WO2022176522A1 - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
WO2022176522A1
WO2022176522A1 PCT/JP2022/002525 JP2022002525W WO2022176522A1 WO 2022176522 A1 WO2022176522 A1 WO 2022176522A1 JP 2022002525 W JP2022002525 W JP 2022002525W WO 2022176522 A1 WO2022176522 A1 WO 2022176522A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
bias voltage
bridge circuit
bridge
impedance
Prior art date
Application number
PCT/JP2022/002525
Other languages
English (en)
French (fr)
Inventor
恭英 高▲瀬▼
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023500666A priority Critical patent/JP7468773B2/ja
Priority to DE112022000419.3T priority patent/DE112022000419T5/de
Publication of WO2022176522A1 publication Critical patent/WO2022176522A1/ja
Priority to US18/228,014 priority patent/US20230375645A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/025Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning with temperature compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/10AC or DC measuring bridges
    • G01R17/12AC or DC measuring bridges using comparison of currents, e.g. bridges with differential current output
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to a sensor device that has a function of compensating for changes in the characteristics of a bridge circuit that includes sensor elements.
  • this type of sensor device includes, for example, a pressure sensor for a liquid chromatograph pump disclosed in Patent Document 1.
  • This pressure sensor consists of a bridge circuit in which four resistors are bridge-connected, drives the bridge circuit with a constant current, and measures its input and output voltages.
  • the correction unit acquires the temperature of the bridge circuit based on the input voltage value measured by the input voltage detection unit and data indicating the relationship between the temperature and the input voltage. Then, based on the acquired temperature of the bridge circuit and a calibration table showing the relationship between the output voltage and the pressure for each temperature, an accurate pressure value of the mobile phase discharged from the pump unit is obtained.
  • the correction section corrects the value of the output voltage transmitted from the output voltage detection section to a value corresponding to the obtained pressure value.
  • a bridge circuit comprising at least one sensor element whose characteristics change according to a detected physical quantity; a detection signal receiving circuit that receives a sensor detection signal output from a detection signal output terminal of the bridge circuit in accordance with a change in characteristics of the sensor element; a bias voltage generation circuit that generates a bias voltage required for operation of the bridge circuit; a regulator circuit that applies a bias voltage generated by the bias voltage generation circuit to a bias terminal of the bridge circuit and monitors a bias current that is supplied to the bridge circuit; an impedance calculation circuit for calculating the impedance of the bridge circuit by inputting the value of the bias voltage generated by the bias voltage generation circuit and the value of the bias current monitored by the regulator circuit; a bias voltage correction circuit that corrects the bias voltage generated by the bias voltage generation circuit to a voltage that compensates for the characteristic change of the bridge circuit based on the impedance of the bridge circuit calculated by the impedance calculation circuit, comprising a sensor device. did.
  • the bias voltage generated by the bias voltage generation circuit is applied to the bias terminal of the bridge circuit by the regulator circuit. Also, the bias voltage generated by the bias voltage generation circuit is corrected to a voltage that compensates for the characteristic change of the bridge circuit by the output of the bias voltage correction circuit based on the impedance of the bridge circuit calculated by the impedance calculation circuit.
  • the bridge circuit outputs a voltage calculated by multiplying the voltage applied to the bias terminal to compensate for the characteristic change of the bridge circuit and the resistance ratio of each resistor constituting the bridge circuit.
  • the bridge circuit itself functions as a multiplier circuit in place of the conventional variable gain amplifier circuit. It becomes unnecessary to amplify and correct the sensor detection signal output to the detection signal output terminal by the gain amplifier circuit.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a sensor device according to a first embodiment of the invention
  • FIG. FIG. 5 is a circuit diagram showing a schematic configuration of a sensor device according to a second embodiment of the invention
  • FIG. 5 is a circuit diagram showing a schematic configuration of a sensor device according to a third embodiment of the invention
  • FIG. 4 is a circuit diagram showing a schematic configuration of a sensor device according to a fourth embodiment of the invention
  • FIG. 11 is a circuit diagram showing a schematic configuration of a sensor device according to a fifth embodiment of the present invention
  • FIG. 1 is a circuit diagram showing a schematic configuration of a sensor device 1A according to the first embodiment of the invention.
  • the sensor device 1A is composed of a bridge circuit 2, a bias circuit 3 and a detection signal receiving circuit 4.
  • the bridge circuit 2 constitutes a sensor, and in this embodiment, one sensor element D and three resistors R1, R2, and R3 are bridge-connected.
  • the bridge circuit 2 may be configured with at least one sensor element D.
  • FIG. thus, for example, four sensor elements D may be bridge-connected.
  • the sensor element D is composed of, for example, a magnetoresistive element whose characteristics change according to the detected physical quantity. This sensor element D is represented by a symbol in which an arrow is attached to a resistance in the figure, indicating that the resistance value of the sensor element D changes according to the detected physical quantity.
  • a connection point between the sensor element D and the resistor R1 and a connection point between the resistor R2 and the resistor R3 constitute bias terminals 2a and 2b, respectively. End 2b is grounded.
  • a connection point between the sensor element D and the resistor R2 and a connection point between the resistor R1 and the resistor R3 constitute detection signal output terminals 2c and 2d, respectively.
  • a change in the detected physical quantity appears as a sensor detection signal s.
