JPS5832646B2 - pressure transmitter - Google Patents

pressure transmitter

Info

Publication number
JPS5832646B2
JPS5832646B2 JP53110329A JP11032978A JPS5832646B2 JP S5832646 B2 JPS5832646 B2 JP S5832646B2 JP 53110329 A JP53110329 A JP 53110329A JP 11032978 A JP11032978 A JP 11032978A JP S5832646 B2 JPS5832646 B2 JP S5832646B2
Authority
JP
Japan
Prior art keywords
circuit
pressure
voltage
resistance
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53110329A
Other languages
Japanese (ja)
Other versions
JPS5537906A (en
Inventor
明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53110329A priority Critical patent/JPS5832646B2/en
Publication of JPS5537906A publication Critical patent/JPS5537906A/en
Publication of JPS5832646B2 publication Critical patent/JPS5832646B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices

Description

【発明の詳細な説明】 本発明は感圧素子を用いた圧力伝送器に係り、特に圧力
および温度の変化に対し常に一定の直線性を得るように
した圧力伝送器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure transmitter using a pressure sensitive element, and more particularly to a pressure transmitter that always maintains constant linearity against changes in pressure and temperature.

第1図は従来一般に使用されている感圧素子を用いた圧
力伝送器の回路構成図である。
FIG. 1 is a circuit diagram of a pressure transmitter using a pressure-sensitive element that has been commonly used in the past.

同図において1,2は圧力に応じて抵抗値R1、R2が
変化する半導体感圧素子であって、これは温度、圧力変
化に対し一定の抵抗値を示す基準抵抗3,4とでブリッ
ジ回路5を構成している。
In the same figure, 1 and 2 are semiconductor pressure sensitive elements whose resistance values R1 and R2 change according to pressure, and this is a bridge circuit with reference resistors 3 and 4 which have a constant resistance value against changes in temperature and pressure. 5.

6はブリッジ回路5の給電端子a、bに一定電圧を供給
する定電圧発生回路である。
Reference numeral 6 denotes a constant voltage generating circuit that supplies a constant voltage to the power supply terminals a and b of the bridge circuit 5.

7はブリッジ回路5から出力された電圧Voを入力とす
る差動増幅器であってここで増幅された電圧は後続の電
流変換回路8により電流に変換され電流増幅素子9によ
って増幅される。
Reference numeral 7 denotes a differential amplifier which receives the voltage Vo output from the bridge circuit 5 as an input, and the voltage amplified here is converted into a current by a subsequent current conversion circuit 8 and amplified by a current amplification element 9.

この電流増幅素子9のコレクタには電源10より伝送路
11全通して正極性側電圧が印加される。
A positive voltage is applied to the collector of the current amplifying element 9 from a power source 10 through the entire transmission line 11 .

また、電源10の正極性側電圧は定電流回路12で定電
流化されて定電圧発生回路6、差動増幅器γおよび電圧
−電流変換回路8の一方給電端子に供給され、さらに定
電流回路12より定電圧ダイオード13を介して同じく
回路6.T。
Further, the positive polarity side voltage of the power supply 10 is made into a constant current by a constant current circuit 12, and is supplied to one feed terminal of the constant voltage generating circuit 6, the differential amplifier γ, and the voltage-current converting circuit 8. Similarly, the circuit 6. is connected via the constant voltage diode 13. T.

8の他方給電端子に供給される。8 is supplied to the other power supply terminal.

電流増幅素子9によって増幅された電流信号は任意のス
パンに調整するスパン調整抵抗14および出力確認用抵
抗15を介して電源10の負極性側に接続されている伝
送路11へ伝送される。
The current signal amplified by the current amplification element 9 is transmitted to the transmission line 11 connected to the negative polarity side of the power supply 10 via a span adjustment resistor 14 that adjusts the span to an arbitrary span and an output confirmation resistor 15.

