WO2022176388A1 - 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤 - Google Patents
表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤 Download PDFInfo
- Publication number
- WO2022176388A1 WO2022176388A1 PCT/JP2021/047691 JP2021047691W WO2022176388A1 WO 2022176388 A1 WO2022176388 A1 WO 2022176388A1 JP 2021047691 W JP2021047691 W JP 2021047691W WO 2022176388 A1 WO2022176388 A1 WO 2022176388A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silica particles
- phase silica
- treated
- vapor
- vapor phase
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 202
- 239000012808 vapor phase Substances 0.000 title claims abstract description 122
- 239000000654 additive Substances 0.000 title claims abstract description 24
- 230000000996 additive effect Effects 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000011161 development Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 title abstract description 37
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000002245 particle Substances 0.000 claims abstract description 45
- WYUIWUCVZCRTRH-UHFFFAOYSA-N [[[ethenyl(dimethyl)silyl]amino]-dimethylsilyl]ethene Chemical compound C=C[Si](C)(C)N[Si](C)(C)C=C WYUIWUCVZCRTRH-UHFFFAOYSA-N 0.000 claims abstract description 11
- -1 vinyldimethylsilyl groups Chemical group 0.000 claims abstract description 8
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 claims abstract description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 75
- 239000002994 raw material Substances 0.000 claims description 26
- 230000002776 aggregation Effects 0.000 claims description 22
- 238000004220 aggregation Methods 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 16
- 229910021485 fumed silica Inorganic materials 0.000 claims description 15
- 229920001225 polyester resin Polymers 0.000 claims description 8
- 239000004645 polyester resin Substances 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 7
- 238000007561 laser diffraction method Methods 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- 238000003756 stirring Methods 0.000 description 21
- 239000000377 silicon dioxide Substances 0.000 description 17
- 239000000843 powder Substances 0.000 description 15
- 238000004381 surface treatment Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- WKWOFMSUGVVZIV-UHFFFAOYSA-N n-bis(ethenyl)silyl-n-trimethylsilylmethanamine Chemical compound C[Si](C)(C)N(C)[SiH](C=C)C=C WKWOFMSUGVVZIV-UHFFFAOYSA-N 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 241000519995 Stachys sylvatica Species 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 150000003377 silicon compounds Chemical class 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 108091008695 photoreceptors Proteins 0.000 description 6
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 3
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910021331 inorganic silicon compound Inorganic materials 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- YVHUUEPYEDOELM-UHFFFAOYSA-N 2-ethylpropanedioic acid;piperidin-1-id-2-ylmethylazanide;platinum(2+) Chemical compound [Pt+2].[NH-]CC1CCCC[N-]1.CCC(C(O)=O)C(O)=O YVHUUEPYEDOELM-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- MTYVUVVTUCVNRX-UHFFFAOYSA-N N-ethenylsilyl-N-trimethylsilylmethanamine Chemical compound CN([SiH2]C=C)[Si](C)(C)C MTYVUVVTUCVNRX-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- YTJUXOIAXOQWBV-UHFFFAOYSA-N butoxy(trimethyl)silane Chemical compound CCCCO[Si](C)(C)C YTJUXOIAXOQWBV-UHFFFAOYSA-N 0.000 description 1
- 235000012730 carminic acid Nutrition 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- BZCJJERBERAQKQ-UHFFFAOYSA-N diethyl(dipropoxy)silane Chemical compound CCCO[Si](CC)(CC)OCCC BZCJJERBERAQKQ-UHFFFAOYSA-N 0.000 description 1
- UCXUKTLCVSGCNR-UHFFFAOYSA-N diethylsilane Chemical compound CC[SiH2]CC UCXUKTLCVSGCNR-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HTDJPCNNEPUOOQ-UHFFFAOYSA-N hexamethylcyclotrisiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O1 HTDJPCNNEPUOOQ-UHFFFAOYSA-N 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- GYZQBXUDWTVJDF-UHFFFAOYSA-N tributoxy(methyl)silane Chemical compound CCCCO[Si](C)(OCCCC)OCCCC GYZQBXUDWTVJDF-UHFFFAOYSA-N 0.000 description 1
- PPDADIYYMSXQJK-UHFFFAOYSA-N trichlorosilicon Chemical compound Cl[Si](Cl)Cl PPDADIYYMSXQJK-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09708—Inorganic compounds
- G03G9/09725—Silicon-oxides; Silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3081—Treatment with organo-silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/309—Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09708—Inorganic compounds
- G03G9/09716—Inorganic compounds treated with organic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
- G03G9/113—Developers with toner particles characterised by carrier particles having coatings applied thereto
- G03G9/1138—Non-macromolecular organic components of coatings
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Definitions
- the present invention relates to surface-treated vapor phase silica particles, a method for producing the same, and an external toner additive for developing electrostatic images used for developing electrostatic images in electrophotography, electrostatic recording, and the like.
- Dry developers used in electrophotography and the like can be broadly classified into one-component developers that use toner itself in which a coloring agent is dispersed in a binder resin, and two-component developers that mix the toner with a carrier.
- the developers When these developers are used for copying operations, the developers must be excellent in fluidity, caking resistance, fixability, chargeability, cleanability, etc. in order to have process suitability. .
- inorganic fine particles are often used as external toner additives.
- fumed silica has a small primary particle size and is known to have excellent functions as an external toner additive due to its surface treatment to control chargeability. (Patent Documents 1, 2 and 3).
- vapor-phase silica has a small primary particle size, it easily aggregates, and some aggregate particle sizes range from 10 ⁇ m to 200 ⁇ m or more.
- Such agglomerated particles disperse in the toner while receiving a strong frictional force in the process of dispersing them into the toner.
- the presence of such agglomerated particles in the toner reduces fluidity and causes problems such as white spots appearing in printed images. there were.
- Patent Document 4 a method of pulverizing and classifying aggregated particles generated after hydrophobic treatment and using only the fine powder has been proposed (Patent Document 4).
- the classifying and pulverizing as described above is not a preferable method because the manufacturing efficiency is low and the cost is high.
- JP 2004-145325 A Japanese Unexamined Patent Application Publication No. 2006-99006 JP 2007-34224 A JP 2010-085837 A
- the present invention has been made in view of the above circumstances, and provides surface-treated vapor-phase silica particles that contain few coarsely aggregated particles and can impart good fluidity when added to toner, a method for producing the same, and the surface-treated vapor.