  • the resistance values of the sensor element D and the three resistors R1, R2, and R3 are set to values at which a predetermined ratio of the bias voltage Vbias appears at the detection signal output terminals 2c and 2d.
  • the detection signal receiving circuit 4 receives the sensor detection signal s output from the detection signal output terminals 2c and 2d of the bridge circuit 2 according to the characteristic change of the sensor element D.
  • the detection signal receiving circuit 4 is composed of an amplifier circuit that receives and amplifies the sensor detection signal s output from the detection signal output terminals 2c and 2d. A signal S is output.
  • the bias circuit 3 is composed of a bias voltage generation circuit 31, a regulator circuit 32, an impedance calculation circuit 33 and a bias voltage correction circuit 34, and excites the bridge circuit 2.
  • a bias voltage generation circuit 31 generates a bias voltage Vbias required for operation of the bridge circuit 2 .
  • the regulator circuit 32 applies the bias voltage Vbias generated by the bias voltage generation circuit 31 to the bias terminals 2 a and 2 b of the bridge circuit 2 and monitors the bias current Ibias supplied to the bridge circuit 2 .
  • the bias voltage correction circuit 34 Based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33, the bias voltage correction circuit 34 converts the bias voltage Vbias generated by the bias voltage generation circuit 31 into a voltage Vbiasx that compensates for changes in the characteristics of the bridge circuit 2. corrected to
  • the bias voltage Vbias generated by the bias voltage generating circuit 31 is applied to the bias terminals 2a and 2b of the bridge circuit 2 by the regulator circuit 32. Also, the bias voltage Vbias generated by the bias voltage generation circuit 31 compensates the characteristic change of the bridge circuit 2 by the output of the bias voltage correction circuit 34 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33. corrected to voltage Vbiasx.
  • the bridge circuit 2 outputs a detection signal as a voltage calculated by multiplying the voltage Vbiasx applied to the bias terminals 2a and 2b to compensate for the characteristic change of the bridge circuit 2 and the resistance ratio of each resistor constituting the bridge circuit 2. Output to ends 2c and 2d.
  • the bridge circuit itself functions as a multiplier circuit in place of the conventional variable gain amplifier circuit, so that the detection output accuracy is degraded as in the conventional case. It becomes unnecessary to amplify and correct the sensor detection signal s output to the detection signal output terminals 2c and 2d by the variable gain amplifier circuit. Therefore, even if the characteristics of the bridge circuit 2 change for some reason, the sensitivity can be corrected in accordance with the characteristic change, and the sensor device 1A can be provided without degrading the detection output accuracy. As a result, the sensor device 1A always outputs an accurate detection output signal S corresponding to the physical quantity change detected by the sensor element D.
  • FIG. 2 is a circuit diagram showing a schematic configuration of the sensor device 1B according to the second embodiment of the invention.
  • the same reference numerals are given to the same or corresponding parts as those in FIG. 1, and the description thereof will be omitted.
  • the sensor device 1B differs from the sensor device 1A according to the first embodiment only in that the bias voltage correction circuit 34 in the bias circuit 3 is configured by the bridge temperature estimation circuit 35 .
  • the bridge temperature estimation circuit 35 detects the temperature T of the bridge circuit 2 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33, and based on the detected temperature T of the bridge circuit 2, the bias voltage generation circuit
  • a bias voltage correction circuit is configured to correct the bias voltage Vbias generated by 31 to a voltage Vbiasx that compensates for the characteristic change due to the temperature change of the bridge circuit 2 .
  • the conversion from the detected impedance Z of the bridge circuit 2 to the temperature T of the bridge circuit 2 in the bridge temperature estimating circuit 35 is performed by storing in advance an arithmetic expression for calculating the temperature T from the impedance Z and the relationship between the impedance Z and the temperature T.
  • the bias voltage generating circuit 31 inputs the temperature T of the bridge circuit 2 detected by the bridge temperature estimating circuit 35, and prepares in advance an arithmetic expression for calculating the compensation voltage Vbiasx from the temperature T and the relationship between the temperature T and the compensation voltage Vbiasx. Using the stored table, the generated bias voltage Vbias is corrected to the compensation voltage Vbiasx based on the temperature T of the bridge circuit 2 .
  • the bias voltage Vbias generated by the bias voltage generation circuit 31 is calculated by the bridge temperature estimation circuit 35 based on the impedance Z calculated by the impedance calculation circuit 33 as described above. , is corrected to a voltage Vbiasx that compensates for characteristic changes due to temperature changes in the bridge circuit 2 . Therefore, even if the characteristics of the bridge circuit 2 change due to temperature changes, the bias voltage Vbias applied to the bias terminals 2a and 2b is corrected to a voltage Vbiasx that compensates for the characteristic changes due to temperature changes.
  • the circuit itself functions as a multiplication circuit that replaces the variable gain amplifier circuit that degrades detection output accuracy.
  • the sensor device 1B does not degrade the detection output accuracy, and produces an accurate detection output signal S corresponding to the physical quantity change detected by the sensor element D. Output. Therefore, the temperature dependence of bridge sensitivity is corrected continuously and accurately.
  • FIG. 3 is a circuit diagram showing a schematic configuration of a sensor device 1C according to the third embodiment of the invention.
  • the same reference numerals are given to the same or corresponding parts as those in FIG. 1, and the description thereof will be omitted.
  • the sensor device 1C differs from the sensor device 1A according to the first embodiment only in that the bias voltage correction circuit 34 in the bias circuit 3 is configured by the monitoring circuit 36 .
  • the monitoring circuit 36 detects aging of the bridge circuit 2 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculating circuit 33, and the bias voltage generating circuit 31 detects the aging of the bridge circuit 2 based on the detected aging.
