polymerisation in situ of monomeric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present disclosure relates to an ink composition for an electrophoretic device and a display device using the same.
  • the LED is a semiconductor having a structure in which an n-type semiconductor crystal in which a plurality of carriers are electrons and a p-type semiconductor crystal in which a plurality of carriers are holes using the characteristics of a compound semiconductor are bonded to each other. It is a semiconductor device that is converted into light and expressed.
  • LED semiconductors have high light conversion efficiency, so they consume very little energy, have a semi-permanent lifespan and are environmentally friendly, so they are called the revolution of light as a green material.
  • compound semiconductor technology high-brightness red, orange, green, blue and white LEDs have been developed, and by using them, many fields such as traffic lights, mobile phones, automobile headlights, outdoor electric signs, LCD BLU (back light unit), and indoor/outdoor lighting It is being applied in and active research continues at home and abroad.
  • GaN-based compound semiconductors with a wide bandgap are materials used for manufacturing LED semiconductors that emit light in green, blue, and ultraviolet regions, and since it is possible to manufacture white LED devices using blue LED devices, a lot of research on this is being done
  • One embodiment is to provide an ink composition for an electrophoretic device having excellent dispersion stability of semiconductor nanorods and high dielectrophoretic properties.
  • Another embodiment is to provide a display device manufactured using the ink composition for an electrophoretic device.
  • One embodiment is (A) a semiconductor nanorod; And (B) provides an ink composition for an electrophoretic device comprising a compound represented by the following formula (1).
  • R 1 is a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C1 to C20 alkoxy group, or a substituted or unsubstituted C6 to C20 aryl group;
  • n is an integer from 0 to 3.
  • Formula 1 may be represented by Formula 2 or Formula 3 below.
  • R 3 to R 5 are each independently a substituted or unsubstituted C1 to C20 alkyl group
  • R 6 to R 8 are each independently a substituted or unsubstituted C1 to C20 alkoxy group.
  • R 3 to R 5 may each independently be a C1 to C20 alkyl group unsubstituted or substituted with a C2 to C10 alkenyl group.
  • R 6 to R 8 may each independently be a C1 to C20 alkoxy group unsubstituted or substituted with a C2 to C10 alkenyl group.
  • the compound represented by Formula 1 may include at least one selected from the group consisting of compounds represented by Formulas 2-1, 2-2, 3-1, and 3-2 below.
  • the compound represented by Formula 1 may have a viscosity of 10 cps or more at 25°C.
  • the compound represented by Formula 1 may have a viscosity of 80 cps to 500 cps at 25°C.
  • the compound represented by Formula 1 may have a viscosity of 10 cps to 20 cps at 50°C.
  • the compound represented by Formula 1 may have a dielectric constant of 2 to 8.
  • the ink composition for an electrophoretic device may further include a compound represented by the following formula (4).
  • R 9 to R 11 are each independently a hydrogen atom or a C1 to C10 alkyl group
  • L 4 and L 5 are each independently a substituted or unsubstituted C1 to C20 alkylene group or a substituted or unsubstituted C6 to C20 arylene group,
  • L 6 is *-O-*, *-S-* or *-NH-*.
  • the semiconductor nanorods may have a diameter of 300 nm to 900 nm.
  • the semiconductor nanorods may have a length of 3.5 ⁇ m to 5 ⁇ m.
  • the semiconductor nanorods may include a GaN-based compound, an InGaN-based compound, or a combination thereof.
  • the semiconductor nanorods may have a surface coated with a metal oxide.
  • the metal oxide may include alumina, silica, or a combination thereof.
  • the semiconductor nanorods may be included in an amount of 0.01 wt% to 10 wt% based on the total amount of the ink composition for the electrophoretic device.
  • the ink composition for the electrophoresis device includes malonic acid; 3-amino-1,2-propanediol; silane-based coupling agent; leveling agent; fluorine-based surfactants; Or it may further include a combination thereof.
  • Another embodiment provides a display device manufactured using the ink composition for an electrophoretic device.
  • the semiconductor nanorod solution can be easily inkjetted or slit-coated for electrophoresis, thereby effectively producing a large-area panel.
  • FIG. 1 is an example of a cross-sectional view of a semiconductor nanorod used in an ink composition for an electrophoretic device according to an embodiment.
  • alkyl group means a C1 to C20 alkyl group
  • alkenyl group means a C2 to C20 alkenyl group
  • cycloalkenyl group means a C3 to C20 cycloalkenyl group
  • heterocycloalkenyl group means a C3 to C20 heterocycloalkenyl group
  • aryl group means a C6 to C20 aryl group
  • arylalkyl group means a C6 to C20 arylalkyl group
  • alkylene group means a C1 to C20 alkylene group
  • arylene group means a C6 to C20 arylene group
  • alkylarylene group means a C6 to C20 alkylarylene group
  • heteroarylene group means a C3 to C20 hetero It means an arylene group
  • alkoxyylene group means a C1 to C20 alkoxyylene group
  • substitution means that at least one hydrogen atom is a halogen atom (F, Cl, Br, I), a hydroxy group, a C1 to C20 alkoxy group, a nitro group, a cyano group, an amine group, an imino group, Azido group, amidino group, hydrazino group, hydrazono group, carbonyl group, carbamyl group, thiol group, ester group, ether group, carboxyl group or a salt thereof, sulfonic acid group or a salt thereof, phosphoric acid or a salt thereof, C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 to C20 alkynyl group, C6 to C20 aryl group, C3 to C20 cycloalkyl group, C3 to C20 cycloalkenyl group, C3 to C20 cycloalkynyl group, C2 to C20 heterocycloal
  • F, Cl, Br, I
  • hetero means that at least one hetero atom among N, O, S and P is included in the formula.
  • (meth)acrylate means that both “acrylate” and “methacrylate” are possible
  • (meth)acrylic acid is “acrylic acid” and “methacrylic acid” “It means that both are possible.
  • semiconductor nanorod refers to a rod-shaped semiconductor having a nano-size diameter.
  • the ink composition for an electrophoretic device includes (A) semiconductor nanorods; and (B) a compound represented by the following formula (1).
  • R 1 is a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C1 to C20 alkoxy group, or a substituted or unsubstituted C6 to C20 aryl group;
  • n is an integer from 0 to 3.
  • the ink composition for an electrophoretic device may implement excellent dispersion stability and high dielectric permeability of InGaN-based or GaN-based nanorods. More specifically, by using a compound having a specific structure having a high viscosity and a low dielectric constant as a solvent, the dispersibility and dispersion stability of large, heavy and dense nanorods can be improved, and excellent dielectrophoretic properties can be achieved.
  • the semiconductor nanorods may include a GaN-based compound, an InGaN-based compound, or a combination thereof, and the surface thereof may be coated with a metal oxide.
  • the semiconductor nanorod ink solution semiconductor nanorod + solvent
  • it usually takes about 3 hours, which is insufficient time to perform a large-area inkjet process.
  • the present inventors after numerous trial and error studies, coated the surface of the semiconductor nanorods with a metal oxide containing alumina, silica, or a combination thereof to form an insulating film (Al 2 O 3 or SiO x ), thereby compatibility could be maximized.
  • the insulating layer coated with the metal oxide may have a thickness of 40 nm to 60 nm.
  • the semiconductor nanorod includes an n-type confinement layer and a p-type confinement layer, and a multi-quantum well active part ( MQW active region; multi quantum well active region) may be located.
  • MQW active region multi quantum well active region
  • the semiconductor nanorods may have a diameter of 300 nm to 900 nm, for example, 600 nm to 700 nm.
  • the semiconductor nanorods may have a length of 3.5 ⁇ m to 5 ⁇ m.
  • the semiconductor nanorod when it includes an alumina insulating layer, it may have a density of 5 g/cm 3 to 6 g/cm 3 .
  • the semiconductor nanorods may have a mass of 1 x 10 -13 g to 1 x 10 -11 g.
  • the surface coating of the metal oxide may be easy, and dispersion stability of the semiconductor nanorods may be maximized.
  • the semiconductor nanorods may be included in an amount of 0.01 wt% to 10 wt%, for example 0.02 wt% to 8 wt%, for example 0.03 wt% to 5 wt%, based on the total amount of the ink composition.
  • the semiconductor nanorods When the semiconductor nanorods are included within the above range, dispersion in ink is good, and the prepared pattern may have excellent luminance.
  • the ink composition for an electrophoretic device includes a solvent.
  • Organic solvents such as propylene glycol monomethyl ether acetate (PEGMEA), ⁇ -butyrolactone (GBL), polyethylene glycol methyl ether (PGME), ethyl acetate, and isopropyl alcohol (IPA) used in conventional display and electronic materials have low viscosity.
  • PEGMEA propylene glycol monomethyl ether acetate
  • GBL ⁇ -butyrolactone
  • PGME polyethylene glycol methyl ether
  • IPA isopropyl alcohol
  • the inventors of the present invention developed a material structure having a high viscosity and a low dielectric constant instead of the conventional low-viscosity solvent, and using it as a solvent for dispersing the semiconductor nanorods, thereby providing excellent results of the semiconductor nanorods. Dispersion stability and high dielectric permeability were achieved.
  • the compound represented by Formula 1 is included.
  • Formula 1 may be represented by Formula 2 or Formula 3 below.
  • R 3 to R 5 are each independently a substituted or unsubstituted C1 to C20 alkyl group
  • R 6 to R 8 are each independently a substituted or unsubstituted C1 to C20 alkoxy group.
  • R 3 to R 5 may each independently be a C1 to C20 alkyl group unsubstituted or substituted with a C2 to C10 alkenyl group (eg, a vinyl group, etc.).
  • R 6 to R 8 may each independently be a C1 to C20 alkoxy group unsubstituted or substituted with a C2 to C10 alkenyl group (eg, a vinyl group, etc.).
  • the compound represented by Formula 1 may include at least one selected from the group consisting of compounds represented by Formulas 2-1, 2-2, 3-1 and 3-2, but must be It is not limited.
  • the compound represented by Formula 1 has a viscosity at 25° C. of 10 cps or more, such as 80 cps or more, such as 100 cps or more, such as 80 cps to 500 cps, such as 100 cps to 500 cps, such as 80 cps to 300 cps, such as 100 cps to It may be 300 cps, and the viscosity at 55° C. may be 2 cps to 50 cps, such as 6 cps to 20 cps, such as 7 cps to 20 cps, such as 10 cps to 20 cps.
  • a solid state may mean that the viscosity is infinite, for example, a viscosity of 10 cps or more may include a solid state.
