US20230375645A1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
US20230375645A1
US20230375645A1 US18/228,014 US202318228014A US2023375645A1 US 20230375645 A1 US20230375645 A1 US 20230375645A1 US 202318228014 A US202318228014 A US 202318228014A US 2023375645 A1 US2023375645 A1 US 2023375645A1
Authority
US
United States
Prior art keywords
circuit
bias voltage
bridge
bridge circuit
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/228,014
Inventor
Yasuhide Takase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Assigned to MURATA MANUFACTURING CO., LTD. reassignment MURATA MANUFACTURING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKASE, YASUHIDE
Publication of US20230375645A1 publication Critical patent/US20230375645A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/025Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning with temperature compensating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/10AC or DC measuring bridges
    • G01R17/12AC or DC measuring bridges using comparison of currents, e.g. bridges with differential current output
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the present invention relates to a sensor device to compensate for a change in characteristics of a bridge circuit including a sensor element.
  • Examples of a sensor device of this type in the related art include the pressure sensor in the pump for liquid chromatograph disclosed in Japanese Unexamined Patent Application Publication No. 2018-31630.
  • This pressure sensor includes a bridge circuit in which four resistors are bridge-connected.
  • the bridge circuit is driven at a constant current, and the input voltage and output voltage of the bridge circuit are measured.
  • a correction unit acquires the temperature of the bridge circuit on the basis of an input voltage value measured by an input voltage detection unit and data representing the relationship between a temperature and an input voltage.
  • the accurate pressure value of a mobile phase ejected from a pump unit is obtained on the basis of the acquired temperature of the bridge circuit and a calibration table indicating the relationship between an output voltage and a pressure at each temperature.
  • a correction unit corrects the value of an output voltage transmitted from an output voltage detection unit to a value corresponding to the obtained pressure value.
  • the gain of an amplification circuit in the correction unit needs to be changed for the correction of an output voltage value transmitted from the output voltage detection unit.
  • a variable gain amplification circuit for which gains are discretely set is used as the amplification circuit, discontinuous noise is superimposed on the output voltage of the amplification circuit.
  • a variable gain amplification circuit for which a gain is set using a linear analog voltage signal is used, the output voltage of the amplification circuit is likely to be distorted. Accordingly, the use of these variable gain amplification circuits for the correction of the output voltage of the bridge circuit leads to the deterioration of detection output accuracy of the sensor device.
  • a preferred embodiment of the present invention provides a sensor device including a bridge circuit including at least one sensor, characteristics of which change in accordance with a detected physical quantity, a detection signal reception circuit to receive a sensor detection signal that is output from a detection signal output end of the bridge circuit in accordance with a change in characteristics of the sensor, a bias voltage generation circuit to generate a bias voltage required for an operation of the bridge circuit, a regulator circuit to apply a bias voltage generated by the bias voltage generation circuit to a bias end of the bridge circuit and monitor a bias current supplied to the bridge circuit, an impedance calculation circuit to receive a value of a bias voltage generated by the bias voltage generation circuit and a value of a bias current monitored by the regulator circuit and calculate an impedance of the bridge circuit, and a bias voltage correction circuit to cause, based on an impedance of the bridge circuit calculated by the impedance calculation circuit, a bias voltage generated by the bias voltage generation circuit to be corrected to a voltage that compensates for a change in characteristics of the bridge circuit.
  • the regulator circuit applies a bias voltage generated by the bias voltage generation circuit to the bias end of the bridge circuit.
  • a bias voltage generated by the bias voltage generation circuit is corrected to a voltage with which the change in the characteristics of the bridge circuit is compensated for based on the output of the bias voltage correction circuit based on the impedance of the bridge circuit calculated by the impedance calculation circuit.
  • the bridge circuit outputs a voltage obtained by computing the product of a voltage, which is applied to the bias end and with which the change in the characteristics of the bridge circuit is compensated for, and the resistance ratio between resistors included in the bridge circuit.
  • the bridge circuit itself functions as a multiplication circuit alternative to a variable gain amplification circuit in the related art, even if the characteristics thereof change for some reason, the need to cause a variable gain amplification circuit causing the deterioration of detection output accuracy to amplify and correct a sensor detection signal output to the detection signal output end is eliminated unlike in the past.
  • preferred embodiments of the present invention can provide sensor devices with which the deterioration of detection output accuracy does not occur even if the characteristics of a bridge circuit change for some reason.
  • FIG. 1 is a circuit diagram illustrating the schematic configuration of a sensor device according to a first preferred embodiment of the present invention.
  • FIG. 2 is a circuit diagram illustrating the schematic configuration of a sensor device according to a second preferred embodiment of the present invention.
  • FIG. 3 is a circuit diagram illustrating the schematic configuration of a sensor device according to a third preferred embodiment of the present invention.
  • FIG. 4 is a circuit diagram illustrating the schematic configuration of a sensor device according to a fourth preferred embodiment of the present invention.
  • FIG. 5 is a circuit diagram illustrating the schematic configuration of a sensor device according to a fifth preferred embodiment of the present invention.
  • FIG. 1 is a circuit diagram illustrating the schematic configuration of a sensor device 1 A according to a first preferred embodiment of the present invention.
  • the sensor device 1 A includes a bridge circuit 2 , a bias circuit 3 , and a detection signal reception circuit 4 .
  • the bridge circuit 2 defines a sensor and includes three resistors R 1 , R 2 , and R 3 and a single sensor element D which are bridge-connected in the present preferred embodiment. It is sufficient that the bridge circuit 2 include the at least one sensor element D. Accordingly, for example, the bridge circuit 2 may include the four sensor elements D that are bridge-connected.