  • a bias voltage correction circuit is configured to correct the generated bias voltage Vbias to a voltage Vbiasx that compensates for the characteristic change due to aging of the bridge circuit 2 .
  • the impedance Z of each of the resistors R1 to R3 and the sensor element D that constitute the bridge circuit 2 changes with aging.
  • the monitoring circuit 36 detects aging from the detected impedance Z of the bridge circuit 2 by using an arithmetic expression for calculating the aging from the impedance Z or a table storing the relationship between the impedance Z and the aging. So it's done.
  • a calculation formula for calculating the aging from the impedance Z and a table storing the relationship between the impedance Z and the aging are obtained by using a temperature signal output from a temperature sensor (not shown) as an additional input to obtain the effects of aging. and the influence of temperature may be separated.
  • the bias voltage generation circuit 31 inputs the secular change of the bridge circuit 2 detected by the monitoring circuit 36, and stores in advance the arithmetic expression for calculating the compensation voltage Vbiasx from the secular change and the relationship between the secular change and the compensation voltage Vbiasx. Using the table, the bias voltage Vbias to be generated is corrected to the compensation voltage Vbiasx based on aging of the bridge circuit 2 .
  • the bias voltage Vbias generated by the bias voltage generation circuit 31 is calculated by the monitoring circuit 36 based on the impedance Z calculated by the impedance calculation circuit 33 as described above.
  • the voltage Vbiasx is corrected to compensate for characteristic changes due to aging of the circuit 2 . Therefore, even if the characteristics of the bridge circuit 2 change due to aging, the bias voltage Vbias applied to the bias terminals 2a and 2b is corrected to a voltage Vbiasx that compensates for the characteristic change due to aging.
  • the circuit itself functions as a multiplication circuit that replaces the variable gain amplifier circuit that degrades detection output accuracy. Therefore, even if the characteristics of the bridge circuit 2 change due to aging, the sensor device 1C maintains the sensitivity constant without degrading the detection output accuracy, and responds to changes in the physical quantity detected by the sensor element D. An accurate detection output signal S is output.
  • the monitoring circuit 36 may be configured to detect a failure of the bridge circuit 2 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33. In this case, when a failure of the bridge circuit 2 is detected, the application of the bias voltage Vbias can be stopped or notified to the host system. For example, the monitoring circuit 36 determines that the bridge circuit 2 is out of order when the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33 is abnormally large. Then, the application of the bias voltage Vbias is stopped or notified to the host system. According to this configuration, the failure of the bridge circuit 2 can be detected, and the failure of the bridge circuit 2 can be informed by the notification output by the monitoring circuit 36, prompting prompt action against the failure of the bridge circuit 2. can be done.
  • FIG. 4 is a circuit diagram showing a schematic configuration of a sensor device 1D according to the fourth embodiment of the invention.
  • the same reference numerals are given to the same or corresponding parts as those in FIG. 2, and the description thereof will be omitted.
  • the bridge temperature estimating circuit 35 is connected to the signal input end of the detection signal receiving circuit 4, and based on the voltage input to the signal input end of the detection signal receiving circuit 4, the bridge circuit 2 and the detection signal receiving circuit 35 are connected.
  • the only difference from the sensor device 1B according to the second embodiment is that the abnormality of the wiring 5 between the circuits 4 is monitored.
  • the bridge temperature estimating circuit 35 can stop the application of the bias voltage Vbias, output a notification to the host system, etc., in the same manner as the monitoring circuit 36 described above. Therefore, even if the characteristics of the bridge circuit 2 change due to temperature changes, the sensor device 1D outputs an accurate detection output signal S corresponding to the physical quantity change detected by the sensor element D without degrading the detection accuracy. In addition, when an abnormality in the wiring 5 is monitored, a prompt response to the wiring abnormality can be urged by outputting a notification.
  • FIG. 5 is a circuit diagram showing a schematic configuration of a sensor device 1E according to the fifth embodiment of the invention.
  • the same reference numerals are given to the same or corresponding parts as those in FIG. 3, and the description thereof will be omitted.
  • the monitoring circuit 36 is connected to the signal input terminal of the detection signal reception circuit 4, and based on the voltage input to the signal input terminal of the detection signal reception circuit 4, the bridge circuit 2 and the detection signal reception circuit 4
  • the only difference from the sensor device 1C according to the third embodiment is that an abnormality in the wiring 5 between them is monitored.
  • the monitoring circuit 36 monitors the abnormality of the wiring 5 between the bridge circuit 2 and the detection signal receiving circuit 4, and when the abnormality of the wiring 5 is monitored, the monitoring circuit 36 biases the voltage as described above. It is possible to stop the application of the voltage Vbias, output a notification to the host system, and so on. Therefore, even if the characteristics of the bridge circuit 2 change over time, the sensor device 1E outputs an accurate detection output signal S corresponding to the physical quantity change detected by the sensor element D without degrading the detection accuracy. In addition, when an abnormality in the wiring 5 is monitored, a prompt response to the wiring abnormality can be urged by outputting a notification.
  • the monitoring circuit 36 even when the monitoring circuit 36 detects a failure of the bridge circuit 2 based on the impedance Z of the bridge circuit 2, it stops applying the bias voltage Vbias or outputs a notification to the host system. By doing so, it is possible to prompt a prompt response to the failure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