  • Conventional organic solvents such as propylene glycol monomethyl ether acetate (PEGMEA), ⁇ -butyrolactone (GBL), polyethylene glycol methyl ether (PGME), ethyl acetate, and isopropyl alcohol (IPA) all have low viscosity and high density.
  • PEGMEA propylene glycol monomethyl ether acetate
  • GBL ⁇ -butyrolactone
  • PGME polyethylene glycol methyl ether
  • IPA isopropyl alcohol
  • the compound represented by Formula 1 may have a dielectric constant of 2 to 8. All of the above conventional organic solvents have high viscosity as well as high dielectric constant, so dispersion stability of semiconductor nanorods is not good, and thus the dielectric permeability is also low. Since it has a dielectric constant, the dielectric permeability can be greatly increased.
  • the ink composition for an electrophoretic device may further include a compound represented by the following formula (4) together with the compound represented by the formula (1).
  • R 9 to R 11 are each independently a hydrogen atom or a C1 to C10 alkyl group
  • L 4 and L 5 are each independently a substituted or unsubstituted C1 to C20 alkylene group or a substituted or unsubstituted C6 to C20 arylene group,
  • L 6 is *-O-*, *-S-* or *-NH-*.
  • the compound represented by Formula 4 may be citric acid.
  • the compound represented by Formula 4 may be represented by any one of Formulas 4-1 to 4-6, but is not limited thereto.
  • the solvent may be included in an amount of 30 wt% to 99.99 wt%, for example 30 wt% to 95 wt%, such as 40 wt% to 90 wt%, based on the total amount of the ink composition for the electrophoretic device.
  • the ink composition for an electrophoretic device may further include a polymerizable compound having a carbon-carbon double bond at the terminal thereof.
  • the polymerizable compound may be used by mixing monomers or oligomers generally used in conventional curable ink compositions.
  • the polymerizable compound may be a polymerizable monomer having at least one functional group represented by the following Chemical Formula 5-1 or a functional group represented by the following Chemical Formula 5-2 at the terminal thereof.
  • L 7 is a substituted or unsubstituted C1 to C20 alkylene group
  • R 14 is a hydrogen atom or a substituted or unsubstituted C1 to C20 alkyl group.
  • the polymerizable compound forms a cross-linked structure with the semiconductor nanorods by including at least one carbon-carbon double bond at the terminal, specifically, at least one functional group represented by Formula 5-1 or a functional group represented by Formula 5-2. By doing so, it is possible to further improve the dispersion stability of the semiconductor nanorods.
  • polymerizable compound including at least one functional group represented by Formula 5-1 at the terminal
  • divinyl benzene, triallyl trimellitate, triallyl phosphate, triallyl phosphite, triallyl triazine, diallyl phthalate Or a combination thereof may be mentioned, but is not necessarily limited thereto.
  • ethylene glycol diacrylate triethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexane diol diacrylate, neopentyl glycol diacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, dipentaerythritol diacrylate, dipentaerythritol triacrylate, dipentaerythritol pentaacrylate, Pentaerythritol hexaacrylate, bisphenol A diacrylate, trimethylolpropane triacrylate, novolac epoxy acrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, propylene Glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexan
  • the ink composition for an electrophoretic device may further include a polymerization initiator, for example, a photopolymerization initiator, a thermal polymerization initiator, or a combination thereof.
  • a polymerization initiator for example, a photopolymerization initiator, a thermal polymerization initiator, or a combination thereof.
  • the photopolymerization initiator is an initiator generally used in the curable ink composition, for example, an acetophenone-based compound, a benzophenone-based compound, a thioxanthone-based compound, a benzoin-based compound, a triazine-based compound, an oxime-based compound, or an aminoketone-based compound and the like may be used, but is not necessarily limited thereto.
  • acetophenone-based compound examples include 2,2'-diethoxy acetophenone, 2,2'-dibutoxy acetophenone, 2-hydroxy-2-methylpropiophenone, p-t-butyltrichloroacetophenone, p-t-Butyldichloro acetophenone, 4-chloro acetophenone, 2,2'-dichloro-4-phenoxy acetophenone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane- 1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, etc. are mentioned.
  • benzophenone-based compound examples include benzophenone, benzoylbenzoic acid, methylbenzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4,4'-bis(dimethyl amino)benzophenone, 4,4 and '-bis(diethylamino)benzophenone, 4,4'-dimethylaminobenzophenone, 4,4'-dichlorobenzophenone, and 3,3'-dimethyl-2-methoxybenzophenone.
  • thioxanthone-based compound examples include thioxanthone, 2-methylthioxanthone, isopropyl thioxanthone, 2,4-diethyl thioxanthone, 2,4-diisopropyl thioxanthone, 2- Chlorothioxanthone etc. are mentioned.
  • benzoin-based compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzyldimethyl ketal.
  • triazine-based compound examples include 2,4,6-trichloro-s-triazine, 2-phenyl-4,6-bis(trichloromethyl)-s-triazine, 2-(3',4' -dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-methoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine , 2-(p-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(p-tolyl)-4,6-bis(trichloromethyl)-s-triazine , 2-Biphenyl-4,6-bis(trichloromethyl)-s-triazine, bis(trichloromethyl)-6-styryl-s-triazine, 2-(naphtho-1-yl)- 4,6-bis(trichlor
  • Examples of the oxime-based compound include an O-acyloxime-based compound, 2-(O-benzoyloxime)-1-[4-(phenylthio)phenyl]-1,2-octanedione, and 1-(O-acetyloxime) -1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone, O-ethoxycarbonyl- ⁇ -oxyamino-1-phenylpropan-1-one, etc.
  • O-acyloxime-based compound examples include 1,2-octanedione, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholin-4-yl-phenyl)-butane- 1-one, 1-(4-phenylsulfanylphenyl)-butane-1,2-dione-2-oxime-O-benzoate, 1-(4-phenylsulfanylphenyl)-octane-1,2-dione -2-oxime-O-benzoate, 1-(4-phenylsulfanylphenyl)-octane-1-oneoxime-O-acetate and 1-(4-phenylsulfanylphenyl)-butan-1-oneoxime- O-acetate etc. are mentioned.
  • aminoketone-based compound examples include 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone -1) and the like.
  • a carbazole-based compound As the photopolymerization initiator, a carbazole-based compound, a diketone-based compound, a sulfonium borate-based compound, a diazo-based compound, an imidazole-based compound, or a biimidazole-based compound may be used in addition to the above compound.
  • the photopolymerization initiator may be used together with a photosensitizer that causes a chemical reaction by absorbing light to enter an excited state and then transferring the energy.
  • photosensitizer examples include tetraethylene glycol bis-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, dipentaerythritol tetrakis-3-mercaptopropionate, and the like. can be heard
  • thermal polymerization initiator examples include peroxide, specifically benzoyl peroxide, dibenzoyl peroxide, lauryl peroxide, dilauryl peroxide, di-tert-butyl peroxide, cyclohexane peroxide, methyl ethyl ketone peroxide Oxide, hydroperoxide (eg tert-butyl hydroperoxide, cumene hydroperoxide), dicyclohexyl peroxydicarbonate, 2,2-azo-bis(isobutyronitrile), t-butyl perbenzo ate, and the like, and 2,2'-azobis-2-methylpropionitrile, but is not necessarily limited thereto, and any one widely known in the art may be used.
  • peroxide specifically benzoyl peroxide, dibenzoyl peroxide, lauryl peroxide, dilauryl peroxide, di-tert-butyl peroxide, cyclohexane peroxide,
  • the polymerization initiator may be included in an amount of 0.1 wt% to 10 wt%, for example 0.5 wt% to 5 wt%, based on the total amount of the ink composition for the electrophoretic device. When the polymerization initiator is included within the above range, curing occurs sufficiently during exposure or thermal curing to obtain excellent reliability.
  • the ink composition for an electrophoretic device may further include a polymerization inhibitor including a hydroquinone-based compound, a catechol-based compound, or a combination thereof.
  • a polymerization inhibitor including a hydroquinone-based compound, a catechol-based compound, or a combination thereof.
  • the ink composition according to an embodiment further includes the hydroquinone-based compound, the catechol-based compound, or a combination thereof, it is possible to prevent crosslinking at room temperature during exposure after printing (coating) the ink composition.
  • the hydroquinone-based compound, catechol-based compound, or a combination thereof is hydroquinone, methyl hydroquinone, methoxyhydroquinone, t-butyl hydroquinone, 2,5-di- t -butyl hydroquinone, 2,5- Bis(1,1-dimethylbutyl) hydroquinone, 2,5-bis(1,1,3,3-tetramethylbutyl) hydroquinone, catechol, t-butyl catechol, 4-methoxyphenol, pyroga Rol, 2,6-di- t -butyl-4-methylphenol, 2-naphthol, tris(N-hydroxy-N-nitrosophenylaminato-O,O')aluminum (Tris(N-hydroxy-N) -nitrosophenylaminato-O,O')aluminium) or a combination thereof, but is not necessarily limited thereto.
  • the hydroquinone-based compound, the catechol-based compound, or a combination thereof may be used in the form of a dispersion, and the polymerization inhibitor in the form of the dispersion is 0.001 wt % to 1 wt % based on the total amount of the ink composition (regardless of solvent type or non-solvent type) %, such as 0.01 wt% to 0.1 wt%.
  • the stabilizer is included within the above range, it is possible to solve the problem of aging at room temperature and, at the same time, to prevent a decrease in sensitivity and a surface peeling phenomenon.
  • the ink composition for an electrophoretic device includes malonic acid in addition to the polymerization inhibitor; 3-amino-1,2-propanediol; silane-based coupling agent; leveling agent; fluorine-based surfactants; Or it may further include a combination thereof.
  • the ink composition for an electrophoretic device may further include a silane-based coupling agent having a reactive substituent such as a vinyl group, a carboxyl group, a methacryloxy group, an isocyanate group, and an epoxy group in order to improve adhesion to the substrate.
  • a silane-based coupling agent having a reactive substituent such as a vinyl group, a carboxyl group, a methacryloxy group, an isocyanate group, and an epoxy group in order to improve adhesion to the substrate.
  • silane-based coupling agent examples include trimethoxysilyl benzoic acid, ⁇ -methacryl oxypropyl trimethoxysilane, vinyl triacetoxysilane, vinyl trimethoxysilane, ⁇ -isocyanate propyl triethoxysilane, ⁇ -glycan Cydoxy propyl trimethoxysilane, ⁇ -epoxycyclohexyl)ethyltrimethoxysilane, etc. are mentioned, and these may be used individually or in mixture of 2 or more types.
