WO2022176388A1 - 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤 - Google Patents

表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤 Download PDF

Info

Publication number
WO2022176388A1
WO2022176388A1 PCT/JP2021/047691 JP2021047691W WO2022176388A1 WO 2022176388 A1 WO2022176388 A1 WO 2022176388A1 JP 2021047691 W JP2021047691 W JP 2021047691W WO 2022176388 A1 WO2022176388 A1 WO 2022176388A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
phase silica
treated
vapor
vapor phase
Prior art date
Application number
PCT/JP2021/047691
Other languages
English (en)
French (fr)
Inventor
和之 松村
正進 西峯
雄佑 伊藤
寿 八木
勉 中村
功晃 坂詰
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020237027469A priority Critical patent/KR20230145354A/ko
Priority to US18/276,914 priority patent/US20240117192A1/en
Priority to EP21926811.7A priority patent/EP4296228A1/en
Priority to CN202180093802.XA priority patent/CN116888072A/zh
Publication of WO2022176388A1 publication Critical patent/WO2022176388A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09716Inorganic compounds treated with organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • G03G9/1138Non-macromolecular organic components of coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to surface-treated vapor phase silica particles, a method for producing the same, and an external toner additive for developing electrostatic images used for developing electrostatic images in electrophotography, electrostatic recording, and the like.
  • Dry developers used in electrophotography and the like can be broadly classified into one-component developers that use toner itself in which a coloring agent is dispersed in a binder resin, and two-component developers that mix the toner with a carrier.
  • the developers When these developers are used for copying operations, the developers must be excellent in fluidity, caking resistance, fixability, chargeability, cleanability, etc. in order to have process suitability. .
  • inorganic fine particles are often used as external toner additives.
  • fumed silica has a small primary particle size and is known to have excellent functions as an external toner additive due to its surface treatment to control chargeability. (Patent Documents 1, 2 and 3).
  • vapor-phase silica has a small primary particle size, it easily aggregates, and some aggregate particle sizes range from 10 ⁇ m to 200 ⁇ m or more.
  • Such agglomerated particles disperse in the toner while receiving a strong frictional force in the process of dispersing them into the toner.
  • the presence of such agglomerated particles in the toner reduces fluidity and causes problems such as white spots appearing in printed images. there were.
  • Patent Document 4 a method of pulverizing and classifying aggregated particles generated after hydrophobic treatment and using only the fine powder has been proposed (Patent Document 4).
  • the classifying and pulverizing as described above is not a preferable method because the manufacturing efficiency is low and the cost is high.
  • JP 2004-145325 A Japanese Unexamined Patent Application Publication No. 2006-99006 JP 2007-34224 A JP 2010-085837 A
  • the present invention has been made in view of the above circumstances, and provides surface-treated vapor-phase silica particles that contain few coarsely aggregated particles and can impart good fluidity when added to toner, a method for producing the same, and the surface-treated vapor.
  • An object of the present invention is to provide an external additive for toner comprising phase method silica particles.
  • a method for producing surface-treated vapor-phase silica particles comprising: (A1): 1,3-divinyl-1,1,3,3-tetramethyldisilazane is added to raw material vapor phase silica particles, and vinyldimethylsilyl groups are introduced onto the surfaces of the raw material vapor phase silica particles. (A2): adding hexamethyldisilazane to the pretreated silica particles and introducing trimethylsilyl groups onto the surface of the pretreated silica particles to obtain surface-treated vapor phase silica particles; A method for producing surface-treated vapor-phase silica particles is provided.
  • the BET specific surface area of the raw vapor phase silica particles is 40 to 400 m 2 /g.
  • Such raw vapor-phase silica particles are excellent in dispersibility and are less likely to agglomerate during surface treatment with a silazane compound.
  • the added amount (g) of the 1,3-divinyl-1,1,3,3-tetramethyldisilazane is ⁇ Amount (g) of the raw material vapor-phase silica particles used in the step (A1) ⁇ BET specific surface area (m 2 /g) of the raw material vapor-phase silica particles ⁇ /B (B is 5,000 to 100 , 000.) It is preferable to set it as the amount represented by.
  • step (A2) If the amount of 1,3-divinyl-1,1,3,3-tetramethyldisilazane to be added is within such a range, it is preferable in terms of cost, and hydrophobization by hexamethyldisilazane in step (A2) is achieved. Processing efficiency can be improved.
  • the added amount (g) of the hexamethyldisilazane is ⁇ Amount (g) of the pretreated silica particles used in the step (A2) ⁇ BET specific surface area (m 2 /g) of the raw vapor phase silica particles ⁇ /C (C is a number from 150 to 3,000 is.) It is preferable to set it as the amount represented by.
  • the surface-treated vapor phase silica particles are obtained by treating the surface of vapor phase silica particles with 1,3-divinyl-1,1,3,3-tetramethyldisilazane and hexamethyldisilazane.
  • the surface-treated vapor-phase silica particles have a BET specific surface area of 30 m 2 /g or more and less than 400 m 2 /g,
  • the proportion of particles of 1.5 ⁇ m or more, which is obtained from the volume-based particle size distribution of the surface-treated vapor-phase silica particles by a laser diffraction method, is less than 10%
  • the degree of methanol hydrophobicity of the surface-treated vapor-phase silica particles is 68% or more and 78% or less
  • the aggregation degree of the mixture is 20% or less. It provides surface-treated vapor phase silica particles.
  • surface-treated vapor-phase silica particles having such characteristics can be used.
  • the present invention also provides a toner external additive for electrostatic charge image development, which contains the surface-treated vapor phase silica particles.
  • the surface-treated vapor-phase silica particles of the present invention can impart good fluidity and printing properties to the toner.
  • the present inventors found that by surface-treating fumed silica particles with vinyltetramethyldisilazane and hexamethyldisilazane, aggregation is reduced, and furthermore, when toner is added, The present inventors have also found that surface-treated vapor phase silica particles can be obtained which have excellent dispersibility and are free from defects in printed images, and have completed the present invention.
  • a method for producing surface-treated vapor-phase silica particles comprising: (A1): 1,3-divinyl-1,1,3,3-tetramethyldisilazane is added to raw material vapor phase silica particles, and vinyldimethylsilyl groups are introduced onto the surfaces of the raw material vapor phase silica particles. (A2): adding hexamethyldisilazane to the pretreated silica particles and introducing trimethylsilyl groups onto the surface of the pretreated silica particles to obtain surface-treated vapor phase silica particles; It is a method for producing surface-treated vapor phase silica particles having a step of obtaining.
  • Vapor-phase silica particles (vapor-phase silica fine particles) used as a raw material in the present invention are also called dry-process silica, and are produced by flame hydrolysis of silicon compounds, oxidation by combustion in flames, or reaction of these reactions. It is not particularly limited as long as it is produced by a method of combined use. Among them, vapor phase silica particles produced by a flame hydrolysis method are preferably used.
