JPS6145761B2 - - Google Patents

Info

Publication number
JPS6145761B2
JPS6145761B2 JP6509977A JP6509977A JPS6145761B2 JP S6145761 B2 JPS6145761 B2 JP S6145761B2 JP 6509977 A JP6509977 A JP 6509977A JP 6509977 A JP6509977 A JP 6509977A JP S6145761 B2 JPS6145761 B2 JP S6145761B2
Authority
JP
Japan
Prior art keywords
voltage
pressure
circuit
bridge circuit
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6509977A
Other languages
Japanese (ja)
Other versions
JPS53149353A (en
Inventor
Akira Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6509977A priority Critical patent/JPS53149353A/en
Priority to US05/909,109 priority patent/US4190796A/en
Publication of JPS53149353A publication Critical patent/JPS53149353A/en
Publication of JPS6145761B2 publication Critical patent/JPS6145761B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は圧力伝送器の改良に関する。[Detailed description of the invention] The present invention relates to improvements in pressure transmitters.

第1図は従来の圧力伝送器の基本的な回路構成
図である。この回路においては、プロセス流体の
圧力をピエゾ抵抗効果によつて電気信号に変換す
る半導体感圧素子RP1,RP2と、温度変化に対し
て一定の抵抗値を示す基準抵抗RS1,RS2とでブ
リツジ回路を構成し、このブリツジ回路の出力端
a,bより圧力変化に対応する感圧素子RP1,R
P2の抵抗R1,R2変化を電圧信号V0として取り出
し、これを差動増幅器1及び電圧―電流変換器2
を介して電流に変換している。
FIG. 1 is a basic circuit configuration diagram of a conventional pressure transmitter. This circuit includes semiconductor pressure-sensitive elements R P1 and R P2 that convert the pressure of the process fluid into electrical signals using a piezoresistance effect, and reference resistors R S1 and R S2 that exhibit a constant resistance value against temperature changes. constitute a bridge circuit, and from the output terminals a, b of this bridge circuit, pressure sensitive elements R P1 , R
The changes in resistance R 1 and R 2 of P2 are taken out as a voltage signal V 0 and this is applied to differential amplifier 1 and voltage-current converter 2.
It is converted into electric current through .

そして、この電流を、定電圧ダイオード3及び
定電流回路4でバイアスされている増幅素子5に
供給して電流I0とした後、これをスパン調整抵抗
f及び出力抵抗6に与え、この抵抗6両端の端
子7,8から伝送すべき電圧信号を取り出し伝送
線路(図示せず)に供給している。なお、9は直
流電源、10は定電圧回路、11は差動増幅器1
及び電圧―電流変換器2を負バイアスする負電圧
発生回路である。
Then, this current is supplied to the amplification element 5 biased by the constant voltage diode 3 and the constant current circuit 4 to make a current I 0 , and then this is applied to the span adjustment resistor R f and the output resistor 6, and the resistor A voltage signal to be transmitted is taken out from terminals 7 and 8 at both ends of 6 and supplied to a transmission line (not shown). In addition, 9 is a DC power supply, 10 is a constant voltage circuit, and 11 is a differential amplifier 1.
and a negative voltage generation circuit that negatively biases the voltage-current converter 2.

而して、以上のような回路では、感圧素子RP
,RP2自身が圧力―抵抗変換特性について非直
線性を生じると、それがそのまま出力端子7,8
に出力電圧の非直線性として現われ(第2図参
照)、このため受信側では誤差の伴なつた圧力を
測定してしまうことになる。
Therefore, in the above circuit, the pressure sensitive element R P
1. If R P2 itself causes non-linearity in its pressure-resistance conversion characteristics, this will be directly transmitted to the output terminals 7 and 8.
This appears as non-linearity in the output voltage (see Figure 2), and as a result, the receiving side ends up measuring pressure with an error.

そこで、従来はかかる非直線の不都合を改善す
るために、感圧素子RP1,RP2に予め圧力を加え
ておいて直線性の良い範囲で使用するとか、増幅
回路の後段で出力信号の一部をブリツジ回路の入
力電圧に正帰還して補正するなどしている。
Conventionally, in order to improve this problem of non-linearity, pressure was applied to the pressure-sensitive elements R P1 and R P2 in advance and used within a range with good linearity, or the output signal was adjusted in the latter stage of the amplifier circuit. This is corrected by positive feedback to the input voltage of the bridge circuit.

