JPH09105680A - Temperature measuring circuit - Google Patents

Temperature measuring circuit

Info

Publication number
JPH09105680A
JPH09105680A JP26285495A JP26285495A JPH09105680A JP H09105680 A JPH09105680 A JP H09105680A JP 26285495 A JP26285495 A JP 26285495A JP 26285495 A JP26285495 A JP 26285495A JP H09105680 A JPH09105680 A JP H09105680A
Authority
JP
Japan
Prior art keywords
resistance
voltage
temperature detector
resistor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26285495A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kato
裕之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP26285495A priority Critical patent/JPH09105680A/en
Priority to CN 96113062 priority patent/CN1077683C/en
Publication of JPH09105680A publication Critical patent/JPH09105680A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the effective resolution by cancelling the offset component of a temperature measuring resistor, and increasing the amplification factor of an amplifier of the next stage. SOLUTION: Since the current supplied from a second constant-current source 2 flows in a temperature measuring resistor R, when the resistance value of the resistor R is changed, the change becomes a voltage change, which is input to an operational amplifier 1. At the time of 0 deg.C, if the voltage drop generated at the resistor by the resistance value of the resistor R is cancelled by the voltage drop generated at a resistor R4, the voltage of 0V is input to the amplifier 1 at the time of 0 deg.C, the offset component is cancelled. Then, the resistance value of the resistor R at the time of 0 deg.C is set as the resistance value of the resistor R4, and the offset component is cancelled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は温度センサとして
測温抵抗体を用いて温度に対応する増幅器出力電圧を得
る温度測定回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring circuit for obtaining an amplifier output voltage corresponding to temperature by using a resistance temperature detector as a temperature sensor.

【0002】[0002]

【従来の技術】図5は従来の温度測定回路の一例を示し
た回路図であり、図において、1は測温抵抗体Rの抵抗
変化に対応した電圧を増幅する演算増幅器、2a,2b
は測温抵抗体R等に電流Iを供給する第1,第2の定電
流源、R2、R3は演算増幅器1の増幅率を設定するな
どの回路定数を決める抵抗、rは配線抵抗である。
2. Description of the Related Art FIG. 5 is a circuit diagram showing an example of a conventional temperature measuring circuit. In the figure, 1 is an operational amplifier for amplifying a voltage corresponding to a resistance change of a resistance temperature detector R, 2a, 2b.
Is the first and second constant current sources for supplying the current I to the resistance temperature detector R and the like, R2 and R3 are resistors for determining circuit constants such as setting the amplification factor of the operational amplifier 1, and r is a wiring resistance. .

【0003】次に動作について説明する。測温抵抗体R
は周囲の温度によってその抵抗値が変化する。従って、
抵抗値が変化すると、この測温抵抗体Rによる電圧降下
分も変化するため、測温抵抗体Rに第2の定電流源2b
から一定の電流Iを供給することにより、抵抗の変化が
電圧の変化に変換(R−V変換)され、これが演算増幅
器1に入力される。演算増幅器1は測温抵抗体Rによる
電圧降下分を増幅して出力する。このため、演算増幅器
1の出力電圧は前記測温抵抗体Rの周囲の温度に対応し
た値になる。
Next, the operation will be described. RTD R
Has a resistance value that changes depending on the ambient temperature. Therefore,
When the resistance value changes, the voltage drop due to the resistance temperature detector R also changes, so that the second constant current source 2b is applied to the resistance temperature detector R.
From the above, a constant current I is supplied to convert a change in resistance into a change in voltage (R-V conversion), which is input to the operational amplifier 1. The operational amplifier 1 amplifies and outputs the voltage drop due to the resistance temperature detector R. Therefore, the output voltage of the operational amplifier 1 has a value corresponding to the temperature around the resistance temperature detector R.

【0004】ここで、測温抵抗体Rの抵抗値が温度に対
して図6(A)で示したように変化すると、前記したR
−V変換により図6(B)で示したように抵抗値の変化
が電圧の変化になり、この電圧の変化が演算増幅器1に
より増幅されて、図6(C)で示したように前記温度に
対応した電圧となって出力されることになる。尚、第2
の定電流源2bから供給される電流Iに比べて演算増幅
器1からくる電流は小さいので、これを無視し、又、R
>>rであるため、配線抵抗rを0と見做し、演算増幅
器1のゲインをGとすると、演算増幅器1の出力電圧V
0はV0=R×I×Gとなる。
Here, when the resistance value of the resistance temperature detector R changes with temperature as shown in FIG.
As a result of the −V conversion, a change in resistance becomes a change in voltage as shown in FIG. 6 (B), and this change in voltage is amplified by the operational amplifier 1 so that the temperature changes as shown in FIG. 6 (C). Will be output as a voltage corresponding to. The second
The current coming from the operational amplifier 1 is smaller than the current I supplied from the constant current source 2b in FIG.
>>> r, so that the wiring resistance r is regarded as 0 and the gain of the operational amplifier 1 is G, the output voltage V of the operational amplifier 1 is V.
0 is V0 = R × I × G.