  • the sensor element D includes, for example, a magnetic resistance element, the characteristics of which change in accordance with a detected physical quantity and has, for example, an electrical resistance value that changes in accordance with the change in an ambient magnetic field due to a magnetic resistance effect. In the drawing, this sensor element D is represented by a resistor symbol with an arrow indicating that the resistance value of the sensor element D changes in accordance with a detected physical quantity.
  • a node between the sensor element D and a resistor R 1 defines a bias end 2 a to which the bias circuit 3 applies a bias voltage Vbias.
  • a node between resistors R 2 and R 3 defines a bias end 2 b that is connected to the ground.
  • a node between the sensor element D and the resistor R 2 and a node between the resistors R 1 and R 3 define detection signal output ends 2 c and 2 d , respectively, at which the change in a physical quantity detected by the sensor element D appears as a sensor detection signal s.
  • the respective resistance values of the sensor element D and the three resistors R 1 , R 2 , and R 3 are set such that a voltage of a predetermined ratio to the bias voltage Vbias appears at each of the detection signal output ends 2 c and 2 d.
  • the detection signal reception circuit 4 receives the sensor detection signal s that is output from each of the detection signal output ends 2 c and 2 d of the bridge circuit 2 in accordance with the change in the characteristics of the sensor element D.
  • the detection signal reception circuit 4 includes an amplification circuit to receive the sensor detection signal s output from each of the detection signal output ends 2 c and 2 d and amplifying it, and outputs an analog detection output signal S obtained by amplifying the sensor detection signal s.
  • the bias circuit 3 includes a bias voltage generation circuit 31 , a regulator circuit 32 , an impedance calculation circuit 33 , and a bias voltage correction circuit 34 and excites the bridge circuit 2 .
  • the bias voltage generation circuit 31 generates the bias voltage Vbias required for the operation of the bridge circuit 2 .
  • the regulator circuit 32 applies the bias voltage Vbias generated by the bias voltage generation circuit 31 to the bias ends 2 a and 2 b of the bridge circuit 2 and monitors a bias current Ibias supplied to the bridge circuit 2 .
  • the bias voltage correction circuit 34 causes, based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33 , the bias voltage Vbias generated by the bias voltage generation circuit 31 to be corrected to a voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 is compensated for.
  • the regulator circuit 32 applies the bias voltage Vbias generated by the bias voltage generation circuit 31 to the bias ends 2 a and 2 b of the bridge circuit 2 .
  • the bias voltage Vbias generated by the bias voltage generation circuit 31 is corrected to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 is compensated for based on the output of the bias voltage correction circuit 34 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33 .
  • the bridge circuit 2 outputs to the detection signal output ends 2 c and 2 d a voltage obtained by computing the product of the voltage Vbiasx, which is applied to the bias ends 2 a and 2 b and with which the change in the characteristics of the bridge circuit 2 is compensated for, and the resistance ratio between the resistors included in the bridge circuit 2 .
  • the bridge circuit 2 itself functions as a multiplication circuit alternative to a variable gain amplification circuit in the related art even if the characteristics thereof change for some reason, the need to cause a variable gain amplification circuit causing the deterioration of detection output accuracy to amplify and correct the sensor detection signals s output to the detection signal output ends 2 c and 2 d is eliminated unlike in the past.
  • the sensor device 1 A can therefore be provided which is capable of performing sensitivity correction in accordance with the change in the characteristics of the bridge circuit 2 even if the change in the characteristics occurs and which does not cause the deterioration of detection output accuracy.
  • the accurate detection output signal S is always output from the sensor device 1 A in accordance with the change in a physical quantity detected by the sensor element D.
  • FIG. 2 is a circuit diagram illustrating the schematic configuration of a sensor device 1 B according to a second preferred embodiment of the present invention. Referring to this drawing, the same reference numerals are used to identify the same components or equivalent components in FIG. 1 and the description of such components is omitted.
  • the sensor device 1 B differs from the above sensor device 1 A according to the first preferred embodiment only in that the bias voltage correction circuit 34 is defined by a bridge temperature estimation circuit 35 in the bias circuit 3 .
  • the bridge temperature estimation circuit 35 defines a bias voltage correction circuit to detect a temperature T of the bridge circuit 2 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33 and causing, based on the detected temperature T of the bridge circuit 2 , the bias voltage Vbias generated by the bias voltage generation circuit 31 to be corrected to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 due to a temperature change is compensated for.
  • the bridge temperature estimation circuit 35 performs conversion from the detected impedance Z of the bridge circuit 2 to the temperature T of the bridge circuit 2 using an arithmetic expression to calculate the temperature T from the impedance Z or a table storing in advance the relationship between the impedance Z and the temperature T.
  • the bias voltage generation circuit 31 receives the temperature T of the bridge circuit 2 detected by the bridge temperature estimation circuit 35 and corrects the bias voltage Vbias generated thereby to the compensation voltage Vbiasx based on the temperature T of the bridge circuit 2 using an arithmetic expression to calculate the compensation voltage Vbiasx from the temperature T or a table storing in advance the relationship between the temperature T and the compensation voltage Vbiasx.
  • the bridge temperature estimation circuit 35 corrects the bias voltage Vbias generated by the bias voltage generation circuit 31 to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 due to a temperature change is compensated for based on the impedance Z calculated by the impedance calculation circuit 33 as described above. Accordingly, even if the characteristics of the bridge circuit 2 change in accordance with a temperature change, the bridge circuit 2 itself functions as a multiplication circuit alternative to a variable gain amplification circuit causing the deterioration of detection output accuracy in such a manner that the bias voltage Vbias applied to the bias ends 2 a and 2 b is corrected to the voltage Vbiasx with which the change in the characteristics due to a temperature change is compensated for.
  • the sensor device 1 B therefore outputs the accurate detection output signal S in accordance with the change in a physical quantity detected by the sensor element D without the deterioration of detection output accuracy even if the characteristics of the bridge circuit 2 change in accordance with a temperature change. As a result, the dependence of bridge sensitivity on temperature is continuously and accurately corrected.
