JPS6122766B2 - - Google Patents

Info

Publication number
JPS6122766B2
JPS6122766B2 JP52109130A JP10913077A JPS6122766B2 JP S6122766 B2 JPS6122766 B2 JP S6122766B2 JP 52109130 A JP52109130 A JP 52109130A JP 10913077 A JP10913077 A JP 10913077A JP S6122766 B2 JPS6122766 B2 JP S6122766B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
pressure
bridge circuit
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52109130A
Other languages
Japanese (ja)
Other versions
JPS5442166A (en
Inventor
Akira Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10913077A priority Critical patent/JPS5442166A/en
Priority to US05/909,109 priority patent/US4190796A/en
Publication of JPS5442166A publication Critical patent/JPS5442166A/en
Publication of JPS6122766B2 publication Critical patent/JPS6122766B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は圧力に対する出力電圧変化(スパン)
の温度補償を行なつた圧力伝送器に関する。
[Detailed description of the invention] The present invention is based on the output voltage change (span) with respect to pressure.
This invention relates to a pressure transmitter with temperature compensation.

従来の一般的な圧力伝送器は第1図のような電
気回路の構成をとつている。即ち、4個の抵抗
R1〜R4でブリツジ回路を構成し、このうちR1
R2を半導体感圧素子RP1,RP2の抵抗を用い、ま
たブリツジ回路の入力電圧VINは定電圧回路1に
より安定化した直流電圧を用いている。
A conventional general pressure transmitter has an electric circuit configuration as shown in FIG. That is, 4 resistors
R 1 to R 4 constitute a bridge circuit, among which R 1 ,
The resistors of semiconductor pressure-sensitive elements R P1 and R P2 are used as R 2 , and the input voltage V IN of the bridge circuit is a DC voltage stabilized by a constant voltage circuit 1 .

而して、このブリツジ回路において半導体感圧
素子RP1,RP2の抵抗R1,R2は、 R1=R10(1+α1t)+ΔR10(1+β1t) …(1) R2=R20(1+α2t)−ΔR20(1+β2t) …(2) で表わされる。但し、R10,R20は温度0℃、圧力
0のときの抵抗値、ΔR10,ΔR20は温度0℃であ
る圧力が加わつたときに変化する抵抗値、α
α,β,βはそれぞれの抵抗温度係数であ
る。
Therefore, in this bridge circuit, the resistances R 1 and R 2 of the semiconductor pressure sensitive elements R P1 and R P2 are as follows: R 1 = R 10 (1+α 1 t) + ΔR 10 (1 + β 1 t) …(1) R 2 = It is expressed as R 20 (1+α 2 t)−ΔR 20 (1+β 2 t) (2). However, R 10 and R 20 are the resistance values when the temperature is 0°C and the pressure is 0, ΔR 10 and ΔR 20 are the resistance values that change when pressure is applied at the temperature of 0°C, α 1 ,
α 2 , β 1 , β 2 are respective resistance temperature coefficients.

説明を容易にするために、(1)式および(2)式の係
数等を、α=α=α,β=β=β,Δ
R10=ΔR20=ΔRとすると、ある圧力に対する出
力電圧変化(スパン)ΔVoutは、 ΔVout=VINΔR・(1+βt)/(R10+R20
)(1+αt)……(3) で表わされる。このうち、βは通常負の温度係数
を有するが、感圧素子RP1,RP2の製造条件によ
つて0に近づけることができる。しかしながら、
αについては感圧素子RP1,RP2の材質(Si)で
決定される値であるため、温度が上昇するとΔ
Voutは低下する。
For ease of explanation, the coefficients of equations (1) and (2) are expressed as α 12 =α, β 12 =β, Δ
When R 10 = ΔR 20 = ΔR, the output voltage change (span) ΔVout for a certain pressure is ΔVout=V IN ΔR・(1+βt)/(R 10 +R 20
)(1+αt)...(3) Among these, β usually has a negative temperature coefficient, but it can be made close to 0 depending on the manufacturing conditions of the pressure sensitive elements R P1 and R P2 . however,
Since α is a value determined by the material (Si) of the pressure sensitive elements R P1 and R P2 , when the temperature increases, Δ
Vout decreases.