- An object of the present invention is to provide an external additive for toner comprising phase method silica particles.
- a method for producing surface-treated vapor-phase silica particles comprising: (A1): 1,3-divinyl-1,1,3,3-tetramethyldisilazane is added to raw material vapor phase silica particles, and vinyldimethylsilyl groups are introduced onto the surfaces of the raw material vapor phase silica particles. (A2): adding hexamethyldisilazane to the pretreated silica particles and introducing trimethylsilyl groups onto the surface of the pretreated silica particles to obtain surface-treated vapor phase silica particles; A method for producing surface-treated vapor-phase silica particles is provided.
- the BET specific surface area of the raw vapor phase silica particles is 40 to 400 m 2 /g.
- Such raw vapor-phase silica particles are excellent in dispersibility and are less likely to agglomerate during surface treatment with a silazane compound.
- the added amount (g) of the 1,3-divinyl-1,1,3,3-tetramethyldisilazane is ⁇ Amount (g) of the raw material vapor-phase silica particles used in the step (A1) ⁇ BET specific surface area (m 2 /g) of the raw material vapor-phase silica particles ⁇ /B (B is 5,000 to 100 , 000.) It is preferable to set it as the amount represented by.
- step (A2) If the amount of 1,3-divinyl-1,1,3,3-tetramethyldisilazane to be added is within such a range, it is preferable in terms of cost, and hydrophobization by hexamethyldisilazane in step (A2) is achieved. Processing efficiency can be improved.
- the added amount (g) of the hexamethyldisilazane is ⁇ Amount (g) of the pretreated silica particles used in the step (A2) ⁇ BET specific surface area (m 2 /g) of the raw vapor phase silica particles ⁇ /C (C is a number from 150 to 3,000 is.) It is preferable to set it as the amount represented by.
- the surface-treated vapor phase silica particles are obtained by treating the surface of vapor phase silica particles with 1,3-divinyl-1,1,3,3-tetramethyldisilazane and hexamethyldisilazane.
- the surface-treated vapor-phase silica particles have a BET specific surface area of 30 m 2 /g or more and less than 400 m 2 /g,
- the proportion of particles of 1.5 ⁇ m or more, which is obtained from the volume-based particle size distribution of the surface-treated vapor-phase silica particles by a laser diffraction method, is less than 10%
- the degree of methanol hydrophobicity of the surface-treated vapor-phase silica particles is 68% or more and 78% or less
- the aggregation degree of the mixture is 20% or less. It provides surface-treated vapor phase silica particles.
- surface-treated vapor-phase silica particles having such characteristics can be used.
- the present invention also provides a toner external additive for electrostatic charge image development, which contains the surface-treated vapor phase silica particles.
- the surface-treated vapor-phase silica particles of the present invention can impart good fluidity and printing properties to the toner.
- the present inventors found that by surface-treating fumed silica particles with vinyltetramethyldisilazane and hexamethyldisilazane, aggregation is reduced, and furthermore, when toner is added, The present inventors have also found that surface-treated vapor phase silica particles can be obtained which have excellent dispersibility and are free from defects in printed images, and have completed the present invention.
- a method for producing surface-treated vapor-phase silica particles comprising: (A1): 1,3-divinyl-1,1,3,3-tetramethyldisilazane is added to raw material vapor phase silica particles, and vinyldimethylsilyl groups are introduced onto the surfaces of the raw material vapor phase silica particles. (A2): adding hexamethyldisilazane to the pretreated silica particles and introducing trimethylsilyl groups onto the surface of the pretreated silica particles to obtain surface-treated vapor phase silica particles; It is a method for producing surface-treated vapor phase silica particles having a step of obtaining.
- Vapor-phase silica particles (vapor-phase silica fine particles) used as a raw material in the present invention are also called dry-process silica, and are produced by flame hydrolysis of silicon compounds, oxidation by combustion in flames, or reaction of these reactions. It is not particularly limited as long as it is produced by a method of combined use. Among them, vapor phase silica particles produced by a flame hydrolysis method are preferably used.
- Commercially available products include "Aerosil” manufactured by Nippon Aerosil Co., Ltd. or Evonik Degussa Corporation, "Cabosil” manufactured by Cabot Corporation, “HDK” manufactured by Wacker Corporation, and “Reoloseal” manufactured by Tokuyama Corporation.
- a raw material silicon compound gas such as silicon tetrachloride is introduced into a mixing chamber of a combustion burner together with an inert gas, and mixed with hydrogen and air to obtain a predetermined ratio. is produced by burning this mixed gas at a temperature of 1,000 to 3,000° C. in a reaction chamber, and after cooling, the produced silica is collected by a filter.
- inorganic silicon compounds and organic silicon compounds can be mentioned as the silicon compound used as the raw material for the vapor-phase silica particles.
- inorganic silicon compounds such as silicon tetrachloride, silicon trichloride and silicon dichloride; siloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane and octamethyltrisiloxane; Alkoxysilanes such as methyltrimethoxysilane, tetramethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, methyltributoxysilane, diethyldipropoxysilane, trimethylbutoxysilane, tetramethylsilane, diethylsilane, hexamethyldisilazane ,
- the hydrolysis and combustion decomposition of such a silicon compound in a flame are carried out by purifying the silicon compound by distillation or the like, if necessary, and then heating and evaporating it, followed by a stream of inert gas such as nitrogen gas. It may be introduced into a flame such as an oxyhydrogen flame by a method of entrainment or a method of atomizing a silicon compound and supplying it into the flame, and reacting in this flame. , methane gas, etc. may be used as the combustion support gas. As this combustion support gas, any gas can be used as long as it does not leave any residue, and there is no particular limitation. Silica produced by hydrolysis or combustion decomposition of these silicon compounds is collected by known methods such as bag filters and cyclones.
- the raw vapor phase silica particles in the present invention preferably have a BET specific surface area of 40 to 400 m 2 /g. Within such a range, the dispersibility is excellent, and aggregation is less likely to occur during surface treatment with a silazane compound, which will be described later.
- the raw vapor-phase silica particles may be used singly or in combination of two or more.