しかし、以上のような回路構成の圧力伝送器では感圧素
子1,2自身が圧力−抵抗変化を示すので、それがその
ままブリッジ回路5の出力端子C2d間には第2図の実
線曲線に示すように圧力Pの変化に対して非直線性の電
圧■oが現われこのため受信側では誤差の伴なった圧力
を測定してしまうことになる。
However, in the pressure transmitter with the circuit configuration as described above, the pressure sensing elements 1 and 2 themselves show pressure-resistance changes, and this is the case between the output terminals C2d of the bridge circuit 5 as shown in the solid line curve in FIG. As such, a non-linear voltage ■o appears with respect to changes in pressure P, and as a result, the receiving side ends up measuring pressure with an error.

そこで、従来かかる不都合を除去する手段として、感圧
素子1,2に予め圧力を加えてみて直線性の良い範囲で
使用すことか、あるいは差動増幅器7の出力信号の一部
をブリッジ回路5の給電端子a側に正帰還して補正する
等している。
Conventionally, as a means to eliminate this problem, it is possible to apply pressure to the pressure sensing elements 1 and 2 in advance and use them within a range with good linearity, or to transfer a part of the output signal of the differential amplifier 7 to the bridge circuit 5. Positive feedback is made to the power supply terminal a side of the power supply terminal A for correction.

しかし、前者の手段にあっては、直線性の良い範囲が限
定されるために使用圧力範囲が狭くなり、また後者のよ
うに圧力範囲を固定した場合には直線性を補正すること
が可能であるが、零点の遷移等で圧力範囲が移動するも
のでは圧力範囲に対する出力電圧変化幅か変動するため
にスパン誤差を生ずる欠点がある。
However, with the former method, the range of good linearity is limited, resulting in a narrow operating pressure range, and with the latter method, where the pressure range is fixed, it is not possible to correct linearity. However, in the case where the pressure range moves due to the transition of the zero point, etc., there is a drawback that a span error occurs because the output voltage change range with respect to the pressure range fluctuates.

本発明は以上のような欠点を除去するためになされたも
のであって、広範囲の圧力変化に対し良好な直線性を得
るとともに、周囲温度変化に対し常に一定の直線性を得
るようにして圧力変化を高精度に測定する圧力伝送器を
提供するものである。
The present invention was made in order to eliminate the above-mentioned drawbacks, and the present invention has been made to obtain good linearity over a wide range of pressure changes, and to maintain constant linearity against ambient temperature changes. The present invention provides a pressure transmitter that measures changes with high precision.

以下、本発明の一実施例について第3図を参照して説明
する。
Hereinafter, one embodiment of the present invention will be described with reference to FIG.

同図において20は変化する圧力を電気信号に変換して
出力するブリッジ回路であってこれは抵抗値R1,R2
を有する半導体感圧素子21,22と温度、圧力に対し
一定の抵抗値R8I、R82を示す基準抵抗23,24
とで構成されている。
In the figure, 20 is a bridge circuit that converts changing pressure into an electrical signal and outputs it, and this has resistance values R1 and R2.
semiconductor pressure-sensitive elements 21 and 22 having the same characteristics, and reference resistors 23 and 24 that exhibit constant resistance values R8I and R82 with respect to temperature and pressure.
It is made up of.

この抵抗23,24の直列抵抗回路には同じく抵抗値R
83,R84f:示す基準抵抗25,26が並列に接続
されている。
The series resistance circuit of the resistors 23 and 24 also has a resistance value R.
83, R84f: The reference resistors 25 and 26 shown are connected in parallel.

27は、定電流回路28で定電流化した電流を抵抗値R
Cを有する感度補償抵抗29に加えて電圧を取り出しこ
れを演算増幅器30および定電圧ダイオード31を介し
て定電圧を電圧制御用トランジスタ32のベースに加え
てエミッタ側から定電圧を取り出す定電圧回路であって
、この回路21から取り出された定電圧をブリッジ回路
20の給電端子a、t)に供給している。
27 is a resistance value R of the current made constant by the constant current circuit 28.
This is a constant voltage circuit that takes out a voltage in addition to a sensitivity compensation resistor 29 having C and applies it to the base of a voltage control transistor 32 via an operational amplifier 30 and a constant voltage diode 31, and takes out a constant voltage from the emitter side. The constant voltage taken out from this circuit 21 is supplied to the power supply terminals a, t) of the bridge circuit 20.