【0005】ところで、温度センサとしては、図1で使
用した測温抵抗体Rの他、熱電対等がある。図7(A)
はこの熱電対の出力電圧と温度スケールとの関係を示し
た特性図で、0℃の時、その出力電圧は0Vであり、温
度の上昇にともなってほぼ線形にその出力電圧が上昇す
る。このような熱電対の出力電圧を上記と同様に演算増
幅器などで増幅して得られる増幅器出力電圧は図7
(B)に示すようになり、0℃の時、その出力電圧は0
Vであり、温度の上昇にともなってほぼ線形にその出力
電圧が上昇する。つまり、熱電対の方は増幅してもダイ
ナミックレンジ(有効範囲)が大きいが、測温抵抗体の
方は、0℃の時に100Ωのオフセットを含んでいるた
め、増幅してもそのダイナミックレンジは大きくとれな
いことである。
By the way, as the temperature sensor, there is a thermocouple or the like in addition to the resistance temperature detector R used in FIG. FIG. 7 (A)
Is a characteristic diagram showing the relationship between the output voltage of the thermocouple and the temperature scale. At 0 ° C., the output voltage is 0 V, and the output voltage rises almost linearly as the temperature rises. The amplifier output voltage obtained by amplifying the output voltage of such a thermocouple with an operational amplifier or the like as in the above is shown in FIG.
As shown in (B), the output voltage is 0 at 0 ° C.
V, and its output voltage rises almost linearly as the temperature rises. In other words, the thermocouple has a large dynamic range (effective range) even if it is amplified, but the resistance thermometer sensor has an offset of 100Ω at 0 ° C. It is something that cannot be taken big.

【0006】しかし、図1で示したように温度センサと
して測温抵抗体Rを用いた場合、図6(A)で示すよう
に温度が0℃の時100Ωのオフセット分があり、これ
が図6(B)で示したようにオフセット電圧を生じるた
め、演算増幅器1は前記オフセット分を含めて測温抵抗
体Rの抵抗変化を増幅しなければならないので、前記抵
抗変化を大きく増幅することができず、その結果、有効
分解能(入力温度範囲に対する増幅器出力範囲の割合又
は変化率)が小さくなってしまうという不具合がある。
However, when the resistance temperature detector R is used as the temperature sensor as shown in FIG. 1, there is an offset of 100Ω when the temperature is 0 ° C. as shown in FIG. Since the offset voltage is generated as shown in (B), the operational amplifier 1 has to amplify the resistance change of the resistance temperature detector R including the offset amount, so that the resistance change can be greatly amplified. As a result, the effective resolution (the ratio of the amplifier output range to the input temperature range or the change rate) becomes small.

【0007】図8は温度センサとして熱電対を用いた場
合と、測温抵抗体を用いた場合の入力温度範囲、センサ
出力値、増幅器出力電圧、変化率の具体的数値を比較し
た表図である。熱電対を用いた例では、演算増幅器の増
幅率は610.5倍(最大入力時が2.5Vになるよう
な増幅率とする)となるが、測温抵抗体を用いた例で
は、演算増幅器の増幅率は17.9倍(最大入力時が
2.5Vになるような増幅率とし、センサへ供給する電
流を1mAとする)となる。
FIG. 8 is a table comparing the input temperature range, the sensor output value, the amplifier output voltage, and the specific values of the rate of change when a thermocouple is used as the temperature sensor and when a resistance temperature detector is used. is there. In the example using the thermocouple, the amplification factor of the operational amplifier is 610.5 times (the amplification factor is 2.5 V at maximum input), but in the example using the resistance thermometer, The amplification factor of the amplifier is 17.9 times (the amplification factor is 2.5 V at maximum input, and the current supplied to the sensor is 1 mA).

【0008】結局、温度センサとして測温抵抗体を使用
した場合、0℃の時もその抵抗が100Ωあって、これ
がオフセット分(100Ωに電流が流れることで生じる
電圧降下分のこと)となるため、次段の演算増幅器1で
センサ出力を大きく増幅して、出力電圧レンジを広くと
ることが、図8の表図からも明らかなように困難であっ
た。尚、温度センサとして熱電対を使用した場合、0℃
の時、0Vなので、次段の演算増幅器でセンサ出力を大
きく増幅して、その出力電圧レンジを広くとることがで
きる。
After all, when a resistance temperature detector is used as the temperature sensor, its resistance is 100Ω even at 0 ° C., which is an offset component (a voltage drop caused by the current flowing in 100Ω). As is clear from the table diagram of FIG. 8, it is difficult to greatly amplify the sensor output by the operational amplifier 1 in the next stage and set a wide output voltage range. If a thermocouple is used as the temperature sensor, 0 ° C
At that time, since it is 0 V, the sensor output can be greatly amplified by the operational amplifier in the next stage, and the output voltage range can be widened.

【0009】図9は従来の温度測定回路の他の例を示し
た回路図であり、図において、演算増幅器1の入力側に
第1,第2の定電圧源3a,3bが接続されている。他
の構成は図5に示した従来例と同様であり、同一の部品
は同一の符号を用いて説明しているので、説明を省略す
る。
FIG. 9 is a circuit diagram showing another example of a conventional temperature measuring circuit. In the figure, first and second constant voltage sources 3a and 3b are connected to the input side of an operational amplifier 1. . Other configurations are the same as those of the conventional example shown in FIG. 5, and the same parts are described by using the same reference numerals, and the description thereof will be omitted.