- the method for producing surface-treated vapor phase silica particles of the present invention comprises the following steps (A1) and (A2).
- Step (A1) A step of introducing a vinyldimethylsilyl unit onto the silica surface
- Step (A2) A step of introducing a trimethylsilyl unit onto the silica surface
- Step (A1) A step of introducing a vinyldimethylsilyl unit onto the silica surface
- Step (A1) comprises adding 1,3-divinyl-1,1,3,3-tetramethyldisilazane (hereinafter referred to as Divinyltetramethyldisilazane) is added to introduce vinyldimethylsilyl groups onto the surface of the raw material vapor-phase silica particles to obtain pretreated silica particles.
- Divinyltetramethyldisilazane 1,3-divinyl-1,1,3,3-tetramethyldisilazane
- the surface treatment in the following step (A2) proceeds more uniformly and to a high degree.
- vapor phase silica particles may be used as the raw material vapor phase silica particles.
- step (A1) As the surface treatment method of the raw material vapor-phase silica particles with divinyltetramethyldisilazane in step (A1), a dry method and a wet method that are commonly used for surface treatment of powder can be used. From the viewpoint of productivity, it is preferable to use a dry method.
- a method of adding divinyltetramethyldisilazane in the dry method the raw material vapor-phase silica particles are stirred in a reactor, and the particles are dropped, sprayed, or the like. be able to.
- Divinyltetramethyldisilazane may be used as it is, or diluted with a solvent such as toluene, xylene or hexane.
- Water may be added in the form of steam, in addition to the method of dropping or spraying water while stirring the raw material vapor-phase silica particles in the reactor.
- the amount of water to be added to the raw material vapor phase silica particles is preferably an amount calculated by the following formula.
- Amount of water added (g) ⁇ amount (g) of starting vapor-phase silica particles used in step (A1) x BET specific surface area of starting vapor-phase silica particles (m 2 /g) ⁇ /A
- A is preferably a number from 300 to 200,000, more preferably a number from 500 to 2,500.
- A is 300 or more, aggregation of raw material vapor-phase silica particles due to water can be suppressed, which is preferable.
- A is 200,000 or less, the reactivity of the silazane compound can be further increased, which is preferable.
- the amount of divinyltetramethyldisilazane to be added is preferably an amount calculated by the following formula with respect to the raw material vapor phase silica particles.
- Addition amount (g) of divinyltetramethyldisilazane ⁇ Amount (g) of raw vapor phase silica particles used in step (A1) ⁇ BET specific surface area (m 2 /g) of raw vapor phase silica particles ⁇ /B
- B is preferably a number from 5,000 to 100,000, more preferably a number from 10,000 to 80,000.
- B is 5,000 or more, it is preferable in terms of cost, and when B is 100,000 or less, it is preferable because the efficiency of hydrophobizing treatment with hexamethyldisilazane in step (A2) can be enhanced.
- step (A1) the reaction between the raw material fumed silica particles and divinyltetramethyldisilazane can be applied to silica surface treatment conditions with a general silazane compound, and the reaction proceeds even at room temperature.
- the mixture is preferably stirred at 50-70° C. for 0.5-3 hours to allow the reaction to proceed.
- Step (A2) A step of introducing trimethylsilyl units onto the silica surface. is a step of obtaining hydrophobized surface-treated vapor-phase silica particles.
- the surface treatment method of the pretreated silica particles with hexamethyldisilazane in step (A2) a dry method and a wet method used for surface treatment of general powders can be used. From the viewpoint of productivity, it is preferable to use a dry method.
- a method for adding hexamethyldisilazane in the dry method the pretreated silica particles can be added dropwise or sprayed while being stirred in a reactor.
- Hexamethyldisilazane may be used as it is, or diluted with a solvent such as toluene, xylene or hexane.
- step (A2) water is preferably contained on the silica surface because the surface treatment efficiency is higher. It is sufficient to add water in step (A1) as described above, but it may be added separately in step (A2).
- the amount of hexamethyldisilazane to be added is preferably the amount calculated by the following formula with respect to the pretreated silica particles.
- Addition amount (g) of hexamethyldisilazane ⁇ amount (g) of pretreated silica particles used in step (A2) ⁇ BET specific surface area (m 2 /g) of raw material vapor phase silica particles ⁇ /C
- C is preferably a number from 150 to 3,000, more preferably a number from 200 to 1,000.
- C is 150 or more, the generation of aggregates during the reaction can be suppressed, and when C is 3,000 or less, the silica particles can be made more hydrophobic.
- step (A2) The reaction between the pretreated silica particles and hexamethyldisilazane in step (A2) can be applied to silica surface treatment conditions with a general silazane compound, and the reaction proceeds even at room temperature, but hexamethyldisilazane was added. After that, the mixture is preferably stirred at 50 to 100° C. for 0.5 to 3 hours to allow the reaction to proceed.
- Step (A3) Step of drying surface-treated vapor-phase silica particles
- the surface-treated vapor-phase silica particles are air-dried and allowed to cool. etc., but it is preferable to further include a step (A3): a step of drying the surface-treated vapor phase silica particles.
- the drying conditions are not particularly limited, but it is preferable to dry at 140° C. to 250° C. for about 0.5 to 3 hours under a nitrogen stream.
- the surface-treated vapor-phase silica particles obtained by the method for producing surface-treated vapor-phase silica particles of the present invention are Surface-treated vapor-phase silica particles obtained by treating the surface of vapor-phase silica particles with 1,3-divinyl-1,1,3,3-tetramethyldisilazane and hexamethyldisilazane, (1) the surface-treated vapor-phase silica particles have a BET specific surface area of 30 m 2 /g or more and less than 400 m 2 /g; (2) The proportion of particles of 1.5 ⁇ m or more, which is obtained from the volume-based particle size distribution of the surface-treated vapor-phase silica particles measured by laser diffraction, is less than 10%; (3) the degree of methanol hydrophobicity of the surface-treated vapor-phase silica particles is 68% or more and 78% or less, and (4) When 1 part by mass of surface-treated vapor-phase silica
- the BET specific surface area depends on the primary particle size, and is preferably 40 to 200 m 2 /g. If the BET specific surface area is less than 30 m 2 /g, when it is added to the toner as an external toner additive for electrostatic charge image development, the dispersibility in the toner is poor and the fluidity improving effect is poor. It becomes a thing which agglomerates easily when it is.
