JP3222367B2 - Temperature measurement circuit - Google Patents

Temperature measurement circuit

Info

Publication number
JP3222367B2
JP3222367B2 JP26285595A JP26285595A JP3222367B2 JP 3222367 B2 JP3222367 B2 JP 3222367B2 JP 26285595 A JP26285595 A JP 26285595A JP 26285595 A JP26285595 A JP 26285595A JP 3222367 B2 JP3222367 B2 JP 3222367B2
Authority
JP
Japan
Prior art keywords
voltage
operational amplifier
temperature
resistance
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26285595A
Other languages
Japanese (ja)
Other versions
JPH09105681A (en
Inventor
裕之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP26285595A priority Critical patent/JP3222367B2/en
Priority to CN 96113066 priority patent/CN1077684C/en
Publication of JPH09105681A publication Critical patent/JPH09105681A/en
Application granted granted Critical
Publication of JP3222367B2 publication Critical patent/JP3222367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は温度センサとして
測温抵抗体やサーミスタ(以下、測温低抗体で説明す
る)を用いて温度に対応する増幅器出力電圧を得る温度
測定回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring circuit for obtaining an amplifier output voltage corresponding to a temperature by using a temperature measuring resistor or a thermistor (hereinafter referred to as a temperature measuring low antibody) as a temperature sensor.

【0002】[0002]

【従来の技術】図5は従来の温度測定回路の一例を示し
た回路図であり、図において、1は測温抵抗体Rの抵抗
変化に対応した電圧を増幅する片電源の演算増幅器、
測温抵抗体R等に電流Iを供給する定電流源、R2、
R3は演算増幅器1の増幅率等を設定する回路定数を決
める抵抗、rは配線抵抗である。
BACKGROUND ART FIG. 5 is a circuit diagram showing an example of a conventional temperature measuring circuit, reference numeral 1 denotes an operational amplifier of the single power supply which amplifies a voltage corresponding to the resistance change of the resistance temperature detector R, 2
Is a constant current source for supplying a current I to the resistance thermometer R, etc., R2,
R3 is a resistor that determines a circuit constant for setting the amplification factor and the like of the operational amplifier 1, and r is a wiring resistance.

【0003】次に動作について説明する。測温抵抗体R
は周囲の温度によってその抵抗値が変化する。従って、
抵抗値が変化すると、この測温抵抗体Rによる電圧降下
分も変化するため、測温抵抗体Rに定電流源2から一定
の電流Iを供給することにより、前記抵抗の変化が電圧
の変化に変換(R−V変換)され、これが片電源の演算
回路1に入力される。片電源の演算回路1は測温抵抗体
Rによる電圧降下分を増幅して出力する。このため、片
電源の演算回路1の出力電圧は前記測温抵抗体Rの周囲
の温度に対応した値になる。
Next, the operation will be described. RTD R
Changes its resistance value depending on the ambient temperature. Therefore,
When the resistance value changes, the voltage drop due to the resistance temperature detector R also changes. Therefore, by supplying a constant current I from the constant current source 2 to the resistance temperature detector R, the change in the resistance causes the voltage change. (RV conversion), and this is input to the arithmetic circuit 1 of a single power supply. The arithmetic circuit 1 of a single power supply amplifies and outputs the voltage drop due to the resistance bulb R. For this reason, the output voltage of the operation circuit 1 of a single power supply has a value corresponding to the temperature around the temperature measuring resistor R.

【0004】ここで、測温抵抗体Rの抵抗値が温度に対
して図6(A)で示したように線形変化すると、前記し
たR−V変換により図6(B)で示したように抵抗値の
変化に対してほぼ線形の電圧の変化になり、この電圧の
変化が片電源の演算増幅器1により増幅されて、図6
(C)で示したように前記温度に対して線形の電圧変化
となって出力されることになる。
Here, when the resistance value of the resistance thermometer R changes linearly with respect to temperature as shown in FIG. 6A, the above-mentioned RV conversion causes the resistance to change as shown in FIG. The change in the voltage becomes almost linear with respect to the change in the resistance value, and the change in the voltage is amplified by the operational amplifier 1 having a single power supply.
As shown in (C), the voltage is output as a linear voltage change with respect to the temperature.

【0005】尚、定電流源2から供給される電流Iに比
べて演算増幅器1から来る電流は小さいので、これを無
視し、又、R>>rであるため、配線抵抗rを0と見做
し、演算増幅器1のゲインをGとすると、演算増幅器1
の出力電圧V0はV0=R×I×Gとなる。更に、図6
(B)、(C)で示した特性図中、斜線で示した部分は
片電源の演算増幅器1の動作不可能範囲を示している
が、R−V変換後の電圧及び両電源の演算増幅器の出力
電圧のいずれも、上記動作不可能範囲に入っておらず、
片電源の演算増幅器1は十分にその性能を発揮して動作
することが分かる。
Since the current coming from the operational amplifier 1 is smaller than the current I supplied from the constant current source 2, this is ignored, and since R >> r, the wiring resistance r is assumed to be 0. Assuming that the gain of the operational amplifier 1 is G, the operational amplifier 1
Is the output voltage V0 = R × I × G. Further, FIG.
In the characteristic diagrams shown in (B) and (C), the shaded portions indicate the inoperable range of the single-power-supply operational amplifier 1, but the voltage after the RV conversion and the dual-power-supply operational amplifier None of the output voltages of
It can be seen that the single-power-supply operational amplifier 1 operates with sufficient performance.

【0006】ところで、温度センサとして上記のように
測温抵抗体Rを用いると、上記した抵抗の変化による電
圧の変化は微小信号であるため、次段の片電源の演算増
幅器1は高精度の増幅器でなければならない。しかし、
高精度の片電源の演算増幅器1は高価であるのが一般的
であるので、一般的に安価な高精度の両電源の演算増幅
器を用いたいところである。
When the temperature measuring resistor R is used as a temperature sensor as described above, the change in voltage due to the change in resistance is a very small signal. Must be an amplifier. But,
Since a high-precision single-power operational amplifier 1 is generally expensive, it is generally desirable to use an inexpensive high-precision dual-power operational amplifier.