  • the silane-based coupling agent may be included in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the ink composition for an electrophoretic device. When the silane-based coupling agent is included within the above range, adhesion and storage properties are excellent.
  • the ink composition for an electrophoretic device may further include a surfactant, such as a fluorine-based surfactant, to improve coating properties and prevent formation of defects, if necessary.
  • a surfactant such as a fluorine-based surfactant
  • BM-1000 ® of BM Chemie, BM-1100 ® , etc. As the fluorine-based surfactant, BM-1000 ® of BM Chemie, BM-1100 ® , etc.; Mecha Pack F 142D ® , Mecha Pack F 172 ® , Mecha Pack F 173 ® , Mecha Pack F 183 ® and the like of Dai Nippon Inki Chemical High School Co., Ltd.; Sumitomo 3M Co., Ltd.'s Prorad FC-135 ® , Prorad FC-170C ® , Prorad FC-430 ® , Prorad FC-431 ® and the like; Asahi Grass Co., Ltd.
  • the fluorine-based surfactant may be used in an amount of 0.001 parts by weight to 5 parts by weight based on 100 parts by weight of the ink composition for an electrophoretic device.
  • the fluorine-based surfactant is included within the above range, coating uniformity is secured, stains do not occur, and wettability to a glass substrate is excellent.
  • a predetermined amount of other additives such as antioxidants and stabilizers may be further added to the ink composition for an electrophoretic device within a range that does not impair physical properties.
  • the ink composition for an electrophoretic device may further include a binder resin.
  • the binder resin may include an acrylic binder resin, a cardo-based binder resin, or a combination thereof.
  • acrylic binder resin and cardo-based resin any known resin commonly used in the curable composition or the photosensitive composition may be used, and the binder resin is not limited to a specific type.
  • the binder resin may be included in an amount of 1 wt% to 30 wt%, for example, 1 wt% to 20 wt%, based on the total amount of the ink composition for an electrophoretic device. When the binder resin is included within the above range, curing shrinkage may be reduced.
  • Another embodiment provides a display device manufactured using the ink composition for an electrophoretic device.
  • Citric acid 100 g, 0.5205 mol
  • p-toluenesulfonic acid (0.99 g, 0.00521 mol)
  • p-toluenesulfonic acid 0..99 g, 0.00521 mol
  • the solvent is removed with a rotary evaporator, and 500 ml of ethyl acetate is added.
  • aq 500 ml of ethyl acetate is added.
  • Celite filter is performed. After filtering, the solvent was dried to obtain a compound represented by Formula 4-4 (trimethyl o-acetylcitrate).
  • the dielectric constant of the solvent was measured using a liquid dielectric constant measuring instrument (RUFUTO's model 871, 10KHz), and the viscosity was measured using the HAAKE RheoStress 6000 model from Thermofisher, and the results are shown in Table 1 below.
  • 40ml of stearic acid (1.5mM) was reacted at room temperature (25°C) for 24 hours on a nanorod-patterned GaN wafer (4 inch). After the reaction, soak in 50ml of acetone for 5 minutes to remove excess stearic acid, and rinse the wafer surface with additional 40ml of acetone. Put the cleaned wafer into a 27kW bath type sonicator with 35ml of GBL, and use sonication for 5 minutes to separate the rod from the wafer surface. Put the separated rod into a FALCON tube dedicated to the centrifuge and add 10ml of GBL to further wash the rod on the bath surface.
  • Example 1 menstruum Solvent viscosity (cps) (25°C/55°C) Solvent dielectric constant
  • Example 1 Formula 2-1 144 /17 2.7
  • Example 2 Formula 2-2 116/13.2 2.5
  • Example 3 Formula 3-1 Solid/7.2 2.6
  • Example 4 Formula 3-2 84/6.5 2.6
  • Example 5 (Formula 2-1) + (Formula 4-4) + (Formula 4-2) 88/15 7.0
  • Example 6 (Formula 2-2) + (Formula 4-4) + (Formula 4-2) 84/15 6.9
  • Example 7 (Formula 3-1) + (Formula 4-4) + (Formula 4-2) 81/15 6.6
  • Example 8 (Formula 3-2) + (Formula 4-4) + (Formula 4-2) 82/15 6.5 Comparative Example 1 PGMEA 0.8 / - 8.2 Comparative Example 2 GBL 1.7 / - 42.8 Comparative Example 3 Formula 4-4 354/31 9.6 Comparative Example 4 Formula 4-2 30/7.7
  • the method for measuring the dielectrophoretic properties is as follows.
  • nanorod ink composition 500 ⁇ l of the nanorod ink composition is applied to thin-film Gold basic interdigitated linear electrodes (ED-cIDE4-Au, Micrux), an electric field (25KHz, ⁇ 30v) is applied, and then waits for 1 minute. Thereafter, the solvent was dried using a hot plate, and the number (ea) aligned in the center between the electrodes and the number (ea) not aligned between the electrodes were checked using a microscope to evaluate the dielectrophoretic properties.
  • ED-cIDE4-Au thin-film Gold basic interdigitated linear electrodes
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 sedimentation rate (mm/hr) 0.052 0.068 - 0.081 0.079 0.081 0.082 0.082 0.95 0.91 0.012 0.20 dielectrophoretic properties (%) 56 65 38 48 94 92 91 93 74 38 84 92

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

(A) 반도체 나노로드; 및 (B) 특정 화학식으로 표시되는 화합물을 포함하는 전기영동 장치용 잉크 조성물 및 상기 전기영동 장치용 잉크 조성물을 이용하여 제조된 디스플레이 장치가 제공된다.

Description

전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치
본 기재는 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치에 관한 것이다.
LED는 1992년 일본 니치아사의 나카무라 등이 저온의 GaN 화합물 완충층을 적용하여 양질의 단결정 GaN 질화물 반도체를 융합시키는데 성공함으로써 개발이 활발하게 이루어져 왔다. LED는 화합물 반도체의 특성을 이용하여 다수의 캐리어가 전자인 n형 반도체 결정과 다수의 캐리어가 정공인 p형 반도체 결정이 서로 접합된 구조를 갖는 반도체로써, 전기신호를 원하는 영역의 파장대역을 가지는 빛으로 변환시켜 표출되는 반도체 소자이다.
이러한 LED 반도체는 광 변환 효율이 높기에 에너지 소비량이 매우 적으며 수명이 반영구적이고 환경 친화적이어서 그린 소재로서 빛의 혁명이라고 불린다. 최근에는 화합물 반도체 기술의 발달로 고휘도 적색, 주황, 녹색, 청색 및 백색 LED가 개발되었으며, 이를 활용하여 신호등, 핸드폰, 자동차 전조등, 옥외 전광판, LCD BLU(back light unit), 그리고 실내외 조명 등 많은 분야에서 응용되고 있으며 국내외에서 활발한 연구가 계속되고 있다. 특히 넓은 밴드갭을 갖는 GaN계 화합물 반도체는 녹색, 청색 그리고 자외선 영역의 빛을 방출하는 LED 반도체의 제조에 이용되는 물질이며, 청색 LED 소자를 이용하여 백색 LED 소자의 제작이 가능하므로 이에 대한 많은 연구가 이루어지고 있다.
이러한 일련의 연구들 중 LED의 크기를 나노 또는 마이크로 단위로 제작한 초소형 LED 소자를 이용한 연구가 활발히 이루어지고 있고, 이러한 초소형 LED 소자를 조명, 디스플레이에 등에 활용하기 위한 연구가 계속되고 있다. 이러한 연구에서 지속적으로 주목 받고 있는 부분은 초소형 LED 소자에 전원을 인가할 수 있는 전극, 활용 목적 및 전극이 차지하는 공간의 감소 등을 위한 전극 배치, 배치된 전극에 초소형 LED의 실장방법 등에 관한 것들이다.
이 중에서도 배치된 전극에 초소형 LED소자를 실장시키는 방법에 대한 부분은 초소형 LED 소자의 크기적 제약에 따라 전극 상에 초소형 LED 소자를 목적한 대로 배치 및 실장시키기 매우 어려운 난점이 여전히 상존하고 있다. 이는 초소형 LED 소자가 나노 스케일 또는 마이크로 스케일임에 따라 사람의 손으로 일일이 목적한 전극영역에 배치시키고 실장시킬 수 없기 때문이다.
최근 들어 나노 스케일의 초소형 LED 소자에 대한 요구가 갈수록 증대되고 있으며, 이를 위해 나노 스케일의 GaN계 화합물 반도체 또는 InGaN계 화합물 반도체를 로드로 제조하려는 시도가 있는데, 문제는 나노로드(nanorod) 자체는 용액(또는 중합성 화합물) 내에서의 분산 안정성이 크게 저하된다는 것이다. 그리고 현재까지 반도체 나노로드의 용액(또는 중합성 화합물) 내 분산 안정성을 향상시킬 수 있는 기술에 대한 소개는 전무한 상태이다.
일 구현예는 반도체 나노로드의 우수한 분산 안정성 및 높은 유전 영동 특성을 갖는 전기영동 장치용 잉크 조성물을 제공하기 위한 것이다.
다른 일 구현예는 상기 전기영동 장치용 잉크 조성물을 이용하여 제조된 디스플레이 장치를 제공하기 위한 것이다.
일 구현예는 (A) 반도체 나노로드; 및 (B) 하기 화학식 1로 표시되는 화합물을 포함하는 전기영동 장치용 잉크 조성물을 제공한다.
[화학식 1]
Figure PCTKR2021006339-appb-I000001
상기 화학식 1에서,
R1은 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C1 내지 C20 알콕시기 또는 치환 또는 비치환된 C6 내지 C20 아릴기이고,
L1 내지 L3은 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬렌기, *-C(=O)-*, 또는 *-C(R2)=* 이고, 상기 R2는 치환 또는 비치환된 C1 내지 C10 알킬기 또는 치환 또는 비치환된 C1 내지 C10 알콕시기이고,
n은 0 내지 3의 정수이다.
상기 화학식 1은 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.
[화학식 2]
Figure PCTKR2021006339-appb-I000002
[화학식 3]
Figure PCTKR2021006339-appb-I000003
상기 화학식 2 및 화학식 3에서,
R3 내지 R5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기이고,
R6 내지 R8은 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알콕시기이다.
상기 화학식 2에서, R3 내지 R5는 각각 독립적으로 C2 내지 C10 알케닐기로 치환 또는 비치환된 C1 내지 C20 알킬기일 수 있다.