【0010】次に動作について説明する。測温抵抗体R
は周囲の温度によって例えば図10(A)に示すように
その抵抗値が変化する。この場合、演算増幅器1の入力
側にVrefの第1,第2の定電圧源3a,3bが接続
されているため、測温抵抗体Rを流れる電流はVref
/(R+R1)となる。これにより、演算増幅器1には
R×Vref/(R+R1)の図10(B)に示すよう
な温度に対して非線形の電圧が入力される。演算増幅器
1のゲインをGとすると、演算増幅器1の出力電圧V0
はV0=R×{Vref/(R+R1)}×Gとなり、
図10(C)に示すような温度に対して非線形の出力電
圧が得られる。但し、第2の定電圧源3bから供給され
る電流に比べて演算増幅器1からくる電流は小さいの
で、これを無視し、又、R>>rであるため、配線抵抗
rは0と見做して無視した。
Next, the operation will be described. RTD R
The resistance value of the element changes depending on the ambient temperature as shown in FIG. In this case, since the first and second constant voltage sources 3a and 3b of Vref are connected to the input side of the operational amplifier 1, the current flowing through the resistance temperature detector R is Vref.
/ (R + R1). As a result, a non-linear voltage with respect to the temperature of R × Vref / (R + R1) as shown in FIG. 10B is input to the operational amplifier 1. When the gain of the operational amplifier 1 is G, the output voltage V0 of the operational amplifier 1 is
Becomes V0 = R × {Vref / (R + R1)} × G,
A non-linear output voltage with respect to temperature as shown in FIG. 10C is obtained. However, since the current from the operational amplifier 1 is smaller than the current supplied from the second constant voltage source 3b, this is ignored, and since R >> r, the wiring resistance r is regarded as 0. I ignored it.

【0011】この場合、図10(B)、(C)に示すよ
うに温度変化に対応する電圧変化は非線形になるが、図
10(A)に示すように測温抵抗体Rの抵抗変化にオフ
セット分があるため、上記の従来例と同様に演算増幅器
1でセンサ出力を大きく増幅して、出力電圧レンジを広
くとることができないという不具合がある。
In this case, the voltage change corresponding to the temperature change becomes non-linear as shown in FIGS. 10 (B) and (C), but the resistance change of the resistance temperature detector R becomes as shown in FIG. 10 (A). Since there is an offset, there is a problem that the sensor output cannot be greatly amplified by the operational amplifier 1 and the output voltage range cannot be widened as in the conventional example.

【0012】[0012]

【発明が解決しようとする課題】従来の測温抵抗体を温
度センサとする温度測定回路は以上のように構成されて
いるので、測温抵抗体Rが有するオフセット成分を含め
て、測温抵抗体Rの出力量を次段の演算増幅器1で増幅
しなければならないため、その増幅率を大きくとること
ができず、その出力電圧レンジが狭くなって、有効分解
能が小さくなってしまうという不具合がある。
Since the conventional temperature measuring circuit using the resistance temperature detector as the temperature sensor is configured as described above, the resistance temperature detector including the offset component of the resistance temperature detector R is measured. Since the output amount of the body R must be amplified by the operational amplifier 1 in the next stage, the amplification factor cannot be increased, the output voltage range becomes narrow, and the effective resolution becomes small. is there.

【0013】そこでこの発明は上記のような課題を解決
するためになされたものであり、測温抵抗体が有するオ
フセット成分を疑似的にキャンセルするようにして、次
段の増幅器の増幅率を大きくとって、有効分解能を大き
くすることができる温度測定回路を得ることを目的とす
る。
Therefore, the present invention has been made to solve the above-mentioned problems, and the offset component of the resistance temperature detector is artificially canceled to increase the amplification factor of the amplifier at the next stage. Therefore, it is an object of the present invention to obtain a temperature measurement circuit capable of increasing the effective resolution.

【0014】[0014]

【課題を解決するための手段】請求項1記載の発明に係
る温度測定回路は、測温抵抗体に電流を供給する第1,
第2の定電流源と、前記測温抵抗体で生じる電圧降下と
逆向きの電圧降下が生じるように前記第2の定電流源か
ら電流を供給されるキャンセル用抵抗と、前記測温抵抗
体の電圧降下分と前記キャンセル用抵抗の電圧降下分の
加算成分を入力電圧とする増幅器とを備えたものであ
る。
According to a first aspect of the present invention, there is provided a temperature measuring circuit for supplying a current to a resistance temperature detector.
A second constant current source, a canceling resistor supplied with a current from the second constant current source so that a voltage drop occurs in a direction opposite to the voltage drop generated in the resistance temperature detector, and the resistance temperature detector. And an amplifier whose input voltage is an addition component of the voltage drop of the cancel resistor and the voltage drop of the canceling resistor.