そこで、従来は圧力伝送器におけるスパンの温
度補償を行なうために第2図のような構成をとつ
ている。即ち、この圧力伝送器はブリツジ回路と
定電圧回路1の正極性側との間に負の抵抗温度係
数を有するサーミスタ2を挿入し、定電圧回路1
からブリツジ回路に加える入力電圧VINを温度変
化に対応して変化させて補償するようにしてい
る。
Therefore, in order to compensate for the temperature of the span in a pressure transmitter, a configuration as shown in FIG. 2 has conventionally been adopted. That is, in this pressure transmitter, a thermistor 2 having a negative temperature coefficient of resistance is inserted between the bridge circuit and the positive polarity side of the constant voltage circuit 1.
The input voltage V IN applied to the bridge circuit is changed in response to temperature changes to compensate.

しかし、このスパン補償方法ではサーミスタ2
の温度―抵抗特性を感圧素子RP1,RP2の温度―
抵抗特性に合致させることは極めて困難であり、
このためスパン温度補償は可能としてもその補償
範囲は非常に狭い範囲に限定されている。
However, in this span compensation method, the thermistor 2
The temperature of the resistance characteristics of the pressure sensitive elements R P1 and R P2
It is extremely difficult to match the resistance characteristics.
For this reason, even if span temperature compensation is possible, the compensation range is limited to a very narrow range.

また、スパンの温度補償方法の他の例として、
ブリツジ回路を定電流で駆動することも考えられ
るが、この場合には零点及びスパンの調整や感圧
素子RP1,RP2の非直線性補償回路が複雑になつ
て得策な方法とはいえない。
In addition, as another example of the span temperature compensation method,
It is possible to drive the bridge circuit with a constant current, but in this case, the adjustment of the zero point and span and the nonlinearity compensation circuit of the pressure sensitive elements R P1 and R P2 become complicated, so it is not a good method. .

本発明は上記実情にかんがみてなされたもので
あつて、定電圧回路を構成する演算増幅器の入力
側に、ブリツジ回路を構成する感圧素子の抵抗温
度係数と同一又はより大きな抵抗温度係数を有す
る定電流の流入する抵抗素子を接続し、これによ
つて広い温度変化範囲にわたつて良好なスパン温
度補償を行なうようにする圧力伝送器を提供する
ものである。
The present invention has been made in view of the above-mentioned circumstances, and has a temperature coefficient of resistance equal to or larger than the temperature coefficient of resistance of a pressure-sensitive element forming a bridge circuit on the input side of an operational amplifier forming a constant voltage circuit. A pressure transmitter is provided in which a resistive element through which a constant current flows is connected, thereby achieving good span temperature compensation over a wide temperature change range.

以下、図面を参照して本発明の一実施例を説明
する。第3図に示すブリツジ回路11は従来と同
様に感圧素子RP1,RP2の抵抗R1,R2と通常の固
定抵抗R3,R4とで構成するとともに、このブリ
ツジ回路11の給電端子12,13間に入力電圧
INを給電する定電圧回路14を接続している。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. The bridge circuit 11 shown in FIG. 3 is composed of resistances R 1 and R 2 of pressure sensing elements R P1 and R P2 and ordinary fixed resistances R 3 and R 4 as in the conventional case, and the bridge circuit 11 is supplied with power. A constant voltage circuit 14 that supplies input voltage V IN is connected between terminals 12 and 13.