- the volume-based particle size distribution by laser diffraction method is a 0.5 mass% methanol dispersion of surface-treated vapor-phase silica particles (dispersed by irradiating ultrasonic waves with an output of 30 W / L for 10 minutes. It can be a volume-based particle size distribution by the laser diffraction method of the material). If the proportion of particles of 1.5 ⁇ m or more is 10% or more, there are many large agglomerated particles, and when added to toner as an external toner additive for electrostatic charge image development, dispersibility in toner is poor, resulting in toner fluidity. and poor print quality. This ratio is more preferably 8% or less, particularly preferably 5% or less.
- the aggregation degree of the mixture of the polyester resin particles and the surface-treated fumed silica particles represents the aggregation of the toner when the silica particles are dispersed in the toner.
- the amount of aggregation of toner is small and can be evaluated as good.
- the aggregation degree of a mixture of 100 parts by mass of polyester resin particles having a volume median diameter of 5 to 8 ⁇ m and 1 part by mass of surface-treated vapor-phase silica particles is higher than 20%, the surface-treated vapor-phase silica particles are electrostatically charged.
- the degree of cohesion is preferably 10% or less.
- the aggregation degree in this invention refers to what was measured on condition of the following.
- Aggregation degree (%) (W 1 + 0.6 x W 2 + 0.2 x W 3 )/2 x 100
- W 1 Amount remaining on 150 ⁇ m mesh sieve
- W 2 Amount remaining on 75 ⁇ m mesh sieve
- W 3 Amount remaining on 45 ⁇ m mesh sieve
- the present invention also provides a toner external additive for electrostatic charge image development containing the surface-treated vapor phase silica particles.
- the surface-treated fumed silica particles of the present invention can impart good fluidity and printing properties to the toner when used as a toner external additive.
- Example 1-1 (Production of surface-treated vapor phase silica particles) [Example 1-1] 240 g of fumed silica particles having a BET specific surface area of 50 m 2 /g were introduced into a 5-liter reactor equipped with a stirrer, an atomizer and a thermometer. After replacing the air in the reactor with dry nitrogen, 18 g of water was sprayed with a sprayer while stirring. After stirring at 25°C for 1 hour, 0.6 g of divinyltetramethyldisilazane was sprayed and stirred at 60°C for 1 hour. After once cooling to 25° C., 60 g of hexamethyldisilazane was sprayed, stirred at 60° C. for 1 hour, and further dried at 150° C. for 3 hours while stirring under a nitrogen stream. By cooling this, 243 g of white powder of surface-treated vapor-phase silica particles (I) was obtained.
- Example 1-1 the same procedure as in Example 1-1 was performed except that the amount of divinyltetramethyldisilazane added was changed to 1.2 g, and 244 g of white powder of surface-treated vapor-phase silica particles (II) was obtained. got
- Example 1-3 The same procedure as in Example 1-1 except that vapor-phase silica particles with a BET specific surface area of 90 m 2 /g were used instead of the vapor-phase silica particles with a BET specific surface area of 50 m 2 /g. to obtain 242 g of white powder of surface-treated vapor-phase silica particles (III).
- Example 1-4 148 g of fumed silica fine particles having a BET specific surface area of 130 m 2 /g were introduced into a 5-liter reactor equipped with a stirrer, a sprayer and a thermometer. After replacing the air in the reactor with dry nitrogen, 13 g of water was sprayed with a sprayer while stirring. After stirring at 25°C for 1 hour, 0.4 g of divinyltetramethyldisilazane was sprayed and stirred at 60°C for 1 hour. After once cooling to 25° C., 60 g of hexamethyldisilazane was sprayed, stirred at 60° C. for 1 hour, and further dried at 150° C. for 3 hours while stirring under a nitrogen stream. By cooling this, 51 g of white powder of surface-treated vapor phase silica particles (IV) was obtained.
- Example 1-5 The same procedure as in Example 1-4 except that in Example 1-4, gas-phase silica fine particles having a BET specific surface area of 200 m 2 /g were used in place of the gas-phase silica fine particles having a BET specific surface area of 130 m 2 /g. was carried out to obtain 153 g of white powder of surface-treated vapor phase silica particles (V).
- Table 1 shows the results of measuring the surface-treated vapor phase silica particles (I) to (VIII) obtained by the above steps according to the following measurement methods (1) to (4).
- Aggregation degree (%) (W 1 + 0.6 x W 2 + 0.2 x W 3 )/2 x 100
- W 1 Amount remaining on 150 ⁇ m mesh sieve
- W 2 Amount remaining on 75 ⁇ m mesh sieve
- W 3 Amount remaining on 45 ⁇ m mesh sieve
- the surface-treated vapor-phase silica particles obtained in Examples 1-1 to 1-5 had a low proportion of aggregated silica particles, sufficient methanol hydrophobicity, and further toner aggregation. It was of a small degree.
- the surface treatment gas phase method obtained in Comparative Examples 1-1 and 1-2 in which the surface treatment with divinyltetramethyldisilazane was not performed and in Comparative Example 1-3 in which the surface treatment with hexamethyldisilazane was not performed.
- the silica particles aggregation of silica particles was often observed, the degree of hydrophobicity with methanol was low, and the degree of aggregation was high when added to the toner.
- a two-component developer was prepared by mixing 3 parts by mass of the above external additive mixed toner and 97 parts by mass of standard ferrite L (Japan Imaging Society) as a carrier.
- Table 2 shows the results of measurements of the two-component developer obtained by the above steps according to the following methods (5) to (9).
- the presence or absence of image defects (white spots) in the image of the printed matter 2 obtained above was evaluated according to the following criteria.
- the two-component developer using the surface-treated vapor phase silica particles obtained in Examples 1-1 to 1-5 as a toner external additive had no print image defects. rice field.
- those using the surface-treated fumed silica particles obtained in Comparative Examples 1-1 to 1-3 had a large fluctuation in the toner charge amount depending on the environment, and were inferior in printing characteristics.
- the present invention is not limited to the above embodiments.