【0015】請求項2記載の発明に係る温度測定回路
は、測温抵抗体に電圧を印加する第1,第2の定電圧源
と、前記測温抵抗体を流れる電流と逆向きの電流が流れ
るように前記第2の定電圧源から電圧を供給されるキャ
ンセル用抵抗と、前記測温抵抗体の電圧降下分と前記キ
ャンセル用抵抗の電圧降下分の加算成分を入力電圧とす
る増幅器とを備えたものである。
In the temperature measuring circuit according to the second aspect of the present invention, the first and second constant voltage sources for applying a voltage to the resistance temperature detector and the current flowing in the direction opposite to the current flowing through the resistance temperature detector are provided. A canceling resistor that is supplied with a voltage from the second constant voltage source so as to flow, and an amplifier that uses an addition component of the voltage drop of the resistance temperature detector and the voltage drop of the canceling resistor as an input voltage. Be prepared.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の一形態を
説明する。 実施の形態1.図1はこの発明の実施の形態1による温
度測定回路の構成を示した図であり、図において、Rは
例えば3線式の測温抵抗体、R4は測温抵抗体Rのオフ
セット分をキャンセルするために演算増幅器1の入力側
に挿入されたキャンセル用抵抗である。但し、従来例と
同一部品は同一符号を用いているため、同一構成部品に
ついては説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. Embodiment 1 FIG. 1 is a diagram showing a configuration of a temperature measuring circuit according to a first embodiment of the present invention. In the figure, R is, for example, a three-wire resistance temperature detector, and R4 is an offset component of the resistance temperature detector R. This is a canceling resistor inserted on the input side of the operational amplifier 1 in order to do so. However, since the same parts as those in the conventional example are denoted by the same reference numerals, the description of the same parts will be omitted.

【0017】次に動作について説明する。3線式の測温
抵抗体Rを用いた場合、その1線は演算増幅器1の+側
の入力ラインに接続され、その他の1線は同演算増幅器
1の−側の入力ラインに接続され、更に残りの1線は回
路のグランド電位に接続されている。このように接続さ
れた測温抵抗体Rは周囲の温度によってその抵抗値が変
化するが、この測温抵抗体Rは定電流源2bから電流I
が供給されることで、前記抵抗R4には逆向きの電圧降
下が発生する。これにより、測温抵抗体Rの電圧降下分
と抵抗R4の電圧降下分の和が演算増幅器1に入力され
る。演算増幅器1は入力された電圧を増幅して出力す
る。尚、第2の定電流源2bから供給される電流Iに比
べて演算増幅器1からくる電流は小さいので、これを無
視し、又、R>>r,R4>>rであるため、配線抵抗
rを0と見做し、演算増幅器1のゲインをGとすると、
演算増幅器1の出力電圧V0=(R−R4)×I×Gと
なる。
Next, the operation will be described. When the three-wire resistance temperature detector R is used, one line thereof is connected to the + side input line of the operational amplifier 1, and the other one line is connected to the-side input line of the operational amplifier 1. Furthermore, the remaining one line is connected to the ground potential of the circuit. The resistance value of the resistance temperature detector R connected in this way changes depending on the ambient temperature. The resistance temperature detector R is supplied from the constant current source 2b with the current I.
Is supplied, a reverse voltage drop occurs in the resistor R4. As a result, the sum of the voltage drop of the resistance temperature detector R and the voltage drop of the resistor R4 is input to the operational amplifier 1. The operational amplifier 1 amplifies the input voltage and outputs it. Since the current from the operational amplifier 1 is smaller than the current I supplied from the second constant current source 2b, it is ignored, and since R >> r and R4 >> r, the wiring resistance is If r is regarded as 0 and the gain of the operational amplifier 1 is G,
The output voltage of the operational amplifier 1 is V0 = (R−R4) × I × G.

【0018】この例で使用した測温抵抗体Rも0℃の時
に100Ω程度のオフセット抵抗値を有している。この
0℃の時の前記オフセット抵抗値で生じるオフセット電
圧をキャンセルするための抵抗R4の値をここで求めて
みる。上記したように、演算増幅器1の出力電圧V0は
V0=(R−R4)×I×Gとなる。0℃の時に測温抵
抗体Rで生じるオフセット電圧が演算増幅器1に入力さ
れないようにして、疑似的に前記オフセット電圧をキャ
ンセルするには、0℃の時、V0=(R−R4)×I×
G=0であればよく、即ち、R4=Rとなればよい。こ
れには、キャンセル用の抵抗R4の値を測温抵抗体Rが
0℃の時に有する抵抗値に設定しておけばよく、これに
より、0℃の時の測温抵抗体Rが有するオフセット分が
R−V変換した時に疑似的にキャンセルされることにな
る。なお、本実施の形態1では、測温抵抗体の入力温度
範囲が0℃〜100℃の場合である。
The resistance temperature detector R used in this example also has an offset resistance value of about 100Ω at 0 ° C. Here, the value of the resistor R4 for canceling the offset voltage generated by the offset resistance value at 0 ° C. will be calculated here. As described above, the output voltage V0 of the operational amplifier 1 is V0 = (R−R4) × I × G. To cancel the offset voltage in a pseudo manner by preventing the offset voltage generated in the resistance temperature detector R from being input to the operational amplifier 1 at 0 ° C., at 0 ° C., V0 = (R−R4) × I ×
It is sufficient that G = 0, that is, R4 = R. To this end, the value of the canceling resistor R4 may be set to the resistance value that the resistance temperature detector R has when it is 0 ° C., and this allows the offset value that the resistance temperature detector R has when it is 0 ° C. Will be canceled in a pseudo manner when R-V conversion is performed. In the first embodiment, the input temperature range of the resistance temperature detector is 0 ° C to 100 ° C.