この定電圧回路14にあつては、ブリツジ回路
11の入力電圧VINを得るための直流電圧発生源
としての電源回路15と、同回路15の出力端子
間に接続された定電流源16および感圧素子RP
,RP2の抵抗温度係数と同一またはそれより大
きい抵抗温度係数を持つ抵抗素子17よりなるス
パン温度補償回路と、同回路における抵抗素子1
7の両端電圧VREFとブリツジ回路11の給電端
子間に挿入された分圧抵抗18,19によつて得
た分電圧とを差動増幅する演算増幅器20と、こ
の演算増幅器20の出力で入力電圧VINを制御す
る半導体制御素子21とで構成されている。
This constant voltage circuit 14 includes a power supply circuit 15 as a DC voltage generation source for obtaining the input voltage V IN of the bridge circuit 11, a constant current source 16 connected between the output terminals of the circuit 15, and a sensor. Pressure element R P
1 , a span temperature compensation circuit consisting of a resistance element 17 having a resistance temperature coefficient equal to or larger than the resistance temperature coefficient of R P2 , and a resistance element 1 in the same circuit.
An operational amplifier 20 differentially amplifies the voltage V REF across the terminal 7 and the divided voltage obtained by the voltage dividing resistors 18 and 19 inserted between the power supply terminals of the bridge circuit 11. It is composed of a semiconductor control element 21 that controls the voltage V IN .

而して、上記構成の圧力伝送器ではブリツジ回
路11の入力電圧VINと演算増幅器20の正入力
端子に供給する抵抗素子17両端電圧VREFとは
次のような式で表わすことができる。
In the pressure transmitter having the above configuration, the input voltage V IN of the bridge circuit 11 and the voltage V REF across the resistance element 17 supplied to the positive input terminal of the operational amplifier 20 can be expressed by the following equation.

IN=R+R/RREF ……(4) 従つて、(3)式および(4)式よりある圧力に対する
出力電圧変化(スパン)ΔVoutを求めると、 ΔVout=ΔR/(R10+R20)・R+R/R
・1+βt/1+αtVREF… (5) となる。R5,R6は分圧抵抗18,19の抵抗値
である。
V IN = R 5 + R 6 / R 6 V REF ...(4) Therefore, when calculating the output voltage change (span) ΔVout for a certain pressure from equations (3) and (4), ΔVout = ΔR/(R 10 +R 20 )・R 5 +R 6 /R
6・1+βt/1+αtV REF … (5) R 5 and R 6 are the resistance values of the voltage dividing resistors 18 and 19.

従つて、(5)式より明らかなように、VREF
1+αt/1+βtなる温度係数を持たせればスパンの
温度補 償を行なうことが可能となる。このためには、温
度変化に際し定電流源16で一定の電流を抵抗素
子17に流し、これにより抵抗素子17の温度係
数が1+αt/1+βtになるようにすればよい。つま
り、第 3図に示すように電源回路15の出力端子間に定
電流源16と抵抗素子17との直列回路を挿入
し、これらの共通部を演算増幅器20の正入力端
に接続し、抵抗素子17の両端電圧を加えればス
パンの温度補償が可能になる。しかも、抵抗素子
17の抵抗温度係数にあつては、例えばβ=0の
ときには感圧素子RP1,RP2と同一の抵抗温度係
数のものを、またβ<0のときには感圧素子RP
1,RP2より抵抗温度係数の大きいものを用いれ
ばよい。
Therefore, as is clear from equation (5), if V REF has a temperature coefficient of 1+αt/1+βt, it is possible to perform temperature compensation for the span. To this end, when the temperature changes, a constant current source 16 causes a constant current to flow through the resistance element 17, so that the temperature coefficient of the resistance element 17 becomes 1+αt/1+βt. That is, as shown in FIG. 3, a series circuit consisting of a constant current source 16 and a resistor element 17 is inserted between the output terminals of the power supply circuit 15, and their common part is connected to the positive input terminal of the operational amplifier 20. By applying a voltage across the element 17, temperature compensation of the span becomes possible. Moreover, for the resistance temperature coefficient of the resistance element 17, for example, when β=0, the resistance temperature coefficient is the same as that of the pressure sensitive elements R P1 and R P2 , and when β<0, the resistance temperature coefficient of the pressure sensitive element R P
1 , a material with a higher temperature coefficient of resistance than R P2 may be used.