しかし、前者の手段にあつては、直線性の良い
範囲に限定しているために使用圧力範囲が狭くな
る欠点があり、また後者の手段では圧力範囲を固
定している場合には直線性を補正することが可能
であるが、圧力範囲が移動するものでは(零点の
遷移)、圧力範囲に対する出力変化幅が変動する
ためにスパン誤差を生ずる欠点がある。
However, the former method has the disadvantage that the operating pressure range is narrow because it is limited to a range with good linearity, and the latter method has the disadvantage that linearity is limited when the pressure range is fixed. Although it is possible to correct it, in the case where the pressure range moves (transition of zero point), there is a drawback that a span error occurs because the output change range with respect to the pressure range fluctuates.

本発明は上記実情にかんがみてなされたもの
で、任意の圧力範囲を選択しても常に直線性が得
られるようにし、これによつて零点遷移時のスパ
ン誤差を少なくする圧力伝送器を提供するもので
ある。
The present invention has been made in view of the above circumstances, and provides a pressure transmitter that always achieves linearity even when an arbitrary pressure range is selected, thereby reducing span error at zero point transition. It is something.

以下、図面を参照して本発明の実施例を説明す
る。第3図は2線式圧力伝送回路の一実施例を示
し、20はプロセス流体の圧力をピエゾ抵抗効果
によつて電気信号に変換する半導体感圧素子RP
,RP2及び温度変化に対して一定の抵抗値を示
す基準抵抗RS1,RS2とで構成されたブリツジ回
路であり、この給電端子a、b間に所定電圧を給
電している。21はブリツジ回路20の出力端子
c,dに得られた差電圧V0を増幅する差動増幅
器であつて、ここで増幅された電圧は後続の電圧
―電流変換器22で電流に変換され、更に後続の
増幅素子23で電流増幅される。24及び25は
増幅素子23を定電流、定電圧にバイアスする定
電流回路及び定電圧ダイオードである。26は差
動増幅器21及び電圧―電流変換器22を負バイ
アスする負バイアス発生回路である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 shows an embodiment of a two-wire pressure transmission circuit, in which 20 is a semiconductor pressure-sensitive element R P that converts the pressure of a process fluid into an electrical signal using a piezoresistive effect.
1 , R P2 and reference resistors R S1 and R S2 that exhibit a constant resistance value against temperature changes, and a predetermined voltage is supplied between the power supply terminals a and b. 21 is a differential amplifier that amplifies the differential voltage V 0 obtained at the output terminals c and d of the bridge circuit 20, and the voltage amplified here is converted into a current by the subsequent voltage-current converter 22, Further, the current is amplified by the subsequent amplification element 23. 24 and 25 are constant current circuits and constant voltage diodes that bias the amplifying element 23 to constant current and constant voltage. 26 is a negative bias generation circuit that negatively biases the differential amplifier 21 and the voltage-current converter 22.

27は定電流回路24を介して得られた電圧を
定電圧化し、ブリツジ回路20の給電端子a,b
に給電する定電圧回路である。なお、28はエミ
ツタ抵抗、Rfはスパン調整抵抗、29は出力抵
抗、30は直流電源である。
27 converts the voltage obtained through the constant current circuit 24 into a constant voltage, and connects the power supply terminals a and b of the bridge circuit 20 to a constant voltage.
This is a constant voltage circuit that supplies power to the Note that 28 is an emitter resistor, R f is a span adjustment resistor, 29 is an output resistor, and 30 is a DC power supply.