상기 화학식 3에서, R6 내지 R8은 각각 독립적으로 C2 내지 C10 알케닐기로 치환 또는 비치환된 C1 내지 C20 알콕시기일 수 있다.
상기 화학식 1로 표시되는 화합물은 하기 화학식 2-1, 화학식 2-2, 화학식 3-1 및 화학식 3-2로 표시되는 화합물로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다.
[화학식 2-1]
Figure PCTKR2021006339-appb-I000004
[화학식 2-2]
Figure PCTKR2021006339-appb-I000005
[화학식 3-1]
Figure PCTKR2021006339-appb-I000006
[화학식 3-2]
Figure PCTKR2021006339-appb-I000007
상기 화학식 1로 표시되는 화합물은 25℃에서의 점도가 10cps 이상일 수 있다.
상기 화학식 1로 표시되는 화합물은 25℃에서의 점도가 80cps 내지 500cps 일 수 있다.
상기 화학식 1로 표시되는 화합물은 50℃에서의 점도가 10cps 내지 20cps 일 수 있다.
상기 화학식 1로 표시되는 화합물은 2 내지 8의 유전상수를 가질 수 있다.
상기 전기영동 장치용 잉크 조성물은 하기 화학식 4로 표시되는 화합물을 더 포함할 수 있다.
[화학식 4]
Figure PCTKR2021006339-appb-I000008
상기 화학식 4에서,
R9 내지 R11은 각각 독립적으로 수소원자 또는 C1 내지 C10 알킬기이고,
R12는 수소원자 또는 *-C(=O)R13 (R13은 C1 내지 C10 알킬기임)이고,
L4 및 L5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬렌기 또는 치환 또는 비치환된 C6 내지 C20 아릴렌기이고,
L6은 *-O-*, *-S-* 또는 *-NH-* 이다.
상기 반도체 나노로드는 300nm 내지 900nm의 직경을 가질 수 있다.
상기 반도체 나노로드는 3.5 ㎛ 내지 5 ㎛의 길이를 가질 수 있다.
상기 반도체 나노로드는 GaN계 화합물, InGaN계 화합물 또는 이들의 조합을 포함할 수 있다.
상기 반도체 나노로드는 그 표면이 금속 산화물로 코팅된 것일 수 있다.
상기 금속 산화물은 알루미나, 실리카 또는 이들의 조합을 포함할 수 있다.
상기 반도체 나노로드는 상기 전기영동 장치용 잉크 조성물 총량에 대하여 0.01 중량% 내지 10 중량%로 포함될 수 있다.
상기 전기영동 장치용 잉크 조성물은 말론산; 3-아미노-1,2-프로판디올; 실란계 커플링제; 레벨링제; 불소계 계면활성제; 또는 이들의 조합을 더 포함할 수 있다.
다른 일 구현예는 상기 전기영동 장치용 잉크 조성물을 이용하여 제조된 디스플레이 장치를 제공한다.
기타 본 발명의 측면들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
반도체 나노로드 용액의 분산 안정성을 개선시키고, 높은 유전 영동 특성을 구현함으로써, 반도체 나노로드 용액을 용이하게 잉크젯팅 또는 슬릿 코팅하여 전기영동 시킴으로써, 효과적으로 대면적 패널을 생산할 수 있다.
도 1은 일 구현예에 따른 전기영동 장치용 잉크 조성물에 사용되는 반도체 나노로드 단면도의 일예이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다.  다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. 
본 명세서에서 특별한 언급이 없는 한, "알킬기"란 C1 내지 C20 알킬기를 의미하고, "알케닐기"란 C2 내지 C20 알케닐기를 의미하고, "사이클로알케닐기"란 C3 내지 C20 사이클로알케닐기를 의미하고, "헤테로사이클로알케닐기"란 C3 내지 C20 헤테로사이클로알케닐기를 의미하고, "아릴기"란 C6 내지 C20 아릴기를 의미하고, "아릴알킬기"란 C6 내지 C20 아릴알킬기를 의미하며, "알킬렌기"란 C1 내지 C20 알킬렌기를 의미하고, "아릴렌기"란 C6 내지 C20 아릴렌기를 의미하고, "알킬아릴렌기"란 C6 내지 C20 알킬아릴렌기를 의미하고, "헤테로아릴렌기"란 C3 내지 C20 헤테로아릴렌기를 의미하고, "알콕실렌기"란 C1 내지 C20 알콕실렌기를 의미한다.
본 명세서에서 특별한 언급이 없는 한, "치환"이란 적어도 하나의 수소 원자가 할로겐 원자(F, Cl, Br, I), 히드록시기, C1 내지 C20 알콕시기, 니트로기, 시아노기, 아민기, 이미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 카르보닐기, 카르바밀기, 티올기, 에스테르기, 에테르기, 카르복실기 또는 그것의 염, 술폰산기 또는 그것의 염, 인산이나 그것의 염, C1 내지 C20 알킬기, C2 내지 C20 알케닐기, C2 내지 C20 알키닐기, C6 내지 C20 아릴기, C3 내지 C20 사이클로알킬기, C3 내지 C20 사이클로알케닐기, C3 내지 C20 사이클로알키닐기, C2 내지 C20 헤테로사이클로알킬기, C2 내지 C20 헤테로사이클로알케닐기, C2 내지 C20 헤테로사이클로알키닐기, C3 내지 C20 헤테로아릴기 또는 이들의 조합의 치환기로 치환된 것을 의미한다.
또한 본 명세서에서 특별한 언급이 없는 한, "헤테로"란, 화학식 내에 N, O, S 및 P 중 적어도 하나의 헤테로 원자가 적어도 하나 포함된 것을 의미한다.
또한 본 명세서에서 특별한 언급이 없는 한, "(메타)아크릴레이트"는 "아크릴레이트"와 "메타크릴레이트" 둘 다 가능함을 의미하며, "(메타)아크릴산"은 "아크릴산"과 "메타크릴산" 둘 다 가능함을 의미한다.
본 명세서에서 특별한 언급이 없는 한, "조합"이란 혼합 또는 공중합을 의미한다.
본 명세서 내 화학식에서 별도의 정의가 없는 한, 화학결합이 그려져야 하는 위치에 화학결합이 그려져있지 않은 경우는 상기 위치에 수소 원자가 결합되어 있음을 의미한다.
본 명세서에서 반도체 나노로드라 함은 나노 사이즈의 직경을 가지는 로드(rod) 모양의 반도체를 의미한다.
또한 본 명세서에서 특별한 언급이 없는 한, "*"는 동일하거나 상이한 원자 또는 화학식과 연결되는 부분을 의미한다.
일 구현예에 따른 전기영동 장치용 잉크 조성물은 (A) 반도체 나노로드; 및 (B) 하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2021006339-appb-I000009
상기 화학식 1에서,
R1은 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C1 내지 C20 알콕시기 또는 치환 또는 비치환된 C6 내지 C20 아릴기이고,
L1 내지 L3은 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬렌기, *-C(=O)-*, 또는 *-C(R2)=* 이고, 상기 R2는 치환 또는 비치환된 C1 내지 C10 알킬기 또는 치환 또는 비치환된 C1 내지 C10 알콕시기이고,
n은 0 내지 3의 정수이다.
최근 마이크로 LED, 미니 LED 등 기존 LED의 에너지 효율 개선 및 효율 저하(efficiency drop) 방지 효과가 있는 여러 컨셉(concept)의 연구가 활발하게 진행되고 있다. 그 중 전기장(electric filed)을 이용한 InGaN계 나노로드 LED의 정렬(전기영동)은 마이크로 LED, 미니 LED 등의 복잡하고 비싼 공정 비용을 획기적으로 줄일 수 있는 방법으로 주목받고 있다.
나노로드의 전기 영동을 위하여는 나노로드 분산액을 잉크젯팅(inkjetting) 혹은 슬릿코팅(slit coating)하여야 하는데 대면적 코팅을 위해서는 나노로드의 용액 내 분산 안정성과 유전 영동 특성이 필수적인 파라미터가 된다. 일 구현예에 따른 전기영동 장치용 잉크 조성물은 InGaN계 또는 GaN계 나노로드의 우수한 분산 안정성과 높은 유전 영동율을 구현할 수 있다. 보다 구체적으로 점도가 높고 유전상수가 낮은 특정 구조의 화합물을 용매로 사용함으로써, 크고 무거워 밀도가 높은 나노로드의 분산성 및 분산 안정성을 개선시키고, 우수한 유전 영동 특성을 달성할 수 있다.
이하에서 각 성분에 대하여 구체적으로 설명한다.
(A) 반도체 나노로드
상기 반도체 나노로드는 GaN계 화합물, InGaN계 화합물 또는 이들의 조합을 포함할 수 있으며, 그 표면이 금속 산화물로 코팅되어 있을 수 있다.
반도체 나노로드 잉크 용액(반도체 나노로드 + 용매)의 분산 안정성을 위해서는 보통 3시간 정도의 시간이 필요한데, 이는 대면적 잉크젯(Inkjet) 공정을 수행하기에는 턱없이 부족한 시간이다. 이에 본 발명자들은 수많은 시행착오를 거친 연구 끝에 반도체 나노로드 표면을 알루미나, 실리카 또는 이들의 조합을 포함하는 금속 산화물로 코팅시켜 절연막(Al2O3 혹은 SiOx)을 형성시킴으로써, 후술하는 용매와의 상용성을 극대화시킬 수 있었다.
예컨대, 상기 금속 산화물로 코팅된 절연막은 40nm 내지 60nm의 두께를 가질 수 있다.
상기 반도체 나노로드는 n형 갇힘층(n-type confinement layer) 및 p형 갇힘층(p-type confinement layer)을 포함하고, 상기 n형 갇힘층 및 p형 갇힘층 사이에 다중양자 우물 활성부(MQW active region; multi quantum well active region)가 위치할 수 있다. (도 1 참조)
예컨대, 상기 반도체 나노로드는 300nm 내지 900nm, 예컨대 600nm 내지 700nm의 직경을 가질 수 있다.
예컨대, 상기 반도체 나노로드는 3.5 ㎛ 내지 5 ㎛의 길이를 가질 수 있다.
예컨대, 상기 반도체 나노로드는 알루미나 절연막을 포함하는 경우, 5 g/cm3 내지 6 g/cm3의 밀도를 가질 수 있다.
예컨대, 상기 반도체 나노로드는 1 x 10-13 g 내지 1 x 10-11 g의 질량을 가질 수 있다.
상기 반도체 나노로드가 상기 직경, 길이, 밀도 및 종류인 경우, 상기 금속 산화물의 표면 코팅이 용이할 수 있어, 반도체 나노로드의 분산 안정성이 극대화될 수 있다.