【0019】図2は実施の形態1の測温抵抗体Rの温度
に対する抵抗特性例、測温抵抗体Rの抵抗値の変化が電
圧に変換された場合の温度に対する電圧特性例及び演算
増幅器1の温度に対する出力電圧特性例を示した図であ
る。図2(A)に示すように本例の測温抵抗体Rも0℃
の時に100Ωのオフセット分があって、温度の上昇と
共に抵抗値が線形に増大している。この測温抵抗体Rの
抵抗値の変化をR−V変換した特性が図2(B)であ
る。この場合、上記したようにキャンセル用抵抗R4を
100Ωに選択してあるため、0℃の時に0mVとなっ
て、温度の上昇と共に電圧がほぼ線形に増大しており、
オフセット電圧がキャンセルされていることが分かる。
このため、演算増幅器1の増幅器出力電圧もオフセット
電圧分がなく、0℃の時に0Vで温度の増加と共にその
出力電圧がほぼ線形に増大している。
FIG. 2 shows an example of resistance characteristics with respect to temperature of the resistance temperature detector R according to the first embodiment, an example of voltage characteristics with respect to temperature when a change in the resistance value of the resistance temperature detector R is converted into a voltage, and the operational amplifier 1. FIG. 5 is a diagram showing an example of output voltage characteristics with respect to temperature. As shown in FIG. 2A, the resistance temperature detector R of this example is also 0 ° C.
At that time, there is an offset of 100Ω, and the resistance value linearly increases as the temperature rises. FIG. 2B shows a characteristic obtained by RV converting the change in the resistance value of the resistance temperature detector R. In this case, since the canceling resistor R4 is selected to be 100Ω as described above, the voltage becomes 0 mV at 0 ° C., and the voltage increases almost linearly as the temperature rises.
It can be seen that the offset voltage has been canceled.
For this reason, the amplifier output voltage of the operational amplifier 1 also has no offset voltage, and the output voltage increases almost linearly at 0V at 0V with increasing temperature.

【0020】この図2(C)と従来の図6(C)の特性
図を比べると明らかなように、最終のレンジ幅の電圧値
が、従来では4V(=14V−10V)、この例では1
4V(14V−0V)で、3倍以上も前記レンジ幅を改
善することが可能となっている。
As is apparent from comparison between the characteristic diagram of FIG. 2C and the conventional characteristic diagram of FIG. 6C, the voltage value of the final range width is 4V (= 14V-10V) in the conventional case, and in this example. 1
At 4V (14V-0V), it is possible to improve the range width three times or more.

【0021】本実施の形態によれば、測温抵抗体Rが0
℃の時に有しているオフセット分をキャンセル用抵抗R
4によってR−V変換時に疑似的にキャンセルすること
ができるため、オフセット分がなく、温度上昇に伴って
ほぼ線形に増大する電圧が演算増幅器1に入力されるの
で、この電圧を大きく増幅してその出力電圧レンジを図
2(C)に示すように広くとることができる。このた
め、有効分解能を大きくすることができ、その分、温度
測定の精度を向上させることができる。
According to this embodiment, the resistance temperature detector R is zero.
The offset resistance at the time of ℃
Since the voltage can be pseudo canceled at the time of the R-V conversion by 4, the voltage that has no offset amount and increases almost linearly with the temperature rise is input to the operational amplifier 1. Therefore, this voltage is greatly amplified. The output voltage range can be widened as shown in FIG. Therefore, the effective resolution can be increased, and the accuracy of temperature measurement can be improved accordingly.

【0022】尚、上記実施の形態では配線抵抗rを無視
して、キャンセル用抵抗R4の値を求めたが、配線抵抗
rが無視できず、且つ各配線抵抗にばらつきがあるよう
な場合でも、この配線抵抗による誤差分を測温抵抗体R
が0℃の時に有している抵抗値に加減算して得られる抵
抗値をキャンセル用抵抗R4の値に設定することで、前
記配線抵抗の誤差分のキャンセルも含めて、測温抵抗体
Rが0℃の時に有しているオフセット分をキャンセル用
抵抗R4によってR−V変換時に疑似的にキャンセルす
ることができるため、前記配線抵抗の誤差による温度測
定精度の悪化を防止して、温度測定精度を向上させるこ
とができる。
In the above embodiment, the wiring resistance r is ignored and the value of the canceling resistance R4 is obtained. However, even if the wiring resistance r cannot be ignored and the wiring resistances vary, The error due to this wiring resistance is measured by the resistance thermometer R
By setting the resistance value obtained by adding or subtracting the resistance value at 0 ° C. to the value of the canceling resistance R4, the resistance temperature detector R including the cancellation of the error of the wiring resistance is Since the offset value which is present at 0 ° C. can be pseudo canceled by the canceling resistor R4 at the time of RV conversion, deterioration of the temperature measurement accuracy due to the error of the wiring resistance can be prevented, and the temperature measurement accuracy can be prevented. Can be improved.

【0023】実施の形態2.図3はこの発明の実施の形
態2による温度測定回路を示す構成図であり、図におい
て、Rは例えば3線式の測温抵抗体、R4は測温抵抗体
Rのオフセット分をキャンセルするためのキャンセル用
抵抗である。但し、従来例と同一部品は同一符号を用い
ているため、同一構成部品については説明を省略する。
Embodiment 2 FIG. 3 is a block diagram showing a temperature measuring circuit according to a second embodiment of the present invention. In the figure, R is for example a three-wire resistance temperature detector, and R4 is for canceling the offset of the resistance temperature detector R. This is a canceling resistance. However, since the same parts as those in the conventional example are denoted by the same reference numerals, the description of the same parts will be omitted.