33はブリッジ回路20の出力端子c、dに接続されこ
の出力端子c、d間の出力電圧を電流に変換して増幅出
力する差動増幅器である。
A differential amplifier 33 is connected to the output terminals c and d of the bridge circuit 20 and amplifies and outputs the current by converting the output voltage between the output terminals c and d.

34はブリッジ回路20の感圧素子21,22の中点電
圧(出力端子dの電圧)と前記基準抵抗25.26の中
点端子fの電圧との差電圧を入力とし、各々の抵抗値R
i、、Rfk有する入力抵抗35、帰還抵抗36によっ
て出力端子gに増幅された出力電圧を発生する演算増幅
器である。
34 inputs the difference voltage between the midpoint voltage of the pressure sensitive elements 21 and 22 of the bridge circuit 20 (voltage at the output terminal d) and the voltage at the midpoint terminal f of the reference resistor 25.26, and each resistance value R
This is an operational amplifier that generates an amplified output voltage at an output terminal g by an input resistor 35 and a feedback resistor 36 having i, , Rfk.

この演算増幅器34は基準抵抗値Ri’、Rf’を示す
抵抗37.38によって基準電圧が決定される。
The reference voltage of this operational amplifier 34 is determined by resistors 37 and 38 indicating reference resistance values Ri' and Rf'.

39は演算増幅器34の出力端子gとブリッジ回路20
の給電端子a、b間に設けた抵抗値R5、R6e有する
基準抵抗40.41の中点端子りとの間に介挿してg−
h間に電位差が生じた時に生ずる電流を規制する抵抗値
RLを有する電流制御用可変抵抗である。
39 is the output terminal g of the operational amplifier 34 and the bridge circuit 20
G-
This is a variable resistor for current control that has a resistance value RL that regulates the current that occurs when a potential difference occurs between h.

また、この中点端子りは前記演算増幅器30の他方入力
部に接続している。
Further, this midpoint terminal is connected to the other input section of the operational amplifier 30.

次に、以上のように構成した圧力伝送器の作用を説明す
る。
Next, the operation of the pressure transmitter configured as above will be explained.

感圧素子21,22に圧力が加わると、同素子21.2
2の抵抗値R1,R2が変化して出力端子dの電圧か変
化する。
When pressure is applied to the pressure sensitive elements 21, 22, the same elements 21.2
The resistance values R1 and R2 of 2 change, and the voltage at the output terminal d also changes.

この結果、端子d−f間の電圧か変化するので、演算増
幅器34の出力電圧も変化し、これによって可変抵抗3
9に流れる電流か変わる。
As a result, the voltage between terminals d and f changes, so the output voltage of the operational amplifier 34 also changes, which causes the variable resistor 3
The current flowing through 9 will change.

この電流はトランジスタ32より基準抵抗40を通って
流れるため同抵抗40の両端電圧が変化し、その結果、
ブリッジ回路20の給電端子a、b間に加える給電々圧
が変化する。
Since this current flows from the transistor 32 through the reference resistor 40, the voltage across the resistor 40 changes, and as a result,
The power supply voltage applied between the power supply terminals a and b of the bridge circuit 20 changes.

従って、圧力の変化に応じてブリッジ回路20の給電々
圧が変化することになるが、これは可変抵抗39を調整
することで給電々圧変化の割合を変えれば、感圧素子2
1.22自身の圧力−抵抗変化特性の非直線性に伴なう
ブリフジ回路20の非直線性出力を補正することができ
る。
Therefore, the power supply voltage of the bridge circuit 20 changes in accordance with the change in pressure, but this can be done by changing the rate of change in the power supply voltage by adjusting the variable resistor 39.
1.22 It is possible to correct the nonlinear output of the Brifuji circuit 20 due to the nonlinearity of its own pressure-resistance change characteristics.

即ち、感圧素子2L22自身の非直線性によるブリッジ
回路20の出力電圧の影響を可変抵抗39の調整で除去
できる。
That is, the influence of the output voltage of the bridge circuit 20 due to the nonlinearity of the pressure sensitive element 2L22 itself can be removed by adjusting the variable resistor 39.

この点について以下に数式化して説明する。This point will be explained below using a mathematical formula.