- the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Developing Agents For Electrophotography (AREA)
- Silicon Compounds (AREA)
Abstract
Description
表面処理気相法シリカ粒子の製造方法であって、
(A1):原料気相法シリカ粒子に1,3-ジビニル-1,1,3,3-テトラメチルジシラザンを添加し、前記原料気相法シリカ粒子の表面にビニルジメチルシリル基を導入して予備処理シリカ粒子を得る工程、及び
(A2):前記予備処理シリカ粒子にヘキサメチルジシラザンを添加し、前記予備処理シリカ粒子の表面にトリメチルシリル基を導入して表面処理気相法シリカ粒子を得る工程
を有する表面処理気相法シリカ粒子の製造方法を提供する。
{前記工程(A1)に用いる前記原料気相法シリカ粒子の量(g)×前記原料気相法シリカ粒子のBET比表面積(m2/g)}/B (Bは、5,000~100,000の数である。)
で表される量とすることが好ましい。
{前記工程(A2)に用いる前記予備処理シリカ粒子の量(g)×前記原料気相法シリカ粒子のBET比表面積(m2/g)}/C (Cは、150~3,000の数である。)
で表される量とすることが好ましい。
前記表面処理気相法シリカ粒子のBET比表面積が30m2/g以上400m2/g未満であり、
前記表面処理気相法シリカ粒子のレーザー回析法による体積基準粒度分布から求められる1.5μm以上の粒子の割合が10%未満であり、
前記表面処理気相法シリカ粒子のメタノール疎水化度が68%以上78%以下であり、かつ、
前記表面処理気相法シリカ粒子1質量部と体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部とを混合して混合物とした場合に、該混合物の凝集度が20%以下となるものである表面処理気相法シリカ粒子を提供する。
表面処理気相法シリカ粒子の製造方法であって、
(A1):原料気相法シリカ粒子に1,3-ジビニル-1,1,3,3-テトラメチルジシラザンを添加し、前記原料気相法シリカ粒子の表面にビニルジメチルシリル基を導入して予備処理シリカ粒子を得る工程、及び
(A2):前記予備処理シリカ粒子にヘキサメチルジシラザンを添加し、前記予備処理シリカ粒子の表面にトリメチルシリル基を導入して表面処理気相法シリカ粒子を得る工程
を有する表面処理気相法シリカ粒子の製造方法である。
本発明において原料とされる気相法シリカ粒子(気相法シリカ微粒子)は、乾式法シリカとも呼ばれ、その製法は珪素化合物の火炎加水分解、火炎中燃焼法による酸化、あるいはこれらの反応の併用による方法で製造されたものであれば特に制限されない。その中でも火炎加水分解法により製造された気相法シリカ粒子が好適に用いられる。市販されている製品としては、日本アエロジル社製あるいはエボニックデグサ社製の「アエロジル」、キャボット社製の「キャボジル」、ワッカー社製の「HDK」、トクヤマ社製の「レオロシール」等がある。
本発明の表面処理気相法シリカ粒子の製造方法は、下記工程(A1)および工程(A2)を有する。
工程(A1):シリカ表面にビニルジメチルシリル単位を導入する工程
工程(A2):シリカ表面にトリメチルシリル単位を導入する工程
工程(A1)は、原料気相法シリカ粒子に1,3-ジビニル-1,1,3,3-テトラメチルジシラザン(以下、ジビニルテトラメチルジシラザンと表記する)を添加し、原料気相法シリカ粒子の表面にビニルジメチルシリル基を導入して予備処理シリカ粒子を得る工程である。本工程により、下記工程(A2)における表面処理がより均一に、且つ高度に進行する。
水の添加量(g)={工程(A1)に用いる原料気相法シリカ粒子の量(g)×原料気相法シリカ粒子のBET比表面積(m2/g)}/A
ジビニルテトラメチルジシラザンの添加量(g)={工程(A1)に用いる原料気相法シリカ粒子の量(g)×原料気相法シリカ粒子のBET比表面積(m2/g)}/B
工程(A2)は、工程(A1)において得られた予備処理シリカ粒子にヘキサメチルジシラザンを添加し、予備処理シリカ粒子の表面にトリメチルシリル基を導入して疎水化された表面処理気相法シリカ粒子を得る工程である。
ヘキサメチルジシラザンの添加量(g)={工程(A2)に用いる予備処理シリカ粒子の量(g)×原料気相法シリカ粒子のBET比表面積(m2/g)}/C
本発明の表面処理気相法シリカ粒子の製造方法は、工程(A2)後、そのまま表面処理気相法シリカ粒子を風乾、放冷等とすることができるが、更に工程(A3):表面処理気相法シリカ粒子を乾燥する工程を有することが好ましい。乾燥条件は特に限定されないが、140℃~250℃にて0.5時間~3時間程度窒素気流下で乾燥することが好ましい。
本発明の表面処理気相法シリカ粒子の製造方法により得られる表面処理気相法シリカ粒子は、
1,3-ジビニル-1,1,3,3-テトラメチルジシラザン及びヘキサメチルジシラザンにより気相法シリカ粒子の表面が処理されたものである表面処理気相法シリカ粒子であって、
(1)表面処理気相法シリカ粒子のBET比表面積が30m2/g以上400m2/g未満であり、
(2)表面処理気相法シリカ粒子のレーザー回析法による体積基準粒度分布から求められる1.5μm以上の粒子の割合が10%未満であり、
(3)表面処理気相法シリカ粒子のメタノール疎水化度が68%以上78%以下であり、かつ、
(4)表面処理気相法シリカ粒子1質量部と体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部とを混合して混合物とした場合に、該混合物の凝集度が20%以下となるものである表面処理気相法シリカ粒子である。
BET比表面積は、一次粒子径に依存し、特には40~200m2/gが好ましい。BET比表面積が30m2/gより小さいと、静電荷像現像用トナー外添剤としてトナーに添加した場合、トナーへの分散性が悪く、流動性向上効果に劣るものとなり、400m2/g以上であると凝集し易いものとなる。
レーザー回析法による体積基準粒度分布は、表面処理気相法シリカ粒子の0.5質量%メタノール分散液(出力30W/Lの超音波を10分間照射して分散させたもの)のレーザー回析法による体積基準粒度分布とすることができる。1.5μm以上の粒子の割合が10%以上では、大きな凝集粒子が多いことにより、静電荷像現像用トナー外添剤としてトナーに添加した場合、トナーへの分散性が劣り、トナーの流動性および印刷画質に劣るものとなる。この割合は8%以下がより好ましく、特に5%以下が好ましい。
表面処理気相法シリカ粒子のメタノール疎水化度が68%未満であると、シリカ表面の残存シラノール基によりシリカ粒子同士の凝集が起きやすくなり、静電荷像現像用トナー外添剤としてトナーに添加した場合、トナーへの分散性が劣り、トナーの流動性および印刷画質に劣るものとなる。メタノール疎水化度が78%を超えると、トナーに添加した場合、トナーの帯電量が高くなりすぎる場合がある。なお、本発明におけるメタノール疎水化度は、以下の条件で測定したものを指す。
体積濃度50%(温度25℃)のメタノール水溶液60mlに表面処理気相法シリカ粒子を0.2g添加し、撹拌子で攪拌し、次いでシリカ粒子が表面に浮遊した液中にメタノールを滴下しながら、メタノール水溶液に波長780nmの光を照射して透過率を測定し、球状シリカ粒子が懸濁・沈降して、透過率が80%になったときのメタノール水溶液中のメタノール体積濃度(%)をメタノール疎水化度とする。
ポリエステル樹脂粒子と表面処理気相法シリカ粒子との混合物の凝集度は、トナーにシリカ粒子を分散させた場合のトナーの凝集を表し、該凝集度の値が小さいほど、トナーの凝集量が少なく良好と評価できる。