  • Commercially available products include "Aerosil” manufactured by Nippon Aerosil Co., Ltd. or Evonik Degussa Corporation, "Cabosil” manufactured by Cabot Corporation, “HDK” manufactured by Wacker Corporation, and “Reoloseal” manufactured by Tokuyama Corporation.
  • a raw material silicon compound gas such as silicon tetrachloride is introduced into a mixing chamber of a combustion burner together with an inert gas, and mixed with hydrogen and air to obtain a predetermined ratio. is produced by burning this mixed gas at a temperature of 1,000 to 3,000° C. in a reaction chamber, and after cooling, the produced silica is collected by a filter.
  • inorganic silicon compounds and organic silicon compounds can be mentioned as the silicon compound used as the raw material for the vapor-phase silica particles.
  • inorganic silicon compounds such as silicon tetrachloride, silicon trichloride and silicon dichloride; siloxanes such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, hexamethyldisiloxane and octamethyltrisiloxane; Alkoxysilanes such as methyltrimethoxysilane, tetramethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, methyltributoxysilane, diethyldipropoxysilane, trimethylbutoxysilane, tetramethylsilane, diethylsilane, hexamethyldisilazane ,
  • the hydrolysis and combustion decomposition of such a silicon compound in a flame are carried out by purifying the silicon compound by distillation or the like, if necessary, and then heating and evaporating it, followed by a stream of inert gas such as nitrogen gas. It may be introduced into a flame such as an oxyhydrogen flame by a method of entrainment or a method of atomizing a silicon compound and supplying it into the flame, and reacting in this flame. , methane gas, etc. may be used as the combustion support gas. As this combustion support gas, any gas can be used as long as it does not leave any residue, and there is no particular limitation. Silica produced by hydrolysis or combustion decomposition of these silicon compounds is collected by known methods such as bag filters and cyclones.
  • the raw vapor phase silica particles in the present invention preferably have a BET specific surface area of 40 to 400 m 2 /g. Within such a range, the dispersibility is excellent, and aggregation is less likely to occur during surface treatment with a silazane compound, which will be described later.
  • the raw vapor-phase silica particles may be used singly or in combination of two or more.
  • the method for producing surface-treated vapor phase silica particles of the present invention comprises the following steps (A1) and (A2).
  • Step (A1) A step of introducing a vinyldimethylsilyl unit onto the silica surface
  • Step (A2) A step of introducing a trimethylsilyl unit onto the silica surface
  • Step (A1) A step of introducing a vinyldimethylsilyl unit onto the silica surface
  • Step (A1) comprises adding 1,3-divinyl-1,1,3,3-tetramethyldisilazane (hereinafter referred to as Divinyltetramethyldisilazane) is added to introduce vinyldimethylsilyl groups onto the surface of the raw material vapor-phase silica particles to obtain pretreated silica particles.
  • Divinyltetramethyldisilazane 1,3-divinyl-1,1,3,3-tetramethyldisilazane
  • the surface treatment in the following step (A2) proceeds more uniformly and to a high degree.
  • vapor phase silica particles may be used as the raw material vapor phase silica particles.
  • step (A1) As the surface treatment method of the raw material vapor-phase silica particles with divinyltetramethyldisilazane in step (A1), a dry method and a wet method that are commonly used for surface treatment of powder can be used. From the viewpoint of productivity, it is preferable to use a dry method.
  • a method of adding divinyltetramethyldisilazane in the dry method the raw material vapor-phase silica particles are stirred in a reactor, and the particles are dropped, sprayed, or the like. be able to.
  • Divinyltetramethyldisilazane may be used as it is, or diluted with a solvent such as toluene, xylene or hexane.
  • Water may be added in the form of steam, in addition to the method of dropping or spraying water while stirring the raw material vapor-phase silica particles in the reactor.
  • the amount of water to be added to the raw material vapor phase silica particles is preferably an amount calculated by the following formula.
  • Amount of water added (g) ⁇ amount (g) of starting vapor-phase silica particles used in step (A1) x BET specific surface area of starting vapor-phase silica particles (m 2 /g) ⁇ /A
  • A is preferably a number from 300 to 200,000, more preferably a number from 500 to 2,500.
  • A is 300 or more, aggregation of raw material vapor-phase silica particles due to water can be suppressed, which is preferable.
  • A is 200,000 or less, the reactivity of the silazane compound can be further increased, which is preferable.
  • the amount of divinyltetramethyldisilazane to be added is preferably an amount calculated by the following formula with respect to the raw material vapor phase silica particles.
  • Addition amount (g) of divinyltetramethyldisilazane ⁇ Amount (g) of raw vapor phase silica particles used in step (A1) ⁇ BET specific surface area (m 2 /g) of raw vapor phase silica particles ⁇ /B
  • B is preferably a number from 5,000 to 100,000, more preferably a number from 10,000 to 80,000.
  • B is 5,000 or more, it is preferable in terms of cost, and when B is 100,000 or less, it is preferable because the efficiency of hydrophobizing treatment with hexamethyldisilazane in step (A2) can be enhanced.
  • step (A1) the reaction between the raw material fumed silica particles and divinyltetramethyldisilazane can be applied to silica surface treatment conditions with a general silazane compound, and the reaction proceeds even at room temperature.
  • the mixture is preferably stirred at 50-70° C. for 0.5-3 hours to allow the reaction to proceed.
  • Step (A2) A step of introducing trimethylsilyl units onto the silica surface. is a step of obtaining hydrophobized surface-treated vapor-phase silica particles.
  • the surface treatment method of the pretreated silica particles with hexamethyldisilazane in step (A2) a dry method and a wet method used for surface treatment of general powders can be used. From the viewpoint of productivity, it is preferable to use a dry method.
  • a method for adding hexamethyldisilazane in the dry method the pretreated silica particles can be added dropwise or sprayed while being stirred in a reactor.
  • Hexamethyldisilazane may be used as it is, or diluted with a solvent such as toluene, xylene or hexane.
  • step (A2) water is preferably contained on the silica surface because the surface treatment efficiency is higher. It is sufficient to add water in step (A1) as described above, but it may be added separately in step (A2).
  • the amount of hexamethyldisilazane to be added is preferably the amount calculated by the following formula with respect to the pretreated silica particles.
  • Addition amount (g) of hexamethyldisilazane ⁇ amount (g) of pretreated silica particles used in step (A2) ⁇ BET specific surface area (m 2 /g) of raw material vapor phase silica particles ⁇ /C
  • C is preferably a number from 150 to 3,000, more preferably a number from 200 to 1,000.
  • C is 150 or more, the generation of aggregates during the reaction can be suppressed, and when C is 3,000 or less, the silica particles can be made more hydrophobic.
  • step (A2) The reaction between the pretreated silica particles and hexamethyldisilazane in step (A2) can be applied to silica surface treatment conditions with a general silazane compound, and the reaction proceeds even at room temperature, but hexamethyldisilazane was added. After that, the mixture is preferably stirred at 50 to 100° C. for 0.5 to 3 hours to allow the reaction to proceed.
  • Step (A3) Step of drying surface-treated vapor-phase silica particles
  • the surface-treated vapor-phase silica particles are air-dried and allowed to cool. etc., but it is preferable to further include a step (A3): a step of drying the surface-treated vapor phase silica particles.