即ち、感圧素子21.22の抵抗値R1,R2は、Rl
−Ro−f(t) +lJ Roh(t) ・・・・
・・・・・・・・(1)R2−Ro−f (t)−1R
o−h(t) ・・・・・・・・・・・・(2)で表
わされる。
That is, the resistance values R1 and R2 of the pressure sensitive elements 21 and 22 are Rl
-Ro-f(t) +lJ Roh(t)...
・・・・・・・・・(1) R2-Ro-f (t)-1R
It is expressed as oh(t) (2).

ここで、f(t)、 h(t)は各々Ro。lRoの温
度変化を表わす関数である。
Here, f(t) and h(t) are each Ro. This is a function representing the temperature change of lRo.

この場合、ブリッジ回路20の給電端子a −b閾電圧
eVab、端子d−f間電圧電圧df、端子h−b間電
圧電圧hbとすると、 となる。
In this case, if the bridge circuit 20 has a threshold voltage eVab between the power supply terminals a and b, a voltage between the terminals df and df, and a voltage between the terminals h and hb, the following equations are obtained.

この(4)式に(3)式を代入して変形すると、となる
By substituting equation (3) into equation (4) and transforming it, we get the following.

これによりVdfの圧力に対する非直線性は可変抵抗R
Lを任意の値に設定することによりf(t) 近似的に直線化できる。
As a result, the nonlinearity of Vdf with respect to pressure is reduced by the variable resistance R
By setting L to an arbitrary value, f(t) can be approximately linearized.

この場合、vhbに函)なる温度勾配をもたせることに
より、温度変化によるVdfの変化を補正することかで
きる。
In this case, a change in Vdf due to a temperature change can be corrected by providing a temperature gradient corresponding to vhb.

しかしながら、分母の第2項も同様に温度勾配をもって
いるので、ある温度でRLによってVdfの圧力に対す
る非直線性を補償しても温度が変化すると、補償値を変
える必要かあることになる。
However, since the second term in the denominator similarly has a temperature gradient, even if the nonlinearity of Vdf with respect to pressure is compensated for by RL at a certain temperature, if the temperature changes, it is necessary to change the compensation value.

そこで、なる温度特性’kRi、Rfに持たせることに
より、温度が変化してもVdfの圧力に対する非直線性
を一定に保つことができる。
Therefore, by giving the following temperature characteristics 'kRi, Rf, the nonlinearity of Vdf with respect to pressure can be kept constant even if the temperature changes.

一般にはh(t) h(t)−
は温度上昇に伴なって−〈1になるため、f(t)
f(t)f(t)>□&Cf、にゎ
(よよい。
Generally h(t) h(t)−
becomes −〈1 as the temperature rises, so f(t)
f(t) f(t)>□&Cf, niwa (yoyoi.

。。3.よ、演算増幅器h(t) 子のゲインGに正の温度特性をもたせればよい。. . 3. yo, operational amplifier h(t) It is only necessary to give the child gain G a positive temperature characteristic.

従って、帰還抵抗Rfに正の温度係数を有する素子を用
いるか、あるいは入力抵抗Riに負の温度係数を有する
素子を用いることにより、温度変化に関して一定の直線
性を有する圧力伝送器を得ることができる。
Therefore, by using an element with a positive temperature coefficient for the feedback resistor Rf, or by using an element with a negative temperature coefficient for the input resistor Ri, it is possible to obtain a pressure transmitter having a certain degree of linearity with respect to temperature changes. can.

以上詳記したように本発明によれば、感圧素子の抵抗を
用いたブリッジ回路の給電端子間に接続された基準抵抗
回路の中点端子側出力とブリッジ回路の出力端子側出力
との差を入力とする演算増幅素子と、ブリッジ回路に電
圧を供給する定電圧回路の出力端間の分圧抵抗共通部と
の間に圧力変化に対応して変化する電気信号を規制する
補正抵抗を介挿し、この抵抗の調整により圧力変化に対
するブリッジ回路への給電々圧変化の割合を変えるよう
にしたので、感圧素子の圧力−抵抗変化が非直線性であ
ってもブリッジ回路の出力電圧を直線化することができ
る。
As detailed above, according to the present invention, the difference between the midpoint terminal side output of the reference resistance circuit connected between the power supply terminals of the bridge circuit using the resistance of the pressure sensitive element and the output terminal side output of the bridge circuit. A correction resistor is inserted between the operational amplification element that inputs the input voltage and the common part of the voltage dividing resistor between the output terminals of the constant voltage circuit that supplies voltage to the bridge circuit. By adjusting this resistor, the ratio of the change in pressure applied to the bridge circuit with respect to the pressure change is changed, so even if the pressure-resistance change of the pressure-sensitive element is non-linear, the output voltage of the bridge circuit is linear. can be converted into