상기 반도체 나노로드는 상기 잉크 조성물 총량에 대해 0.01 중량% 내지 10 중량%, 예컨대 0.02중량 % 내지 8 중량%, 예컨대 0.03 중량% 내지 5 중량%로 포함될 수 있다. 반도체 나노로드가 상기 범위 내로 포함될 경우, 잉크 내 분산성이 양호하고, 제조된 패턴은 우수한 휘도를 가질 수 있다.
(B) 용매
일 구현예에 따른 전기영동 장치용 잉크 조성물은 용매를 포함한다.
최근 들어 나노 스케일의 초소형 LED 소자에 대한 니즈가 갈수록 증대되고 있으며, 이를 위해 나노 스케일의 GaN계 화합물 반도체 또는 InGaN계 화합물 반도체를 로드로 제조하려는 시도가 있는데, 문제는 나노로드 자체는 용액(또는 중합성 화합물) 내에서의 분산 안정성이 크게 저하된다는 것이다. 그리고 현재까지 반도체 나노로드의 용액(또는 중합성 화합물) 내 분산 안정성을 향상시킬 수 있는 기술에 대한 소개는 전무한 상태이다.
기존 디스플레이 및 전자 재료에서 쓰이던 프로필렌글리콜 모노메틸 에테르 아세테이트(PEGMEA), Υ-부티로락톤(GBL), 폴리에틸렌 글리콜 메틸 에테르(PGME), 에틸아세테이트, 이소프로필알코올(IPA) 등의 유기용매는 점도가 낮아 밀도가 높은 무기물 나노로드 입자의 침강이 너무 빠르고 유전 영동 특성이 나쁘다. 따라서 NED-Ink의 개발을 위해서는 로드의 침강 안정성을 부여할 수 있도록 점도가 높고 유전 영동 특성이 좋은 신규 용매의 발굴이 필요하다.
본 발명의 발명자들은 오랜 연구 끝에, 기존의 쓰이던 저점도 용매 대신 고점도를 가지면서도 유전 상수가 낮은 물질 구조를 개발하고, 이를 반도체 나노로드를 분산시킬 수 있는 용매로 사용함으로써, 상기 반도체 나노로드의 우수한 분산 안정성과 높은 유전 영동율을 달성하였다.
즉, 일 구현예에 따른 전기영동 장치용 잉크 조성물 내 용매로서 상기 화학식 1로 표시되는 화합물을 포함한다.
상기 화학식 1로 표시되는 화합물을 용매로 사용하는 경우, 반도체 나노로드의 분산 안정성 극대화 및 우수한 유전 영동 특성을 구현할 수 있다.
예컨대, 상기 화학식 1은 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.
[화학식 2]
Figure PCTKR2021006339-appb-I000010
[화학식 3]
Figure PCTKR2021006339-appb-I000011
상기 화학식 2 및 화학식 3에서,
R3 내지 R5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기이고,
R6 내지 R8은 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알콕시기이다.
예컨대, 상기 화학식 2에서, R3 내지 R5는 각각 독립적으로 C2 내지 C10 알케닐기(예컨대 비닐기등)로 치환 또는 비치환된 C1 내지 C20 알킬기일 수 있다.
예컨대, 상기 화학식 3에서, R6 내지 R8은 각각 독립적으로 C2 내지 C10 알케닐기(예컨대 비닐기등)로 치환 또는 비치환된 C1 내지 C20 알콕시기일 수 있다.
예컨대, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2-1, 화학식 2-2, 화학식 3-1 및 화학식 3-2로 표시되는 화합물로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다.
[화학식 2-1]
Figure PCTKR2021006339-appb-I000012
[화학식 2-2]
Figure PCTKR2021006339-appb-I000013
[화학식 3-1]
Figure PCTKR2021006339-appb-I000014
[화학식 3-2]
Figure PCTKR2021006339-appb-I000015
예컨대, 상기 화학식 1로 표시되는 화합물은 25℃에서의 점도가 10 cps 이상, 예컨대 80 cps 이상, 예컨대 100cps 이상, 예컨대 80cps 내지 500 cps, 예컨대 100cps 내지 500 cps, 예컨대 80cps 내지 300 cps, 예컨대 100cps 내지 300 cps일 수 있고, 55℃에서의 점도가 2cps 내지 50 cps, 예컨대 6 cps 내지 20 cps, 예컨대 7 cps 내지 20 cps, 예컨대 10cps 내지 20 cps일 수 있다. 예컨대 solid 상태는 점도가 무한대인 것을 의미할 수 있으며, 예컨대 점도가 10 cps 이상이라 함은 solid 상태도 포함할 수 있다. 프로필렌글리콜 모노메틸 에테르 아세테이트(PEGMEA), Υ-부티로락톤(GBL), 폴리에틸렌 글리콜 메틸 에테르(PGME), 에틸아세테이트, 이소프로필알코올(IPA) 등의 종래 유기용매 등은 모두 점도가 낮아 높은 밀도의 반도체 나노로드의 침강 안정성 개선에는 한계가 있을 수 밖에 없었으나, 상기 화학식 1로 표시되는 화합물은 점도가 높기에, 높은 밀도의 반도체 나노로드의 침강 안정성을 획기적으로 개선시킬 수 있다.
한편, 상기 화학식 1로 표시되는 화합물은 2 내지 8의 유전상수를 가질 수 있다. 상기 종래 유기용매 등은 모두 점도가 높을 뿐만 아니라 유전상수 또한 높아 반도체 나노로드의 분산 안정성이 좋지 않고, 이에 따라 유전 영동율도 낮을 수 밖에 없었으나, 상기 화학식 1로 표시되는 화합물은 2 내지 8의 낮은 유전상수를 가지기에 유전 영동율을 크게 높일 수 있다.
예컨대, 상기 전기영동 장치용 잉크 조성물은 상기 화학식 1로 표시되는 화합물과 함께, 하기 화학식 4로 표시되는 화합물을 더 포함할 수도 있다.
[화학식 4]
Figure PCTKR2021006339-appb-I000016
상기 화학식 4에서,
R9 내지 R11은 각각 독립적으로 수소원자 또는 C1 내지 C10 알킬기이고,
R12는 수소원자 또는 *-C(=O)R13 (R13은 C1 내지 C10 알킬기임)이고,
L4 및 L5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬렌기 또는 치환 또는 비치환된 C6 내지 C20 아릴렌기이고,
L6은 *-O-*, *-S-* 또는 *-NH-* 이다.
예컨대, 상기 화학식 4로 표시되는 화합물은 시트르산일 수 있다.
예컨대, 상기 화학식 4로 표시되는 화합물은 하기 화학식 4-1 내지 화학식 4-6 중 어느 하나로 표시될 수 있으나, 반드시 이에 한정되는 것은 아니다.
[화학식 4-1]
Figure PCTKR2021006339-appb-I000017
[화학식 4-2]
Figure PCTKR2021006339-appb-I000018
[화학식 4-3]
Figure PCTKR2021006339-appb-I000019
[화학식 4-4]
Figure PCTKR2021006339-appb-I000020
[화학식 4-5]
Figure PCTKR2021006339-appb-I000021
[화학식 4-6]
Figure PCTKR2021006339-appb-I000022
상기 용매는 상기 전기영동 장치용 잉크 조성물 총량에 대해 30 중량% 내지 99.99 중량%, 예컨대 30 중량% 내지 95 중량%, 예컨대 40 중량% 내지 90 중량%로 포함될 수 있다.
(C) 중합성 화합물
상기 전기영동 장치용 잉크 조성물은 말단에 탄소-탄소 이중결합을 갖는 중합성 화합물을 더 포함할 수 있다.
상기 중합성 화합물은 종래의 경화성 잉크 조성물에 일반적으로 사용되는 모노머 또는 올리고머를 혼합하여 사용할 수 있다.
예컨대, 상기 중합성 화합물은 말단에 하기 화학식 5-1로 표시되는 관능기 또는 하기 화학식 5-2로 표시되는 관능기를 적어도 하나 이상 갖는 중합성 단량체일 수 있다.
[화학식 5-1]
Figure PCTKR2021006339-appb-I000023
[화학식 5-2]
Figure PCTKR2021006339-appb-I000024
상기 화학식 5-1 및 화학식 5-2에서,
L7은 치환 또는 비치환된 C1 내지 C20 알킬렌기이고,
R14는 수소 원자 또는 치환 또는 비치환된 C1 내지 C20 알킬기이다.
상기 중합성 화합물이 말단에 탄소-탄소 이중결합, 구체적으로 상기 화학식 5-1로 표시되는 관능기 또는 상기 화학식 5-2로 표시되는 관능기를 적어도 하나 이상 포함함으로써, 상기 반도체 나노로드와 가교 구조를 형성함으로써, 상기 반도체 나노로드의 분산 안정성을 더욱 향상시킬 수 있다.
예컨대, 말단에 상기 화학식 5-1로 표시되는 관능기를 하나 이상 포함하는 중합성 화합물로는 디비닐 벤젠, 트리알릴 트리멜리테이트, 트리알릴 포스페이트, 트리알릴 포스파이트, 트리알릴 트리아진, 디알릴 프탈레이트 또는 이들의 조합 등을 들 수 있으나, 반드시 이에 한정되는 것은 아니다.
예컨대, 말단에 상기 화학식 5-2로 표시되는 관능기를 하나 이상 포함하는 중합성 화합물로는 에틸렌글리콜디아크릴레이트, 트리에틸렌글리콜디아크릴레이트, 1,4-부탄디올디아크릴레이트, 1,6-헥산디올디아크릴레이트, 네오펜틸글리콜디아크릴레이트, 펜타에리트리톨디아크릴레이트, 펜타에리트리톨트리아크릴레이트, 디펜타에리트리톨디아크릴레이트, 디펜타에리트리톨트리아크릴레이트, 디펜타에리트리톨펜타아크릴레이트, 펜타에리트리톨헥사아크릴레이트, 비스페놀 A 디아크릴레이트, 트리메틸올프로판트리아크릴레이트, 노볼락에폭시아크릴레이트, 에틸렌글리콜디메타크릴레이트, 디에틸렌글리콜디메타크릴레이트, 트리에틸렌글리콜디메타크릴레이트, 프로필렌글리콜디메타크릴레이트, 1,4-부탄디올디메타크릴레이트, 1,6-헥산디올디메타크릴레이트, 다관능 에폭시(메타) 아크릴레이트, 다관능 우레탄(메타)아크릴레이트, 일본화학社의 KAYARAD DPCA-20, KAYARAD DPCA-30, KAYARAD DPCA-60, KAYARAD DPCA-120, KAYARAD DPEA-12 또는 이들의 조합 등을 들 수 있으나, 반드시 이에 한정되는 것은 아니다.