レーザー回折/散乱法による体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部に対して、表面処理気相法シリカ粒子1質量部をミキサーにより混合した混合物2gを用い、篩の目開きが上から150μm、75μm、45μm、振動幅1mm、振動数1Hzで60秒間振動させる。振動後、篩上に残った量を測定し、下式にて算出する。
凝集度(%)=(W1+0.6×W2+0.2×W3)/2×100
W1:150μm目開き篩上の残存量(g)
W2:75μm目開き篩上の残存量(g)
W3:45μm目開き篩上の残存量(g)
また本発明では、上記の表面処理気相法シリカ粒子を含有するものである静電荷像現像用トナー外添剤を提供する。本発明の表面処理気相法シリカ粒子は、トナー外添剤として用いた場合、トナーに良好な流動性および印刷特性を与えることができる。
[実施例1-1]
撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積50m2/gの気相法シリカ粒子を240g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水18gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ジビニルテトラメチルジシラザン0.6gを噴霧し、60℃で1時間撹拌した。一旦25℃まで冷却した後、ヘキサメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(I)の白色粉体243gを得た。
実施例1-1において、ジビニルテトラメチルジシラザンの添加量を1.2gとした以外は実施例1-1と同様の手順を行い、表面処理気相法シリカ粒子(II)の白色粉体244gを得た。
実施例1-1において、BET比表面積50m2/gの気相法シリカ粒子に代えてBET比表面積90m2/gの気相法シリカ粒子を用いた以外は実施例1-1と同様の手順を行い、表面処理気相法シリカ粒子(III)の白色粉体242gを得た。
撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積130m2/gの気相法シリカ微粒子を148g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水13gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ジビニルテトラメチルジシラザン0.4gを噴霧し、60℃で1時間撹拌した。一旦25℃まで冷却した後、ヘキサメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(IV)の白色粉体51gを得た。
実施例1-4において、BET比表面積130m2/gの気相法シリカ微粒子に代えてBET比表面積200m2/gの気相法シリカ微粒子を用いた以外は実施例1-4と同様の手順を行い、表面処理気相法シリカ粒子(V)の白色粉体153gを得た。
撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積50m2/gの気相法シリカ粒子を240g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水18gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ヘキサメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(VI)の白色粉体243gを得た。
撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積130m2/gの気相法シリカ微粒子を148g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水13gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ヘキサメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(VII)の白色粉体51gを得た。
撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積50m2/gの気相法シリカ粒子を240g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水18gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ジビニルテトラメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(VIII)の白色粉体247gを得た。
(1)BET比表面積
全自動BET比表面積測定装置(株式会社マウンテック製Macsorb HM model-1201)を用い、窒素を使用したBET1点法により測定した。
表面処理気相法シリカ粒子0.1g及びメタノール19.9gをガラス瓶に入れ、超音波洗浄機に入れて、出力30W/Lの超音波を10分間照射させてメタノール中にシリカ粒子を分散させた。その分散液をレーザー回析/散乱式粒子径分布測定装置(株式会社堀場製作所製LA-950V2)を用いて測定した体積基準の粒度分布において、粒子径1.5μm以上の凝集粒子の割合を算出した。
粉体濡れ性試験機(株式会社レスカ製WET101P)を用い、体積濃度50%(温度25℃)のメタノール水溶液60mlに表面処理気相法シリカ粒子を0.2g添加し、撹拌子で攪拌した。次いでシリカ粒子が表面に浮遊した液中にメタノールを滴下しながら、メタノール水溶液に波長780nmの光を照射して透過率を測定した。球状シリカ粒子が懸濁・沈降して、透過率が80%になったときのメタノール水溶液中のメタノール体積濃度(%)をメタノール疎水化度とした。
レーザー回折/散乱法による体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部に対して、表面処理気相法シリカ粒子1質量部をミキサーにより混合した。この混合物2gを、粉体特性評価装置(ホソカワミクロン株式会社製パウダーテスターPT-X)を使用して、篩の目開きが上から150μm、75μm、45μm、振動幅1mm、振動数1Hzで60秒間振動させた後、篩上に残った量を測定し、凝集度を下式にて算出した。
凝集度(%)=(W1+0.6×W2+0.2×W3)/2×100
W1:150μm目開き篩上の残存量(g)
W2:75μm目開き篩上の残存量(g)
W3:45μm目開き篩上の残存量(g)
[実施例2-1~2-5、比較例2-1~2-3]
Tg60℃、軟化点110℃のポリエステル樹脂96重量部と色剤としてカーミン6BC(住化カラー(株)製)4重量部を溶融混練、粉砕、分級後、体積メジアン径7μmのトナーを得た。このトナー10gと実施例1-1~1-5、及び比較例1-1~1-3で得られた表面処理気相法シリカ粒子0.2gとをサンプルミルにて混合し、外添剤混合トナーを得た。
上記二成分現像剤を高温高湿(30℃、90%RH)、中温中湿(25℃、55%RH)及び低温低湿(10℃、15%RH)の各条件下に1日間曝露した後、同一条件下でそれぞれの試料を摩擦帯電した際の帯電量をブローオフ粉体帯電量測定装置(東芝ケミカル(株)製、TB-200)を用いて測定した。
上記二成分現像剤を、有機感光体を備えた現像機に入れ、25℃、50%RH環境下で30,000枚のプリントテストを実施した。このとき、感光体へのトナーの付着は、全ベタ画像での白抜けとして感知できる。ここで、白抜けの程度は、1cm2あたりの白抜け個所の数が10個以上を「多い」、1~9個を「少ない」、0個を「なし」と評価した。
上記(6)のプリントテストにおいて、画像の乱れとして検出される感光体摩耗について、下記基準で評価した。
A:画像の乱れのないもの