また、前記補正抵抗の入力側に設けた演算増幅素子の入
力抵抗もしくは帰還抵抗に正もしくは負の抵抗温度特性
を有する抵抗素子を設けたので、感圧素子の圧力−抵抗
変化の温度依存性を補償でき温度変化に関し一定の直線
性を持った出力電圧を伝送することができる。
Furthermore, since a resistance element having a positive or negative resistance-temperature characteristic is provided as the input resistance or feedback resistance of the operational amplifier element provided on the input side of the correction resistance, the temperature dependence of the pressure-resistance change of the pressure-sensitive element can be reduced. It is possible to transmit an output voltage that can be compensated and has constant linearity with respect to temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧力伝送器の回路構成図、第2図は第1
図に示す圧力伝送器の圧力−出力電圧の関係特性図、第
3図は本発明に係る圧力伝送器の一実施例を説明する回
路構成図である。 20・・・・・・ブリッジ回路、21,22・・・・・
・感圧素子、23〜26・・・・・・基準抵抗、27・
・・・・・定電圧回路、28・・・・・・定電流回路、
29・・・・・・感度補償抵抗、30・・・・・・演算
増幅器、31・・・・・・定電圧ダイオード、32・・
・・・・電圧制御用トランジスタ、33・・・・・・差
動増幅器、34・・・・・・演算増幅器、35・・・・
・・入力抵抗、36・・・・・・帰還抵抗、37,3B
・・・・・・基準抵抗、39・・・・・・可変抵抗、4
0,41・・・・・・基準抵抗。
Figure 1 is a circuit diagram of a conventional pressure transmitter, and Figure 2 is a circuit diagram of a conventional pressure transmitter.
The pressure-output voltage relationship characteristic diagram of the pressure transmitter shown in FIG. 3 is a circuit configuration diagram illustrating an embodiment of the pressure transmitter according to the present invention. 20... Bridge circuit, 21, 22...
・Pressure sensitive element, 23-26...Reference resistance, 27.
... Constant voltage circuit, 28 ... Constant current circuit,
29... Sensitivity compensation resistor, 30... Operational amplifier, 31... Constant voltage diode, 32...
... Voltage control transistor, 33 ... Differential amplifier, 34 ... Operational amplifier, 35 ...
...Input resistance, 36...Feedback resistance, 37,3B
...Reference resistance, 39...Variable resistance, 4
0,41...Reference resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 感圧素子の抵抗を用いてブリッジ回路を構成し圧力
変化に対応する該感圧素子の抵抗変化を電気信号に変換
して取り出し、これを増幅器で増幅して伝送する圧力伝
送器において、前記ブリッジ回路を構成する第1の基準
抵抗回路に並列に第2の基準抵抗回路を接続しこの第2
の基準抵抗回路の中点端子電圧と前記ブリッジ回路の感
圧素子側より得られた電圧との差電圧を増幅する演算増
幅回路と、この回路の入力抵抗もしくは帰還抵抗に負も
しくは正の温度−抵抗特性を有する抵抗素子を用いて前
記感圧素子の温度依存性を補償する温度補償抵抗回路と
、前記ブリッジ回路に所定の電圧を供給する定電圧回路
の出力端間に接続された分圧基準抵抗回路と、前記演算
増幅回路の出力側と前記分圧基準抵抗回路の分圧点との
間に接続され、前記ブリッジ回路の圧力変化に対する給
電電圧変化の割合を調整する電圧補正抵抗回路とを備え
てなることを特徴とする圧力伝送器。
1. In a pressure transmitter that configures a bridge circuit using the resistance of a pressure-sensitive element, converts the resistance change of the pressure-sensitive element corresponding to a pressure change into an electric signal, extracts it, amplifies it with an amplifier, and transmits it. A second reference resistance circuit is connected in parallel to the first reference resistance circuit constituting the bridge circuit.
an operational amplifier circuit that amplifies the difference voltage between the midpoint terminal voltage of the reference resistance circuit and the voltage obtained from the pressure-sensitive element side of the bridge circuit; a temperature compensation resistance circuit that compensates for the temperature dependence of the pressure sensitive element using a resistance element having resistance characteristics; and a voltage dividing reference connected between an output terminal of a constant voltage circuit that supplies a predetermined voltage to the bridge circuit. a resistor circuit; and a voltage correction resistor circuit connected between the output side of the operational amplifier circuit and a voltage dividing point of the voltage dividing reference resistor circuit, and adjusting the ratio of a change in power supply voltage to a change in pressure of the bridge circuit. A pressure transmitter comprising:
JP53110329A 1978-09-08 1978-09-08 pressure transmitter Expired JPS5832646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53110329A JPS5832646B2 (en) 1978-09-08 1978-09-08 pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53110329A JPS5832646B2 (en) 1978-09-08 1978-09-08 pressure transmitter