(D) 중합 개시제
일 구현예에 따른 전기영동 장치용 잉크 조성물은 중합 개시제를 더 포함할 수 있으며, 예컨대, 광중합 개시제, 열중합 개시제 또는 이들의 조합을 포함할 수 있다.
상기 광중합 개시제는 경화성 잉크 조성물에 일반적으로 사용되는 개시제로서, 예를 들어 아세토페논계 화합물, 벤조페논계 화합물, 티오크산톤계 화합물, 벤조인계 화합물, 트리아진계 화합물, 옥심계 화합물, 아미노케톤계 화합물 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 아세토페논계의 화합물의 예로는, 2,2'-디에톡시 아세토페논, 2,2'-디부톡시 아세토페논, 2-히드록시-2-메틸프로피오페논, p-t-부틸트리클로로 아세토페논, p-t-부틸디클로로 아세토페논, 4-클로로 아세토페논, 2,2'-디클로로-4-페녹시 아세토페논, 2-메틸-1-(4-(메틸티오)페닐)-2-모폴리노프로판-1-온, 2-벤질-2-디메틸아미노-1-(4-모폴리노페닐)-부탄-1-온 등을 들 수 있다.
상기 벤조페논계 화합물의 예로는, 벤조페논, 벤조일 안식향산, 벤조일 안식향산 메틸, 4-페닐 벤조페논, 히드록시벤조페논, 아크릴화 벤조페논, 4,4'-비스(디메틸 아미노)벤조페논, 4,4'-비스(디에틸아미노)벤조페논, 4,4'-디메틸아미노벤조페논, 4,4'-디클로로벤조페논, 3,3'-디메틸-2-메톡시벤조페논등을 들 수 있다.
상기 티오크산톤계 화합물의 예로는, 티오크산톤, 2-메틸티오크산톤, 이소프로필 티오크산톤, 2,4-디에틸 티오크산톤, 2,4-디이소프로필 티오크산톤, 2-클로로티오크산톤 등을 들 수 있다.
상기 벤조인계 화합물의 예로는, 벤조인, 벤조인 메틸 에테르, 벤조인 에틸 에테르, 벤조인 이소프로필 에테르, 벤조인 이소부틸 에테르, 벤질디메틸케탈 등을 들 수 있다.
상기 트리아진계 화합물의 예로는, 2,4,6-트리클로로-s-트리아진, 2-페닐-4,6-비스(트리클로로메틸)-s-트리아진, 2-(3',4'-디메톡시스티릴)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(4'-메톡시나프틸)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(p-메톡시페닐)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(p-톨릴)-4,6-비스(트리클로로 메틸)-s-트리아진, 2-비페닐-4,6-비스(트리클로로 메틸)-s-트리아진, 비스(트리클로로메틸)-6-스티릴-s-트리아진, 2-(나프토-1-일)-4,6-비스(트리클로로메틸)-s-트리아진, 2-(4-메톡시나프토-1-일)-4,6-비스(트리클로로메틸)-s-트리아진, 2-4-비스(트리클로로메틸)-6-피페로닐-s-트리아진, 2-4-비스(트리클로로메틸)-6-(4-메톡시스티릴)-s-트리아진 등을 들 수 있다.
상기 옥심계 화합물의 예로는 O-아실옥심계 화합물, 2-(O-벤조일옥심)-1-[4-(페닐티오)페닐]-1,2-옥탄디온, 1-(O-아세틸옥심)-1-[9-에틸-6-(2-메틸벤조일)-9H-카르바졸-3-일]에탄온, O-에톡시카르보닐-α-옥시아미노-1-페닐프로판-1-온 등을 사용할 수 있다.  상기 O-아실옥심계 화합물의 구체적인 예로는, 1,2-옥탄디온, 2-디메틸아미노-2-(4-메틸벤질)-1-(4-모르폴린-4-일-페닐)-부탄-1-온, 1-(4-페닐술파닐페닐)-부탄-1,2-디온-2-옥심-O-벤조에이트, 1-(4-페닐술파닐페닐)-옥탄-1,2-디온-2-옥심-O-벤조에이트, 1-(4-페닐술파닐페닐)-옥탄-1-온옥심-O-아세테이트 및 1-(4-페닐술파닐페닐)-부탄-1-온옥심-O-아세테이트 등을 들 수 있다.
상기 아미노케톤계 화합물의 예로는 2-벤질-2-디메틸아미노-1-(4-모폴리노페닐)-부탄온-1 (2-Benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1) 등을 들 수 있다.
상기 광중합 개시제는 상기 화합물 이외에도 카바졸계 화합물, 디케톤류 화합물, 술포늄 보레이트계 화합물, 디아조계 화합물, 이미다졸계 화합물, 비이미다졸계 화합물 등을 사용할 수 있다.
상기 광중합 개시제는 빛을 흡수하여 들뜬 상태가 된 후 그 에너지를 전달함으로써 화학반응을 일으키는 광 증감제와 함께 사용될 수도 있다.
상기 광 증감제의 예로는, 테트라에틸렌글리콜 비스-3-머캡토 프로피오네이트, 펜타에리트리톨 테트라키스-3-머캡토 프로피오네이트, 디펜타에리트리톨 테트라키스-3-머캡토 프로피오네이트 등을 들 수 있다.
상기 열중합 개시제의 예로는, 퍼옥사이드, 구체적으로 벤조일 퍼옥사이드, 다이벤조일 퍼옥사이드, 라우릴 퍼옥사이드, 다이라우릴 퍼옥사이드, 다이-tert-부틸 퍼옥사이드, 사이클로헥산 퍼옥사이드, 메틸 에틸 케톤 퍼옥사이드, 하이드로퍼옥사이드(예컨대, tert-부틸 하이드로퍼옥사이드, 쿠멘 하이드로퍼옥사이드), 다이사이클로헥실 퍼옥시다이카르보네이트, 2,2-아조-비스(아이소부티로니트릴), t-부틸 퍼벤조에이트 등을 들 수 있고, 2,2'-아조비스-2-메틸프로피오니트릴 등을 들 수도 있으나, 반드시 이에 한정되는 것은 아니고, 당업계에 널리 알려진 것이면 어느 것이든 사용할 수 있다.
상기 중합 개시제는 상기 전기영동 장치용 잉크 조성물 총량에 대해 0.1 중량% 내지 10 중량%, 예컨대 0.5 중량% 내지 5 중량%로 포함될 수 있다. 중합 개시제가 상기 범위 내로 포함될 경우, 노광 또는 열경화 시 경화가 충분히 일어나 우수한 신뢰성을 얻을 수 있다.
(E) 기타 첨가제
일 구현예에 따른 전기영동 장치용 잉크 조성물은 하이드로퀴논계 화합물, 카테콜계 화합물 또는 이들의 조합을 포함하는 중합 억제제를 더 포함할 수 있다. 일 구현예에 따른 잉크 조성물이 상기 하이드로퀴논계 화합물, 카테콜계 화합물 또는 이들의 조합을 더 포함함에 따라, 잉크 조성물을 인쇄(코팅) 후, 노광하는 동안 상온 가교를 방지할 수 있다.
예컨대, 상기 하이드로퀴논계 화합물, 카테콜계 화합물 또는 이들의 조합은 하이드로퀴논, 메틸 하이드로퀴논, 메톡시하이드로퀴논, t-부틸 하이드로퀴논, 2,5-디-t-부틸 하이드로퀴논, 2,5-비스(1,1-디메틸부틸) 하이드로퀴논, 2,5-비스(1,1,3,3-테트라메틸부틸) 하이드로퀴논, 카테콜, t-부틸 카테콜, 4-메톡시페놀, 피로가롤, 2,6-디-t-부틸-4-메틸페놀, 2-나프톨, 트리스(N-하이드록시-N-니트로소페닐아미나토-O,O')알루미늄(Tris(N-hydroxy-N-nitrosophenylaminato-O,O')aluminium) 또는 이들의 조합을 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 하이드로퀴논계 화합물, 카테콜계 화합물 또는 이들의 조합은 분산액의 형태로 사용될 수 있으며, 상기 분산액 형태의 중합 억제제는 잉크 조성물(용매형 또는 무용매형과 상관없이) 총량에 대하여 0.001 중량% 내지 1 중량%, 예컨대 0.01 중량% 내지 0.1 중량%로 포함될 수 있다. 안정제가 상기 범위 내로 포함될 경우, 상온 경시 문제를 해결함과 동시에, 감도 저하 및 표면 박리 현상을 방지할 수 있다.
일 구현예에 따른 전기영동 장치용 잉크 조성물은 상기 중합 억제제 외에 말론산; 3-아미노-1,2-프로판디올; 실란계 커플링제; 레벨링제; 불소계 계면활성제; 또는 이들의 조합을 더 포함할 수 있다.
예컨대, 전기영동 장치용 잉크 조성물은 기판과의 밀착성 등을 개선하기 위해 비닐기, 카르복실기, 메타크릴옥시기, 이소시아네이트기, 에폭시기 등의 반응성 치환기를 갖는 실란계 커플링제를 더 포함할 수 있다.
상기 실란계 커플링제의 예로는, 트리메톡시실릴 벤조산, γ-메타크릴 옥시프로필 트리메톡시실란, 비닐 트리아세톡시실란, 비닐 트리메톡시실란, γ-이소시아네이트 프로필 트리에톡시실란, γ-글리시독시 프로필 트리메톡시실란, β-에폭시사이클로헥실)에틸트리메톡시실란 등을 들 수 있으며, 이들을 단독 또는 2종 이상 혼합하여 사용할 수 있다.
상기 실란계 커플링제는 상기 전기영동 장치용 잉크 조성물 100 중량부에 대하여 0.01 중량부 내지 10 중량부로 포함될 수 있다. 실란계 커플링제가 상기 범위 내로 포함될 경우 밀착성, 저장성 등이 우수하다.
또한 상기 전기영동 장치용 잉크 조성물은 필요에 따라 코팅성 향상 및 결점 생성 방지 효과를 위해 계면 활성제, 예컨대 불소계 계면활성제를 더 포함할 수 있다.