而して、本発明圧力伝送器は差動増幅器21の
入力側に電圧補正回路としての演算増幅器31を
接続し、ブリツジ回路20の出力電圧の一部をブ
リツジ回路20の給電側に帰還するようにした構
成である。なお、上記演算増幅器31および定電
圧回路27の一具体例としては例えば第4図に示
すような構成をもつて表わすことができる。即
ち、電圧補正用回路としての演算増幅器31は、
演算増幅器31aおよびこの出力端に一端が接続
された可変抵抗31bにより構成され、この演算
増幅器31aの入力側はブリツジ回路20の出力
端Cに接続されている。また、可変抵抗31bの
他端は分圧抵抗31c,31dの共通部に接続さ
れ、その抵抗31cの他端がブリツジ回路20の
正電圧給電端a側に、また抵抗31dの他端がブ
リツジ回路20の出力端bに接続されている。
Thus, in the pressure transmitter of the present invention, an operational amplifier 31 as a voltage correction circuit is connected to the input side of the differential amplifier 21, and a part of the output voltage of the bridge circuit 20 is fed back to the power supply side of the bridge circuit 20. This is the configuration. A specific example of the operational amplifier 31 and the constant voltage circuit 27 may have a configuration as shown in FIG. 4, for example. That is, the operational amplifier 31 as a voltage correction circuit is
It is composed of an operational amplifier 31a and a variable resistor 31b, one end of which is connected to the output terminal of the operational amplifier 31a.The input side of the operational amplifier 31a is connected to the output terminal C of the bridge circuit 20. The other end of the variable resistor 31b is connected to the common part of the voltage dividing resistors 31c and 31d, the other end of the resistor 31c is connected to the positive voltage feeding end a side of the bridge circuit 20, and the other end of the resistor 31d is connected to the bridge circuit 20. It is connected to the output end b of 20.

前記定電圧回路27は、前記分圧抵抗31c,
31dの分圧出力と基準電圧との差を出力する演
算増幅器27aを有し、この演算増幅器27aの
出力がトランジスタ27bに入力される。27c
および27dは定電圧ダイオードおよび抵抗素子
であつて、基準電圧を作つて前記演算増幅器27
aに供給するものである。
The constant voltage circuit 27 includes the voltage dividing resistors 31c,
It has an operational amplifier 27a that outputs the difference between the divided voltage output of 31d and the reference voltage, and the output of this operational amplifier 27a is input to the transistor 27b. 27c
and 27d are a constant voltage diode and a resistance element, which create a reference voltage and connect the operational amplifier 27.
a.

次に、本発明圧力伝送器に適用した回路の動作
を説明する。なお、ここでは感圧素子RP1,RP2
における圧力―抵抗値の非直流性の補正について
述べ、ブリツジ回路20の出力電圧V0を伝送す
る一般的な動作説明は既に述べているので省略す
る。
Next, the operation of the circuit applied to the pressure transmitter of the present invention will be explained. In addition, here, the pressure sensitive elements R P1 , R P2
The correction of the non-DC nature of the pressure-resistance value will be described, and the general operation of transmitting the output voltage V 0 of the bridge circuit 20 has already been described, so the explanation will be omitted.

今、圧力の変化に対応して感圧素子RP1,RP2
の抵抗値R1,R2が変化するので(圧力―抵抗値
の変換の非直線を含んで)、圧力変化をブリツジ
回路20の出力電圧V0の変化として取り出せ
る。
Now, in response to the change in pressure, the pressure sensitive elements R P1 , R P2
Since the resistance values R 1 and R 2 change (including the non-linearity of the pressure-resistance value conversion), the pressure change can be extracted as a change in the output voltage V 0 of the bridge circuit 20.