【0007】そこで、図5の従来回路で用いた片電源の
演算増幅器1を両電源の演算増幅器に代えた場合、測温
抵抗体Rは図7(A)で示したようにその抵抗値が温度
に対して変化する。この抵抗値の変化は上記と同様のR
−V変換により図7(B)で示したような温度に対する
電圧の変化となって、両電源の演算増幅器に入力され
る。この電圧の変化はこの両電源の演算増幅器により増
幅されて、図7(C)で示したように前記温度に対応し
た電圧となって出力される。
Therefore, when the operational amplifier 1 of a single power supply used in the conventional circuit of FIG. 5 is replaced with an operational amplifier of a dual power supply, the resistance value of the resistance bulb R has a resistance value as shown in FIG. Varies with temperature. This change in resistance value is the same as R
The voltage change with respect to the temperature as shown in FIG. 7B by the -V conversion is input to the operational amplifiers of both power supplies. The change in the voltage is amplified by the operational amplifier of the dual power supply, and is output as a voltage corresponding to the temperature as shown in FIG.

【0008】ここで、測温抵抗体RとしてPt100を
使用した場合、入力温度範囲が−200℃〜100℃の
時、測温抵抗体Rの出力値は18.5Ω〜139.64
Ωとなるため、演算増幅器の出力電圧は1.32V〜1
0Vとなる。但し、この時の増幅率は71.6倍(最大
入力時が10Vになるような増幅率とする)で、測温抵
抗体Rへの供給電流を1mAとする。従って、演算増幅
器の仕様としては上記した数値をクリアするものでなけ
ればならないが、高精度の両電源の演算増幅器と高精度
の片電源の演算増幅器の仕様は図8に示した表図の如く
である。
Here, when Pt100 is used as the resistance temperature detector R, when the input temperature range is -200 ° C. to 100 ° C., the output value of the resistance temperature detector R is 18.5Ω to 139.64.
Ω, the output voltage of the operational amplifier is 1.32 V to 1
It becomes 0V. However, the amplification factor at this time is 71.6 times (the amplification factor is such that the maximum input is 10 V), and the current supplied to the resistance bulb R is 1 mA. Therefore, the specifications of the operational amplifier must satisfy the above numerical values, but the specifications of the high-precision dual power supply operational amplifier and the high-precision single power supply operational amplifier are as shown in the table of FIG. It is.

【0009】この図8の表図に示したように演算増幅器
の電源電圧が0、15Vの場合で、測温抵抗体Rが−2
00℃の時に18.5Ωとなる場合には、演算増幅器の
出力が1.32Vとなるが、これでは入力電圧が低すぎ
て図8に示した高精度の両電源の演算増幅器の仕様(入
力/出力仕様)に合致せず、図5で示した従来回路には
両電源の演算増幅器を使用できないことになる。
As shown in the table of FIG. 8, when the power supply voltage of the operational amplifier is 0 and 15 V, and the resistance bulb R is -2.
In the case of 18.5Ω at 00 ° C., the output of the operational amplifier is 1.32 V. However, this is too low for the input voltage, and the specifications of the high-precision dual-power operational amplifier shown in FIG. / Output specification), so that an operational amplifier with dual power supplies cannot be used in the conventional circuit shown in FIG.

【0010】この両電源の演算増幅器を使用できない理
由は、図7(B)の特性図にも示されており、この特性
図中の斜線で示した範囲は両電源の演算増幅器の動作不
可能範囲で、測温抵抗体Rの抵抗変化を電圧の変化に変
換した結果は、全て上記斜線範囲に入っている。それ
故、図7(C)で示したように、両電源の演算増幅器の
出力電圧も、その一部が動作不可能範囲に入ってしま
い、従来の構成のままでは安価な両電源の演算増幅器を
用いることができないことが明らかとなっている。
The reason why the operational amplifier of the dual power supply cannot be used is also shown in the characteristic diagram of FIG. 7B, and the range indicated by the diagonal lines in the characteristic diagram indicates that the operational amplifier of the dual power supply cannot operate. The results of converting the resistance change of the resistance temperature detector R into the voltage change within the range are all in the shaded range. Therefore, as shown in FIG. 7 (C), a part of the output voltage of the operational amplifier of the dual power supply also falls within the inoperable range, and the operational amplifier of the dual power supply which is inexpensive with the conventional configuration is used. It is clear that cannot be used.

【0011】図9は従来の温度測定回路の他の例を示し
た回路図であり、図において、片電源の演算増幅器1の
入力測に定電圧源3が接続されている。他の構成は図5
に示した従来例と同様で、同一の部品は同一の符号を用
いているので、説明を省略する。
FIG. 9 is a circuit diagram showing another example of the conventional temperature measuring circuit. In FIG. 9, a constant voltage source 3 is connected to an input of an operational amplifier 1 having a single power supply. FIG. 5 shows another configuration.
And the same components are denoted by the same reference numerals, and a description thereof will be omitted.

【0012】次に動作について説明する。測温抵抗体R
は周囲の温度によって例えば図10(A)に示すように
その抵抗値が変化する。この場合、片電源の演算増幅器
1の入力測に一定電圧Vrefの定電圧源3が接続され
ているため、測温抵抗体Rを流れる電流はVref(R
+R1)となる。これにより、片電源の演算増幅器1に
はR×Vref(R+R1)の図10(B)に示すよう
な温度に対して非線形の電圧が入力される。片電源の演
算増幅器1のゲインをGとすると、この演算増幅器1の
出力電圧V0はV0=R×{Vref(R+R1)}×
Gとなり、図10(C)に示すような温度に対して非線
形の出力電圧が得られる。
Next, the operation will be described. RTD R
Changes its resistance value depending on the ambient temperature, for example, as shown in FIG. In this case, since the constant voltage source 3 of the constant voltage Vref is connected to the input measurement of the operational amplifier 1 of the single power supply, the current flowing through the resistance bulb R is Vref (R
+ R1). As a result, a non-linear voltage with respect to the temperature of R × Vref (R + R1) as shown in FIG. Assuming that the gain of the single power supply operational amplifier 1 is G, the output voltage V0 of this operational amplifier 1 is V0 = R × {Vref (R + R1)} ×
G, and a non-linear output voltage is obtained with respect to the temperature as shown in FIG.