ブリッジ回路の特性が何らかの原因で変化しても、検出出力精度を劣化させることのないセンサ装置を提供する。バイアス回路3は、バイアス電圧生成回路31、レギュレータ回路32、インピーダンス計算回路33およびバイアス電圧補正回路34から構成される。バイアス電圧生成回路31はブリッジ回路2の作動に要するバイアス電圧Vbiasを生成する。レギュレータ回路32は、バイアス電圧Vbiasをブリッジ回路2に印加すると共に、ブリッジ回路2に供給するバイアス電流Ibiasを監視する。インピーダンス計算回路33は、バイアス電圧Vbiasの値およびバイアス電流Ibiasの値を入力して、ブリッジ回路2のインピーダンスZを計算する。バイアス電圧補正回路34は、インピーダンスZに基づいて、バイアス電圧Vbiasをブリッジ回路2の特性変化を補償する電圧Vbiasxに補正させる。

Description

センサ装置
 本発明は、センサ素子を備えるブリッジ回路の特性変化を補償する機能を備えるセンサ装置に関するものである。
 従来、この種のセンサ装置としては、例えば、特許文献1に開示された液体クロマトグラフ用ポンプの圧力センサに用いられるものがある。
 この圧力センサは、4つの抵抗がブリッジ接続されたブリッジ回路から構成され、ブリッジ回路を定電流駆動して、その入力電圧および出力電圧を測定する。補正部は、入力電圧検出部によって測定された入力電圧値と、温度と入力電圧の関係を示すデータとを基に、ブリッジ回路の温度を取得する。そして、取得したブリッジ回路の温度と、温度毎の出力電圧と圧力の関係を示す校正表とを基に、ポンプユニットから吐出される移動相の正確な圧力値を求める。補正部は、出力電圧検出部より伝送された出力電圧の値を、求めた圧力値に応じた値に補正する。
特開2018-31630号公報
 上記従来の特許文献1に開示されたセンサ装置では、出力電圧検出部より伝送された出力電圧の値を補正するため、補正部における増幅回路の利得を変化させる必要がある。しかしながら、その増幅回路に、離散的に利得が設定される可変利得増幅回路を用いると、増幅回路の出力電圧に不連続なノイズが重畳する。また、線形なアナログ電圧信号を用いて利得が設定される可変利得増幅回路を用いると、増幅回路の出力電圧に歪みが発生しやすい。このため、ブリッジ回路の出力電圧の補正にいずれの可変利得増幅回路を用いても、センサ装置としての検出出力精度を劣化させてしまう問題が発生する。
 本発明はこのような課題を解決するためになされたもので、
検出される物理量に応じて特性が変化するセンサ素子を少なくとも1つ備えるブリッジ回路と、
センサ素子の特性変化に応じてブリッジ回路の検出信号出力端から出力されるセンサ検出信号を受信する検出信号受信回路と、
ブリッジ回路の作動に要するバイアス電圧を生成するバイアス電圧生成回路と、
バイアス電圧生成回路によって生成されるバイアス電圧をブリッジ回路のバイアス端に印加すると共に、ブリッジ回路に供給するバイアス電流を監視するレギュレータ回路と、
バイアス電圧生成回路によって生成されるバイアス電圧の値およびレギュレータ回路で監視されるバイアス電流の値を入力してブリッジ回路のインピーダンスを計算するインピーダンス計算回路と、
インピーダンス計算回路によって計算されるブリッジ回路のインピーダンスに基づいて、バイアス電圧生成回路によって生成されるバイアス電圧をブリッジ回路の特性変化を補償する電圧に補正させるバイアス電圧補正回路と
を備え、センサ装置を構成した。
 本構成によれば、バイアス電圧生成回路によって生成されるバイアス電圧はレギュレータ回路によってブリッジ回路のバイアス端に印加される。また、バイアス電圧生成回路によって生成されるバイアス電圧は、インピーダンス計算回路によって計算されるブリッジ回路のインピーダンスに基づくバイアス電圧補正回路の出力により、ブリッジ回路の特性変化を補償する電圧に補正される。ブリッジ回路は、バイアス端に印加されるブリッジ回路の特性変化を補償する電圧と、ブリッジ回路を構成する各抵抗の抵抗比との積で演算される電圧を出力する。
 したがって、ブリッジ回路は、何らかの原因でその特性が変化しても、ブリッジ回路自体が従来の可変利得増幅回路に代わる乗算回路として機能するので、従来のように、検出出力精度を劣化させてしまう可変利得増幅回路によって検出信号出力端に出力されるセンサ検出信号を増幅して補正する必要がなくなる。
 このため、本発明によれば、ブリッジ回路の特性が何らかの原因で変化しても、検出出力精度を劣化させることのないセンサ装置を提供することが出来る。
本発明の第1の実施形態によるセンサ装置の概略構成を示す回路図である。 本発明の第2の実施形態によるセンサ装置の概略構成を示す回路図である。 本発明の第3の実施形態によるセンサ装置の概略構成を示す回路図である。 本発明の第4の実施形態によるセンサ装置の概略構成を示す回路図である。 本発明の第5の実施形態によるセンサ装置の概略構成を示す回路図である。
 次に、本発明のセンサ装置を実施するための形態について、説明する。
 図1は、本発明の第1の実施形態によるセンサ装置1Aの概略構成を示す回路図である。
 センサ装置1Aは、ブリッジ回路2、バイアス回路3および検出信号受信回路4から構成される。
 ブリッジ回路2は、センサを構成し、本実施形態では、1つのセンサ素子Dと3つの抵抗R1,R2,R3とがブリッジ接続されて、構成されている。ブリッジ回路2は、センサ素子Dを少なくとも1つ備えて構成されればよい。したがって、例えば、4つのセンサ素子Dがブリッジ接続されて構成されてもよい。センサ素子Dは、検出される物理量に応じて特性が変化する、例えば、磁気抵抗素子などから構成され、例えば、磁気抵抗効果によって周囲の磁界変化によってその電気抵抗値が変化する。このセンサ素子Dは、同図では抵抗に矢印を付した記号で表され、センサ素子Dの抵抗値が検出物理量に応じて変化することを示している。