ところで、ブリツジ回路20の出力電圧V0
給電端子a,b間に給電する電圧VINとの間に
は、 V0=A/1+AIN ……(1) の関係がある。ここで、A1はブリツジ回路20
からの出力電圧V0を演算増幅器31を通してブ
リツジ回路20給電側に加算する際の任意定数
(補正定数)であり、またA2は、 A2=R−R/2(R+R) ……(2) で表わすことができる。つまり、感圧素子の抵抗
値R1,R2は圧力Pの関数としてとらえることが
できる。従つて、A2は、 A2=(P) ……(3) で表わされる。この結果、(1)式は、 V0=(P)・VIN/1+A(P) ……(4) となる。故に、演算増幅器31で任意定数である
A1を定めてブリツジ回路20の出力V0を補正電
圧信号に変換して正電圧給電端子aに加えれば、
ブリツジ回路20の出力電圧V0と圧力Pとの関
係は使用圧力範囲で最も直線に近い状態に制御す
ることができる。つまり、感圧素子RP1,RP2
圧力―抵抗値の非直線性が生じていてもこれを差
動増幅器21に入力する前に、演算増幅器31に
よつて補正電圧信号をブリツジ回路20に帰還す
るので、ブリツジ回路20から十分な線形特性を
もつた出力電圧V0を取り出すことができる。
By the way, there is a relationship between the output voltage V 0 of the bridge circuit 20 and the voltage V IN supplied between the power supply terminals a and b as follows: V 0 =A 2 /1+A 1 A 2 V IN (1) . Here, A 1 is the bridge circuit 20
is an arbitrary constant (correction constant) when adding the output voltage V 0 from the output voltage V 0 to the bridge circuit 20 power supply side through the operational amplifier 31, and A 2 is A 2 = R 2 - R 1 /2 (R 1 + R 2 ) ...(2). In other words, the resistance values R 1 and R 2 of the pressure sensitive elements can be regarded as functions of the pressure P. Therefore, A 2 is expressed as A 2 =(P) (3). As a result, equation (1) becomes V 0 =(P)·V IN /1+A 1 (P) (4). Therefore, it is an arbitrary constant in the operational amplifier 31.
If A 1 is determined and the output V 0 of the bridge circuit 20 is converted into a correction voltage signal and applied to the positive voltage supply terminal a, then
The relationship between the output voltage V 0 of the bridge circuit 20 and the pressure P can be controlled to be the closest to a straight line within the operating pressure range. In other words, even if pressure-resistance non-linearity occurs in the pressure-sensitive elements R P1 and R P2 , a correction voltage signal is sent to the bridge circuit 20 by the operational amplifier 31 before inputting it to the differential amplifier 21. Since it is fed back, an output voltage V 0 having sufficient linear characteristics can be taken out from the bridge circuit 20.

次に、第5図は本発明の他の実施例であつて、
これは感圧素子RP1,RP2の抵抗値R1,R2の不一
致を補正するために、ブリツジ回路20の給電端
子a,b間に固定抵抗RS3、可変抵抗RS4及び固
定抵抗RS5の直列回路を接続し、可変抵抗RS4
感圧素子RP1,RP2の抵抗R1,R2の不一致を調整
するものである。さらに、可変抵抗RS4の可動端
子側に演算増幅器35を介して可変抵抗36を接
続し、この可変抵抗36で補正定数A1を定めて
それに対応する電圧をe点に加えている。なお、
37は電源回路、38は電圧検出抵抗、39は定
電圧素子、40は差動増幅器、41はダイオー
ド、42は電圧制御トランジスタである。38〜
42は定電圧回路を構成している。R3,R4は分
圧抵抗である。なお、ブリツジ回路20の出力電
圧V0は差動増幅器21に供給されている。この
差動増幅器21以後の構成は第3図と同様である
ので省略する。
Next, FIG. 5 shows another embodiment of the present invention, in which
In order to correct the mismatch between the resistance values R 1 and R 2 of the pressure sensitive elements R P1 and R P2 , a fixed resistor R S3 , a variable resistor R S4 and a fixed resistor R are connected between the power supply terminals a and b of the bridge circuit 20. A series circuit of S5 is connected, and a variable resistor R S4 is used to adjust the mismatch between the resistors R 1 and R 2 of the pressure sensitive elements R P1 and R P2 . Furthermore, a variable resistor 36 is connected to the movable terminal side of the variable resistor R S4 via an operational amplifier 35, a correction constant A 1 is determined by the variable resistor 36, and a voltage corresponding to the correction constant A 1 is applied to the point e. In addition,
37 is a power supply circuit, 38 is a voltage detection resistor, 39 is a constant voltage element, 40 is a differential amplifier, 41 is a diode, and 42 is a voltage control transistor. 38~
42 constitutes a constant voltage circuit. R 3 and R 4 are voltage dividing resistors. Note that the output voltage V 0 of the bridge circuit 20 is supplied to a differential amplifier 21 . The configuration after this differential amplifier 21 is the same as that shown in FIG. 3, so a description thereof will be omitted.