【0013】但し、定電圧源3から供給される電流Iに
比べて演算増幅器1から来る電流は小さいので、これを
無視し、又、R>>rであるため、配線抵抗rは0と見
做して無視した。この場合、図10(B)、(C)に示
すように温度変化に対応する電圧変化は非線形になる
が、R−V変換後の電圧及び増幅器出力電圧の両方が片
電源の演算増幅器1の動作可能範囲に入っていて、問題
なく動作することが分かる。
However, since the current coming from the operational amplifier 1 is smaller than the current I supplied from the constant voltage source 3, this is ignored, and since R >> r, the wiring resistance r is assumed to be 0. I ignored it. In this case, as shown in FIGS. 10B and 10C, the voltage change corresponding to the temperature change becomes non-linear, but both the voltage after the RV conversion and the amplifier output voltage are equal to those of the single-power supply operational amplifier 1. It can be seen that it is within the operable range and operates without any problem.

【0014】この例でも、図5の従来回路で用いた高
価、高精度な片電源の演算増幅器1の代わりに、安価な
両電源の演算増幅器を用いたいところである。しかし、
図9の回路で両電源の演算増幅器を用いた場合、測温抵
抗体Rの抵抗変化は図11(A)に示すように、前述し
た場合と同様であるが、抵抗の変化をR−V変換した電
圧変化は図11(B)に示すようになって、両電源の演
算増幅器の動作不可能範囲(図中斜線範囲)に入ってし
まう。このため、両電源の演算増幅器の出力電圧も図1
1(C)に示すようにその大部分がこの演算増幅器の動
作不可能範囲(図中斜線範囲)に入ってしまって、安価
な両電源の演算増幅器を使用することができないことが
分かる。
In this example, too, it is desired to use an inexpensive dual power supply operational amplifier instead of the expensive and highly accurate single power supply operational amplifier 1 used in the conventional circuit of FIG. But,
When an operational amplifier with dual power supplies is used in the circuit of FIG. 9, the resistance change of the resistance bulb R is the same as that described above as shown in FIG. The converted voltage change is as shown in FIG. 11B, which falls within the inoperable range (the shaded range in the figure) of the operational amplifier of the dual power supply. For this reason, the output voltage of the operational amplifier of the dual power supply is also shown in FIG.
As can be seen from FIG. 1 (C), most of the operational amplifier enters the inoperable range of the operational amplifier (the shaded area in the figure), so that an inexpensive dual-power-supply operational amplifier cannot be used.

【0015】[0015]

【発明が解決しようとする課題】従来の測温抵抗体を温
度センサとする温度測定回路は以上のように構成されて
いるので、測温抵抗体Rの抵抗変化に伴う微小な電圧を
増幅しなければならないと共に、この測温抵抗体Rは−
200℃で十数Ωしかないため、前記微小な電圧が低
く、高精度の片電源の演算増幅器1を用いて前記微小電
圧を増幅する必要があり、入力電圧が低すぎると正常動
作しない、高精度で安価な両電源の演算増幅器を用いる
ことができなかった。それ故、温度測定回路が高価にな
ってしまうという課題があった。
Since the conventional temperature measuring circuit using a resistance temperature detector as a temperature sensor is constructed as described above, it amplifies a minute voltage accompanying a resistance change of the resistance temperature detector R. And the resistance thermometer R is-
Since there is only a dozen Ω at 200 ° C., the minute voltage is low, and it is necessary to amplify the minute voltage using a high-precision single-supply operational amplifier 1. If the input voltage is too low, it will not operate normally. It has not been possible to use an accurate and inexpensive dual power operational amplifier. Therefore, there is a problem that the temperature measurement circuit becomes expensive.

【0016】そこでこの発明は上記のような課題を解決
するためになされたものであり、測温抵抗体の抵抗変化
に伴う微小電圧を安価且つ高精度の両電源の演算増幅器
を用いて増幅することができる温度測定回路を得ること
を目的とする。
Accordingly, the present invention has been made to solve the above-mentioned problems, and amplifies a minute voltage accompanying a resistance change of a resistance temperature detector using an inexpensive and highly accurate operational amplifier of a dual power supply. It is an object of the present invention to obtain a temperature measurement circuit that can perform the measurement.

【0017】[0017]

【課題を解決するための手段】請求項1記載の発明に係
る温度測定回路は、温度センサに電流を供給する第1、
第2の定電流源と、前記温度センサの電圧降下分を入力
電圧とする両電源の演算増幅器と、前記温度センサで生
じる電圧降下と同方向の電圧降下が生じると共に前記
度センサの端子電圧が接地電位に対して上昇し、かつ、
前記演算増幅器への入力電圧がその演算増幅器の正常動
作許容範囲内になるように前記第2の定電流源から電流
を供給されるオフセット用抵抗とを備えたものである。
According to a first aspect of the present invention, there is provided a temperature measuring circuit for supplying a current to a temperature sensor .
Input the second constant current source and the voltage drop of the temperature sensor
An operational amplifier for both power and voltage, the temperature with the voltage drop of the voltage drop in the same direction caused by the temperature sensor occurs
The terminal voltage of the temperature sensor rises with respect to the ground potential , and
The input voltage to the operational amplifier is
It is obtained by a offset resistance supplied with current from the second constant current source to be within work tolerance.

【0018】請求項2記載の発明に係る温度測定回路
は、温度センサに電圧を印加する第1、第2の定電圧源
と、前記温度センサの電圧降下分を入力電圧とする両電
源の演算増幅器と、前記温度センサで生じる電圧降下と
同方向の電圧降下が生じると共に前記温度センサの端子
電圧が接地電位に対して上昇し、かつ、前記演算増幅器
への入力電圧がその演算増幅器の正常動作許容範囲内に
なるように前記第2の定電圧源から電流を供給されるオ
フセット用抵抗とを備えたものである。
According to a second aspect of the present invention, there is provided a temperature measuring circuit comprising: a first and a second constant voltage sources for applying a voltage to a temperature sensor; and a dual voltage source having a voltage drop of the temperature sensor as an input voltage.
An operational amplifier source, the terminal voltage of the temperature sensor with the voltage drop of the voltage drop in the same direction caused by the temperature sensor is caused to rise relative to the ground potential, and the operational amplifier
Input voltage within the normal operating range of the operational amplifier
Wherein at the second one with a offset resistance supplied with current from the constant voltage source so.