  • FIG. 3 is a circuit diagram illustrating the schematic configuration of a sensor device 1 C according to a third preferred embodiment of the present invention. Referring to this drawing, the same reference numerals are used to identify the same components or equivalent components in FIG. 1 and the description of such components is omitted.
  • the sensor device 1 C differs from the above sensor device 1 A according to the first preferred embodiment only in that the above bias voltage correction circuit 34 is defined by a monitoring circuit 36 in the bias circuit 3 .
  • the monitoring circuit 36 defines a bias voltage correction circuit to detect the secular change of the bridge circuit 2 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33 and causing, based on the detected secular change of the bridge circuit 2 , the bias voltage Vbias generated by the bias voltage generation circuit 31 to be corrected to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 due to a secular change is compensated for.
  • the respective impedances Z of the resistors R 1 to R 3 and the sensor element D included in the bridge circuit 2 change in accordance with a secular change.
  • the monitoring circuit 36 detects a secular change from the detected impedance Z of the bridge circuit 2 using an arithmetic expression to calculate a secular change from the impedance Z or a table storing in advance the relationship between the impedance Z and a secular change.
  • An arithmetic expression to calculate a secular change from the impedance Z or a table storing in advance the relationship between the impedance Z and a secular change may be configured to use a temperature signal output from a temperature sensor (not illustrated) as an additional input to separate the influence of aged deterioration and the influence of a temperature from each other.
  • the bias voltage generation circuit 31 receives the secular change of the bridge circuit 2 detected by the monitoring circuit 36 and corrects, based on the secular change of the bridge circuit 2 , the bias voltage Vbias generated thereby to the compensation voltage Vbiasx using an arithmetic expression to calculate the compensation voltage Vbiasx from a secular change or a table storing in advance between a secular change and the compensation voltage Vbiasx.
  • the monitoring circuit 36 corrects the bias voltage Vbias generated by the bias voltage generation circuit 31 to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 due to a secular change is compensated for based on the impedance Z calculated by the impedance calculation circuit 33 as described above. Accordingly, even if the characteristics of the bridge circuit 2 change in accordance with a secular change, the bridge circuit 2 itself functions as a multiplication circuit alternative to a variable gain amplification circuit causing the deterioration of detection output accuracy in such a manner that the bias voltage Vbias applied to the bias ends 2 a and 2 b is corrected to the voltage Vbiasx with which the change in the characteristics due to a secular change is compensated for.
  • the sensor device 1 C Therefore outputs the accurate detection output signal S in accordance with the change in a physical quantity detected by the sensor element D without the deterioration of detection output accuracy while keeping sensitivity constant.
  • the monitoring circuit 36 may be configured to detect the failure of the bridge circuit 2 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33 .
  • the application of the bias voltage Vbias can be stopped or a notification to a higher-level system can be made.
  • the monitoring circuit 36 determines that the bridge circuit 2 has failed. Subsequently, the application of the bias voltage Vbias is stopped or a notification to a higher-level system is made.
  • the failure of the bridge circuit 2 can be detected, the monitoring circuit 36 can output the notification that the bridge circuit 2 has failed, and a quick response to the failure of the bridge circuit 2 can be prompted.
  • FIG. 4 is a circuit diagram illustrating the schematic configuration of a sensor device 1 D according to a fourth preferred embodiment of the present invention. Referring to this drawing, the same reference numerals are used to identify the same components or equivalent components in FIG. 2 and the description of such components is omitted.
  • the sensor device 1 D differs from the sensor device 1 B according to the second preferred embodiment only in that the bridge temperature estimation circuit 35 is connected to a signal input end of the detection signal reception circuit 4 and the abnormal state of a wiring line 5 between the bridge circuit 2 and the detection signal reception circuit 4 is monitored based on a voltage input to the signal input end of the detection signal reception circuit 4 .
  • the bridge temperature estimation circuit 35 monitors the abnormal state of the wiring line 5 between the bridge circuit 2 and the detection signal reception circuit 4 and can, for example, stop the application of the bias voltage Vbias or output a notification to a higher-level system like the above monitoring circuit 36 when the abnormal state of the wiring line 5 (e.g., the disconnection of the wiring line 5 ) is monitored.
  • the sensor device 1 D therefore outputs the accurate detection output signal S in accordance with the change in a physical quantity detected by the sensor element D without the deterioration of detection output accuracy even if the characteristics of the bridge circuit 2 change in accordance with a temperature change and also can prompt a quick response to the abnormal state of the wiring line 5 by, for example, outputting a notification when the abnormal state of the wiring line 5 is monitored.
  • FIG. 5 is a circuit diagram illustrating the schematic configuration of a sensor device 1 E according to a fifth preferred embodiment of the present invention. Referring to this drawing, the same reference numerals are used to identify the same components or equivalent components in FIG. 3 and the description of such components is omitted.
  • the sensor device 1 E differs from the sensor device 1 C according to the third preferred embodiment only in that the monitoring circuit 36 is connected to the signal input end of the detection signal reception circuit 4 and the abnormal state of the wiring line 5 between the bridge circuit 2 and the detection signal reception circuit 4 is monitored based on a voltage input to the signal input end of the detection signal reception circuit 4 .
  • the monitoring circuit 36 monitors the abnormal state of the wiring line 5 between the bridge circuit 2 and the detection signal reception circuit 4 and can stop the application of the bias voltage Vbias or output a notification to a higher-level system as described above when monitoring that the abnormal state of the wiring line 5 has occurred.
  • the sensor device 1 E therefore outputs the accurate detection output signal S in accordance with the change in a physical quantity detected by the sensor element D without the deterioration of detection output accuracy even if the characteristics of the bridge circuit 2 change in accordance with a secular change thereof and also can prompt a quick response to the abnormal state of the wiring line 5 by, for example, outputting a notification when the abnormal state of the wiring line 5 is monitored.
  • the sensor device 1 E can prompt a quick response to the failure by, for example, stopping the application of the bias voltage Vbias or outputting a notification to a higher-level system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