以上詳記したように本発明によれば、圧力信号
出力用差動増幅器の入力側に電圧補正回路を設
け、ブリツジ回路の出力信号と補正定数とで定ま
る補正電圧をブリツジ回路の正電圧給電端側に加
えるようにしたので、何れの使用圧力範囲を選ん
でもその圧力範囲において最適な直線性補正が可
能となり、また感圧素子の圧力―抵抗出力特性に
非直線性が生じていてもこれを差動増幅器の入力
する前に、補正電圧回路で補正電圧信号を作つて
ブリツジ回路に帰還しているので、ブリツジ回路
から十分な線形特性を持つた出力を取り出すこと
ができる。従つて、零点遷移をする圧力範囲であ
つても、予めその圧力範囲の直線性を補正するこ
とによつて零点遷移時のスパン誤差を小さくする
ことができる。
As described in detail above, according to the present invention, a voltage correction circuit is provided on the input side of the pressure signal output differential amplifier, and the correction voltage determined by the output signal of the bridge circuit and the correction constant is applied to the positive voltage feeding terminal of the bridge circuit. Since the linearity is applied to the side, no matter which pressure range is selected, optimal linearity correction can be made in that pressure range, and even if non-linearity occurs in the pressure-resistance output characteristics of the pressure-sensitive element, this can be corrected. Since a correction voltage signal is generated in the correction voltage circuit and fed back to the bridge circuit before being input to the differential amplifier, an output with sufficient linear characteristics can be extracted from the bridge circuit. Therefore, even in a pressure range where a zero point transition occurs, by correcting the linearity of the pressure range in advance, the span error at the time of the zero point transition can be reduced.

また、使用圧力範囲でスパンを変更する場合で
も直線性が大きく変化することがなく、従つて、
再度直線性の補正を行なう必要がない。
In addition, even when changing the span within the working pressure range, the linearity does not change significantly.
There is no need to perform linearity correction again.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の圧力伝送器の回路構成図、第2
図は第1図に示す圧力伝送器の圧力Pとブリツジ
回路の出力電圧V0との関係特性図、第3図は本
発明に係る圧力伝送器の回路構成図、第4図は第
3図の一具体例を説明する構成図、第5図は本発
明の他の実施例を説明する構成図である。 20…ブリツジ回路、RP1,RP2…感圧素子、
21…差動増幅器、22…電流―電圧変換器、2
3…増幅素子、24…定電流回路、27…定電圧
回路、31…演算増幅器(電圧補正用回路)、3
5…演算増幅器、36…可変抵抗。
Figure 1 is a circuit diagram of a conventional pressure transmitter, Figure 2 is a circuit diagram of a conventional pressure transmitter.
The figure is a characteristic diagram of the relationship between the pressure P of the pressure transmitter shown in Figure 1 and the output voltage V 0 of the bridge circuit, Figure 3 is a circuit configuration diagram of the pressure transmitter according to the present invention, and Figure 4 is the diagram shown in Figure 3. FIG. 5 is a block diagram illustrating another embodiment of the present invention. 20... Bridge circuit, R P1 , R P2 ... Pressure sensitive element,
21...Differential amplifier, 22...Current-voltage converter, 2
3... Amplification element, 24... Constant current circuit, 27... Constant voltage circuit, 31... Operational amplifier (voltage correction circuit), 3
5...Operation amplifier, 36...Variable resistor.