【0019】[0019]

【発明の実施の形態】以下、この発明の実施の一形態を
説明する。 実施の形態1.図1はこの発明の実施の形態1による温
度測定回路の構成を示した図であり、図において、Rは
例えば3線式のサーミスタや測温抵抗体、4は高精度の
両電源の演算増幅器で、測温抵抗体Rの抵抗値に対応す
る入力電圧を増幅して出力する。R4は前記測温抵抗体
Rの電圧降下分を全体的に上昇させてオフセットするた
めに、両電源の演算増幅器4の入力側と接地電位間に挿
入されたオフセット用抵抗である。但し、従来例と同一
部品は同一符号を用いているため、同一構成部品につい
ては説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. Embodiment 1 FIG. FIG. 1 is a diagram showing a configuration of a temperature measuring circuit according to a first embodiment of the present invention. In the figure, R is, for example, a three-wire type thermistor or a resistance thermometer, and 4 is a high-precision dual power operational amplifier. Then, the input voltage corresponding to the resistance value of the resistance bulb R is amplified and output. R4 is an offset resistor inserted between the input side of the operational amplifier 4 for both power supplies and the ground potential in order to raise the voltage drop of the resistance thermometer R as a whole and offset it. However, the same parts as those of the conventional example are denoted by the same reference numerals, and the description of the same constituent parts will be omitted.

【0020】次に動作について説明する。3線式の測温
抵抗体Rとして用いた場合、その1線は両電源の演算増
幅器4の+側の入力ラインに接続され、その他の1線は
同演算増幅器1の−側の入力ラインに接続され、更に残
りの1線はオフセット用抵抗R4を介して接地電位に接
続されている。このように接続された測温抵抗体Rは周
囲の温度によってその抵抗値が変化するが、この測温抵
抗体Rは定電流源2から電流Iが供給されているため、
前記抵抗の変化はこの抵抗体による電圧降下の変化とな
って演算増幅器4に入力される。演算増幅器4は入力さ
れた電圧を増幅して出力する。
Next, the operation will be described. When used as a three-wire type resistance thermometer R, one line is connected to the + input line of the operational amplifier 4 of the dual power supply, and the other line is connected to the-input line of the operational amplifier 1. The other line is connected to the ground potential via an offset resistor R4. The resistance value of the temperature measuring resistor R connected in this way changes depending on the ambient temperature. However, since the current I is supplied from the constant current source 2 to the temperature measuring resistor R,
The change in the resistance is input to the operational amplifier 4 as a change in the voltage drop due to the resistor. The operational amplifier 4 amplifies and outputs the input voltage.

【0021】この例で使用した測温抵抗体Rも−200
℃の時に十数Ω程度の抵抗値を有しているが、この測温
抵抗体Rと接地間に挿入されたオフセット用抵抗R4に
2個の定電流源2から総計2Iの電流が流れるため、測
温抵抗体Rとオフセット用抵抗R4の接続点の電圧は2
I×R4だけ上昇し、この上昇した電圧に測温抵抗体R
の電圧降下分、即ち、R×Iが加算された値が両電源の
演算増幅器4に入力されることになる。従って、この時
の両電源の演算増幅器4の出力電圧V0を求めると、V
0=R×I×G+2×R4×Iのようになる。但し、R
>>r,R4>>rであるため、r=0と見做す共に、
定電流源2からの電流Iに比べて、演算増幅器4から出
る電流は小さいので、この電流を無視し、演算増幅器4
のゲインをGとする。
The resistance thermometer R used in this example is also -200.
Although it has a resistance value of about several tens of ohms at ° C, a total of 2I current flows from the two constant current sources 2 to the offset resistance R4 inserted between the resistance bulb R and the ground. The voltage at the connection point between the resistance bulb R and the offset resistor R4 is 2
I × R4, and the increased voltage is applied to the resistance bulb R
, That is, the value obtained by adding R × I is input to the operational amplifier 4 of the dual power supply. Therefore, when the output voltage V0 of the operational amplifier 4 of both power supplies at this time is obtained,
0 = R × I × G + 2 × R4 × I. Where R
>> r, R4 >> r, so it is assumed that r = 0,
Since the current flowing out of the operational amplifier 4 is smaller than the current I from the constant current source 2, this current is ignored and the operational amplifier 4
Is G.

【0022】図2はこの例の測温抵抗体Rの温度に対す
る抵抗特性例、測温抵抗体Rの抵抗値の変化が電圧に変
換された場合の温度に対する電圧特性例及び演算増幅器
4の温度に対する出力電圧特性例を示した図である。図
2(A)に示すように本例の測温抵抗体Rは−200℃
の時に十数Ωの抵抗値があって、温度の上昇と共に抵抗
値がほぼ線形に増大している。この測温抵抗体Rの抵抗
値の変化をR−V変換した特性が図2(B)である。こ
の場合、上記したようにオフセット用抵抗R4があるた
め、−200℃の時に3.5Vの電圧があり、これが、
温度の上昇と共に線形に増大して、100℃の時3.6
4Vになることが分かる。従って、両電源の演算増幅器
4には3.5Vから3.64Vの電圧が入力され、図2
(C)に示すように増幅器出力電圧も−200℃の時に
3.5Vで、温度の上昇と共にほぼ線形に増大して、1
00℃の時に12.2Vになる。
FIG. 2 shows an example of the resistance characteristic of the resistance thermometer R with respect to the temperature in this example, an example of the voltage characteristic with respect to the temperature when the change in the resistance value of the resistance R is converted into a voltage, and the temperature of the operational amplifier 4. FIG. 6 is a diagram showing an example of output voltage characteristics with respect to FIG. As shown in FIG. 2 (A), the resistance bulb R of this example has a temperature of -200 ° C.
At this time, there is a resistance value of more than ten Ω, and the resistance value increases almost linearly with an increase in temperature. FIG. 2B shows a characteristic obtained by RV conversion of the change in the resistance value of the resistance bulb R. In this case, because of the presence of the offset resistor R4 as described above, there is a voltage of 3.5 V at −200 ° C.
It increases linearly with increasing temperature, and at 100 ° C. 3.6
It turns out that it becomes 4V. Accordingly, a voltage of 3.5 V to 3.64 V is input to the operational amplifier 4 of the dual power supply, and FIG.
As shown in (C), the amplifier output voltage was 3.5 V at -200 ° C., and increased almost linearly with the rise in temperature.
It becomes 12.2V at 00 ° C.