In a sensor device, a bias circuit includes a bias voltage generation circuit, a regulator circuit, an impedance calculation circuit, and a bias voltage correction circuit. The bias voltage generation circuit generates a bias voltage required to operate the bridge circuit. The regulator circuit applies the bias voltage to the bridge circuit and monitors a bias current supplied to the bridge circuit. The impedance calculation circuit receives a value of the bias voltage and a value of the bias current and calculates an impedance of the bridge circuit. Based on the impedance, the bias voltage correction circuit causes the bias voltage to be corrected to a voltage that compensates for a change in characteristics of the bridge circuit.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of priority to Japanese Patent Application No. 2021-022367 filed on Feb. 16, 2021 and is a Continuation Application of PCT Application No. PCT/JP2022/002525 filed on Jan. 25, 2022. The entire contents of each application are hereby incorporated herein by reference.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a sensor device to compensate for a change in characteristics of a bridge circuit including a sensor element.
  • 2. Description of the Related Art
  • Examples of a sensor device of this type in the related art include the pressure sensor in the pump for liquid chromatograph disclosed in Japanese Unexamined Patent Application Publication No. 2018-31630.
  • This pressure sensor includes a bridge circuit in which four resistors are bridge-connected. The bridge circuit is driven at a constant current, and the input voltage and output voltage of the bridge circuit are measured. A correction unit acquires the temperature of the bridge circuit on the basis of an input voltage value measured by an input voltage detection unit and data representing the relationship between a temperature and an input voltage. The accurate pressure value of a mobile phase ejected from a pump unit is obtained on the basis of the acquired temperature of the bridge circuit and a calibration table indicating the relationship between an output voltage and a pressure at each temperature. A correction unit corrects the value of an output voltage transmitted from an output voltage detection unit to a value corresponding to the obtained pressure value.
  • SUMMARY OF THE INVENTION
  • In the sensor device in the related art disclosed in Japanese Unexamined Patent Application Publication No. 2018-31630, the gain of an amplification circuit in the correction unit needs to be changed for the correction of an output voltage value transmitted from the output voltage detection unit. However, when a variable gain amplification circuit for which gains are discretely set is used as the amplification circuit, discontinuous noise is superimposed on the output voltage of the amplification circuit. When a variable gain amplification circuit for which a gain is set using a linear analog voltage signal is used, the output voltage of the amplification circuit is likely to be distorted. Accordingly, the use of these variable gain amplification circuits for the correction of the output voltage of the bridge circuit leads to the deterioration of detection output accuracy of the sensor device.
  • A preferred embodiment of the present invention provides a sensor device including a bridge circuit including at least one sensor, characteristics of which change in accordance with a detected physical quantity, a detection signal reception circuit to receive a sensor detection signal that is output from a detection signal output end of the bridge circuit in accordance with a change in characteristics of the sensor, a bias voltage generation circuit to generate a bias voltage required for an operation of the bridge circuit, a regulator circuit to apply a bias voltage generated by the bias voltage generation circuit to a bias end of the bridge circuit and monitor a bias current supplied to the bridge circuit, an impedance calculation circuit to receive a value of a bias voltage generated by the bias voltage generation circuit and a value of a bias current monitored by the regulator circuit and calculate an impedance of the bridge circuit, and a bias voltage correction circuit to cause, based on an impedance of the bridge circuit calculated by the impedance calculation circuit, a bias voltage generated by the bias voltage generation circuit to be corrected to a voltage that compensates for a change in characteristics of the bridge circuit.
  • With this configuration, the regulator circuit applies a bias voltage generated by the bias voltage generation circuit to the bias end of the bridge circuit. A bias voltage generated by the bias voltage generation circuit is corrected to a voltage with which the change in the characteristics of the bridge circuit is compensated for based on the output of the bias voltage correction circuit based on the impedance of the bridge circuit calculated by the impedance calculation circuit. The bridge circuit outputs a voltage obtained by computing the product of a voltage, which is applied to the bias end and with which the change in the characteristics of the bridge circuit is compensated for, and the resistance ratio between resistors included in the bridge circuit.
  • Accordingly, since the bridge circuit itself functions as a multiplication circuit alternative to a variable gain amplification circuit in the related art, even if the characteristics thereof change for some reason, the need to cause a variable gain amplification circuit causing the deterioration of detection output accuracy to amplify and correct a sensor detection signal output to the detection signal output end is eliminated unlike in the past.
  • Accordingly, preferred embodiments of the present invention can provide sensor devices with which the deterioration of detection output accuracy does not occur even if the characteristics of a bridge circuit change for some reason.
  • The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a circuit diagram illustrating the schematic configuration of a sensor device according to a first preferred embodiment of the present invention.
  • FIG. 2 is a circuit diagram illustrating the schematic configuration of a sensor device according to a second preferred embodiment of the present invention.
  • FIG. 3 is a circuit diagram illustrating the schematic configuration of a sensor device according to a third preferred embodiment of the present invention.
  • FIG. 4 is a circuit diagram illustrating the schematic configuration of a sensor device according to a fourth preferred embodiment of the present invention.
  • FIG. 5 is a circuit diagram illustrating the schematic configuration of a sensor device according to a fifth preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Sensor devices according to preferred embodiments of the present invention will be described.
  • FIG. 1 is a circuit diagram illustrating the schematic configuration of a sensor device 1A according to a first preferred embodiment of the present invention.
  • The sensor device 1A includes a bridge circuit 2, a bias circuit 3, and a detection signal reception circuit 4.
  • The bridge circuit 2 defines a sensor and includes three resistors R1, R2, and R3 and a single sensor element D which are bridge-connected in the present preferred embodiment. It is sufficient that the bridge circuit 2 include the at least one sensor element D. Accordingly, for example, the bridge circuit 2 may include the four sensor elements D that are bridge-connected. The sensor element D includes, for example, a magnetic resistance element, the characteristics of which change in accordance with a detected physical quantity and has, for example, an electrical resistance value that changes in accordance with the change in an ambient magnetic field due to a magnetic resistance effect. In the drawing, this sensor element D is represented by a resistor symbol with an arrow indicating that the resistance value of the sensor element D changes in accordance with a detected physical quantity.