【0024】次に動作について説明する。3線式の測温
抵抗体Rを用いた場合、その1線は演算増幅器1の+側
の入力ラインに接続され、その他の1線は同演算増幅器
1の−側の入力ラインに接続され、更に残りの1線は回
路のグランド電位に接続されている。このように接続さ
れた測温抵抗体Rは周囲の温度によってその抵抗値が変
化するが、この測温抵抗体Rには第2の定電圧源3bか
らVrefの定電圧が印加されているため、前記抵抗の
変化はこの測温抵抗体を流れる電流の変化に変換され、
この電流の変化が更に測温抵抗体Rやキャンセル用抵抗
R4等で電圧の変化に変換されて演算増幅器1に入力さ
れる。演算増幅器1は入力された電圧を増幅して出力す
る。
Next, the operation will be described. When the three-wire resistance temperature detector R is used, one line thereof is connected to the + side input line of the operational amplifier 1, and the other one line is connected to the-side input line of the operational amplifier 1. Furthermore, the remaining one line is connected to the ground potential of the circuit. The resistance value of the resistance temperature detector R connected in this way changes according to the ambient temperature, but since the resistance temperature sensor R is applied with a constant voltage of Vref from the second constant voltage source 3b. , The change in the resistance is converted into a change in the current flowing through the resistance temperature detector,
This change in current is further converted into a change in voltage by the resistance temperature detector R, the cancel resistor R4, etc., and input to the operational amplifier 1. The operational amplifier 1 amplifies the input voltage and outputs it.

【0025】ここで、この例の測温抵抗体Rも0℃の時
に100Ωのオフセット分を有している。又、この例の
演算増幅器1のゲインをGとし、定電圧源3から供給さ
れる電流に比べて演算増幅器1からくる電流は小さいの
で、これを無視し、更に、R>>r,R4>>rである
ため、配線抵抗rの抵抗値を0と見做すと、演算増幅器
1の出力電圧V0はV0={Vref×R1×(R−R
4)}/{(R+R1)×(R+R2)}×Gとなる。
このため、0℃における前記出力電圧V0が0であれ
ば、測温抵抗体Rの0℃の時に有するオフセット成分が
疑似的にキャンセルされたことになる。これには、0℃
の時に、{Vref×R1×(R−R4)}/{(R+
R1)×(R+R2)}=0となるように、R4=Rと
してやればよく。従って、キャンセル用抵抗R4の抵抗
値を測温抵抗体Rの0℃の時の抵抗値に設定すればよ
い。なお、本実施の形態2では、測温抵抗体の入力温度
範囲が0℃〜100℃の場合である。
Here, the resistance temperature detector R of this example also has an offset of 100Ω at 0 ° C. Further, assuming that the gain of the operational amplifier 1 in this example is G and the current supplied from the operational amplifier 1 is smaller than the current supplied from the constant voltage source 3, this is ignored, and R >> r, R4> Therefore, assuming that the resistance value of the wiring resistance r is 0, the output voltage V0 of the operational amplifier 1 is V0 = {Vref × R1 × (RR
4)} / {(R + R1) × (R + R2)} × G.
Therefore, if the output voltage V0 at 0 ° C. is 0, it means that the offset component of the resistance temperature detector R at 0 ° C. is canceled in a pseudo manner. For this, 0 ℃
At the time of, {Vref × R1 × (R−R4)} / {(R +
It is sufficient to set R4 = R so that R1) × (R + R2)} = 0. Therefore, the resistance value of the cancel resistor R4 may be set to the resistance value of the resistance temperature detector R at 0 ° C. In the second embodiment, the input temperature range of the resistance temperature detector is 0 ° C to 100 ° C.

【0026】図4は実施の形態2の測温抵抗体Rの温度
に対する抵抗特性例、測温抵抗体Rの抵抗値の変化が電
圧に変換された場合の温度に対する電圧特性例及び演算
増幅器1の温度に対する出力電圧特性例を示した図であ
る。図4(A)に示すように本例の測温抵抗体Rも0℃
の時に100Ωのオフセット分があって、温度の上昇と
共に抵抗値がほぼ線形に増大している。この測温抵抗体
Rの抵抗値の変化をR−V変換した特性が図4(B)
で、上記したようにキャンセル用抵抗R4を100Ωに
選択してあるため、0℃の時に0mVとなって、温度の
上昇と共に電圧が非線形に増大しており、オフセット電
圧が疑似的にキャンセルされていることが分かる。この
ため、演算増幅器1の増幅器出力電圧もオフセット電圧
分がなく、0℃の時に0Vで、温度の上昇と共にその出
力電圧が非線形に増大している。
FIG. 4 shows an example of resistance characteristics with respect to temperature of the resistance temperature detector R according to the second embodiment, an example of voltage characteristics with respect to temperature when the resistance value change of the resistance temperature detector R is converted into a voltage, and the operational amplifier 1. FIG. 5 is a diagram showing an example of output voltage characteristics with respect to temperature. As shown in FIG. 4A, the resistance temperature detector R of this example is also 0 ° C.
At that time, there is an offset of 100Ω, and the resistance value increases almost linearly as the temperature rises. FIG. 4B shows the characteristic obtained by RV converting the change in the resistance value of the resistance temperature detector R.
Since the canceling resistor R4 is selected to be 100Ω as described above, the voltage becomes 0 mV at 0 ° C., and the voltage increases non-linearly as the temperature rises, and the offset voltage is canceled in a pseudo manner. I know that Therefore, the amplifier output voltage of the operational amplifier 1 also has no offset voltage and is 0 V at 0 ° C., and the output voltage increases non-linearly as the temperature rises.