【0023】結局、図2(B)、(C)で分かるよう
に、測温抵抗体Rの抵抗値の変化をR−V変換して得た
電圧及び増幅器の出力電圧のいずれもが、両電源の演算
増幅器4の動作可能な入力/出力電圧範囲に入っている
ため、両電源の演算増幅器4は正常に動作して、測温抵
抗体Rの周囲温度に対応した電圧を出力する。尚、上記
例では、オフセット用抵抗R4による電圧降下分を約2
V程度にとれば、即ち、電圧降下として約2V得られる
抵抗値をオフセット用抵抗R4の値に設定すれば、測定
最低温度(この例では−200℃)から上の温度を両電
源の演算増幅器4を用いて正しく測定することができる
ようになる。
After all, as can be seen from FIGS. 2B and 2C, both the voltage obtained by RV conversion of the change in the resistance value of the resistance temperature detector R and the output voltage of the amplifier are the same. Since the input / output voltage range is within the operable input / output voltage range of the operational amplifier 4 of the power supply, the operational amplifier 4 of the dual power supply operates normally and outputs a voltage corresponding to the ambient temperature of the resistance bulb R. In the above example, the voltage drop due to the offset resistor R4 is about 2
If it is set to about V, that is, if a resistance value that can obtain a voltage drop of about 2 V is set to the value of the offset resistor R4, the temperature above the lowest measured temperature (−200 ° C. in this example) is set to the operational amplifier of the dual power supply. 4 can be measured correctly.

【0024】本実施の形態によれば、測温抵抗体Rの端
子電圧にオフセット用抵抗R4の電圧降下分を加算し
て、測温抵抗体Rの電圧降下分を全体的に上昇させてオ
フセットを付加したものを増幅器の入力電圧にしている
ため、−200℃の時に十数Ωの抵抗値しかない測温抵
抗体Rを用いても、前記入力電圧を両電源の演算増幅器
4が正常動作する入力電圧範囲に入れることができるた
め、高精度で安価な両電源の演算増幅器4を用いること
ができ、温度測定回路を安価に構成することができる。
According to the present embodiment, the voltage drop of the offset resistor R4 is added to the terminal voltage of the resistance bulb R, and the voltage drop of the resistance bulb R is raised as a whole to offset the voltage. Is added to the input voltage of the amplifier, so that the operational amplifier 4 of the dual power supply operates normally even if the temperature measuring resistor R having a resistance value of more than ten ohms is used at -200 ° C. Since the input voltage range can be within the range, the operational amplifier 4 of a dual power supply with high accuracy and low cost can be used, and the temperature measuring circuit can be configured at low cost.

【0025】実施の形態2.図3はこの発明の実施の形
態2による温度測定回路を示す構成図であり、図におい
て、Rは例えば3線式のサーミスタや測温抵抗体、4は
測温抵抗体Rの抵抗値に対応する入力電圧を増幅して出
力する高精度の両電源の演算増幅器、R4は前記測温抵
抗体Rの電圧降下分を全体的に上昇させてオフセットす
るために両電源の演算増幅器4の入力側と接地電位間に
挿入されたオフセット用抵抗である。但し、従来例と同
一部品は同一符号を用いているため、同一構成部品につ
いては説明を省略する。
Embodiment 2 FIG. 3 is a block diagram showing a temperature measuring circuit according to a second embodiment of the present invention. In the drawing, R corresponds to, for example, a three-wire type thermistor or a temperature measuring resistor, and 4 corresponds to the resistance value of the temperature measuring resistor R. A high-precision dual-power operational amplifier R4 for amplifying and outputting an input voltage to be input, and an input side of the dual-power operational amplifier 4 for increasing and offsetting the voltage drop of the resistance temperature detector R as a whole. And an offset resistor inserted between the power supply and the ground potential. However, the same parts as those of the conventional example are denoted by the same reference numerals, and the description of the same constituent parts will be omitted.

【0026】次に動作について説明する。3線式の測温
抵抗体Rとして用いた場合、その1線は両電源の演算増
幅器4の+側の入力ラインに接続され、その他の1線は
同演算増幅器1の−側の入力ラインに接続され、更に残
りの1線はオフセット用抵抗R4を介して接地電位に接
続されている。このように接続された測温抵抗体Rは周
囲の温度によってその抵抗値が変化するが、この測温抵
抗体Rには定電圧源3からVrefの定電圧が印加され
ているため、前記抵抗の変化はこの測温抵抗体を流れる
電流の変化に変換され、この電流の変化が更に測温抵抗
体Rやオフセット用抵抗R4等で電圧の変化に変換され
て演算増幅器4に入力される。演算増幅器4は入力され
た電圧を増幅して出力する。
Next, the operation will be described. When used as a three-wire type resistance thermometer R, one line is connected to the + input line of the operational amplifier 4 of the dual power supply, and the other line is connected to the-input line of the operational amplifier 1. The other line is connected to the ground potential via an offset resistor R4. The resistance value of the temperature measuring resistor R connected in this way changes depending on the ambient temperature. However, since a constant voltage of Vref is applied from the constant voltage source 3 to the temperature measuring resistor R, Is converted into a change in the current flowing through the resistance thermometer, and the change in the current is further converted into a voltage change by the resistance R or the offset resistor R4 and input to the operational amplifier 4. The operational amplifier 4 amplifies and outputs the input voltage.

【0027】この例で使用した測温抵抗体Rも−200
℃の時に十数Ω程度の抵抗値しか有していないが、この
測温抵抗体Rと接地間に挿入されたオフセット用抵抗R
4に2個の定電圧源3から電流が流れるため、測温抵抗
体Rとオフセット用抵抗R4の接続点の電圧は、R4×
Vref×(2×R1+R){R1×R1+R×(R1
+R4)+2×R1×R4}だけ上昇し、この上昇した
電圧に測温抵抗体Rの電圧降下分、即ち、R×Vref
×R1{R1×R1+R×(R1+R4)+2×R1×
R4}が加算された値が両電源の演算増幅器4に入力さ
れることになる。
The resistance temperature detector R used in this example is also -200.
Although it has only a resistance value of about several tens of ohms at the time of ° C., the offset resistance R inserted between the resistance bulb R and the ground.
4, a current flows from the two constant voltage sources 3 so that the voltage at the connection point between the temperature measuring resistor R and the offset resistor R4 is R4 ×
Vref × (2 × R1 + R) {R1 × R1 + R × (R1
+ R4) + 2 × R1 × R4}, and the increased voltage corresponds to the voltage drop of the resistance bulb R, that is, R × Vref
× R1 {R1 × R1 + R × (R1 + R4) + 2 × R1 ×
The value obtained by adding R4 # is input to the operational amplifier 4 of the dual power supply.