 センサ素子Dと抵抗R1との接続点、および、抵抗R2と抵抗R3との接続点はそれぞれバイアス端2a,2bを構成し、バイアス端2aにはバイアス回路3によってバイアス電圧Vbiasが印加され、バイアス端2bは接地される。また、センサ素子Dと抵抗R2との接続点、および、抵抗R1と抵抗R3との接続点はそれぞれ検出信号出力端2c,2dを構成し、検出信号出力端2c,2dにはセンサ素子Dで検出される物理量の変化がセンサ検出信号sとして現れる。本実施形態では、センサ素子Dと3つの抵抗R1,R2,R3の各抵抗値は、各検出信号出力端2c,2dにバイアス電圧Vbiasの所定比の電圧が現れる値に設定されている。
 検出信号受信回路4は、センサ素子Dの特性変化に応じてブリッジ回路2の検出信号出力端2c,2dから出力されるセンサ検出信号sを受信する。本実施形態では、検出信号受信回路4は、検出信号出力端2c,2dから出力されるセンサ検出信号sを受信して増幅する増幅回路から構成され、センサ検出信号sを増幅したアナログの検出出力信号Sを出力する。
 バイアス回路3は、バイアス電圧生成回路31、レギュレータ回路32、インピーダンス計算回路33およびバイアス電圧補正回路34から構成され、ブリッジ回路2を励起する。バイアス電圧生成回路31は、ブリッジ回路2の作動に要するバイアス電圧Vbiasを生成する。レギュレータ回路32は、バイアス電圧生成回路31によって生成されるバイアス電圧Vbiasをブリッジ回路2のバイアス端2a,2bに印加すると共に、ブリッジ回路2に供給するバイアス電流Ibiasを監視する。インピーダンス計算回路33は、バイアス電圧生成回路31によって生成されるバイアス電圧Vbiasの値vxおよびレギュレータ回路32で監視されるバイアス電流Ibiasの値ixを入力して、ブリッジ回路2のインピーダンスZ(=vx/ix)を計算する。バイアス電圧補正回路34は、インピーダンス計算回路33によって計算されるブリッジ回路2のインピーダンスZに基づいて、バイアス電圧生成回路31によって生成されるバイアス電圧Vbiasを、ブリッジ回路2の特性変化を補償する電圧Vbiasxに補正させる。
 このような本実施形態によるセンサ装置1Aによれば、バイアス電圧生成回路31によって生成されるバイアス電圧Vbiasは、レギュレータ回路32によってブリッジ回路2のバイアス端2a,2bに印加される。また、バイアス電圧生成回路31によって生成されるバイアス電圧Vbiasは、インピーダンス計算回路33によって計算されるブリッジ回路2のインピーダンスZに基づくバイアス電圧補正回路34の出力により、ブリッジ回路2の特性変化を補償する電圧Vbiasxに補正される。ブリッジ回路2は、バイアス端2a,2bに印加されるブリッジ回路2の特性変化を補償する電圧Vbiasxと、ブリッジ回路2を構成する各抵抗の抵抗比との積で演算される電圧を検出信号出力端2c,2dに出力する。
 したがって、ブリッジ回路2は、何らかの原因でその特性が変化しても、ブリッジ回路自体が従来の可変利得増幅回路に代わる乗算回路として機能するので、従来のように、検出出力精度を劣化させてしまう可変利得増幅回路によって検出信号出力端2c,2dに出力されるセンサ検出信号sを増幅して補正する必要がなくなる。このため、何らかの原因でブリッジ回路2の特性が変化しても、特性変化に応じた感度補正をすることができ、検出出力精度を劣化させることのないセンサ装置1Aを提供することができる。この結果、センサ装置1Aからは、常に、センサ素子Dが検出する物理量変化に応じた正確な検出出力信号Sが出力される。
 図2は、本発明の第2の実施形態によるセンサ装置1Bの概略構成を示す回路図である。なお、同図において図1と同一または相当する部分には同一符号を付してその説明は省略する。
 センサ装置1Bは、バイアス回路3において、上記のバイアス電圧補正回路34がブリッジ温度推定回路35によって構成される点だけが、上記の第1の実施形態によるセンサ装置1Aと相違する。
 ブリッジ温度推定回路35は、インピーダンス計算回路33によって計算されるブリッジ回路2のインピーダンスZに基づいてブリッジ回路2の温度Tを検出し、検出したブリッジ回路2の温度Tに基づいて、バイアス電圧生成回路31によって生成されるバイアス電圧Vbiasを、ブリッジ回路2の温度変化による特性変化を補償する電圧Vbiasxに補正させるバイアス電圧補正回路を構成する。ブリッジ温度推定回路35における、検出したブリッジ回路2のインピーダンスZからブリッジ回路2の温度Tへの変換は、インピーダンスZから温度Tを算出する演算式や、インピーダンスZと温度Tとの関係を予め記憶したテーブルを用いることなどで、行われる。バイアス電圧生成回路31は、ブリッジ温度推定回路35で検出されたブリッジ回路2の温度Tを入力し、温度Tから補償電圧Vbiasxを算出する演算式や、温度Tと補償電圧Vbiasxとの関係を予め記憶したテーブルを用いて、生成するバイアス電圧Vbiasをブリッジ回路2の温度Tに基づいて補償電圧Vbiasxに補正する。
 本実施形態によるセンサ装置1Bによれば、バイアス電圧生成回路31によって生成されるバイアス電圧Vbiasは、上記のように、インピーダンス計算回路33によって計算されるインピーダンスZに基づいて、ブリッジ温度推定回路35により、ブリッジ回路2の温度変化による特性変化を補償する電圧Vbiasxに補正される。したがって、ブリッジ回路2は、温度変化によってその特性が変化しても、バイアス端2a,2bに印加されるバイアス電圧Vbiasが温度変化によるその特性変化を補償する電圧Vbiasxに補正されることで、ブリッジ回路自体が、検出出力精度を劣化させる可変利得増幅回路に代わる乗算回路として機能する。このため、センサ装置1Bは、ブリッジ回路2が温度変化によってその特性が変化しても、検出出力精度を劣化させることなく、センサ素子Dが検出する物理量変化に応じた正確な検出出力信号Sを出力する。よって、ブリッジ感度の温度依存性が連続的に精度よく補正されることとなる。
 図3は、本発明の第3の実施形態によるセンサ装置1Cの概略構成を示す回路図である。なお、同図において図1と同一または相当する部分には同一符号を付してその説明は省略する。
 センサ装置1Cは、バイアス回路3において、上記のバイアス電圧補正回路34が監視回路36によって構成される点だけが、上記の第1の実施形態によるセンサ装置1Aと相違する。