Claims (1)

【特許請求の範囲】 1 感圧素子を用いてブリツジ回路を構成し、圧
力変化に対応する該感圧素子により変換された電
気信号を圧力信号出力用増幅器で増幅して伝送す
る圧力伝送器において、前記増幅器の入力側に任
意の補正定数を定める電圧補正用回路を接続し、
前記ブリツジ回路の出力信号と前記補正定数から
補正電圧を求めて前記ブリツジ回路の正電圧給電
端に加えるようにしたことを特徴とする圧力伝送
器。 2 電圧補正用回路として、演算増幅器を用いた
ものである特許請求の範囲第1項記載の圧力伝送
器。 3 電圧補正用回路として、演算増幅器の出力側
に可変抵抗を設けて補正定数を定めるようにした
特許請求の範囲第1項記載の圧力伝送器。
[Scope of Claims] 1. A pressure transmitter in which a bridge circuit is configured using a pressure-sensitive element, and an electric signal converted by the pressure-sensitive element corresponding to a pressure change is amplified by a pressure signal output amplifier and transmitted. , a voltage correction circuit that determines an arbitrary correction constant is connected to the input side of the amplifier,
A pressure transmitter characterized in that a correction voltage is obtained from the output signal of the bridge circuit and the correction constant and is applied to a positive voltage feeding end of the bridge circuit. 2. The pressure transmitter according to claim 1, which uses an operational amplifier as the voltage correction circuit. 3. The pressure transmitter according to claim 1, wherein a variable resistor is provided on the output side of an operational amplifier as a voltage correction circuit to determine a correction constant.
JP6509977A 1977-06-02 1977-06-02 Pressure transmitter Granted JPS53149353A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6509977A JPS53149353A (en) 1977-06-02 1977-06-02 Pressure transmitter
US05/909,109 US4190796A (en) 1977-06-02 1978-05-24 Pressure detecting apparatus having linear output characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6509977A JPS53149353A (en) 1977-06-02 1977-06-02 Pressure transmitter

Publications (2)

Publication Number Publication Date
JPS53149353A JPS53149353A (en) 1978-12-26
JPS6145761B2 true JPS6145761B2 (en) 1986-10-09

Family

ID=13277118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6509977A Granted JPS53149353A (en) 1977-06-02 1977-06-02 Pressure transmitter

Country Status (1)

Country Link
JP (1) JPS53149353A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5653404A (en) * 1979-10-08 1981-05-13 Hitachi Ltd Nonlinear correction circuit
US4398426A (en) * 1981-07-02 1983-08-16 Kavlico Corporation Linear capacitive pressure transducer system
DE3130817A1 (en) * 1981-08-04 1983-02-24 Leybold-Heraeus GmbH, 5000 Köln HEATING PIPE VACUUM METER
JPS6125015A (en) * 1984-07-13 1986-02-03 Hitachi Ltd Characteristics correcting apparatus for sensor
JP5033835B2 (en) * 2009-05-11 2012-09-26 株式会社第一計器製作所 Thermometer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144662B2 (en) * 1971-10-21 1976-11-30
JPS4934378A (en) * 1972-07-26 1974-03-29

Also Published As

Publication number Publication date
JPS53149353A (en) 1978-12-26

Similar Documents

Publication Publication Date Title
US4362060A (en) Displacement transducer
US4414853A (en) Pressure transmitter employing non-linear temperature compensation
EP0409213A2 (en) Amplifiying compensation circuit for semiconductor pressure sensor
JPS6144360B2 (en)
US6198296B1 (en) Bridge sensor linearization circuit and method
US4595884A (en) Transducer amplifier and method
JPH05256716A (en) Semiconductor apparatus
US4190796A (en) Pressure detecting apparatus having linear output characteristic
US4206397A (en) Two wire current transmitter with improved voltage regulator
EP3729108B1 (en) Power detector for radiofrequency power amplifier circuits
EP1602907A1 (en) Automatic sensor correction with feedback microprocessor
US4205327A (en) Two wire current transmitter with adjustable current control linearization
JPS6145761B2 (en)
JPS5832646B2 (en) pressure transmitter
US3202922A (en) Transistor chopper
JP2558253B2 (en) Temperature compensated current switch circuit
KR100238390B1 (en) Temperature compensation circuit for pressure sensor
US6239643B1 (en) Offset correction circuit and DC amplification circuit
JPH0529841A (en) Amplifier circuit with temperature compensation
JPS6136163B2 (en)
US20230375645A1 (en) Sensor device
KR830001863B1 (en) Displacement transducer
JP3029733B2 (en) Pulse analog conversion circuit
JPH0749600Y2 (en) 2-wire transmitter
JPS6219974Y2 (en)