  • A node between the sensor element D and a resistor R1 defines a bias end 2 a to which the bias circuit 3 applies a bias voltage Vbias. A node between resistors R2 and R3 defines a bias end 2 b that is connected to the ground. A node between the sensor element D and the resistor R2 and a node between the resistors R1 and R3 define detection signal output ends 2 c and 2 d, respectively, at which the change in a physical quantity detected by the sensor element D appears as a sensor detection signal s. In the present preferred embodiment, the respective resistance values of the sensor element D and the three resistors R1, R2, and R3 are set such that a voltage of a predetermined ratio to the bias voltage Vbias appears at each of the detection signal output ends 2 c and 2 d.
  • The detection signal reception circuit 4 receives the sensor detection signal s that is output from each of the detection signal output ends 2 c and 2 d of the bridge circuit 2 in accordance with the change in the characteristics of the sensor element D. In the present preferred embodiment, the detection signal reception circuit 4 includes an amplification circuit to receive the sensor detection signal s output from each of the detection signal output ends 2 c and 2 d and amplifying it, and outputs an analog detection output signal S obtained by amplifying the sensor detection signal s.
  • The bias circuit 3 includes a bias voltage generation circuit 31, a regulator circuit 32, an impedance calculation circuit 33, and a bias voltage correction circuit 34 and excites the bridge circuit 2. The bias voltage generation circuit 31 generates the bias voltage Vbias required for the operation of the bridge circuit 2. The regulator circuit 32 applies the bias voltage Vbias generated by the bias voltage generation circuit 31 to the bias ends 2 a and 2 b of the bridge circuit 2 and monitors a bias current Ibias supplied to the bridge circuit 2. The impedance calculation circuit 33 receives a value vx of the bias voltage Vbias generated by the bias voltage generation circuit 31 and a value ix of the bias current Ibias monitored by the regulator circuit 32 and calculates an impedance Z (=vx/ix) of the bridge circuit 2. The bias voltage correction circuit 34 causes, based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33, the bias voltage Vbias generated by the bias voltage generation circuit 31 to be corrected to a voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 is compensated for.
  • In the sensor device 1A according to the present preferred embodiment, the regulator circuit 32 applies the bias voltage Vbias generated by the bias voltage generation circuit 31 to the bias ends 2 a and 2 b of the bridge circuit 2. The bias voltage Vbias generated by the bias voltage generation circuit 31 is corrected to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 is compensated for based on the output of the bias voltage correction circuit 34 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33. The bridge circuit 2 outputs to the detection signal output ends 2 c and 2 d a voltage obtained by computing the product of the voltage Vbiasx, which is applied to the bias ends 2 a and 2 b and with which the change in the characteristics of the bridge circuit 2 is compensated for, and the resistance ratio between the resistors included in the bridge circuit 2.
  • Accordingly, since the bridge circuit 2 itself functions as a multiplication circuit alternative to a variable gain amplification circuit in the related art even if the characteristics thereof change for some reason, the need to cause a variable gain amplification circuit causing the deterioration of detection output accuracy to amplify and correct the sensor detection signals s output to the detection signal output ends 2 c and 2 d is eliminated unlike in the past. The sensor device 1A can therefore be provided which is capable of performing sensitivity correction in accordance with the change in the characteristics of the bridge circuit 2 even if the change in the characteristics occurs and which does not cause the deterioration of detection output accuracy. As a result, the accurate detection output signal S is always output from the sensor device 1A in accordance with the change in a physical quantity detected by the sensor element D.
  • FIG. 2 is a circuit diagram illustrating the schematic configuration of a sensor device 1B according to a second preferred embodiment of the present invention. Referring to this drawing, the same reference numerals are used to identify the same components or equivalent components in FIG. 1 and the description of such components is omitted.
  • The sensor device 1B differs from the above sensor device 1A according to the first preferred embodiment only in that the bias voltage correction circuit 34 is defined by a bridge temperature estimation circuit 35 in the bias circuit 3.
  • The bridge temperature estimation circuit 35 defines a bias voltage correction circuit to detect a temperature T of the bridge circuit 2 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33 and causing, based on the detected temperature T of the bridge circuit 2, the bias voltage Vbias generated by the bias voltage generation circuit 31 to be corrected to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 due to a temperature change is compensated for. The bridge temperature estimation circuit 35 performs conversion from the detected impedance Z of the bridge circuit 2 to the temperature T of the bridge circuit 2 using an arithmetic expression to calculate the temperature T from the impedance Z or a table storing in advance the relationship between the impedance Z and the temperature T. The bias voltage generation circuit 31 receives the temperature T of the bridge circuit 2 detected by the bridge temperature estimation circuit 35 and corrects the bias voltage Vbias generated thereby to the compensation voltage Vbiasx based on the temperature T of the bridge circuit 2 using an arithmetic expression to calculate the compensation voltage Vbiasx from the temperature T or a table storing in advance the relationship between the temperature T and the compensation voltage Vbiasx.
  • In the sensor device 1B according to the present preferred embodiment, the bridge temperature estimation circuit 35 corrects the bias voltage Vbias generated by the bias voltage generation circuit 31 to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 due to a temperature change is compensated for based on the impedance Z calculated by the impedance calculation circuit 33 as described above. Accordingly, even if the characteristics of the bridge circuit 2 change in accordance with a temperature change, the bridge circuit 2 itself functions as a multiplication circuit alternative to a variable gain amplification circuit causing the deterioration of detection output accuracy in such a manner that the bias voltage Vbias applied to the bias ends 2 a and 2 b is corrected to the voltage Vbiasx with which the change in the characteristics due to a temperature change is compensated for. The sensor device 1B therefore outputs the accurate detection output signal S in accordance with the change in a physical quantity detected by the sensor element D without the deterioration of detection output accuracy even if the characteristics of the bridge circuit 2 change in accordance with a temperature change. As a result, the dependence of bridge sensitivity on temperature is continuously and accurately corrected.
  • FIG. 3 is a circuit diagram illustrating the schematic configuration of a sensor device 1C according to a third preferred embodiment of the present invention. Referring to this drawing, the same reference numerals are used to identify the same components or equivalent components in FIG. 1 and the description of such components is omitted.