Publications (2)

Publication Number Publication Date
JPS5537906A JPS5537906A (en) 1980-03-17
JPS5832646B2 true JPS5832646B2 (en) 1983-07-14

Family

ID=14532969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53110329A Expired JPS5832646B2 (en) 1978-09-08 1978-09-08 pressure transmitter

Country Status (1)

Country Link
JP (1) JPS5832646B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931404A (en) * 1982-08-16 1984-02-20 Hitachi Ltd Pressure sensor circuit
JPS5935481A (en) * 1982-08-23 1984-02-27 Mitsubishi Electric Corp Pressure detector
JPS5961736A (en) * 1982-10-01 1984-04-09 Hitachi Ltd Integrated pressor sensor
JPH01105108A (en) * 1987-10-17 1989-04-21 Ohkura Electric Co Ltd Converting amplifier with linearizing circuit
FR2659447B1 (en) * 1990-03-09 1994-10-28 Jaeger FORCE MEASURING DEVICE INCLUDING A TEMPERATURE COMPENSATED PIEZORESISTIVE TRANSDUCER.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925984A (en) * 1972-04-12 1974-03-07
JPS52139456A (en) * 1976-05-18 1977-11-21 Toshiba Corp Pressure and pressure-difference transmitting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925984A (en) * 1972-04-12 1974-03-07
JPS52139456A (en) * 1976-05-18 1977-11-21 Toshiba Corp Pressure and pressure-difference transmitting apparatus

Also Published As

Publication number Publication date
JPS5537906A (en) 1980-03-17

Similar Documents

Publication Publication Date Title
US4414853A (en) Pressure transmitter employing non-linear temperature compensation
US4362060A (en) Displacement transducer
CA2053793A1 (en) Apparatus and method for a temperature compensation of a catheter tip pressure transducer
JPH02177566A (en) Semiconductor distortion detection device
US6198296B1 (en) Bridge sensor linearization circuit and method
US4595884A (en) Transducer amplifier and method
US4190796A (en) Pressure detecting apparatus having linear output characteristic
US4205327A (en) Two wire current transmitter with adjustable current control linearization
JPS5832646B2 (en) pressure transmitter
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
JP3222367B2 (en) Temperature measurement circuit
JP2001141757A (en) Sensor device using hall element
CN111238673B (en) Measuring circuit of film temperature sensor
JPS6145761B2 (en)
US4492122A (en) Circuit for linearization of transducer
JPH0750690Y2 (en) Temperature compensation circuit for semiconductor pressure sensor
JPS6122766B2 (en)
JPS6136163B2 (en)
JP2576414B2 (en) AC level detection circuit
RU1778556C (en) Device for measuring temperature difference
JP2661303B2 (en) Modulation circuit
KR100263151B1 (en) Resistance-voltage conversion circuit
JPH0312248B2 (en)
CA1165140A (en) Temperature sensing circuit
JPH0142238Y2 (en)