【0027】本実施の形態によれば、測温抵抗体Rが0
℃の時に有しているオフセット分をキャンセル用抵抗R
4によってR−V変換時に疑似的にキャンセルすること
ができるため、前実施の形態と同様の効果がある。
According to this embodiment, the resistance temperature detector R is zero.
The offset resistance at the time of ℃
Since it is possible to artificially cancel at the time of R-V conversion by means of 4, there is the same effect as in the previous embodiment.

【0028】尚、この例でも配線抵抗rによる誤差分を
測温抵抗体Rが0℃の時に有している抵抗値に加減算す
ることにより得られる抵抗値をキャンセル用抵抗R4の
値に設定することで、前記配線抵抗の誤差分のキャンセ
ルも含めて、測温抵抗体Rが0℃の時に有しているオフ
セット分をキャンセル用抵抗R4によってR−V変換時
に疑似的にキャンセルすることができ、温度測定精度を
向上させることができる。
Also in this example, the resistance value obtained by adding and subtracting the error due to the wiring resistance r to the resistance value of the resistance temperature detector R at 0 ° C. is set to the value of the canceling resistance R4. By doing so, the offset amount which the resistance temperature detector R has when the temperature measuring resistor R is 0 ° C., including the cancellation of the error of the wiring resistance, can be canceled in a pseudo manner during the R-V conversion by the canceling resistor R4. The temperature measurement accuracy can be improved.

【0029】[0029]

【発明の効果】以上のように、請求項1記載の発明によ
れば、測温抵抗体で生じる電圧降下と逆向きの電圧降下
が生じるキャンセル用抵抗を設けることにより、測温抵
抗体が有しているオフセット分を抵抗−電圧変換時に疑
似的にキャンセルすることができ、次段の増幅器の増幅
率を大きくとって、出力電圧の有効分解能を大きくする
ことができる効果がある。
As described above, according to the first aspect of the invention, the resistance temperature detector is provided by providing the canceling resistor that causes the voltage drop in the opposite direction to the voltage drop generated in the resistance temperature detector. The offset that is generated can be canceled in a pseudo manner during resistance-voltage conversion, and the effective resolution of the output voltage can be increased by increasing the amplification factor of the amplifier in the next stage.

【0030】請求項2記載の発明によれば、測温抵抗体
で生じる電圧降下と逆向きの電圧降下が生じるキャンセ
ル用抵抗を設けることにより、測温抵抗体に有している
オフセット分を抵抗−電圧変換時に疑似的にキャンセル
することができ、次段の増幅器の増幅率を大きくとっ
て、出力電圧の有効分解能を大きくすることができる効
果がある。
According to the second aspect of the present invention, by providing a canceling resistor that causes a voltage drop in the opposite direction to the voltage drop that occurs in the resistance temperature detector, the offset component that the resistance temperature detector has becomes a resistance. -There is an effect that it can be canceled in a pseudo manner at the time of voltage conversion, the amplification factor of the amplifier at the next stage can be increased, and the effective resolution of the output voltage can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態1による温度測定回路を
示す構成図である。
FIG. 1 is a configuration diagram showing a temperature measuring circuit according to a first embodiment of the present invention.

【図2】図1に示した温度測定回路の各部の特性図であ
る。
FIG. 2 is a characteristic diagram of each part of the temperature measurement circuit shown in FIG.

【図3】この発明の実施の形態2による温度測定回路を
示す構成図である。
FIG. 3 is a configuration diagram showing a temperature measuring circuit according to a second embodiment of the present invention.

【図4】図3に示した温度測定回路の各部の特性図であ
る。
4 is a characteristic diagram of each part of the temperature measuring circuit shown in FIG.

【図5】従来の温度測定回路の一例を示す回路図であ
る。
FIG. 5 is a circuit diagram showing an example of a conventional temperature measuring circuit.

【図6】図5に示した温度測定回路の各部の特性図であ
る。
6 is a characteristic diagram of each part of the temperature measurement circuit shown in FIG.

【図7】温度センサとして熱電対を用いた従来の温度測
定回路の各部の特性図である。
FIG. 7 is a characteristic diagram of each part of a conventional temperature measuring circuit using a thermocouple as a temperature sensor.

【図8】温度センサとして熱電対を用いた従来の温度測
定回路と測温抵抗体を用いた温度測定回路の性能の違い
を比較した表図である。
FIG. 8 is a table comparing performance differences between a conventional temperature measuring circuit using a thermocouple as a temperature sensor and a temperature measuring circuit using a resistance temperature detector.

【図9】従来の温度測定回路の他の例を示す回路図であ
る。
FIG. 9 is a circuit diagram showing another example of a conventional temperature measuring circuit.

【図10】図9に示した温度測定回路の各部の特性図で
ある。
10 is a characteristic diagram of each part of the temperature measurement circuit shown in FIG.