  • The sensor device 1C differs from the above sensor device 1A according to the first preferred embodiment only in that the above bias voltage correction circuit 34 is defined by a monitoring circuit 36 in the bias circuit 3.
  • The monitoring circuit 36 defines a bias voltage correction circuit to detect the secular change of the bridge circuit 2 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33 and causing, based on the detected secular change of the bridge circuit 2, the bias voltage Vbias generated by the bias voltage generation circuit 31 to be corrected to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 due to a secular change is compensated for. The respective impedances Z of the resistors R1 to R3 and the sensor element D included in the bridge circuit 2 change in accordance with a secular change. The monitoring circuit 36 detects a secular change from the detected impedance Z of the bridge circuit 2 using an arithmetic expression to calculate a secular change from the impedance Z or a table storing in advance the relationship between the impedance Z and a secular change. An arithmetic expression to calculate a secular change from the impedance Z or a table storing in advance the relationship between the impedance Z and a secular change may be configured to use a temperature signal output from a temperature sensor (not illustrated) as an additional input to separate the influence of aged deterioration and the influence of a temperature from each other. The bias voltage generation circuit 31 receives the secular change of the bridge circuit 2 detected by the monitoring circuit 36 and corrects, based on the secular change of the bridge circuit 2, the bias voltage Vbias generated thereby to the compensation voltage Vbiasx using an arithmetic expression to calculate the compensation voltage Vbiasx from a secular change or a table storing in advance between a secular change and the compensation voltage Vbiasx.
  • In the sensor device 1C according to the present preferred embodiment, the monitoring circuit 36 corrects the bias voltage Vbias generated by the bias voltage generation circuit 31 to the voltage Vbiasx with which the change in the characteristics of the bridge circuit 2 due to a secular change is compensated for based on the impedance Z calculated by the impedance calculation circuit 33 as described above. Accordingly, even if the characteristics of the bridge circuit 2 change in accordance with a secular change, the bridge circuit 2 itself functions as a multiplication circuit alternative to a variable gain amplification circuit causing the deterioration of detection output accuracy in such a manner that the bias voltage Vbias applied to the bias ends 2 a and 2 b is corrected to the voltage Vbiasx with which the change in the characteristics due to a secular change is compensated for. Even if the characteristics of the bridge circuit 2 change in accordance with a secular change, the sensor device 1C therefore outputs the accurate detection output signal S in accordance with the change in a physical quantity detected by the sensor element D without the deterioration of detection output accuracy while keeping sensitivity constant.
  • In the sensor device 1C according to the above preferred embodiment, the monitoring circuit 36 may be configured to detect the failure of the bridge circuit 2 based on the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33. In this case, when the failure of the bridge circuit 2 is detected, the application of the bias voltage Vbias can be stopped or a notification to a higher-level system can be made. For example, in the case where the impedance Z of the bridge circuit 2 calculated by the impedance calculation circuit 33 is extremely high, the monitoring circuit 36 determines that the bridge circuit 2 has failed. Subsequently, the application of the bias voltage Vbias is stopped or a notification to a higher-level system is made. With this configuration, the failure of the bridge circuit 2 can be detected, the monitoring circuit 36 can output the notification that the bridge circuit 2 has failed, and a quick response to the failure of the bridge circuit 2 can be prompted.
  • FIG. 4 is a circuit diagram illustrating the schematic configuration of a sensor device 1D according to a fourth preferred embodiment of the present invention. Referring to this drawing, the same reference numerals are used to identify the same components or equivalent components in FIG. 2 and the description of such components is omitted.
  • The sensor device 1D differs from the sensor device 1B according to the second preferred embodiment only in that the bridge temperature estimation circuit 35 is connected to a signal input end of the detection signal reception circuit 4 and the abnormal state of a wiring line 5 between the bridge circuit 2 and the detection signal reception circuit 4 is monitored based on a voltage input to the signal input end of the detection signal reception circuit 4.
  • In the sensor device 1D, the bridge temperature estimation circuit 35 monitors the abnormal state of the wiring line 5 between the bridge circuit 2 and the detection signal reception circuit 4 and can, for example, stop the application of the bias voltage Vbias or output a notification to a higher-level system like the above monitoring circuit 36 when the abnormal state of the wiring line 5 (e.g., the disconnection of the wiring line 5) is monitored. The sensor device 1D therefore outputs the accurate detection output signal S in accordance with the change in a physical quantity detected by the sensor element D without the deterioration of detection output accuracy even if the characteristics of the bridge circuit 2 change in accordance with a temperature change and also can prompt a quick response to the abnormal state of the wiring line 5 by, for example, outputting a notification when the abnormal state of the wiring line 5 is monitored.
  • FIG. 5 is a circuit diagram illustrating the schematic configuration of a sensor device 1E according to a fifth preferred embodiment of the present invention. Referring to this drawing, the same reference numerals are used to identify the same components or equivalent components in FIG. 3 and the description of such components is omitted.
  • The sensor device 1E differs from the sensor device 1C according to the third preferred embodiment only in that the monitoring circuit 36 is connected to the signal input end of the detection signal reception circuit 4 and the abnormal state of the wiring line 5 between the bridge circuit 2 and the detection signal reception circuit 4 is monitored based on a voltage input to the signal input end of the detection signal reception circuit 4.
  • In the sensor device 1E, the monitoring circuit 36 monitors the abnormal state of the wiring line 5 between the bridge circuit 2 and the detection signal reception circuit 4 and can stop the application of the bias voltage Vbias or output a notification to a higher-level system as described above when monitoring that the abnormal state of the wiring line 5 has occurred. The sensor device 1E therefore outputs the accurate detection output signal S in accordance with the change in a physical quantity detected by the sensor element D without the deterioration of detection output accuracy even if the characteristics of the bridge circuit 2 change in accordance with a secular change thereof and also can prompt a quick response to the abnormal state of the wiring line 5 by, for example, outputting a notification when the abnormal state of the wiring line 5 is monitored. Furthermore, also when the monitoring circuit 36 detects the failure of the bridge circuit 2 based on the impedance Z of the bridge circuit 2, the sensor device 1E can prompt a quick response to the failure by, for example, stopping the application of the bias voltage Vbias or outputting a notification to a higher-level system.
  • While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.