【0028】従って、この時の両電源の演算増幅器4の
出力電圧V0を求めると、V0=R×Vref×R1
{R1×R1+R×(R1+R4)+2×R1×R4}
×G+R4×Vref×(2×R1+R){R1×R1
+R×(R1+R4)+2×R1×R4}となる。但
し、R>>r,R4>>rであるため、配線抵抗rの抵
抗値を0と見做す共に、定電流源2からの電流Iに比べ
て、演算増幅器4から出る電流は小さいので、この電流
を無視し、演算増幅器4のゲインをGとする。
Therefore, when the output voltage V0 of the operational amplifier 4 of both power supplies at this time is obtained, V0 = R × Vref × R1
{R1 × R1 + R × (R1 + R4) + 2 × R1 × R4}
× G + R4 × Vref × (2 × R1 + R) {R1 × R1
+ R × (R1 + R4) + 2 × R1 × R4}. However, since R >> r and R4 >> r, the resistance value of the wiring resistance r is regarded as 0, and the current flowing out of the operational amplifier 4 is smaller than the current I flowing from the constant current source 2. This current is ignored, and the gain of the operational amplifier 4 is set to G.

【0029】図4はこの例の測温抵抗体Rの温度に対す
る抵抗特性例、測温抵抗体Rの抵抗値の変化が電圧に変
換された場合の温度に対する電圧特性例及び演算増幅器
4の温度に対する出力電圧特性例を示した図である。図
4(A)に示すように本例の測温抵抗体Rも−200℃
の時に十数Ωの抵抗値があって、温度の上昇と共に抵抗
値がほぼ線形に増大している。この測温抵抗体Rの抵抗
値の変化をR−V変換した特性が図4(B)である。こ
の場合、上記したようにオフセット用抵抗R4があるた
め、−200℃の時に3.5Vの電圧があり、これが、
温度の上昇と共に非線形に増大して、100℃の時に
3.64Vになることが分かる。このため、両電源の演
算増幅器4には3.5Vから3.64Vの電圧が入力さ
れ、図4(C)に示すように、演算増幅器4の出力電圧
も−200℃の時に3.5Vで、温度の上昇と共に非線
形に増大して、100℃の時に12.2Vになる。
FIG. 4 shows an example of the resistance characteristic of the resistance thermometer R with respect to the temperature in this example, an example of the voltage characteristic with respect to the temperature when the change of the resistance value of the resistance R is converted into a voltage, and the temperature of the operational amplifier 4. FIG. 6 is a diagram showing an example of output voltage characteristics with respect to FIG. As shown in FIG. 4A, the resistance thermometer R of the present example is also −200 ° C.
At this time, there is a resistance value of more than ten Ω, and the resistance value increases almost linearly with an increase in temperature. FIG. 4B shows a characteristic obtained by RV converting the change in the resistance value of the resistance bulb R. In this case, because of the presence of the offset resistor R4 as described above, there is a voltage of 3.5 V at −200 ° C.
It can be seen that it increases non-linearly with increasing temperature and becomes 3.64 V at 100 ° C. Therefore, a voltage of 3.5 V to 3.64 V is input to the operational amplifier 4 of the dual power supply, and as shown in FIG. 4C, the output voltage of the operational amplifier 4 is 3.5 V at -200 ° C. Increases non-linearly with increasing temperature to 12.2 V at 100 ° C.

【0030】結局、図4(B)、(C)で分かるよう
に、測温抵抗体Rの抵抗値の変化をR−V変換して得た
電圧及び両電源の演算増幅器4の出力電圧のいずれも
が、両電源の演算増幅器4の動作可能な入力/出力電圧
範囲に入っているため、両電源の演算増幅器4は正常に
動作して、測温抵抗体Rの周囲温度に対応した電圧を出
力する。尚、上記例では、オフセット用抵抗R4による
電圧降下分を約2V程度とれば、即ち、電圧降下として
約2V得られる抵抗値にオフセット抵抗R4の値を設定
すれば、測定最低温度(この例では−200℃)から上
の温度を両電源の演算増幅器4を用いて正しく測定する
ことができるようになる。
After all, as can be seen from FIGS. 4B and 4C, the voltage obtained by RV conversion of the change in the resistance value of the resistance bulb R and the output voltage of the operational amplifier 4 of the dual power supply are obtained. Since both of them are within the input / output voltage range in which the operational amplifier 4 of the dual power supply can operate, the operational amplifier 4 of the dual power supply operates normally, and the voltage corresponding to the ambient temperature of the resistance temperature detector R. Is output. In the above example, if the voltage drop due to the offset resistor R4 is about 2 V, that is, if the value of the offset resistor R4 is set to a resistance value that can obtain a voltage drop of about 2 V, the lowest measurement temperature (in this example, The temperature above −200 ° C.) can be correctly measured using the operational amplifier 4 of the dual power supply.

【0031】本実施の形態によれば、測温抵抗体Rの端
子電圧にオフセット用抵抗R4の電圧降下分を加算し
て、測温抵抗体Rの電圧降下分を全体的に上昇させてオ
フセットを付加したものを増幅器の入力電圧にしている
ため、−200℃の時に十数Ωの抵抗値しかない測温抵
抗体Rを用いても、前記入力電圧を両電源の演算増幅器
4が正常動作する入力電圧範囲に入れることができるた
め、高精度で安価な両電源の演算増幅器4を用いること
ができ、前実施例と同様の効果がある。
According to the present embodiment, the voltage drop of the offset resistor R4 is added to the terminal voltage of the resistance thermometer R, and the voltage drop of the resistance thermometer R is raised as a whole. Is added to the input voltage of the amplifier, so that the operational amplifier 4 of the dual power supply operates normally even if the temperature measuring resistor R having a resistance value of more than ten ohms is used at -200 ° C. Since the input voltage range can be set within the range, the operational amplifier 4 of dual power supply with high accuracy and low cost can be used, and the same effect as in the previous embodiment can be obtained.