  • the drying conditions are not particularly limited, but it is preferable to dry at 140° C. to 250° C. for about 0.5 to 3 hours under a nitrogen stream.
  • the surface-treated vapor-phase silica particles obtained by the method for producing surface-treated vapor-phase silica particles of the present invention are Surface-treated vapor-phase silica particles obtained by treating the surface of vapor-phase silica particles with 1,3-divinyl-1,1,3,3-tetramethyldisilazane and hexamethyldisilazane, (1) the surface-treated vapor-phase silica particles have a BET specific surface area of 30 m 2 /g or more and less than 400 m 2 /g; (2) The proportion of particles of 1.5 ⁇ m or more, which is obtained from the volume-based particle size distribution of the surface-treated vapor-phase silica particles measured by laser diffraction, is less than 10%; (3) the degree of methanol hydrophobicity of the surface-treated vapor-phase silica particles is 68% or more and 78% or less, and (4) When 1 part by mass of surface-treated vapor-phase silica
  • the BET specific surface area depends on the primary particle size, and is preferably 40 to 200 m 2 /g. If the BET specific surface area is less than 30 m 2 /g, when it is added to the toner as an external toner additive for electrostatic charge image development, the dispersibility in the toner is poor and the fluidity improving effect is poor. It becomes a thing which agglomerates easily when it is.
  • the volume-based particle size distribution by laser diffraction method is a 0.5 mass% methanol dispersion of surface-treated vapor-phase silica particles (dispersed by irradiating ultrasonic waves with an output of 30 W / L for 10 minutes. It can be a volume-based particle size distribution by the laser diffraction method of the material). If the proportion of particles of 1.5 ⁇ m or more is 10% or more, there are many large agglomerated particles, and when added to toner as an external toner additive for electrostatic charge image development, dispersibility in toner is poor, resulting in toner fluidity. and poor print quality. This ratio is more preferably 8% or less, particularly preferably 5% or less.
  • the aggregation degree of the mixture of the polyester resin particles and the surface-treated fumed silica particles represents the aggregation of the toner when the silica particles are dispersed in the toner.
  • the amount of aggregation of toner is small and can be evaluated as good.
  • the aggregation degree of a mixture of 100 parts by mass of polyester resin particles having a volume median diameter of 5 to 8 ⁇ m and 1 part by mass of surface-treated vapor-phase silica particles is higher than 20%, the surface-treated vapor-phase silica particles are electrostatically charged.
  • the degree of cohesion is preferably 10% or less.
  • the aggregation degree in this invention refers to what was measured on condition of the following.
  • Aggregation degree (%) (W 1 + 0.6 x W 2 + 0.2 x W 3 )/2 x 100
  • W 1 Amount remaining on 150 ⁇ m mesh sieve
  • W 2 Amount remaining on 75 ⁇ m mesh sieve
  • W 3 Amount remaining on 45 ⁇ m mesh sieve
  • the present invention also provides a toner external additive for electrostatic charge image development containing the surface-treated vapor phase silica particles.
  • the surface-treated fumed silica particles of the present invention can impart good fluidity and printing properties to the toner when used as a toner external additive.
  • Example 1-1 (Production of surface-treated vapor phase silica particles) [Example 1-1] 240 g of fumed silica particles having a BET specific surface area of 50 m 2 /g were introduced into a 5-liter reactor equipped with a stirrer, an atomizer and a thermometer. After replacing the air in the reactor with dry nitrogen, 18 g of water was sprayed with a sprayer while stirring. After stirring at 25°C for 1 hour, 0.6 g of divinyltetramethyldisilazane was sprayed and stirred at 60°C for 1 hour. After once cooling to 25° C., 60 g of hexamethyldisilazane was sprayed, stirred at 60° C. for 1 hour, and further dried at 150° C. for 3 hours while stirring under a nitrogen stream. By cooling this, 243 g of white powder of surface-treated vapor-phase silica particles (I) was obtained.
  • Example 1-1 the same procedure as in Example 1-1 was performed except that the amount of divinyltetramethyldisilazane added was changed to 1.2 g, and 244 g of white powder of surface-treated vapor-phase silica particles (II) was obtained. got
  • Example 1-3 The same procedure as in Example 1-1 except that vapor-phase silica particles with a BET specific surface area of 90 m 2 /g were used instead of the vapor-phase silica particles with a BET specific surface area of 50 m 2 /g. to obtain 242 g of white powder of surface-treated vapor-phase silica particles (III).
  • Example 1-4 148 g of fumed silica fine particles having a BET specific surface area of 130 m 2 /g were introduced into a 5-liter reactor equipped with a stirrer, a sprayer and a thermometer. After replacing the air in the reactor with dry nitrogen, 13 g of water was sprayed with a sprayer while stirring. After stirring at 25°C for 1 hour, 0.4 g of divinyltetramethyldisilazane was sprayed and stirred at 60°C for 1 hour. After once cooling to 25° C., 60 g of hexamethyldisilazane was sprayed, stirred at 60° C. for 1 hour, and further dried at 150° C. for 3 hours while stirring under a nitrogen stream. By cooling this, 51 g of white powder of surface-treated vapor phase silica particles (IV) was obtained.
  • Example 1-5 The same procedure as in Example 1-4 except that in Example 1-4, gas-phase silica fine particles having a BET specific surface area of 200 m 2 /g were used in place of the gas-phase silica fine particles having a BET specific surface area of 130 m 2 /g. was carried out to obtain 153 g of white powder of surface-treated vapor phase silica particles (V).
  • Table 1 shows the results of measuring the surface-treated vapor phase silica particles (I) to (VIII) obtained by the above steps according to the following measurement methods (1) to (4).
  • Aggregation degree (%) (W 1 + 0.6 x W 2 + 0.2 x W 3 )/2 x 100
  • W 1 Amount remaining on 150 ⁇ m mesh sieve
  • W 2 Amount remaining on 75 ⁇ m mesh sieve
  • W 3 Amount remaining on 45 ⁇ m mesh sieve
  • the surface-treated vapor-phase silica particles obtained in Examples 1-1 to 1-5 had a low proportion of aggregated silica particles, sufficient methanol hydrophobicity, and further toner aggregation. It was of a small degree.
  • the surface treatment gas phase method obtained in Comparative Examples 1-1 and 1-2 in which the surface treatment with divinyltetramethyldisilazane was not performed and in Comparative Example 1-3 in which the surface treatment with hexamethyldisilazane was not performed.
  • the silica particles aggregation of silica particles was often observed, the degree of hydrophobicity with methanol was low, and the degree of aggregation was high when added to the toner.
  • a two-component developer was prepared by mixing 3 parts by mass of the above external additive mixed toner and 97 parts by mass of standard ferrite L (Japan Imaging Society) as a carrier.
  • Table 2 shows the results of measurements of the two-component developer obtained by the above steps according to the following methods (5) to (9).
  • the presence or absence of image defects (white spots) in the image of the printed matter 2 obtained above was evaluated according to the following criteria.
  • the two-component developer using the surface-treated vapor phase silica particles obtained in Examples 1-1 to 1-5 as a toner external additive had no print image defects. rice field.
  • those using the surface-treated fumed silica particles obtained in Comparative Examples 1-1 to 1-3 had a large fluctuation in the toner charge amount depending on the environment, and were inferior in printing characteristics.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