 監視回路36は、インピーダンス計算回路33によって計算されるブリッジ回路2のインピーダンスZに基づいてブリッジ回路2の経年変化を検出し、検出したブリッジ回路2の経年変化に基づいて、バイアス電圧生成回路31によって生成されるバイアス電圧Vbiasを、ブリッジ回路2の経年変化による特性変化を補償する電圧Vbiasxに補正させるバイアス電圧補正回路を構成する。ブリッジ回路2を構成する各抵抗R1~R3およびセンサ素子Dは、経年変化によってそれらのインピーダンスZが変化する。監視回路36における、検出したブリッジ回路2のインピーダンスZからの経年変化の検出は、インピーダンスZから経年変化を算出する演算式や、インピーダンスZと経年変化との関係を予め記憶したテーブルを用いることなどで、行われる。インピーダンスZから経年変化を算出する演算式や、インピーダンスZと経年変化との関係を予め記憶したテーブルは、図示しない温度センサより出力される温度信号を付加的な入力として用いて、経年劣化の影響と温度による影響を分離するように構成してもよい。バイアス電圧生成回路31は、監視回路36で検出されたブリッジ回路2の経年変化を入力し、経年変化から補償電圧Vbiasxを算出する演算式や、経年変化と補償電圧Vbiasxとの関係を予め記憶したテーブルを用いて、生成するバイアス電圧Vbiasをブリッジ回路2の経年変化に基づいて補償電圧Vbiasxに補正する。
 本実施形態によるセンサ装置1Cによれば、バイアス電圧生成回路31によって生成されるバイアス電圧Vbiasは、上記のように、インピーダンス計算回路33によって計算されるインピーダンスZに基づいて、監視回路36により、ブリッジ回路2の経年変化による特性変化を補償する電圧Vbiasxに補正される。したがって、ブリッジ回路2は、経年変化によってその特性が変化しても、バイアス端2a,2bに印加されるバイアス電圧Vbiasが経年変化によるその特性変化を補償する電圧Vbiasxに補正されることで、ブリッジ回路自体が、検出出力精度を劣化させる可変利得増幅回路に代わる乗算回路として機能する。このため、センサ装置1Cは、ブリッジ回路2が経年変化によってその特性が変化しても、検出出力精度を劣化させることなく、感度を一定に保って、センサ素子Dが検出する物理量変化に応じた正確な検出出力信号Sを出力する。
 なお、上記の実施形態によるセンサ装置1Cにおいて、監視回路36が、インピーダンス計算回路33によって計算されるブリッジ回路2のインピーダンスZに基づいてブリッジ回路2の故障を検出するように構成してもよい。この場合、ブリッジ回路2の故障が検出されるときに、バイアス電圧Vbiasの印加を停止したり、上位システムに通知することができる。例えば、監視回路36は、インピーダンス計算回路33によって計算されるブリッジ回路2のインピーダンスZが異常に大きい場合、ブリッジ回路2が故障していると判断する。そして、バイアス電圧Vbiasの印加を停止したり,上位システムに通知する。本構成によれば、ブリッジ回路2の故障を検出でき、監視回路36が出力する通知により、ブリッジ回路2が故障したことを知らせることができて、ブリッジ回路2の故障に対する速やかな対応を促すことができる。
 図4は、本発明の第4の実施形態によるセンサ装置1Dの概略構成を示す回路図である。なお、同図において図2と同一または相当する部分には同一符号を付してその説明は省略する。
 センサ装置1Dは、ブリッジ温度推定回路35が、検出信号受信回路4の信号入力端に接続され、検出信号受信回路4の信号入力端に入力される電圧に基づいて、ブリッジ回路2および検出信号受信回路4間における配線5の異常を監視する点だけが、第2の実施形態によるセンサ装置1Bと相違する。
 本センサ装置1Dによれば、ブリッジ回路2および検出信号受信回路4間における配線5の異常がブリッジ温度推定回路35によって監視され、配線5の異常、例えば配線5の断線などが監視される場合に、ブリッジ温度推定回路35によって、上記の監視回路36と同様に、バイアス電圧Vbiasの印加を停止したり、上位システムに通知を出力したり等することができる。したがって、センサ装置1Dは、ブリッジ回路2の特性がその温度変化によって変化しても、検出精度を劣化させることなく、センサ素子Dが検出する物理量変化に応じた正確な検出出力信号Sを出力すると共に、配線5に異常が監視される場合には、通知を出力したりすることで、その配線異常に対する速やかな対応を促すことができる。
 図5は、本発明の第5の実施形態によるセンサ装置1Eの概略構成を示す回路図である。なお、同図において図3と同一または相当する部分には同一符号を付してその説明は省略する。
 センサ装置1Eは、監視回路36が、検出信号受信回路4の信号入力端に接続され、検出信号受信回路4の信号入力端に入力される電圧に基づいて、ブリッジ回路2および検出信号受信回路4間における配線5の異常を監視する点だけが、第3の実施形態によるセンサ装置1Cと相違する。
 本センサ装置1Eによれば、ブリッジ回路2および検出信号受信回路4間における配線5の異常が監視回路36によって監視され、配線5の異常が監視される場合に監視回路36によって上記のようにバイアス電圧Vbiasの印加を停止したり、上位システムに通知を出力したり等することができる。したがって、センサ装置1Eは、ブリッジ回路2の特性がその経年変化によって変化しても、検出精度を劣化させることなく、センサ素子Dが検出する物理量変化に応じた正確な検出出力信号Sを出力すると共に、配線5に異常が監視される場合には、通知を出力したりすることで、その配線異常に対する速やかな対応を促すことができる。さらに、センサ装置1Eでは、監視回路36が、ブリッジ回路2のインピーダンスZに基づいてブリッジ回路2の故障を検出する場合にも、バイアス電圧Vbiasの印加を停止したり、上位システムに通知を出力したり等することで、その故障に対する速やかな対応を促すことができる。
 1A,1B,1C,1D,1E…センサ装置
 2…ブリッジ回路
 2a,2b…バイアス端
 2c,2d…検出信号出力端
 3…バイアス回路
 4…検出信号受信回路
 5…配線
 31…バイアス電圧生成回路
 32…レギュレータ回路
 33…インピーダンス計算回路
 34…バイアス電圧補正回路
 35…ブリッジ温度推定回路(バイアス電圧補正回路)
 36…監視回路(バイアス電圧補正回路)
 D…センサ素子