一般に半導体感圧素子RP1,RP2は、材料とし
てシリコン単結晶を用い、かつその抵抗温度係数
は2000〜2500ppm程度であるので、抵抗素子1
7にNiやCu等の比較的温度―抵抗特性の直線的
なものを使用すれば、β<0である場合でも広い
温度変化範囲にわたつて良好なスパン温度補償を
行なうことができる。
Generally, the semiconductor pressure-sensitive elements R P1 and R P2 use silicon single crystal as a material, and the temperature coefficient of resistance is about 2000 to 2500 ppm, so the resistance element 1
If a material with relatively linear temperature-resistance characteristics such as Ni or Cu is used for 7, good span temperature compensation can be performed over a wide temperature change range even when β<0.

次に、第4図は本発明圧力伝送器の他の例であ
つて、これはスパンの温度補償用抵抗素子17に
並列に可変抵抗22を接続したものである。この
ような構成にすれば、抵抗素子17に並列に接続
した可変抵抗22を可変することにより、スパン
の温度補償値を任意に変えることができる。可変
抵抗22は抵抗温度係数の小さいものでもよい。
Next, FIG. 4 shows another example of the pressure transmitter of the present invention, in which a variable resistor 22 is connected in parallel to a span temperature-compensating resistance element 17. With such a configuration, the temperature compensation value of the span can be arbitrarily changed by varying the variable resistor 22 connected in parallel to the resistance element 17. The variable resistor 22 may have a small resistance temperature coefficient.

なお、第3図および第4図に示す圧力伝送器は
2つの圧力の差圧を伝送する圧力伝送器にも適用
できることは勿論である。
It goes without saying that the pressure transmitter shown in FIGS. 3 and 4 can also be applied to a pressure transmitter that transmits the differential pressure between two pressures.

以上詳記したように本発明によれば、ブリツジ
回路に入力電圧を供給する定電圧回路を構成する
電圧制御用演算増幅器の入力側に、前記ブリツジ
回路を構成する感圧素子の抵抗温度係数と同一又
はより大きな抵抗温度係数の有する定電流の供給
を受ける抵抗素子を接続し、この抵抗素子両端に
得られる電圧を用いて電圧制御するようにしたの
で、広い温度変化範囲にわたつて良好なスパン温
度補償を行なうことができる。また、演算増幅器
を用いた従来の定電圧回路に定電流源と比較的容
易に製造できる抵抗素子とを付加すればよく、従
つて、簡単な回路構成で実現できる。
As described in detail above, according to the present invention, the resistance temperature coefficient of the pressure sensitive element constituting the bridge circuit is connected to the input side of the voltage control operational amplifier constituting the constant voltage circuit that supplies the input voltage to the bridge circuit. By connecting a resistor element that receives a constant current with the same or larger resistance temperature coefficient and controlling the voltage using the voltage obtained across this resistor element, a good span can be achieved over a wide temperature change range. Temperature compensation can be performed. Further, it is sufficient to add a constant current source and a relatively easily manufactured resistance element to a conventional constant voltage circuit using an operational amplifier, and therefore, it can be realized with a simple circuit configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の圧力伝送器の回路
構成図、第3図は本発明に係る圧力伝送器の回路
構成図、第4図は本発明の他の実施例を説明する
圧力伝送器の回路構成図である。 11…ブリツジ回路、RP1,RP2…感圧素子、
R1〜R4…抵抗、14…定電圧回路、15…電源
回路、16…定電流源、17…抵抗素子、18,
19…分圧抵抗、20…演算増幅器、22…可変
抵抗。
1 and 2 are circuit configuration diagrams of a conventional pressure transmitter, FIG. 3 is a circuit configuration diagram of a pressure transmitter according to the present invention, and FIG. 4 is a pressure transmission diagram illustrating another embodiment of the present invention. FIG. 3 is a circuit configuration diagram of the device. 11... Bridge circuit, R P1 , R P2 ... Pressure sensitive element,
R1 to R4 ...Resistor, 14...Constant voltage circuit, 15...Power supply circuit, 16...Constant current source, 17...Resistance element, 18,
19... Voltage dividing resistor, 20... Operational amplifier, 22... Variable resistor.