상기 불소계 계면활성제로는, BM Chemie社의 BM-1000®, BM-1100® 등; 다이 닛폰 잉키 가가꾸 고교(주)社의 메카 팩 F 142D®, 메카 팩 F 172®, 메카 팩 F 173®, 메카 팩 F 183® 등; 스미토모 스리엠(주)社의 프로라드 FC-135®, 프로라드 FC-170C®, 프로라드 FC-430®, 프로라드 FC-431® 등; 아사히 그라스(주)社의 사프론 S-112®, 사프론 S-113®, 사프론 S-131®, 사프론 S-141®, 사프론 S-145® 등; 도레이 실리콘(주)社의 SH-28PA®, SH-190®, SH-193®, SZ-6032®, SF-8428® 등; DIC(주)社의 F-482, F-484, F-478, F-554 등의 명칭으로 시판되고 있는 불소계 계면활성제를 사용할 수 있다.
상기 불소계 계면활성제는 상기 전기영동 장치용 잉크 조성물 100 중량부에 대하여 0.001 중량부 내지 5 중량부로 사용될 수 있다. 상기 불소계 계면활성제가 상기 범위 내로 포함될 경우 코팅 균일성이 확보되고, 얼룩이 발생하지 않으며, 유리 기판에 대한 습윤성(wetting)이 우수하다.
또한 상기 전기영동 장치용 잉크 조성물은 물성을 저해하지 않는 범위 내에서 산화방지제, 안정제 등의 기타 첨가제가 일정량 더 첨가될 수도 있다.
바인더 수지
상기 전기영동 장치용 잉크 조성물은 바인더 수지를 더 포함할 수도 있다.
상기 바인더 수지는 아크릴계 바인더 수지, 카도계 바인더 수지 또는 이들의 조합을 포함할 수 있다.
상기 아크릴계 바인더 수지 및 카도계 수지는 경화성 조성물 또는 감광성 조성물에 통상적으로 사용되는 알려진 수지라면 어느 것이든 사용할 수 있으며, 상기 바인더 수지가 특정한 종류로 한정되는 것은 아니다.
상기 바인더 수지는 전기영동 장치용 잉크 조성물 총량에 대하여 1 중량% 내지 30 중량%, 예컨대, 1 중량% 내지 20 중량%로 포함될 수 있다. 바인더 수지가 상기 범위 내로 포함되는 경우 경화 수축율을 낮출 수 있다.
다른 일 구현예는 상기 전기영동 장치용 잉크 조성물을 이용하여 제조된 디스플레이 장치를 제공한다.
이하, 본 발명의 바람직한 실시예를 기재한다. 다만, 하기의 실시예는 본 발명의 바람직한 일 실시예일뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
(전기영동 장치용 잉크 조성물 제조)
용매의 준비 및 점도, 유전상수 측정
* 화학식 2-1로 표시되는 화합물:
1, 3, 5-Triallyl-1, 3, 5-triaone-2, 4, 6(1H, 3H, 5H)-trione (triallyl isocyanurate (시그마 알드리치社)
* 화학식 2-2로 표시되는 화합물:
Sodium p-toluenesulfinate 1.8g (15mmol)을 1, 3-dimethyl-2-imidazolidinone 300ml, propyl isocyanate 280ml (3mol)과 감압 건조 하에서 혼합한다. 플라스크 온도를 80℃로 승온 후 24시간동안 교반한다. 플라스크를 25℃으로 냉각한후 분별증류를 이용하여 N, N', N”isocyanurate를 정제하여 상기 화학식 2-2로 표시되는 화합물(N, N', N”isocyanurate)을 얻었다.
* 화학식 3-1로 표시되는 화합물:
triallyl cyanurate (시그마 알드리치社)
* 화학식 3-2로 표시되는 화합물:
Cyanuric chloride 10g (0.0543mol), propargyl alcohol 10g(0.178mol)을 탈이온수 250ml에 섞는다. Sodium hydroxide 6g (0.176mol)를 25℃에서 첨가한 후 2시간동안 교반한다. 그 후 플라스,크 온도를 50℃로 승온한 후 7시간을 교반한다. 반응 플라스크를 25℃로 냉각 후 aq. saturated ammonium chloride 100ml을 첨가한다. Seperatory funul로 옮긴 후 Ethyl acetate 150ml을 첨가하여 반응물을 추출한다. Ethyl acetate 300ml (150ml x 2번)을 이용하여 추가 추출 후 모여진 유기층에 magnesium sulfate를 이용하여 drying 한다. Celite 545(Sigma Aldrich) 필터 후 감압증류를 하여 ethyl acetate를 제거한다. 이후 분별증류를 통한 정제 진행하여 상기 화학식 3-2로 표시되는 화합물을 얻었다.
* 화학식 4-2로 표시되는 화합물:
triethyl citrate (시그마 알드리치社)
* 화학식 4-4로 표시되는 화합물:
Citric acid(100g, 0.5205mol)을 methanol 500ml에 용해한 후 p-toluenesulfonic acid (0.99g, 0.00521mol)을 추가하고 reflux 조건에서 12시간 반응시킨다. 12시간 후 용매를 rotary evaporator로 제거한 후 ethyl acetate 500ml을 첨가한다. 생성된 유기층을 추출하여 aq. 10% NaHCO3 수용액 300ml로 2회 washing 한 후, 추가로 brine으로 1회 washing한다. 이후 MgSO4로 건조 후 celite filter를 진행한다. Filter 후 용매를 건조하여 상기 화학식 4-4로 표시되는 화합물(trimethyl o-acetylcitrate)을 얻었다.
용매의 유전상수는 액상 유전율 측정기 (RUFUTO 社 model 871, 10KHz)를 사용하여 측정하였으며, 점도는 Thermofisher社의 HAAKE RheoStress 6000 model을 사용하여 측정 후, 그 결과를 하기 표 1에 나타내었다.
실시예 1 내지 실시예 8 및 비교예 1 내지 비교예 4
나노로드(nano rod) 패터닝된 GaN wafer(4 inch)에 stearic acid(1.5mM) 40ml을 상온(25℃)에서 24시간 동안 반응시킨다. 반응 후 50ml의 아세톤에 5분 동안 담가 과량의 stearic acid를 제거하고, 추가로 acetone 40ml을 이용하여 wafer 표면을 rinse한다. 세정된 wafer를 27kW bath type sonicator에 35ml의 GBL과 함께 넣고, 5분 동안 sonication을 이용하여 로드를 wafer 표면에서 분리한다. 분리된 로드를 원심분리기 전용 FALCON tube에 넣고 10ml의 GBL을 추가하여 bath 표면의 로드를 추가 세척한다. 4000rpm에서 10분간 원심분리하여 상층액은 버리고 침전물은 아세톤(40ml)에 재분산하여 10㎛ mesh filter를 이용하여 이물을 걸러낸다. 추가 원심분리(4000rpm, 10분) 후 침전물은 건조 오븐에서 건조(100℃, 1시간) 후 무게를 측정하여, 하기 표 1에 기재된 용매에 0.2 w/w%가 되도록 분산하여 잉크 조성물을 제조한다.
용매 용매 점도(cps)
(25℃/55℃)
용매 유전상수
실시예 1 화학식 2-1 144 /17 2.7
실시예 2 화학식 2-2 116/13.2 2.5
실시예 3 화학식 3-1 Solid/7.2 2.6
실시예 4 화학식 3-2 84/6.5 2.6
실시예 5 (화학식 2-1) + (화학식 4-4) + (화학식 4-2) 88/15 7.0
실시예 6 (화학식 2-2) + (화학식 4-4) + (화학식 4-2) 84/15 6.9
실시예 7 (화학식 3-1) + (화학식 4-4) + (화학식 4-2) 81/15 6.6
실시예 8 (화학식 3-2) + (화학식 4-4) + (화학식 4-2) 82/15 6.5
비교예 1 PGMEA 0.8 / - 8.2
비교예 2 GBL 1.7 / - 42.8
비교예 3 화학식 4-4 354/31 9.6
비교예 4 화학식 4-2 30/7.7 11
(PGMEA 및 GBL의 경우, 55℃에서는 점도가 너무 낮아 점도 측정 자체가 불가하였음)
평가: 잉크 조성물의 침전속도 및 유전 영동 특성
실시예 1 내지 실시예 8 및 비교예 1 내지 비교예 4에서 제조된 잉크 조성물을 Turbiscan을 이용하여 침전 속도 및 유전 영동 특성을 각각 측정하고, 그 결과를 하기 표 2에 나타내었다.
유전 영동 특성의 측정방법은 다음과 같다.
먼저 Thin-film Gold basic interdigitated linear electrodes (ED-cIDE4-Au, Micrux社)에 나노로드 잉크 조성물 500㎕ 도포 후 electric field (25KHz, ±30v)를 인가한 다음 1분간 대기한다. 이 후 hot plate를 이용하여 용매를 건조 후 현미경을 이용하여 전극 사이 중앙에 정렬된 개수(ea)와 정렬안된 개수(ea)를 확인하여 유전 영동 특성을 평가하였다.
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 실시예 7 실시예 8 비교예 1 비교예 2 비교예 3 비교예 4
침전속도
(mm/hr)
0.052 0.068 - 0.081 0.079 0.081 0.082 0.082 0.95 0.91 0.012 0.20
유전 영동특성
(%)
56 65 38 48 94 92 91 93 74 38 84 92
상기 표 1에서 보는 바와 같이, 실시예 1 내지 실시예 8의 경우, 비교예 1 내지 비교예 4와 비교하여 침전 속도가 느리면서, 동시에 유전 영동 특성도 우수한 것을 확인할 수 있고, 이로부터 일 구현예에 따른 전기영동 장치용 잉크 조성물은 반도체 나노로드의 분산 안정성을 크게 개선함과 동시에 유전 영동 특성 또한 매우 우수하여 대면적 코팅 및 패널 생산에 적합함을 알 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.  그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (18)

  1. (A) 반도체 나노로드; 및
    (B) 하기 화학식 1로 표시되는 화합물
    을 포함하는 전기영동 장치용 잉크 조성물:
    [화학식 1]
    Figure PCTKR2021006339-appb-I000025
    상기 화학식 1에서,
    R1은 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C1 내지 C20 알콕시기 또는 치환 또는 비치환된 C6 내지 C20 아릴기이고,
    L1 내지 L3은 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬렌기, *-C(=O)-*, 또는 *-C(R2)=* 이고, 상기 R2는 치환 또는 비치환된 C1 내지 C10 알킬기 또는 치환 또는 비치환된 C1 내지 C10 알콕시기이고,
    n은 0 내지 3의 정수이다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 2 또는 화학식 3으로 표시되는 전기영동 장치용 잉크 조성물:
    [화학식 2]
    Figure PCTKR2021006339-appb-I000026
    [화학식 3]
    Figure PCTKR2021006339-appb-I000027
    상기 화학식 2 및 화학식 3에서,
    R3 내지 R5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬기이고,
    R6 내지 R8은 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알콕시기이다.