Claims (5)

  1.  検出される物理量に応じて特性が変化するセンサ素子を少なくとも1つ備えるブリッジ回路と、
     前記センサ素子の特性変化に応じて前記ブリッジ回路の検出信号出力端から出力されるセンサ検出信号を受信する検出信号受信回路と、
     前記ブリッジ回路の作動に要するバイアス電圧を生成するバイアス電圧生成回路と、
     前記バイアス電圧生成回路によって生成されるバイアス電圧を前記ブリッジ回路のバイアス端に印加すると共に、前記ブリッジ回路に供給するバイアス電流を監視するレギュレータ回路と、
     前記バイアス電圧生成回路によって生成されるバイアス電圧の値および前記レギュレータ回路で監視されるバイアス電流の値を入力して前記ブリッジ回路のインピーダンスを計算するインピーダンス計算回路と、
     前記インピーダンス計算回路によって計算される前記ブリッジ回路のインピーダンスに基づいて、前記バイアス電圧生成回路によって生成されるバイアス電圧を前記ブリッジ回路の特性変化を補償する電圧に補正させるバイアス電圧補正回路と
     を備えるセンサ装置。
  2.  前記バイアス電圧補正回路は、前記インピーダンス計算回路によって計算される前記ブリッジ回路のインピーダンスに基づいて前記ブリッジ回路の温度を検出し、検出した前記ブリッジ回路の温度に基づいて、前記バイアス電圧生成回路によって生成されるバイアス電圧を前記ブリッジ回路の温度変化による特性変化を補償する電圧に補正させる
     ことを特徴とする請求項1に記載のセンサ装置。
  3.  前記バイアス電圧補正回路は、前記インピーダンス計算回路によって計算される前記ブリッジ回路のインピーダンスに基づいて前記ブリッジ回路の経年変化を検出し、検出した前記ブリッジ回路の経年変化に基づいて、前記バイアス電圧生成回路によって生成されるバイアス電圧を前記ブリッジ回路の経年変化による特性変化を補償する電圧に補正させる
     ことを特徴とする請求項1に記載のセンサ装置。
  4.  前記バイアス電圧補正回路は、前記インピーダンス計算回路によって計算される前記ブリッジ回路のインピーダンスに基づいて前記ブリッジ回路の故障を検出することを特徴とする請求項3に記載のセンサ装置。
  5.  前記バイアス電圧補正回路は、前記検出信号受信回路の信号入力端に接続され、前記検出信号受信回路の信号入力端に入力される電圧に基づいて、前記ブリッジ回路および前記検出信号受信回路間における配線の異常を監視する
     ことを特徴とする請求項1から請求項4のいずれか1項に記載のセンサ装置。
PCT/JP2022/002525 2021-02-16 2022-01-25 センサ装置 WO2022176522A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023500666A JP7468773B2 (ja) 2021-02-16 2022-01-25 センサ装置
DE112022000419.3T DE112022000419T5 (de) 2021-02-16 2022-01-25 Sensorvorrichtung
US18/228,014 US20230375645A1 (en) 2021-02-16 2023-07-31 Sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-022367 2021-02-16
JP2021022367 2021-02-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/228,014 Continuation US20230375645A1 (en) 2021-02-16 2023-07-31 Sensor device