Claims (1)

【特許請求の範囲】 1 半導体感圧素子の抵抗を用いてブリツジ回路
を構成し圧力を電気信号に変換して伝送する圧力
伝送器において、 前記ブリツジ回路に入力電圧を供給する定電圧
回路を構成する電圧制御用演算増幅器の一方入力
側に前記ブリツジ回路の入力電圧給電端子間に挿
入された分圧抵抗回路の出力端を、他方入力側に
所定の定電流を出力する定電流源および抵抗素子
を直列接続してなるスパン温度補償回路の出力端
をそれぞれ接続し、前記抵抗素子に前記定電流源
から所定の定電流を与えて、該抵抗素子が前記半
導体感圧素子の抵抗温度係数と同一又はそれより
も大きな抵抗温度係数となるように設定し、かつ
前記演算増幅器の出力を半導体制御素子を通して
前記ブリツジ回路の入力電圧として得ることによ
り、スパンの温度補償を行うようにしたことを特
徴とする圧力伝送器。
[Scope of Claims] 1. A pressure transmitter that configures a bridge circuit using a resistor of a semiconductor pressure-sensitive element and converts pressure into an electrical signal and transmits the same, comprising: a constant voltage circuit that supplies an input voltage to the bridge circuit. The output terminal of a voltage dividing resistor circuit inserted between the input voltage supply terminals of the bridge circuit is connected to one input side of the operational amplifier for voltage control, and the constant current source and resistor element output a predetermined constant current to the other input side. are connected in series, and a predetermined constant current is applied from the constant current source to the resistive element, so that the resistive element has the same resistance temperature coefficient as the semiconductor pressure sensitive element. or a larger resistance temperature coefficient, and the output of the operational amplifier is obtained as the input voltage of the bridge circuit through a semiconductor control element, thereby performing span temperature compensation. pressure transmitter.
JP10913077A 1977-06-02 1977-09-10 Pressure transmitter Granted JPS5442166A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10913077A JPS5442166A (en) 1977-09-10 1977-09-10 Pressure transmitter
US05/909,109 US4190796A (en) 1977-06-02 1978-05-24 Pressure detecting apparatus having linear output characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10913077A JPS5442166A (en) 1977-09-10 1977-09-10 Pressure transmitter

Publications (2)

Publication Number Publication Date
JPS5442166A JPS5442166A (en) 1979-04-03
JPS6122766B2 true JPS6122766B2 (en) 1986-06-03

Family

ID=14502326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10913077A Granted JPS5442166A (en) 1977-06-02 1977-09-10 Pressure transmitter

Country Status (1)

Country Link
JP (1) JPS5442166A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138305U (en) * 1980-03-19 1981-10-20
JPH0242790Y2 (en) * 1984-10-12 1990-11-14
DE3502008A1 (en) * 1985-01-23 1986-07-24 Standard Elektrik Lorenz Ag, 7000 Stuttgart EXPANSION SENSOR
JPH01110343U (en) * 1988-01-18 1989-07-25

Also Published As

Publication number Publication date
JPS5442166A (en) 1979-04-03

Similar Documents

Publication Publication Date Title
JP3071202B2 (en) Semiconductor pressure sensor amplification compensation circuit
US4516865A (en) Resistance thermometer
US5795069A (en) Temperature sensor and method
US3967188A (en) Temperature compensation circuit for sensor of physical variables such as temperature and pressure
JPH0675247B2 (en) Air flow detector
JPS6142876B2 (en)
US5959538A (en) Force sensing resistor conditioning circuit
JPH0664080B2 (en) Temperature compensation circuit for flow sensor
US4109196A (en) Resistance measuring circuit
JPH0235251B2 (en)
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
JPS6122766B2 (en)
US3861214A (en) Temperature measuring instrument
US6107861A (en) Circuit for self compensation of silicon strain gauge pressure transmitters
US4475071A (en) Speed control apparatus for d.c. motor
JPS6255629B2 (en)
KR100261315B1 (en) Signal conditioning circuit for pressure sensor
JPH0618540A (en) Wind velocity sensor
JPH0142359Y2 (en)
JPH0414512B2 (en)
JP2855974B2 (en) Wind speed sensor
JPH0526995Y2 (en)
JPS60152912A (en) Temperature compensating circuit
JPH08307160A (en) Temperature compensation circuit
RU1778556C (en) Device for measuring temperature difference