【0032】尚、上記両実施の形態によれば、測温抵抗
体Rで測定したい温度の最低温度である−200℃の時
に、測温抵抗体Rで生じる電圧降下による電圧が両電源
の演算増幅器4の動作可能入力電圧範囲の下限値以上に
なるように、オフセット用抵抗R4の抵抗値を決めた
が、逆に測温抵抗体Rで測定したい温度の最高温度の時
に、測温抵抗体Rで生じる電圧降下による電圧を前記オ
フセット用抵抗R4で生じる電圧降下分に加算した電圧
を両電源の演算増幅器4で増幅して得た出力電圧が、こ
の増幅器の動作可能出力電圧範囲の上限値以下になるよ
うに、オフセット用抵抗R4の抵抗値を決めて、測温抵
抗体Rで測定したい温度の範囲を調整することもでき
る。
According to the above embodiments, when the temperature is -200.degree. C., which is the minimum temperature to be measured by the resistance bulb R, the voltage caused by the voltage drop generated by the resistance bulb R is calculated by the two power supplies. The resistance value of the offset resistor R4 is determined so as to be equal to or higher than the lower limit value of the operable input voltage range of the amplifier 4. The output voltage obtained by amplifying the voltage obtained by adding the voltage due to the voltage drop generated at R to the voltage drop generated at the offset resistor R4 by the operational amplifier 4 of the dual power supply is the upper limit of the operable output voltage range of this amplifier. It is also possible to determine the resistance value of the offset resistor R4 and adjust the temperature range to be measured by the resistance bulb R as described below.

【0033】[0033]

【発明の効果】以上のように、請求項1記載の発明によ
れば、温度センサで生じる電圧降下と同方向の電圧降下
が生じると共に前記温度センサの端子電圧が接地電位に
対して上昇し、かつ、前記演算増幅器への入力電圧がそ
の演算増幅器の正常動作許容範囲内になるように定電流
源から電流を供給されるオフセット用抵抗とを備える
とにより、測温抵抗体の電圧降下による電圧を全体的に
上昇させてオフセットしているため、この電圧の増幅に
安価且つ高精度の両電源の演算増幅器を用いることがで
きる効果がある。
As described above, according to the first aspect of the present invention, the voltage drop in the same direction as the voltage drop generated by the temperature sensor is provided.
Occurs, and the terminal voltage of the temperature sensor becomes the ground potential.
And the input voltage to the operational amplifier increases.
Constant current so that it is within the normal operating tolerance of the operational amplifier
And an offset resistor to which a current is supplied from a source , so that the voltage due to the voltage drop of the resistance temperature detector is raised as a whole and offset, so that the amplification of this voltage is inexpensive and easy. There is an effect that a highly accurate dual power supply operational amplifier can be used.

【0034】請求項2記載の発明によれば、温度センサ
で生じる電圧降下と同方向の電圧降下が生じると共に前
記温度センサの端子電圧が接地電位に対して上昇し、か
つ、前記演算増幅器への入力電圧がその演算増幅器の正
常動作許容範囲内になるように定電圧源から電流を供給
されるオフセット用抵抗とを備えることにより、測温抵
抗体の電圧降下による電圧を全体的に上昇させてオフセ
ットしているため、この電圧の増幅に安価且つ高精度の
両電源の演算増幅器を用いることができる。
According to the second aspect of the present invention, a temperature sensor is provided.
Voltage drop in the same direction as the voltage drop
The terminal voltage of the temperature sensor rises with respect to the ground potential.
First, the input voltage to the operational amplifier is
Supply current from constant voltage source within normal operation allowable range
The Rukoto a offset resistor that is, since the voltage due to a voltage drop of the resistance temperature detector Overall raised are offset, an inexpensive and highly accurate dual supply of the operational amplifier to amplify the voltage Can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態1による温度測定回路を
示す構成図である。
FIG. 1 is a configuration diagram showing a temperature measurement circuit according to Embodiment 1 of the present invention.

【図2】図1に示した温度測定回路の各部の特性図であ
る。
FIG. 2 is a characteristic diagram of each part of the temperature measurement circuit shown in FIG.

【図3】この発明の実施の形態2による温度測定回路を
示す構成図である。
FIG. 3 is a configuration diagram showing a temperature measurement circuit according to a second embodiment of the present invention.

【図4】図3に示した温度測定回路の各部の特性図であ
る。
4 is a characteristic diagram of each part of the temperature measurement circuit shown in FIG.

【図5】従来の温度測定回路の一例を示す構成図であ
る。
FIG. 5 is a configuration diagram illustrating an example of a conventional temperature measurement circuit.

【図6】図5に示した温度測定回路の各部の特性図であ
る。
6 is a characteristic diagram of each part of the temperature measurement circuit shown in FIG.

【図7】両電源の演算増幅器を用いた従来の温度測定回
路の各部の特性図である。
FIG. 7 is a characteristic diagram of each part of a conventional temperature measurement circuit using an operational amplifier of dual power supplies.

【図8】両電源の演算増幅器と片電源の演算増幅器の仕
様を示した表図である。
FIG. 8 is a table showing specifications of a dual power supply operational amplifier and a single power supply operational amplifier.

【図9】従来の温度測定回路の他の例を示す構成図であ
る。
FIG. 9 is a configuration diagram showing another example of a conventional temperature measurement circuit.

【図10】図9に示した温度測定回路の各部の特性図で
ある。
10 is a characteristic diagram of each part of the temperature measurement circuit shown in FIG.

【図11】両電源の演算増幅器を用いた従来の温度測定
回路の各部の特性図である。
FIG. 11 is a characteristic diagram of each part of a conventional temperature measurement circuit using a dual power supply operational amplifier.