Publications (1)

Publication Number Publication Date
WO2022176522A1 true WO2022176522A1 (ja) 2022-08-25

Family

ID=82931546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002525 WO2022176522A1 (ja) 2021-02-16 2022-01-25 センサ装置

Country Status (4)

Country Link
US (1) US20230375645A1 (ja)
JP (1) JP7468773B2 (ja)
DE (1) DE112022000419T5 (ja)
WO (1) WO2022176522A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647484B2 (ja) * 1973-03-15 1981-11-10
JP2014098577A (ja) * 2012-11-13 2014-05-29 Asahi Kasei Electronics Co Ltd センサ閾値決定回路
US20150177280A1 (en) * 2013-12-19 2015-06-25 Silicon Laboratories Inc. Metering Circuit Including a Time-Varying Reference and Method
JP2018031630A (ja) * 2016-08-23 2018-03-01 株式会社島津製作所 液体クロマトグラフ用ポンプ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647484B2 (ja) 2010-10-21 2014-12-24 株式会社フジクラ 作用極用網状体、作用極、その製造方法及び色素増感太陽電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647484B2 (ja) * 1973-03-15 1981-11-10
JP2014098577A (ja) * 2012-11-13 2014-05-29 Asahi Kasei Electronics Co Ltd センサ閾値決定回路
US20150177280A1 (en) * 2013-12-19 2015-06-25 Silicon Laboratories Inc. Metering Circuit Including a Time-Varying Reference and Method
JP2018031630A (ja) * 2016-08-23 2018-03-01 株式会社島津製作所 液体クロマトグラフ用ポンプ

Also Published As

Publication number Publication date
DE112022000419T5 (de) 2023-10-12
US20230375645A1 (en) 2023-11-23
JPWO2022176522A1 (ja) 2022-08-25
JP7468773B2 (ja) 2024-04-16

Similar Documents

Publication Publication Date Title
US8525529B2 (en) Impedance detection circuit and adjustment method of impedance detection circuit
US8878598B2 (en) Sensing module
JPH06194243A (ja) パルス駆動圧力センサ回路とその使用方法
JP6237453B2 (ja) 物理量検出装置
US20080253765A1 (en) Optical power measuring apparatus and optical signal receiving apparatus comprising same
WO2022176522A1 (ja) センサ装置
WO2003023417A1 (en) Sensor capacity sensing apparatus and sensor capacity sensing method
CN110114638B (zh) 模拟输入单元以及基准电压稳定化电路
JP2000214029A (ja) 圧力センサ回路
US20160154030A1 (en) Capacitive sensor
JP2014178290A (ja) 電流検出装置、電流検出方法およびプログラム
US20180275701A1 (en) Voltage supply apparatus
JP2001091373A (ja) 圧力センサ回路
JPH11118617A (ja) 温度調節器
JP3603987B2 (ja) 入力インタフェース、増幅回路及びガス検出装置
JP2007240286A (ja) 計測方法および計測装置
KR101806893B1 (ko) 피드백 제어를 이용하는 변형률 측정 장치
US20240097632A1 (en) Integrated circuit and semiconductor device
JPH0769246B2 (ja) 漏液位置検知装置
JP2006170797A (ja) 不平衝容量の検出装置、及びセンサの不平衝容量の検出方法、並びにこれらに用いる変換器
JP2953070B2 (ja) A/d変換装置
JP3153463B2 (ja) ホール素子駆動回路
JP6732679B2 (ja) 電流検出回路
KR20120066708A (ko) 온도보상기능을 갖는 홀 집적회로
JPH10281709A (ja) 動歪み計測装置及び動歪み計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500666

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112022000419

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755846

Country of ref document: EP

Kind code of ref document: A1