B:大きな画像の乱れのないもの
C:画像の乱れがあるもの
上記二成分現像剤を30℃、90%RHの環境に1日間曝露し、その後20cm四方のベタ印刷(画像濃度100%)を5,000枚連続印刷を行った後、再び上記二成分現像剤を30℃、90%RH環境下で静置した。これを60回繰返し、合計300,000枚の印刷を行った。初日の10枚目の印刷物を印刷物1、最終日の最終印刷物を印刷物2とした。
A:目視で画像欠損なし(白点なし)
B:目視で白点(粒子状に白く抜けた画像)が1個以上4個以下
C:目視で白点が5個以上9個以下
D:目視で白点が10個以上
上記印刷物1に対する印刷物2の濃度変化について、反射濃度計X-rite938(X-rite社製)を使用し、JIS Z 8781-5に準拠してCIE1976(L*a*b*)色空間における色差(ΔE)を測定し、下記基準により評価した。
A:ΔE差が1未満
B:ΔE差が1以上2.5未満
C:ΔE差が2.5以上3.0未満
D:ΔE差が3.0以上
Claims (6)
- 表面処理気相法シリカ粒子の製造方法であって、
(A1):原料気相法シリカ粒子に1,3-ジビニル-1,1,3,3-テトラメチルジシラザンを添加し、前記原料気相法シリカ粒子の表面にビニルジメチルシリル基を導入して予備処理シリカ粒子を得る工程、及び
(A2):前記予備処理シリカ粒子にヘキサメチルジシラザンを添加し、前記予備処理シリカ粒子の表面にトリメチルシリル基を導入して表面処理気相法シリカ粒子を得る工程
を有することを特徴とする表面処理気相法シリカ粒子の製造方法。 - 前記原料気相法シリカ粒子のBET比表面積を40~400m2/gとすることを特徴とする請求項1に記載の表面処理気相法シリカ粒子の製造方法。
- 前記工程(A1)において、前記1,3-ジビニル-1,1,3,3-テトラメチルジシラザンの添加量(g)を、
{前記工程(A1)に用いる前記原料気相法シリカ粒子の量(g)×前記原料気相法シリカ粒子のBET比表面積(m2/g)}/B (Bは、5,000~100,000の数である。)
で表される量とすることを特徴とする請求項1又は請求項2に記載の表面処理気相法シリカ粒子の製造方法。 - 前記工程(A2)において、前記ヘキサメチルジシラザンの添加量(g)を、
{前記工程(A2)に用いる前記予備処理シリカ粒子の量(g)×前記原料気相法シリカ粒子のBET比表面積(m2/g)}/C (Cは、150~3,000の数である。)
で表される量とすることを特徴とする請求項1から請求項3のいずれか一項に記載の表面処理気相法シリカ粒子の製造方法。 - 1,3-ジビニル-1,1,3,3-テトラメチルジシラザン及びヘキサメチルジシラザンにより気相法シリカ粒子の表面が処理されたものである表面処理気相法シリカ粒子であって、
前記表面処理気相法シリカ粒子のBET比表面積が30m2/g以上400m2/g未満であり、
前記表面処理気相法シリカ粒子のレーザー回析法による体積基準粒度分布から求められる1.5μm以上の粒子の割合が10%未満であり、
前記表面処理気相法シリカ粒子のメタノール疎水化度が68%以上78%以下であり、かつ、
前記表面処理気相法シリカ粒子1質量部と体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部とを混合して混合物とした場合に、該混合物の凝集度が20%以下となるものであることを特徴とする表面処理気相法シリカ粒子。 - 請求項5に記載の表面処理気相法シリカ粒子を含有するものであることを特徴とする静電荷像現像用トナー外添剤。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237027469A KR20230145354A (ko) | 2021-02-18 | 2021-12-22 | 표면처리 기상법 실리카입자의 제조방법, 표면처리기상법 실리카입자, 및 정전하상 현상용 토너 외첨제 |
US18/276,914 US20240117192A1 (en) | 2021-02-18 | 2021-12-22 | Method for manufacturing surface-treated gas-phase-process silica particle, surface-treated gas-phase-process silica particle, and toner external additive for electrostatic charge image development |
EP21926811.7A EP4296228A1 (en) | 2021-02-18 | 2021-12-22 | Method for manufacturing surface-treated vapor phase silica particles, surface-treated vapor phase silica particles, and external additive for toner for electrostatic charge image development |
CN202180093802.XA CN116888072A (zh) | 2021-02-18 | 2021-12-22 | 表面处理气相法二氧化硅颗粒的制造方法、表面处理气相法二氧化硅颗粒、及静电图像显影用调色剂外部添加剂 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021024701A JP7456957B2 (ja) | 2021-02-18 | 2021-02-18 | 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤 |
JP2021-024701 | 2021-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022176388A1 true WO2022176388A1 (ja) | 2022-08-25 |
Family
ID=82930632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/047691 WO2022176388A1 (ja) | 2021-02-18 | 2021-12-22 | 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240117192A1 (ja) |
EP (1) | EP4296228A1 (ja) |
JP (1) | JP7456957B2 (ja) |
KR (1) | KR20230145354A (ja) |
CN (1) | CN116888072A (ja) |
WO (1) | WO2022176388A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004145325A (ja) | 2002-10-02 | 2004-05-20 | Canon Inc | シリカ微粉体、トナー、二成分系現像剤及び画像形成方法 |
JP2006099006A (ja) | 2004-09-30 | 2006-04-13 | Kyocera Mita Corp | 現像装置 |
JP2007034224A (ja) | 2005-07-29 | 2007-02-08 | Kyocera Mita Corp | 静電荷像現像用トナーおよび画像形成方法 |
JP2010085837A (ja) | 2008-10-01 | 2010-04-15 | Nippon Aerosil Co Ltd | 疎水性シリカ微粒子及び電子写真用トナー組成物 |
JP2010528134A (ja) * | 2007-05-22 | 2010-08-19 | エボニック デグサ ゲーエムベーハー | 接着剤 |
JP2014201461A (ja) * | 2013-04-02 | 2014-10-27 | 株式会社トクヤマ | 疎水化乾式シリカ微粒子 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8501856B2 (en) | 2007-07-13 | 2013-08-06 | Momentive Performance Materials Inc. | Curable silicon-containing compositions possessing high translucency |
CN101481549B (zh) | 2009-01-20 | 2012-11-28 | 蓝星有机硅(上海)有限公司 | 沉淀法二氧化硅的表面处理方法及其应用 |
JP2013064090A (ja) | 2011-09-20 | 2013-04-11 | Shin-Etsu Chemical Co Ltd | 付加硬化性シリコーンゴム組成物及びその硬化物 |
JP6269401B2 (ja) | 2014-09-09 | 2018-01-31 | 味の素株式会社 | 表面処理無機充填材、該無機充填材の製造方法、および該無機充填材を含有する樹脂組成物 |
-
2021
- 2021-02-18 JP JP2021024701A patent/JP7456957B2/ja active Active
- 2021-12-22 EP EP21926811.7A patent/EP4296228A1/en active Pending
- 2021-12-22 WO PCT/JP2021/047691 patent/WO2022176388A1/ja active Application Filing
- 2021-12-22 CN CN202180093802.XA patent/CN116888072A/zh active Pending
- 2021-12-22 US US18/276,914 patent/US20240117192A1/en active Pending
- 2021-12-22 KR KR1020237027469A patent/KR20230145354A/ko unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004145325A (ja) | 2002-10-02 | 2004-05-20 | Canon Inc | シリカ微粉体、トナー、二成分系現像剤及び画像形成方法 |
JP2006099006A (ja) | 2004-09-30 | 2006-04-13 | Kyocera Mita Corp | 現像装置 |
JP2007034224A (ja) | 2005-07-29 | 2007-02-08 | Kyocera Mita Corp | 静電荷像現像用トナーおよび画像形成方法 |
JP2010528134A (ja) * | 2007-05-22 | 2010-08-19 | エボニック デグサ ゲーエムベーハー | 接着剤 |
JP2010085837A (ja) | 2008-10-01 | 2010-04-15 | Nippon Aerosil Co Ltd | 疎水性シリカ微粒子及び電子写真用トナー組成物 |
JP2014201461A (ja) * | 2013-04-02 | 2014-10-27 | 株式会社トクヤマ | 疎水化乾式シリカ微粒子 |
Also Published As
Publication number | Publication date |
---|---|
JP7456957B2 (ja) | 2024-03-27 |
US20240117192A1 (en) | 2024-04-11 |
CN116888072A (zh) | 2023-10-13 |
KR20230145354A (ko) | 2023-10-17 |
EP4296228A1 (en) | 2023-12-27 |
JP2022126550A (ja) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4615952B2 (ja) | 改質疎水化シリカ及びその製造方法 | |
JP4758655B2 (ja) | 表面処理シリカ微粒子 | |
JP6030059B2 (ja) | 球状シリカ微粉末及び球状シリカ微粉末を用いた静電荷像現像用トナー外添剤 | |
WO2001042372A1 (en) | Fine metal oxide powder having high dispersibility and toner composition comprising the same | |
WO2010038538A1 (ja) | 疎水性シリカ微粒子及び電子写真用トナー組成物 | |
JP5504600B2 (ja) | 疎水性シリカ微粒子及び電子写真用トナー組成物 | |
JP5989201B2 (ja) | シリコーンオイル処理シリカ粒子、及び電子写真用トナー | |
JP3278278B2 (ja) | 疎水性酸化チタン系微粉体 | |
JP7456957B2 (ja) | 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤 | |
JP4347201B2 (ja) | 静電荷像現像用トナー外添剤およびトナー | |
WO2022181018A1 (ja) | 表面処理ゾルゲルシリカ粒子の製造方法、表面処理ゾルゲルシリカ粒子、及び静電荷像現像用トナー外添剤 | |
JP6328488B2 (ja) | 球状シリカ微粉末及びその用途 | |
JP4628760B2 (ja) | 球状疎水性ポリジオルガノシロキサン含有シリカ微粒子、静電荷像現像用トナー外添剤およびトナー | |
JP4611006B2 (ja) | 球状シリカ微粒子、静電荷像現像用トナー外添剤およびトナー | |
JP5683101B2 (ja) | 表面処理シリカ | |
JP5568864B2 (ja) | 疎水性シリカ微粒子及び電子写真用トナー組成物 | |
WO2016117344A1 (ja) | シリコーンオイル処理シリカ粒子、及び電子写真用トナー | |
JP2001194819A (ja) | 静電荷像現像用トナー外添剤 | |
JP7548806B2 (ja) | 新規な複合無機酸化物粉体、複合無機酸化物粉体を含有する粉体塗料組成物、複合無機酸化物粉体を含有する電子写真のトナー組成物、複合無機酸化物粉体の製造方法 | |
JP2015000830A (ja) | 球状シリカ組成物及びその用途 | |
JP4936237B2 (ja) | 正帯電性疎水性酸化チタン微粉末とその製法および用途 | |
JP6817916B2 (ja) | 静電荷像現像用トナー外添剤の製造方法 | |
JP4198108B2 (ja) | 静電荷像現像用トナー外添剤およびトナー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21926811 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18276914 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180093802.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021926811 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021926811 Country of ref document: EP Effective date: 20230918 |