【符号の説明】[Explanation of symbols]

1 演算増幅器(増幅器) 2 定電流源 3 定電圧源 R 測温抵抗体 R4 キャンセル用抵抗 1 Operational amplifier (amplifier) 2 Constant current source 3 Constant voltage source R Resistance temperature detector R4 Canceling resistance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 温度によって抵抗値が変化する測温抵抗
体と、この測温抵抗体に電流を供給する第1,第2の定
電流源と、前記測温抵抗体で生じる電圧降下と逆向きの
電圧降下が生じるように前記第2の定電流源から電流を
供給されるキャンセル用抵抗と、前記測温抵抗体の電圧
降下分と前記キャンセル用抵抗の電圧降下分の加算成分
を入力電圧とする増幅器とを備えた温度測定回路。
1. A resistance temperature detector whose resistance value changes according to temperature, first and second constant current sources for supplying a current to the resistance temperature detector, and a voltage drop generated in the resistance temperature detector which is reverse to A canceling resistor to which a current is supplied from the second constant current source so that a voltage drop in the opposite direction is generated, and the addition component of the voltage drop of the resistance temperature detector and the voltage drop of the canceling resistor is input voltage. And a temperature measuring circuit having an amplifier.
【請求項2】 温度によって抵抗値が変化する測温抵抗
体と、この測温抵抗体に電圧を印加する第1,第2の定
電圧源と、前記測温抵抗体を流れる電流と逆向きの電流
が流れるように前記第2の定電圧源から電圧を供給され
るキャンセル用抵抗と、前記測温抵抗体の電圧降下分と
前記キャンセル用抵抗の電圧降下分の加算成分を入力電
圧とする増幅器とを備えた温度測定回路。
2. A resistance temperature detector whose resistance value changes according to temperature, first and second constant voltage sources for applying a voltage to the resistance temperature detector, and a direction opposite to a current flowing through the resistance temperature detector. The input component is the addition component of the canceling resistance supplied with the voltage from the second constant voltage source so that the current flows, and the voltage drop of the resistance temperature detector and the voltage drop of the canceling resistance. A temperature measuring circuit with an amplifier.
JP26285495A 1995-10-11 1995-10-11 Temperature measuring circuit Pending JPH09105680A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26285495A JPH09105680A (en) 1995-10-11 1995-10-11 Temperature measuring circuit
CN 96113062 CN1077683C (en) 1995-10-11 1996-10-08 Temp. measuring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26285495A JPH09105680A (en) 1995-10-11 1995-10-11 Temperature measuring circuit

Publications (1)

Publication Number Publication Date
JPH09105680A true JPH09105680A (en) 1997-04-22

Family

ID=17381555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26285495A Pending JPH09105680A (en) 1995-10-11 1995-10-11 Temperature measuring circuit

Country Status (2)

Country Link
JP (1) JPH09105680A (en)
CN (1) CN1077683C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808425A (en) * 2012-11-08 2014-05-21 中芯国际集成电路制造(上海)有限公司 Method for measuring polycrystalline silicon temperature change

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351616C (en) * 2004-11-12 2007-11-28 华邦电子股份有限公司 Temperature detecting unit and system
CN100445712C (en) * 2005-10-24 2008-12-24 圆创科技股份有限公司 Temp. measuring circuit of corrected by translation conversion reference level
JP6092129B2 (en) * 2014-01-16 2017-03-08 アズビル株式会社 Temperature measuring system and temperature measuring instrument
CN104535217B (en) * 2014-12-30 2018-04-06 光力科技股份有限公司 A kind of multichannel temperature measurement circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808425A (en) * 2012-11-08 2014-05-21 中芯国际集成电路制造(上海)有限公司 Method for measuring polycrystalline silicon temperature change

Also Published As

Publication number Publication date
CN1157409A (en) 1997-08-20
CN1077683C (en) 2002-01-09

Similar Documents

Publication Publication Date Title
US7281846B2 (en) Integrated resistance cancellation in temperature measurement systems
US20060193370A1 (en) Integrated resistance cancellation in temperature measurement systems
CN111837087B (en) Temperature sensor, electronic device, and temperature detection system
US20020190734A1 (en) Signal conditioning circuit for resistive sensors
US4109196A (en) Resistance measuring circuit
US5475623A (en) Method for the conversion of a measured signal, a converter as well as a measurement setup and a pirani measuring circuit
JP3222367B2 (en) Temperature measurement circuit
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
US6011422A (en) Integrated differential voltage amplifier with programmable gain and input offset voltage
JPH09105680A (en) Temperature measuring circuit
US6032526A (en) Heating resistor type air flow-meter of ratio-metric output type and engine control system using said heating resistor type air flow-meter
JP5282370B2 (en) Pressure sensor device
US6107861A (en) Circuit for self compensation of silicon strain gauge pressure transmitters
US7333038B1 (en) Eliminating the effects of the temperature coefficients of series resistance on temperature sensors
KR100202589B1 (en) Temperature measuring device and temperature compensating method thereof
JP3273889B2 (en) Hall element drive circuit
JPS6336447B2 (en)
US20210381917A1 (en) Sensor drive circuit
JPH0979917A (en) Temperature measuring circuit using resistance temperature detector
JPS6350644B2 (en)
JPS5947356B2 (en) Logarithmic conversion circuit for resistance change sensor
JPH0454421A (en) Temperature converting circuit for three-wire type resistance temperature detector
JP2595858B2 (en) Temperature measurement circuit
JPS625291B2 (en)
KR19980084452A (en) Temperature compensation circuit of pressure sensor