  3. 제2항에 있어서,
    상기 R3 내지 R5는 각각 독립적으로 C2 내지 C10 알케닐기로 치환 또는 비치환된 C1 내지 C20 알킬기이고,
    상기 R6 내지 R8은 각각 독립적으로 C2 내지 C10 알케닐기로 치환 또는 비치환된 C1 내지 C20 알콕시기인 전기영동 장치용 잉크 조성물.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2-1, 화학식 2-2, 화학식 3-1 및 화학식 3-2로 표시되는 화합물로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 전기영동 장치용 잉크 조성물.
    [화학식 2-1]
    Figure PCTKR2021006339-appb-I000028
    [화학식 2-2]
    Figure PCTKR2021006339-appb-I000029
    [화학식 3-1]
    Figure PCTKR2021006339-appb-I000030
    [화학식 3-2]
    Figure PCTKR2021006339-appb-I000031
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 25℃에서의 점도가 10cps 이상인 전기영동 장치용 잉크 조성물.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 25℃에서의 점도가 80cps 내지 500 cps인 전기영동 장치용 잉크 조성물.
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 55℃에서의 점도가 10cps 내지 20 cps인 전기영동 장치용 잉크 조성물.
  8. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 2 내지 8의 유전상수를 가지는 전기영동 장치용 잉크 조성물.
  9. 제1항에 있어서,
    상기 전기영동 장치용 잉크 조성물은 하기 화학식 4로 표시되는 화합물을 더 포함하는 전기영동 장치용 잉크 조성물:
    [화학식 4]
    Figure PCTKR2021006339-appb-I000032
    상기 화학식 4에서,
    R9 내지 R11은 각각 독립적으로 수소원자 또는 C1 내지 C10 알킬기이고,
    R12는 수소원자 또는 *-C(=O)R13(R13은 C1 내지 C10 알킬기임)이고,
    L4 및 L5는 각각 독립적으로 치환 또는 비치환된 C1 내지 C20 알킬렌기 또는 치환 또는 비치환된 C6 내지 C20 아릴렌기이고,
    L6은 *-O-*, *-S-* 또는 *-NH-* 이다.
  10. 제1항에 있어서,
    상기 반도체 나노로드는 300nm 내지 900nm의 직경을 가지는 전기영동 장치용 잉크 조성물.
  11. 제1항에 있어서,
    상기 반도체 나노로드는 3.5 ㎛ 내지 5 ㎛의 길이를 가지는 전기영동 장치용 잉크 조성물.
  12. 제1항에 있어서,
    상기 반도체 나노로드는 GaN계 화합물, InGaN계 화합물 또는 이들의 조합을 포함하는 전기영동 장치용 잉크 조성물.
  13. 제1항에 있어서,
    상기 반도체 나노로드는 그 표면이 금속 산화물로 코팅된 전기영동 장치용 잉크 조성물.
  14. 제13항에 있어서,
    상기 금속 산화물은 알루미나, 실리카 또는 이들의 조합을 포함하는 전기영동 장치용 잉크 조성물.
  15. 제1항에 있어서,
    상기 반도체 나노로드는 상기 잉크 조성물 총량에 대하여 0.01 중량% 내지 10 중량%로 포함되는 전기영동 장치용 잉크 조성물.
  16. 제1항에 있어서,
    상기 반도체 나노로드는 중합성 화합물을 더 포함하는 전기영동 장치용 잉크 조성물.
  17. 제1항에 있어서,
    상기 전기영동 장치용 잉크 조성물은 중합개시제, 바인더 수지, 말론산; 3-아미노-1,2-프로판디올; 실란계 커플링제; 레벨링제; 불소계 계면활성제; 또는 이들의 조합을 더 포함하는 전기영동 장치용 잉크 조성물.
  18. 제1항 내지 제17항 중 어느 한 항의 전기영동 장치용 경화성 조성물을 이용하여 제조된 디스플레이 장치.
PCT/KR2021/006339 2020-10-30 2021-05-21 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치 WO2022092465A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/002,426 US20230227994A1 (en) 2020-10-30 2021-05-21 Ink composition for electrophoresis device and display device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0143749 2020-10-30
KR1020200143749A KR20220058216A (ko) 2020-10-30 2020-10-30 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2022092465A1 true WO2022092465A1 (ko) 2022-05-05

Family

ID=81384156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006339 WO2022092465A1 (ko) 2020-10-30 2021-05-21 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치

Country Status (4)

Country Link
US (1) US20230227994A1 (ko)
KR (1) KR20220058216A (ko)
TW (1) TWI780705B (ko)
WO (1) WO2022092465A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220108843A (ko) * 2021-01-27 2022-08-04 삼성디스플레이 주식회사 발광 소자, 발광 소자를 포함하는 발광 소자 유닛, 및 표시 장치
KR20230173529A (ko) * 2022-06-17 2023-12-27 삼성에스디아이 주식회사 잉크 조성물, 이를 이용한 막, 전기영동 장치 및 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032098A (ko) * 2008-09-17 2010-03-25 연세대학교 산학협력단 반도체성 잉크 조성물, 반도체성 산화물 박막, 및 그 제조방법
KR20130074598A (ko) * 2011-12-26 2013-07-04 코오롱인더스트리 주식회사 전기 영동 입자, 전기 영동 입자의 제조 방법, 및 전기 영동 디스플레이 장치
KR20150010591A (ko) * 2013-07-19 2015-01-28 주식회사 엘지화학 금속 나노 입자를 포함하는 광흡수층 제조용 잉크 조성물 및 이를 사용한 박막의 제조 방법
KR20180021870A (ko) * 2015-08-14 2018-03-05 광저우 차이나레이 옵토일렉트로닉 머티리얼즈 엘티디. 인쇄용 잉크 조성물 및 전자소자
KR20200122430A (ko) * 2016-12-28 2020-10-27 디아이씨 가부시끼가이샤 잉크 조성물, 광변환층 및 컬러 필터

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103046B2 (en) * 2010-07-07 2015-08-11 Southwest Research Institute Electrophoretic formation of nanostructured composites
KR101971045B1 (ko) * 2012-06-22 2019-04-23 엘지디스플레이 주식회사 퀀텀 로드 발광 표시장치 및 이의 제조방법
JP6815071B2 (ja) * 2015-08-07 2021-01-20 日鉄ケミカル&マテリアル株式会社 金属ナノ粒子組成物、インクジェット用インク及びインクジェット装置、並びに金属ナノ粒子組成物用分散媒組成物
CN110386370A (zh) * 2018-04-23 2019-10-29 江苏晓春新材料有限公司 一种便于取料的磷酸氢钙存储装置
CN108439457B (zh) * 2018-04-27 2020-05-29 陕西科技大学 一种水热电泳法制备氧化锌纳米棒/碳布摩擦材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100032098A (ko) * 2008-09-17 2010-03-25 연세대학교 산학협력단 반도체성 잉크 조성물, 반도체성 산화물 박막, 및 그 제조방법
KR20130074598A (ko) * 2011-12-26 2013-07-04 코오롱인더스트리 주식회사 전기 영동 입자, 전기 영동 입자의 제조 방법, 및 전기 영동 디스플레이 장치
KR20150010591A (ko) * 2013-07-19 2015-01-28 주식회사 엘지화학 금속 나노 입자를 포함하는 광흡수층 제조용 잉크 조성물 및 이를 사용한 박막의 제조 방법
KR20180021870A (ko) * 2015-08-14 2018-03-05 광저우 차이나레이 옵토일렉트로닉 머티리얼즈 엘티디. 인쇄용 잉크 조성물 및 전자소자
KR20200122430A (ko) * 2016-12-28 2020-10-27 디아이씨 가부시끼가이샤 잉크 조성물, 광변환층 및 컬러 필터

Also Published As

Publication number Publication date
KR20220058216A (ko) 2022-05-09
TW202216919A (zh) 2022-05-01
TWI780705B (zh) 2022-10-11
US20230227994A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
WO2021221335A1 (ko) 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치
WO2022092465A1 (ko) 전기영동 장치용 잉크 조성물 및 이를 이용한 디스플레이 장치
WO2017034357A1 (ko) 적층체 및 이의 제조방법
WO2013094828A1 (en) Photosensitive resin composition and color filter using the same
WO2024053992A1 (ko) 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치
WO2023244082A1 (ko) 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치
WO2024029959A1 (ko) 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치
WO2023244086A1 (ko) 잉크 조성물, 이를 이용한 막, 전기영동 장치 및 디스플레이 장치
WO2019139329A1 (ko) 디스플레이 장치
WO2015122567A1 (ko) 신규한 염료 화합물, 상기 염료 화합물을 포함하는 감광성 수지 조성물, 및 컬러 필터
WO2022239992A1 (ko) 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치
WO2013100276A1 (en) Photosensitive resin composition for color filter and color filter using the same
WO2022177238A1 (ko) 잉크 조성물, 이를 이용한 막 및 디스플레이 장치
WO2022092556A1 (ko) 전기영동 장치용 경화성 조성물, 이를 이용한 경화막 및 디스플레이 장치
WO2022239991A1 (ko) 잉크 조성물, 이를 이용한 막, 이를 포함하는 전기영동 장치 및 디스플레이 장치
WO2022215892A1 (ko) 잉크 조성물, 이를 이용한 막 및 디스플레이 장치
WO2019164157A1 (ko) 화합물, 이를 포함하는 색재 조성물 및 이를 포함하는 수지 조성물
WO2021221304A1 (ko) 화합물, 이를 포함하는 반사방지 필름 및 디스플레이 장치
WO2023163516A1 (ko) 경화성 조성물, 이를 이용한 막 및 디스플레이 장치
WO2020218709A1 (ko) 양자점 함유 경화성 조성물, 이를 이용한 수지막 및 디스플레이 장치
WO2019093806A2 (ko) 화합물 및 이를 포함하는 색변환 필름
WO2024085388A1 (ko) 화소정의층의 제조 방법
WO2021210783A1 (ko) 감광성 수지 조성물, 이를 이용하여 제조된 감광성 수지막 및 컬러필터
WO2024085389A1 (ko) 화소정의층의 제조 방법
WO2022164102A1 (ko) 무용매형 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886466

Country of ref document: EP

Kind code of ref document: A1