Claims (15)

What is claimed is:
1. A sensor device comprising:
a bridge circuit including at least one sensor, characteristics of which change in accordance with a detected physical quantity;
a detection signal reception circuit to receive a sensor detection signal that is output from a detection signal output end of the bridge circuit in accordance with a change in characteristics of the sensor;
a bias voltage generation circuit to generate a bias voltage required for an operation of the bridge circuit;
a regulator circuit to apply a bias voltage generated by the bias voltage generation circuit to a bias end of the bridge circuit and monitor a bias current supplied to the bridge circuit;
an impedance calculation circuit to receive a value of a bias voltage generated by the bias voltage generation circuit and a value of a bias current monitored by the regulator circuit and calculate an impedance of the bridge circuit; and
a bias voltage correction circuit to cause, based on an impedance of the bridge circuit calculated by the impedance calculation circuit, a bias voltage generated by the bias voltage generation circuit to be corrected to a voltage that compensates for a change in characteristics of the bridge circuit.
2. The sensor device according to claim 1, wherein the bias voltage correction circuit is operable to detect a temperature of the bridge circuit based on an impedance of the bridge circuit calculated by the impedance calculation circuit and cause, based on the detected temperature of the bridge circuit, a bias voltage generated by the bias voltage generation circuit to be corrected to a voltage that compensates for a change in characteristics of the bridge circuit due to a temperature change.
3. The sensor device according to claim 1, wherein the bias voltage correction circuit is operable to detect a secular change of the bridge circuit based on an impedance of the bridge circuit calculated by the impedance calculation circuit and causes, based on the detected secular change of the bridge circuit, a bias voltage generated by the bias voltage generation circuit to be corrected to a voltage that compensates for a change in characteristics of the bridge circuit due to a secular change.
4. The sensor device according to claim 3, wherein the bias voltage correction circuit is operable to detect a failure of the bridge circuit based on an impedance of the bridge circuit calculated by the impedance calculation circuit.
5. The sensor device according to claim 1, wherein the bias voltage correction circuit is connected to a signal input end of the detection signal reception circuit to monitor an abnormal state of a wiring line between the bridge circuit and the detection signal reception circuit based on a voltage input to the signal input end of the detection signal reception circuit.
6. The sensor device according to claim 1, wherein the bridge circuit includes resistors bridge connected to the sensor.
7. The sensor device according to claim 1, wherein the at least one sensor includes four sensors that are bridge-connected.
8. The sensor device according to claim 1, wherein the at least one sensor includes a magnetic resistor having an electrical resistance value that changes with a change in an ambient magnetic field due to a magnetic resistance effect.
9. The sensor device according to claim 1, further comprising a first node between the at least one sensor and a first resistor to define a first bias end, and a second node between second and third resistors to define a second bias end connected to ground.
10. The sensor device according to claim 1, wherein the detection signal reception circuit includes an amplification circuit to receive and amplify the sensor detection signal and output an analog detection output signal.
11. The sensor device according to claim 1, wherein the bridge circuit defines and functions as a multiplication circuit alternative to a variable gain amplification circuit.
12. The sensor device according to claim 1, wherein the bias voltage correction circuit is defined by a bridge temperature estimation circuit in the bias circuit.
13. The sensor device according to claim 12, wherein the bridge temperature estimation circuit is connected to a signal input end of the detection signal reception circuit and an abnormal state of a wiring line between the bridge circuit and the detection signal reception circuit is monitored based on a voltage input to the signal input end of the detection signal reception circuit.
14. The sensor device according to claim 1, wherein the bias voltage correction circuit is defined by a monitoring circuit in the bias circuit.
15. The sensor device according to claim 14, wherein the monitoring circuit is connected to a signal input end of the detection signal reception circuit and an abnormal state of a wiring line between the bridge circuit and the detection signal reception circuit is monitored based on a voltage input to the signal input end of the detection signal reception circuit.
US18/228,014 2021-02-16 2023-07-31 Sensor device Pending US20230375645A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-022367 2021-02-16
JP2021022367 2021-02-16
PCT/JP2022/002525 WO2022176522A1 (en) 2021-02-16 2022-01-25 Sensor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002525 Continuation WO2022176522A1 (en) 2021-02-16 2022-01-25 Sensor device