【符号の説明】[Explanation of symbols]

1,4 演算増幅器 2 定電流源 3 定電圧源 R 測温抵抗体 R4 オフセット用抵抗 1,4 operational amplifier 2 constant current source 3 constant voltage source R RTD R4 offset resistor

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 温度によって抵抗値が変化する温度セン
サと、 この温度センサに電流を供給する第1、第2の定電流源
と、前記温度センサの電圧降下分を入力電圧とする両電源の
演算増幅器と、 前記温度センサで生じる電圧降下と同方向の電圧降下が
生じると共に前記温度センサの端子電圧が接地電位に対
して上昇し、かつ、前記演算増幅器への入力電圧がその
演算増幅器の正常動作許容範囲内になるように前記第2
の定電流源から電流を供給されるオフセット用抵抗と
備えた温度測定回路。
1. A temperature sensor whose resistance value changes with temperature.
And first and second constant current sources for supplying current to the temperature sensor.
When,Of a dual power supply with the voltage drop of the temperature sensor as an input voltage
An operational amplifier,  The voltage drop in the same direction as the voltage drop generated by the temperature sensor is
And the terminal voltage of the temperature sensor
Then riseAnd the input voltage to the operational amplifier is
Within the normal operation tolerance of the operational amplifierSo the second
Offset resistor supplied with current from a constant current sourceAnti andTo
Equipped temperature measurement circuit.
【請求項2】 温度によって抵抗値が変化する温度セン
サと、 この温度センサに電圧を印加する第1、第2の定電圧源
と、前記温度センサの電圧降下分を入力電圧とする両電源の
演算増幅器と、 前記温度センサで生じる電圧降下と同方向の電圧降下が
生じると共に前記温度センサの端子電圧が接地電位に対
して上昇し、かつ、前記演算増幅器への入力電圧がその
演算増幅器の正常動作許容範囲内になるように前記第2
の定電圧源から電流を供給されるオフセット用抵抗と
備えた温度測定回路。
2. A temperature sensor whose resistance value changes with temperature.
And first and second constant voltage sources for applying a voltage to the temperature sensor.
When,Of a dual power supply with the voltage drop of the temperature sensor as an input voltage
An operational amplifier,  The voltage drop in the same direction as the voltage drop generated by the temperature sensor is
And the terminal voltage of the temperature sensor
Then riseAnd the input voltage to the operational amplifier is
Within the normal operation tolerance of the operational amplifierSo the second
Offset resistor supplied with current from a constant voltage sourceAnti andTo
Equipped temperature measurement circuit.
JP26285595A 1995-10-11 1995-10-11 Temperature measurement circuit Expired - Fee Related JP3222367B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26285595A JP3222367B2 (en) 1995-10-11 1995-10-11 Temperature measurement circuit
CN 96113066 CN1077684C (en) 1995-10-11 1996-10-08 Temp measuring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26285595A JP3222367B2 (en) 1995-10-11 1995-10-11 Temperature measurement circuit

Publications (2)

Publication Number Publication Date
JPH09105681A JPH09105681A (en) 1997-04-22
JP3222367B2 true JP3222367B2 (en) 2001-10-29

Family

ID=17381571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26285595A Expired - Fee Related JP3222367B2 (en) 1995-10-11 1995-10-11 Temperature measurement circuit

Country Status (2)

Country Link
JP (1) JP3222367B2 (en)
CN (1) CN1077684C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492694B2 (en) 1998-02-27 2002-12-10 Micron Technology, Inc. Highly conductive composite polysilicon gate for CMOS integrated circuits
US6746893B1 (en) 1997-07-29 2004-06-08 Micron Technology, Inc. Transistor with variable electron affinity gate and methods of fabrication and use
US6794255B1 (en) 1997-07-29 2004-09-21 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6835638B1 (en) 1997-07-29 2004-12-28 Micron Technology, Inc. Silicon carbide gate transistor and fabrication process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458385C (en) * 2005-10-24 2009-02-04 奇景光电股份有限公司 Temp. sensor
CN101169341B (en) * 2006-10-25 2011-01-26 深圳迈瑞生物医疗电子股份有限公司 Temperature measuring circuit
GB2461300B (en) * 2008-06-27 2012-03-07 Gm Global Tech Operations Inc A method for estimating the temperature in an internal combustion engine
CN101718595B (en) * 2009-12-15 2011-07-20 深圳和而泰智能控制股份有限公司 Method and device for measuring temperature based on resistive temperature sensor
JP6092129B2 (en) 2014-01-16 2017-03-08 アズビル株式会社 Temperature measuring system and temperature measuring instrument
WO2016166901A1 (en) * 2015-04-17 2016-10-20 三菱電機株式会社 Temperature measurement device
JP6785391B1 (en) * 2020-04-02 2020-11-18 日本たばこ産業株式会社 Power supply unit for aerosol aspirators and aerosol aspirators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746893B1 (en) 1997-07-29 2004-06-08 Micron Technology, Inc. Transistor with variable electron affinity gate and methods of fabrication and use
US6794255B1 (en) 1997-07-29 2004-09-21 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6835638B1 (en) 1997-07-29 2004-12-28 Micron Technology, Inc. Silicon carbide gate transistor and fabrication process
US6492694B2 (en) 1998-02-27 2002-12-10 Micron Technology, Inc. Highly conductive composite polysilicon gate for CMOS integrated circuits

Also Published As

Publication number Publication date
CN1151521A (en) 1997-06-11
CN1077684C (en) 2002-01-09
JPH09105681A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
US7281846B2 (en) Integrated resistance cancellation in temperature measurement systems
US7568388B2 (en) Thermal flow sensor having an amplifier section for adjusting the temperature of the heating element
JP2928526B2 (en) POWER SUPPLY CIRCUIT AND BRIDGE TYPE MEASUREMENT OUTPUT COMPENSATION CIRCUIT COMPRISING THE CIRCUIT
EP0870360A1 (en) Differential amplifier with improved low-voltage linearity
JP3222367B2 (en) Temperature measurement circuit
JPS6144360B2 (en)
US6768318B2 (en) Signal conditioning circuit for resistive sensors
US4109196A (en) Resistance measuring circuit
JPS61210965A (en) Measuring equipment for low resistance
US6750665B2 (en) Semiconductor pressure detecting device
JPH09105680A (en) Temperature measuring circuit
KR100202589B1 (en) Temperature measuring device and temperature compensating method thereof
JP2021189109A (en) Sensor drive circuit
JP2576414B2 (en) AC level detection circuit
US6177840B1 (en) Circuit arrangement for amplifying a differential voltage signal which has a substantially temperature independent characteristic curve
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JPS6139948Y2 (en)
JP2938657B2 (en) Current detection circuit
JPH0979917A (en) Temperature measuring circuit using resistance temperature detector
KR100263151B1 (en) Resistance-voltage conversion circuit
JPH06109677A (en) Humidity detection circuit
JPS6350644B2 (en)
JP4511697B2 (en) Temperature compensation circuit
JPS625291B2 (en)
JPH0454421A (en) Temperature converting circuit for three-wire type resistance temperature detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090817

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120817

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130817

LAPS Cancellation because of no payment of annual fees