本発明は、表面処理気相法シリカ粒子の製造方法であって、(A1):原料気相法シリカ粒子に1,3-ジビニル-1,1,3,3-テトラメチルジシラザンを添加し、前記原料気相法シリカ粒子の表面にビニルジメチルシリル基を導入して予備処理シリカ粒子を得る工程、及び(A2):前記予備処理シリカ粒子にヘキサメチルジシラザンを添加し、前記予備処理シリカ粒子の表面にトリメチルシリル基を導入して表面処理気相法シリカ粒子を得る工程を有することを特徴とする表面処理気相法シリカ粒子の製造方法である。これにより、粗大凝集粒子が少なく、トナーに添加された場合に良好な流動性を付与できる表面処理気相法シリカ粒子及びその製造方法、及び該表面処理気相法シリカ粒子からなるトナー用外添剤が提供される。

Description

表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤
 本発明は、表面処理気相法シリカ粒子、その製造方法及び電子写真法、静電記録法等における静電荷像を現像するために使用する静電荷像現像用トナー外添剤に関する。
 電子写真法等で使用する乾式現像剤は、結着樹脂中に着色剤を分散したトナーそのものを用いる一成分現像剤と、そのトナーにキャリアを混合した二成分現像剤とに大別でき、そしてこれらの現像剤を用いてコピー操作を行う場合、プロセス適合性を有するためには、現像剤が流動性、耐ケーキング性、定着性、帯電性、クリーニング性等に優れていることが必要である。そして特に、流動性、耐ケーキング性、定着性、クリーニング性を高めるために、無機微粒子をトナー外添剤として使用することがしばしば行われている。
 しかしながら、無機微粒子の分散性がトナー特性に大きな影響を与え、分散性が不均一な場合、流動性、耐ケーキング性、定着性に所望の特性が得られなかったり、クリーニング性が不十分になって、感光体上にトナー固着等が発生し、黒点状の画像欠陥が生じる原因となることがあった。これらの点を改善する目的で、無機微粒子の表面を疎水化処理したものが種々提案されている。
 このような用途に用いられる無機微粒子のうち、気相法シリカは、一次粒子径が小さく、その表面処理による帯電性の制御により、トナー外添剤として優れた機能を持つものとして知られている(特許文献1、2、3)。
 しかし、気相法シリカは、一次粒子径が小さいものの凝集し易く、その凝集粒子径は通常10μmから200μm以上にもなるものがあった。このような凝集粒子は、トナーへの分散工程において、強い摩擦力を受けて解されながらトナー中に分散していくものであるが、大きな凝集体を形成しているものは、トナーへの分散性が悪く、このような凝集粒子がトナー中に存在することで、流動性を低下させたり、トナーからの脱落が起こったりして、印刷画像中に白点が出るなどの問題を引き起こすことがあった。
 そのような観点から疎水化処理後発生する凝集粒子を粉砕分級してその微粉のみを使用するという方法が提案されている(特許文献4)。しかし上記のような分級粉砕は製造効率が悪く、またコストも掛かるため好ましい方法ではなかった。
特開2004-145325号公報 特開2006-99006号公報 特開2007-34224号公報 特開2010-085837号公報
 本発明は、上記事情に鑑みなされたもので、粗大凝集粒子が少なく、トナーに添加された場合に良好な流動性を付与できる表面処理気相法シリカ粒子及びその製造方法、及び該表面処理気相法シリカ粒子からなるトナー用外添剤を提供することを目的とする。
 上記課題を解決するために、本発明では、
 表面処理気相法シリカ粒子の製造方法であって、
 (A1):原料気相法シリカ粒子に1,3-ジビニル-1,1,3,3-テトラメチルジシラザンを添加し、前記原料気相法シリカ粒子の表面にビニルジメチルシリル基を導入して予備処理シリカ粒子を得る工程、及び
 (A2):前記予備処理シリカ粒子にヘキサメチルジシラザンを添加し、前記予備処理シリカ粒子の表面にトリメチルシリル基を導入して表面処理気相法シリカ粒子を得る工程
を有する表面処理気相法シリカ粒子の製造方法を提供する。
 このような表面処理気相法シリカ粒子の製造方法であれば、粗大凝集粒子が少なく、トナーに添加された場合に良好な流動性を付与できる表面処理気相法シリカ粒子を製造することができる。
 また、前記原料気相法シリカ粒子のBET比表面積を40~400m/gとすることが好ましい。
 このような原料気相法シリカ粒子であれば、分散性に優れ、シラザン化合物による表面処理の際に凝集し難い。
 また、前記工程(A1)において、前記1,3-ジビニル-1,1,3,3-テトラメチルジシラザンの添加量(g)を、
 {前記工程(A1)に用いる前記原料気相法シリカ粒子の量(g)×前記原料気相法シリカ粒子のBET比表面積(m/g)}/B (Bは、5,000~100,000の数である。)
で表される量とすることが好ましい。
 1,3-ジビニル-1,1,3,3-テトラメチルジシラザンの添加量をこのような範囲とすれば、コストの面で好ましく、かつ、(A2)工程におけるヘキサメチルジシラザンによる疎水化処理効率を高めることができる。
 また、前記工程(A2)において、前記ヘキサメチルジシラザンの添加量(g)を、
 {前記工程(A2)に用いる前記予備処理シリカ粒子の量(g)×前記原料気相法シリカ粒子のBET比表面積(m/g)}/C (Cは、150~3,000の数である。)
で表される量とすることが好ましい。
 ヘキサメチルジシラザンの添加量をこのような範囲とすれば、反応時の凝集物の発生を抑えることができ、かつ、シリカ粒子の疎水化度をより高めることができる。
 また本発明では、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン及びヘキサメチルジシラザンにより気相法シリカ粒子の表面が処理されたものである表面処理気相法シリカ粒子であって、
 前記表面処理気相法シリカ粒子のBET比表面積が30m/g以上400m/g未満であり、
 前記表面処理気相法シリカ粒子のレーザー回析法による体積基準粒度分布から求められる1.5μm以上の粒子の割合が10%未満であり、
 前記表面処理気相法シリカ粒子のメタノール疎水化度が68%以上78%以下であり、かつ、
 前記表面処理気相法シリカ粒子1質量部と体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部とを混合して混合物とした場合に、該混合物の凝集度が20%以下となるものである表面処理気相法シリカ粒子を提供する。
 本発明では、このような特性を有する表面処理気相法シリカ粒子とすることができる。
 また本発明では、上記の表面処理気相法シリカ粒子を含有するものである静電荷像現像用トナー外添剤を提供する。
 本発明の表面処理気相法シリカ粒子は、トナー外添剤として用いた場合、トナーに良好な流動性および印刷特性を与えることができる。
 以上説明したように本発明によれば、外添剤として従来の小粒径フュームドシリカを用いた場合に発生していた印刷画像欠陥や低トナー流動性を改善できる表面処理気相法シリカ粒子、並びに、これを用いた静電荷現像用トナー、静電荷現像用トナー外添剤を提供することができる。
 上述のように、凝集粒子が少なくトナーに添加された場合に良好な流動性を付与できる、表面処理気相法シリカ粒子からなるトナー用外添剤の開発が求められていた。
 本発明者は、上記目的を達成するため鋭意検討を行った結果、気相法シリカ粒子をビニルテトラメチルジシラザン及びヘキサメチルジシラザンにより表面処理することにより、凝集が少なく、更にトナー添加時においても分散性が優れ、印刷画像欠陥のない表面処理気相法シリカ粒子が得られることを見出し、本発明を完成した。
 即ち、本発明は、
 表面処理気相法シリカ粒子の製造方法であって、
 (A1):原料気相法シリカ粒子に1,3-ジビニル-1,1,3,3-テトラメチルジシラザンを添加し、前記原料気相法シリカ粒子の表面にビニルジメチルシリル基を導入して予備処理シリカ粒子を得る工程、及び
 (A2):前記予備処理シリカ粒子にヘキサメチルジシラザンを添加し、前記予備処理シリカ粒子の表面にトリメチルシリル基を導入して表面処理気相法シリカ粒子を得る工程
を有する表面処理気相法シリカ粒子の製造方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
(原料気相法シリカ粒子)
 本発明において原料とされる気相法シリカ粒子(気相法シリカ微粒子)は、乾式法シリカとも呼ばれ、その製法は珪素化合物の火炎加水分解、火炎中燃焼法による酸化、あるいはこれらの反応の併用による方法で製造されたものであれば特に制限されない。その中でも火炎加水分解法により製造された気相法シリカ粒子が好適に用いられる。市販されている製品としては、日本アエロジル社製あるいはエボニックデグサ社製の「アエロジル」、キャボット社製の「キャボジル」、ワッカー社製の「HDK」、トクヤマ社製の「レオロシール」等がある。
 火炎加水分解法による気相法シリカ粒子の製造方法は、例えば、四塩化ケイ素等の原料珪素化合物のガスを不活性ガスと共に燃焼バーナーの混合室に導入し、水素及び空気と混合して所定比率の混合ガスとし、この混合ガスを反応室で1,000~3,000℃の温度で燃焼させて生成させ、冷却後、生成したシリカをフィルターで捕集する方法である。
 気相法シリカ粒子の原料として用いられる珪素化合物としては、各種の無機珪素化合物、有機珪素化合物が挙げられる。例えば、四塩化珪素、三塩化珪素、二塩化珪素などの無機珪素化合物、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、オクタメチルトリシロキサンなどのシロキサン、メチルトリメトキシシラン、テトラメトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、メチルトリブトキシシラン、ジエチルジプロポキシシラン、トリメチルブトキシシランなどのアルコキシシラン、テトラメチルシラン、ジエチルシラン、ヘキサメチルジシラザン、或いはこれらのオリゴマー、ポリマーなどの有機珪素化合物が挙げられる。
 このような珪素化合物の火炎中での加水分解及び燃焼分解は、この珪素化合物を必要に応じて蒸留などで精製した後、加熱蒸発させてこれを窒素ガスなどの不活性ガスに伴流させる気流伴送法や、珪素化合物を霧化させて火炎中に供給する方法で、酸水素火炎などの火炎中に導入し、この火炎中で反応させて行えばよいが、この際には、水素ガス、メタンガスなどのような可燃性ガスを助燃ガスとしてもよい。この助燃ガスとしては残渣の残らないものであればいずれも使用することができ、特に制限はない。これら珪素化合物の加水分解又は燃焼分解で生成したシリカは、バグフィルター、サイクロンなど公知の方法で捕集される。
 本発明における原料気相法シリカ粒子は、BET比表面積が40~400m/gのものが好ましい。このような範囲であれば、分散性に優れ、後述するシラザン化合物による表面処理の際に凝集し難い。
 原料気相法シリカ粒子は1種を単独で用いても良く、2種以上を混合して用いても良い。
(表面処理気相法シリカ粒子の製造方法)
 本発明の表面処理気相法シリカ粒子の製造方法は、下記工程(A1)および工程(A2)を有する。
工程(A1):シリカ表面にビニルジメチルシリル単位を導入する工程
工程(A2):シリカ表面にトリメチルシリル単位を導入する工程
工程(A1):シリカ表面にビニルジメチルシリル単位を導入する工程
 工程(A1)は、原料気相法シリカ粒子に1,3-ジビニル-1,1,3,3-テトラメチルジシラザン(以下、ジビニルテトラメチルジシラザンと表記する)を添加し、原料気相法シリカ粒子の表面にビニルジメチルシリル基を導入して予備処理シリカ粒子を得る工程である。本工程により、下記工程(A2)における表面処理がより均一に、且つ高度に進行する。
 原料気相法シリカ粒子としては、上述の気相法シリカ粒子を用いればよい。
 工程(A1)における原料気相法シリカ粒子のジビニルテトラメチルジシラザンによる表面処理方法は、一般的な粉体の表面処理に用いられる乾式法および湿式法を用いることができる。生産性の点から乾式法を用いることが好ましく、乾式法におけるジビニルテトラメチルジシラザンの添加方法としては、原料気相法シリカ粒子を反応器内で撹拌しながら、滴下、スプレーによる噴霧等により行うことができる。なお、ジビニルテトラメチルジシラザンはそのまま使用してもよく、トルエン、キシレン、ヘキサンなどの溶媒で希釈したものを用いてもよい。
 原料気相法シリカ粒子に対して表面処理を行う際に、予め水をシリカ表面に含ませておくことにより表面処理効率が高くなるため好ましく、この場合、水を添加した後0.5時間~2.0時間程度撹拌することが好ましい。
 水の添加方法は、原料気相法シリカ粒子を反応器内で撹拌しながら、水を滴下または噴霧する方法の他、スチームとして添加してもよい。
 原料気相法シリカ粒子に対する水の添加量は、以下の式で算出される量とすることが好ましい。
水の添加量(g)={工程(A1)に用いる原料気相法シリカ粒子の量(g)×原料気相法シリカ粒子のBET比表面積(m/g)}/A
 上記計算式において、Aは、300~200,000の数であることが好ましく、より好ましくは500~2,500の数である。Aが300以上であると、原料気相法シリカ粒子の水による凝集を抑制できるため好ましく、Aが200,000以下であるとシラザン化合物の反応性をより高めることができるため好ましい。
 ジビニルテトラメチルジシラザンの添加量は、原料気相法シリカ粒子に対して以下の式で算出される量とすることが好ましい。
ジビニルテトラメチルジシラザンの添加量(g)={工程(A1)に用いる原料気相法シリカ粒子の量(g)×原料気相法シリカ粒子のBET比表面積(m/g)}/B
 上記計算式において、Bは、5,000~100,000の数であることが好ましく、より好ましくは10,000~80,000の数である。Bが5,000以上であるとコストの面で好ましく、Bが100,000以下であると工程(A2)におけるヘキサメチルジシラザンによる疎水化処理効率を高めることができるため好ましい。
 工程(A1)における原料気相法シリカ粒子とジビニルテトラメチルジシラザンとの反応は、一般的なシラザン化合物によるシリカの表面処理条件が適用でき、室温においても反応が進行するが、ジビニルテトラメチルジシラザンを添加した後、混合物を50~70℃で0.5時間~3時間撹拌し、反応を進行させることが好ましい。
工程(A2):シリカ表面にトリメチルシリル単位を導入する工程
 工程(A2)は、工程(A1)において得られた予備処理シリカ粒子にヘキサメチルジシラザンを添加し、予備処理シリカ粒子の表面にトリメチルシリル基を導入して疎水化された表面処理気相法シリカ粒子を得る工程である。
 工程(A2)における予備処理シリカ粒子のヘキサメチルジシラザンによる表面処理方法は、一般的な粉体の表面処理に用いられる乾式法および湿式法を用いることができる。生産性の点から乾式法を用いることが好ましく、乾式法におけるヘキサメチルジシラザンの添加方法としては、予備処理シリカ粒子を反応器内で撹拌しながら、滴下、スプレーによる噴霧等により行うことができる。なお、ヘキサメチルジシラザンはそのまま使用してもよく、トルエン、キシレン、ヘキサンなどの溶媒で希釈したものを用いてもよい。
 また工程(A1)と同様、工程(A2)においてもシリカ表面に水が含まれている方がより表面処理効率が高くなるため好ましい。水は上述のように工程(A1)で添加しておけば十分であるが、工程(A2)において別途添加してもよい。
 ヘキサメチルジシラザンの添加量は、予備処理シリカ粒子に対して以下の式で算出される量とすることが好ましい。
ヘキサメチルジシラザンの添加量(g)={工程(A2)に用いる予備処理シリカ粒子の量(g)×原料気相法シリカ粒子のBET比表面積(m/g)}/C
 上記計算式において、Cは、150~3,000の数であることが好ましく、より好ましくは200~1,000の数であることが好ましい。Cが150以上であると反応時の凝集物の発生を抑えることができ、Cが3,000以下であるとシリカ粒子の疎水化度をより高めることができる。
 工程(A2)における予備処理シリカ粒子とヘキサメチルジシラザンとの反応は、一般的なシラザン化合物によるシリカの表面処理条件が適用でき、室温においても反応が進行するが、ヘキサメチルジシラザンを添加した後、混合物を50~100℃で0.5時間~3時間撹拌し、反応を進行させることが好ましい。
工程(A3):表面処理気相法シリカ粒子を乾燥する工程
 本発明の表面処理気相法シリカ粒子の製造方法は、工程(A2)後、そのまま表面処理気相法シリカ粒子を風乾、放冷等とすることができるが、更に工程(A3):表面処理気相法シリカ粒子を乾燥する工程を有することが好ましい。乾燥条件は特に限定されないが、140℃~250℃にて0.5時間~3時間程度窒素気流下で乾燥することが好ましい。
(表面処理気相法シリカ粒子)
 本発明の表面処理気相法シリカ粒子の製造方法により得られる表面処理気相法シリカ粒子は、
 1,3-ジビニル-1,1,3,3-テトラメチルジシラザン及びヘキサメチルジシラザンにより気相法シリカ粒子の表面が処理されたものである表面処理気相法シリカ粒子であって、
(1)表面処理気相法シリカ粒子のBET比表面積が30m/g以上400m/g未満であり、
(2)表面処理気相法シリカ粒子のレーザー回析法による体積基準粒度分布から求められる1.5μm以上の粒子の割合が10%未満であり、
(3)表面処理気相法シリカ粒子のメタノール疎水化度が68%以上78%以下であり、かつ、
(4)表面処理気相法シリカ粒子1質量部と体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部とを混合して混合物とした場合に、該混合物の凝集度が20%以下となるものである表面処理気相法シリカ粒子である。
 上記物性(1)~(4)を併せ持つことで、トナー外添剤として用いた場合、トナーに良好な流動性および印刷特性を与える。
(1)BET比表面積
 BET比表面積は、一次粒子径に依存し、特には40~200m/gが好ましい。BET比表面積が30m/gより小さいと、静電荷像現像用トナー外添剤としてトナーに添加した場合、トナーへの分散性が悪く、流動性向上効果に劣るものとなり、400m/g以上であると凝集し易いものとなる。
(2)凝集粒子割合
 レーザー回析法による体積基準粒度分布は、表面処理気相法シリカ粒子の0.5質量%メタノール分散液(出力30W/Lの超音波を10分間照射して分散させたもの)のレーザー回析法による体積基準粒度分布とすることができる。1.5μm以上の粒子の割合が10%以上では、大きな凝集粒子が多いことにより、静電荷像現像用トナー外添剤としてトナーに添加した場合、トナーへの分散性が劣り、トナーの流動性および印刷画質に劣るものとなる。この割合は8%以下がより好ましく、特に5%以下が好ましい。
(3)メタノール疎水化度
 表面処理気相法シリカ粒子のメタノール疎水化度が68%未満であると、シリカ表面の残存シラノール基によりシリカ粒子同士の凝集が起きやすくなり、静電荷像現像用トナー外添剤としてトナーに添加した場合、トナーへの分散性が劣り、トナーの流動性および印刷画質に劣るものとなる。メタノール疎水化度が78%を超えると、トナーに添加した場合、トナーの帯電量が高くなりすぎる場合がある。なお、本発明におけるメタノール疎水化度は、以下の条件で測定したものを指す。
<メタノール疎水化度の測定方法>
 体積濃度50%(温度25℃)のメタノール水溶液60mlに表面処理気相法シリカ粒子を0.2g添加し、撹拌子で攪拌し、次いでシリカ粒子が表面に浮遊した液中にメタノールを滴下しながら、メタノール水溶液に波長780nmの光を照射して透過率を測定し、球状シリカ粒子が懸濁・沈降して、透過率が80%になったときのメタノール水溶液中のメタノール体積濃度(%)をメタノール疎水化度とする。
(4)トナー凝集度
 ポリエステル樹脂粒子と表面処理気相法シリカ粒子との混合物の凝集度は、トナーにシリカ粒子を分散させた場合のトナーの凝集を表し、該凝集度の値が小さいほど、トナーの凝集量が少なく良好と評価できる。
 体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部と表面処理気相法シリカ粒子1質量部との混合物の凝集度が20%より高いと、表面処理気相法シリカ粒子を静電荷像現像用トナー外添剤としてトナーに添加した場合、トナー同士の固着による凝集物発生が多くなったり、トナーの流動性が悪化する。凝集度は好ましくは10%以下である。なお、本発明における凝集度は、以下の条件で測定したものを指す。
<凝集度の測定方法>
 レーザー回折/散乱法による体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部に対して、表面処理気相法シリカ粒子1質量部をミキサーにより混合した混合物2gを用い、篩の目開きが上から150μm、75μm、45μm、振動幅1mm、振動数1Hzで60秒間振動させる。振動後、篩上に残った量を測定し、下式にて算出する。
凝集度(%)=(W+0.6×W+0.2×W)/2×100
:150μm目開き篩上の残存量(g)
:75μm目開き篩上の残存量(g)
:45μm目開き篩上の残存量(g)
(静電荷像現像用トナー外添剤)
 また本発明では、上記の表面処理気相法シリカ粒子を含有するものである静電荷像現像用トナー外添剤を提供する。本発明の表面処理気相法シリカ粒子は、トナー外添剤として用いた場合、トナーに良好な流動性および印刷特性を与えることができる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(表面処理気相法シリカ粒子の製造)
[実施例1-1]
 撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積50m/gの気相法シリカ粒子を240g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水18gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ジビニルテトラメチルジシラザン0.6gを噴霧し、60℃で1時間撹拌した。一旦25℃まで冷却した後、ヘキサメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(I)の白色粉体243gを得た。
[実施例1-2]
 実施例1-1において、ジビニルテトラメチルジシラザンの添加量を1.2gとした以外は実施例1-1と同様の手順を行い、表面処理気相法シリカ粒子(II)の白色粉体244gを得た。
[実施例1-3]
 実施例1-1において、BET比表面積50m/gの気相法シリカ粒子に代えてBET比表面積90m/gの気相法シリカ粒子を用いた以外は実施例1-1と同様の手順を行い、表面処理気相法シリカ粒子(III)の白色粉体242gを得た。
[実施例1-4]
 撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積130m/gの気相法シリカ微粒子を148g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水13gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ジビニルテトラメチルジシラザン0.4gを噴霧し、60℃で1時間撹拌した。一旦25℃まで冷却した後、ヘキサメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(IV)の白色粉体51gを得た。
[実施例1-5]
 実施例1-4において、BET比表面積130m/gの気相法シリカ微粒子に代えてBET比表面積200m/gの気相法シリカ微粒子を用いた以外は実施例1-4と同様の手順を行い、表面処理気相法シリカ粒子(V)の白色粉体153gを得た。
[比較例1-1]
 撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積50m/gの気相法シリカ粒子を240g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水18gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ヘキサメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(VI)の白色粉体243gを得た。
[比較例1-2]
 撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積130m/gの気相法シリカ微粒子を148g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水13gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ヘキサメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(VII)の白色粉体51gを得た。
[比較例1-3]
 撹拌機、噴霧装置、温度計を備えた5リットルの反応装置にBET比表面積50m/gの気相法シリカ粒子を240g投入した。反応装置内の空気を乾燥窒素にて置換した後、撹拌しながら水18gを噴霧装置により噴霧した。25℃で1時間撹拌した後、ジビニルテトラメチルジシラザン60gを噴霧し、60℃で1時間撹拌後、更に150℃、窒素気流下で撹拌しながら3時間乾燥させた。これを冷却することにより表面処理気相法シリカ粒子(VIII)の白色粉体247gを得た。
 上記工程により得られた表面処理気相法シリカ粒子(I)~(VIII)について、下記の測定方法(1)~(4)に従って測定を行った結果を表1に示す。
[測定方法]
(1)BET比表面積
 全自動BET比表面積測定装置(株式会社マウンテック製Macsorb HM model-1201)を用い、窒素を使用したBET1点法により測定した。
(2)凝集粒子割合
 表面処理気相法シリカ粒子0.1g及びメタノール19.9gをガラス瓶に入れ、超音波洗浄機に入れて、出力30W/Lの超音波を10分間照射させてメタノール中にシリカ粒子を分散させた。その分散液をレーザー回析/散乱式粒子径分布測定装置(株式会社堀場製作所製LA-950V2)を用いて測定した体積基準の粒度分布において、粒子径1.5μm以上の凝集粒子の割合を算出した。
(3)メタノール疎水化度
 粉体濡れ性試験機(株式会社レスカ製WET101P)を用い、体積濃度50%(温度25℃)のメタノール水溶液60mlに表面処理気相法シリカ粒子を0.2g添加し、撹拌子で攪拌した。次いでシリカ粒子が表面に浮遊した液中にメタノールを滴下しながら、メタノール水溶液に波長780nmの光を照射して透過率を測定した。球状シリカ粒子が懸濁・沈降して、透過率が80%になったときのメタノール水溶液中のメタノール体積濃度(%)をメタノール疎水化度とした。
(4)トナー凝集度
 レーザー回折/散乱法による体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部に対して、表面処理気相法シリカ粒子1質量部をミキサーにより混合した。この混合物2gを、粉体特性評価装置(ホソカワミクロン株式会社製パウダーテスターPT-X)を使用して、篩の目開きが上から150μm、75μm、45μm、振動幅1mm、振動数1Hzで60秒間振動させた後、篩上に残った量を測定し、凝集度を下式にて算出した。
凝集度(%)=(W+0.6×W+0.2×W)/2×100
:150μm目開き篩上の残存量(g)
:75μm目開き篩上の残存量(g)
:45μm目開き篩上の残存量(g)
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1-1~1-5で得られた表面処理気相法シリカ粒子は、凝集シリカ粒子の割合が少なく、メタノール疎水化度が十分であり、更にトナー凝集度が小さいものであった。一方、ジビニルテトラメチルジシラザンによる表面処理を行っていない比較例1-1,1-2、及びヘキサメチルジシラザンによる表面処理を行っていない比較例1-3で得られた表面処理気相法シリカ粒子は、シリカ粒子同士の凝集が多く見られ、メタノール疎水化度が低く、トナーに添加した際の凝集度が高いものであった。
(外添剤混合トナーおよび二成分現像剤の製造)
[実施例2-1~2-5、比較例2-1~2-3]
 Tg60℃、軟化点110℃のポリエステル樹脂96重量部と色剤としてカーミン6BC(住化カラー(株)製)4重量部を溶融混練、粉砕、分級後、体積メジアン径7μmのトナーを得た。このトナー10gと実施例1-1~1-5、及び比較例1-1~1-3で得られた表面処理気相法シリカ粒子0.2gとをサンプルミルにて混合し、外添剤混合トナーを得た。
 上記外添剤混合トナー3質量部と、キャリアである標準フェライトL(日本画像学会)97質量部とを混合して二成分現像剤を調製した。上記工程により得られた二成分現像剤について、下記の方法(5)~(9)に従って測定を行った結果を表2に示す。
(5)トナー帯電量
 上記二成分現像剤を高温高湿(30℃、90%RH)、中温中湿(25℃、55%RH)及び低温低湿(10℃、15%RH)の各条件下に1日間曝露した後、同一条件下でそれぞれの試料を摩擦帯電した際の帯電量をブローオフ粉体帯電量測定装置(東芝ケミカル(株)製、TB-200)を用いて測定した。
(6)感光体へのトナー付着
 上記二成分現像剤を、有機感光体を備えた現像機に入れ、25℃、50%RH環境下で30,000枚のプリントテストを実施した。このとき、感光体へのトナーの付着は、全ベタ画像での白抜けとして感知できる。ここで、白抜けの程度は、1cmあたりの白抜け個所の数が10個以上を「多い」、1~9個を「少ない」、0個を「なし」と評価した。
(7)感光体摩耗
 上記(6)のプリントテストにおいて、画像の乱れとして検出される感光体摩耗について、下記基準で評価した。
A:画像の乱れのないもの
B:大きな画像の乱れのないもの
C:画像の乱れがあるもの
(8) 画像欠損(白点)評価
 上記二成分現像剤を30℃、90%RHの環境に1日間曝露し、その後20cm四方のベタ印刷(画像濃度100%)を5,000枚連続印刷を行った後、再び上記二成分現像剤を30℃、90%RH環境下で静置した。これを60回繰返し、合計300,000枚の印刷を行った。初日の10枚目の印刷物を印刷物1、最終日の最終印刷物を印刷物2とした。
 上記で得られた印刷物2の画像観察による画像欠損(白点)の有無を下記基準で評価した。
A:目視で画像欠損なし(白点なし)
B:目視で白点(粒子状に白く抜けた画像)が1個以上4個以下
C:目視で白点が5個以上9個以下
D:目視で白点が10個以上
(9)濃度変化(ΔE)評価
 上記印刷物1に対する印刷物2の濃度変化について、反射濃度計X-rite938(X-rite社製)を使用し、JIS Z 8781-5に準拠してCIE1976(L*a*b*)色空間における色差(ΔE)を測定し、下記基準により評価した。
A:ΔE差が1未満
B:ΔE差が1以上2.5未満
C:ΔE差が2.5以上3.0未満
D:ΔE差が3.0以上
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例1-1~1-5で得られた表面処理気相法シリカ粒子をトナー外添剤として用いた二成分現像剤は、印刷画像欠陥のないものであった。一方、比較例1-1~1-3で得られた表面処理気相法シリカ粒子を用いたものは、トナー帯電量の環境による変動が大きく、印刷特性に劣っていた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  表面処理気相法シリカ粒子の製造方法であって、
     (A1):原料気相法シリカ粒子に1,3-ジビニル-1,1,3,3-テトラメチルジシラザンを添加し、前記原料気相法シリカ粒子の表面にビニルジメチルシリル基を導入して予備処理シリカ粒子を得る工程、及び
     (A2):前記予備処理シリカ粒子にヘキサメチルジシラザンを添加し、前記予備処理シリカ粒子の表面にトリメチルシリル基を導入して表面処理気相法シリカ粒子を得る工程
    を有することを特徴とする表面処理気相法シリカ粒子の製造方法。
  2.  前記原料気相法シリカ粒子のBET比表面積を40~400m/gとすることを特徴とする請求項1に記載の表面処理気相法シリカ粒子の製造方法。
  3.  前記工程(A1)において、前記1,3-ジビニル-1,1,3,3-テトラメチルジシラザンの添加量(g)を、
     {前記工程(A1)に用いる前記原料気相法シリカ粒子の量(g)×前記原料気相法シリカ粒子のBET比表面積(m/g)}/B (Bは、5,000~100,000の数である。)
    で表される量とすることを特徴とする請求項1又は請求項2に記載の表面処理気相法シリカ粒子の製造方法。
  4.  前記工程(A2)において、前記ヘキサメチルジシラザンの添加量(g)を、
     {前記工程(A2)に用いる前記予備処理シリカ粒子の量(g)×前記原料気相法シリカ粒子のBET比表面積(m/g)}/C (Cは、150~3,000の数である。)
    で表される量とすることを特徴とする請求項1から請求項3のいずれか一項に記載の表面処理気相法シリカ粒子の製造方法。
  5.  1,3-ジビニル-1,1,3,3-テトラメチルジシラザン及びヘキサメチルジシラザンにより気相法シリカ粒子の表面が処理されたものである表面処理気相法シリカ粒子であって、
     前記表面処理気相法シリカ粒子のBET比表面積が30m/g以上400m/g未満であり、
     前記表面処理気相法シリカ粒子のレーザー回析法による体積基準粒度分布から求められる1.5μm以上の粒子の割合が10%未満であり、
     前記表面処理気相法シリカ粒子のメタノール疎水化度が68%以上78%以下であり、かつ、
     前記表面処理気相法シリカ粒子1質量部と体積メジアン径が5~8μmであるポリエステル樹脂粒子100質量部とを混合して混合物とした場合に、該混合物の凝集度が20%以下となるものであることを特徴とする表面処理気相法シリカ粒子。
  6.  請求項5に記載の表面処理気相法シリカ粒子を含有するものであることを特徴とする静電荷像現像用トナー外添剤。
PCT/JP2021/047691 2021-02-18 2021-12-22 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤 WO2022176388A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237027469A KR20230145354A (ko) 2021-02-18 2021-12-22 표면처리 기상법 실리카입자의 제조방법, 표면처리기상법 실리카입자, 및 정전하상 현상용 토너 외첨제
US18/276,914 US20240117192A1 (en) 2021-02-18 2021-12-22 Method for manufacturing surface-treated gas-phase-process silica particle, surface-treated gas-phase-process silica particle, and toner external additive for electrostatic charge image development
EP21926811.7A EP4296228A1 (en) 2021-02-18 2021-12-22 Method for manufacturing surface-treated vapor phase silica particles, surface-treated vapor phase silica particles, and external additive for toner for electrostatic charge image development
CN202180093802.XA CN116888072A (zh) 2021-02-18 2021-12-22 表面处理气相法二氧化硅颗粒的制造方法、表面处理气相法二氧化硅颗粒、及静电图像显影用调色剂外部添加剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021024701A JP7456957B2 (ja) 2021-02-18 2021-02-18 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤
JP2021-024701 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022176388A1 true WO2022176388A1 (ja) 2022-08-25

Family

ID=82930632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047691 WO2022176388A1 (ja) 2021-02-18 2021-12-22 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤

Country Status (6)

Country Link
US (1) US20240117192A1 (ja)
EP (1) EP4296228A1 (ja)
JP (1) JP7456957B2 (ja)
KR (1) KR20230145354A (ja)
CN (1) CN116888072A (ja)
WO (1) WO2022176388A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145325A (ja) 2002-10-02 2004-05-20 Canon Inc シリカ微粉体、トナー、二成分系現像剤及び画像形成方法
JP2006099006A (ja) 2004-09-30 2006-04-13 Kyocera Mita Corp 現像装置
JP2007034224A (ja) 2005-07-29 2007-02-08 Kyocera Mita Corp 静電荷像現像用トナーおよび画像形成方法
JP2010085837A (ja) 2008-10-01 2010-04-15 Nippon Aerosil Co Ltd 疎水性シリカ微粒子及び電子写真用トナー組成物
JP2010528134A (ja) * 2007-05-22 2010-08-19 エボニック デグサ ゲーエムベーハー 接着剤
JP2014201461A (ja) * 2013-04-02 2014-10-27 株式会社トクヤマ 疎水化乾式シリカ微粒子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501856B2 (en) 2007-07-13 2013-08-06 Momentive Performance Materials Inc. Curable silicon-containing compositions possessing high translucency
CN101481549B (zh) 2009-01-20 2012-11-28 蓝星有机硅(上海)有限公司 沉淀法二氧化硅的表面处理方法及其应用
JP2013064090A (ja) 2011-09-20 2013-04-11 Shin-Etsu Chemical Co Ltd 付加硬化性シリコーンゴム組成物及びその硬化物
JP6269401B2 (ja) 2014-09-09 2018-01-31 味の素株式会社 表面処理無機充填材、該無機充填材の製造方法、および該無機充填材を含有する樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145325A (ja) 2002-10-02 2004-05-20 Canon Inc シリカ微粉体、トナー、二成分系現像剤及び画像形成方法
JP2006099006A (ja) 2004-09-30 2006-04-13 Kyocera Mita Corp 現像装置
JP2007034224A (ja) 2005-07-29 2007-02-08 Kyocera Mita Corp 静電荷像現像用トナーおよび画像形成方法
JP2010528134A (ja) * 2007-05-22 2010-08-19 エボニック デグサ ゲーエムベーハー 接着剤
JP2010085837A (ja) 2008-10-01 2010-04-15 Nippon Aerosil Co Ltd 疎水性シリカ微粒子及び電子写真用トナー組成物
JP2014201461A (ja) * 2013-04-02 2014-10-27 株式会社トクヤマ 疎水化乾式シリカ微粒子

Also Published As

Publication number Publication date
JP7456957B2 (ja) 2024-03-27
US20240117192A1 (en) 2024-04-11
CN116888072A (zh) 2023-10-13
KR20230145354A (ko) 2023-10-17
EP4296228A1 (en) 2023-12-27
JP2022126550A (ja) 2022-08-30

Similar Documents

Publication Publication Date Title
JP4615952B2 (ja) 改質疎水化シリカ及びその製造方法
JP4758655B2 (ja) 表面処理シリカ微粒子
JP6030059B2 (ja) 球状シリカ微粉末及び球状シリカ微粉末を用いた静電荷像現像用トナー外添剤
WO2001042372A1 (en) Fine metal oxide powder having high dispersibility and toner composition comprising the same
WO2010038538A1 (ja) 疎水性シリカ微粒子及び電子写真用トナー組成物
JP5504600B2 (ja) 疎水性シリカ微粒子及び電子写真用トナー組成物
JP5989201B2 (ja) シリコーンオイル処理シリカ粒子、及び電子写真用トナー
JP3278278B2 (ja) 疎水性酸化チタン系微粉体
JP7456957B2 (ja) 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤
JP4347201B2 (ja) 静電荷像現像用トナー外添剤およびトナー
WO2022181018A1 (ja) 表面処理ゾルゲルシリカ粒子の製造方法、表面処理ゾルゲルシリカ粒子、及び静電荷像現像用トナー外添剤
JP6328488B2 (ja) 球状シリカ微粉末及びその用途
JP4628760B2 (ja) 球状疎水性ポリジオルガノシロキサン含有シリカ微粒子、静電荷像現像用トナー外添剤およびトナー
JP4611006B2 (ja) 球状シリカ微粒子、静電荷像現像用トナー外添剤およびトナー
JP5683101B2 (ja) 表面処理シリカ
JP5568864B2 (ja) 疎水性シリカ微粒子及び電子写真用トナー組成物
WO2016117344A1 (ja) シリコーンオイル処理シリカ粒子、及び電子写真用トナー
JP2001194819A (ja) 静電荷像現像用トナー外添剤
JP7548806B2 (ja) 新規な複合無機酸化物粉体、複合無機酸化物粉体を含有する粉体塗料組成物、複合無機酸化物粉体を含有する電子写真のトナー組成物、複合無機酸化物粉体の製造方法
JP2015000830A (ja) 球状シリカ組成物及びその用途
JP4936237B2 (ja) 正帯電性疎水性酸化チタン微粉末とその製法および用途
JP6817916B2 (ja) 静電荷像現像用トナー外添剤の製造方法
JP4198108B2 (ja) 静電荷像現像用トナー外添剤およびトナー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276914

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180093802.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021926811

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021926811

Country of ref document: EP

Effective date: 20230918