Publications (1)

Publication Number Publication Date
US20230375645A1 true US20230375645A1 (en) 2023-11-23

Family

ID=82931546

Family Applications (1)

Application Number Title Priority Date Filing Date
US18/228,014 Pending US20230375645A1 (en) 2021-02-16 2023-07-31 Sensor device

Country Status (4)

Country Link
US (1) US20230375645A1 (en)
JP (1) JP7468773B2 (en)
DE (1) DE112022000419T5 (en)
WO (1) WO2022176522A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647484B2 (en) * 1973-03-15 1981-11-10
JP5647484B2 (en) 2010-10-21 2014-12-24 株式会社フジクラ Network for working electrode, working electrode, method for producing the same, and dye-sensitized solar cell
JP5856557B2 (en) * 2012-11-13 2016-02-10 旭化成エレクトロニクス株式会社 Sensor threshold value determination circuit
US9945690B2 (en) 2013-12-19 2018-04-17 Silicon Laboratories Inc. Metering circuit including a time-varying reference and method
JP2018031630A (en) 2016-08-23 2018-03-01 株式会社島津製作所 Pump for liquid chromatograph

Also Published As

Publication number Publication date
WO2022176522A1 (en) 2022-08-25
JP7468773B2 (en) 2024-04-16
JPWO2022176522A1 (en) 2022-08-25
DE112022000419T5 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US8878598B2 (en) Sensing module
US9784632B2 (en) Sensor signal detection device
US11012044B2 (en) Amplifier with common mode detection
US10001424B2 (en) Physical quantity detector
JP2008185398A (en) Pressure sensor
JP3502423B2 (en) Signal processing circuit correction device
US20230375645A1 (en) Sensor device
US10634565B2 (en) Temperature sensing apparatus and temperature sensing method thereof
US10671103B2 (en) Voltage supply apparatus
WO2020059246A1 (en) Sensor processing circuit and sensor system
JP2014178290A (en) Current detector, current detection method, and program
US10718795B2 (en) Detecting device
JP4352555B2 (en) Pressure sensor
JPS6145761B2 (en)
JPH0769246B2 (en) Leakage position detection device
JPH10281709A (en) Method and device for measuring dynamic strain
US11686629B2 (en) Devices and method for calibrating measured values
JPH11295394A (en) Apparatus for testing analog/digital converter
JPH1096675A (en) Circuit and method for temperature compensation
JP2002181858A (en) Receiving level monitoring circuit
JP6439865B2 (en) Sensor signal converter and sensor signal conversion method
JPS60135717A (en) Pressure detecting circuit
JP3336920B2 (en) Power supply monitoring device
JP5443710B2 (en) Sensor circuit
WO2019150354A1 (en) An electronic sensing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MURATA MANUFACTURING CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAKASE, YASUHIDE;REEL/FRAME:064430/0909

Effective date: 20230727

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION