WO2022181018A1 - 表面処理ゾルゲルシリカ粒子の製造方法、表面処理ゾルゲルシリカ粒子、及び静電荷像現像用トナー外添剤 - Google Patents

表面処理ゾルゲルシリカ粒子の製造方法、表面処理ゾルゲルシリカ粒子、及び静電荷像現像用トナー外添剤 Download PDF

Info

Publication number
WO2022181018A1
WO2022181018A1 PCT/JP2021/047477 JP2021047477W WO2022181018A1 WO 2022181018 A1 WO2022181018 A1 WO 2022181018A1 JP 2021047477 W JP2021047477 W JP 2021047477W WO 2022181018 A1 WO2022181018 A1 WO 2022181018A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
group
gel silica
sol
units
Prior art date
Application number
PCT/JP2021/047477
Other languages
English (en)
French (fr)
Inventor
和之 松村
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN202180094301.3A priority Critical patent/CN116897139A/zh
Priority to KR1020237027820A priority patent/KR20230150276A/ko
Priority to EP21928111.0A priority patent/EP4299518A1/en
Publication of WO2022181018A1 publication Critical patent/WO2022181018A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09716Inorganic compounds treated with organic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density

Definitions

  • the present invention relates to surface-treated sol-gel silica particles, a method for producing the same, and an external toner additive for developing electrostatic images used for developing electrostatic images in electrophotography, electrostatic recording, and the like.
  • Dry developers used in electrophotography and the like can be broadly classified into one-component developers that use toner itself in which a coloring agent is dispersed in a binder resin, and two-component developers that mix the toner with a carrier.
  • the developers When these developers are used for copying operations, the developers must be excellent in fluidity, caking resistance, fixability, chargeability, cleanability, etc. in order to have process suitability. .
  • inorganic fine particles are often used as external toner additives.
  • Patent Documents 1 and 2 there has been proposed a technology for suppressing deterioration of toner using a spacer effect of an external additive for toner having a large particle size.
  • toner external additives a small particle size toner external additive and a large particle size toner external additive are often used together. Due to the presence of the external toner additive with a large particle diameter adhering to the surface of the toner particles, the frequency with which the external external additive with a small particle diameter adhering to the surface of the toner particles in the vicinity thereof is subjected to external forces such as direct shear force and impact force is reduced. Since it is possible to prevent the toner external additive having a small particle size from being buried in the toner particle surface due to the external force (spacer effect), deterioration of the toner can be suppressed.
  • the toner becomes easier to separate from the photoreceptor, and the toner on the photoreceptor is quickly transferred to the paper, and the transfer efficiency can be maintained at a high level. It is believed that the large particle size toner external additive also functions as a transfer aid.
  • the small particle size silica used at this time is often used mainly as a fluidizing agent, but until now, fumed silica particles produced by the combustion method have been mainly used.
  • fumed silica particles certainly improve the fluidity, there is a tendency to increase the amount of addition in order to improve the fluidity of recent toners with small particle diameters.
  • transferability and cleanability have been required more strictly, and there has been a demand for toners free from aggregates and excellent in dispersibility.
  • fumed silica particles as described above are used for the purpose of improving charging characteristics, etc., but generally the surface is not sufficiently hydrophobized, and silanol groups remain on the surface. There is a problem that it is difficult to control charging, and there has been a demand for silica particles with a small particle size that are excellent in both fluidity and charging control.
  • the present invention has been made in view of the above circumstances, and the surface-treated sol-gel silica particles that can impart good fluidity when added to toner and have little charge change when the environment changes, a method for producing the same, and the surface
  • An object of the present invention is to provide an external additive for toner comprising treated sol-gel silica particles.
  • a method for producing surface-treated sol-gel silica particles comprising: (A1) A hydrophilic sol-gel silica having silanol groups on the surface and substantially consisting of SiO2 units is obtained by hydrolyzing and condensing a tetrafunctional silane compound, a partial hydrolysis condensation product thereof, or a mixture thereof.
  • the hydrophilic sol-gel silica particles have (C 2 H 5 ) 3 Si—groups or R 1 R 2 2 Si—groups (wherein R 1 is an alkyl or alkenyl group having 2 to 8 carbon atoms, or an aryl group having 6 to 8 carbon atoms, and R 2 is the same or different substituted or unsubstituted alkyl group having 1 to 4 carbon atoms) to obtain the hydrophilic sol-gel silica particles.
  • the step (A1) is represented by the general formula (i): Si( OR4)4 ( i) (Wherein, each R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms)
  • a tetrafunctional silane compound represented by, a partial hydrolysis condensation product thereof or a mixture thereof in the presence of a basic substance in a mixture of a hydrophilic organic solvent and water on the surface
  • a step of obtaining a mixed solvent dispersion of hydrophilic sol - gel silica particles having silanol groups and substantially consisting of SiO units The step (A2) is applied to the obtained mixed solvent dispersion of the hydrophilic sol-gel silica particles with the general formula (ii): R1R22SiNHSiR1R22 ( ii ) _ _ (Wherein, R 1 and R 2 are as defined above)
  • the step (A3) is applied to the obtained mixed solvent dispersion of the pretreated silica particles with the general formula (iv): R33SiNHSiR333 ( iv ) ( Wherein, R3 is as defined above)
  • /2 units R3 is as described above) to obtain surface-treated sol-gel silica particles.
  • the method for producing surface-treated sol-gel silica particles of the present invention can be such a production method.
  • R 1 is an alkyl group having 6 to 8 carbon atoms, phenyl group or vinyl group
  • R 2 is methyl group, ethyl group, propyl group or isopropyl group
  • R 3 is methyl group or ethyl group. It is preferable to
  • the hydrophilic sol-gel silica particles are preferably surface-treated using such a compound.
  • R 1 R 2 2 SiO 1/2 units (wherein R 1 is an alkyl or aryl group having 6 to 8 carbon atoms or a vinyl group, and R 2 is the same or different and has 1 to 2 carbon atoms) 4) and R 3 3 SiO 1/2 units (wherein R 3 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms).
  • a surface-treated sol-gel silica particle that is The median diameter in the dynamic light scattering method is 5 nm to 99 nm, The average circularity is 0.8 to 1.0, has a refractive index of 1.38 to 1.42; A true density of 1.7 g/cm 3 or more and less than 1.9 g/cm 3 , The ratio represented by water vapor adsorption specific surface area/nitrogen adsorption specific surface area is 0.4 to 1.9, Provided are surface-treated sol-gel silica particles having a methanol hydrophobicity of 67% or more and 75% or less.
  • surface-treated sol-gel silica particles having such properties can be used.
  • R 1 is an alkyl group having 6 to 8 carbon atoms, a phenyl group, or a vinyl group
  • R 2 is a methyl group, an ethyl group, a propyl group, or an isopropyl group
  • R 3 is a methyl group. or preferably an ethyl group.
  • the surface-treated sol-gel silica particles of the present invention are preferably subjected to such surface treatment.
  • the present invention also provides a toner external additive for electrostatic charge image development containing the surface-treated sol-gel silica particles.
  • the surface-treated sol-gel silica particles of the present invention can impart good fluidity and printing properties to the toner when used as a toner external additive.
  • surface-treated sol-gel silica particles capable of improving charging abnormalities and toner fluidity due to environmental changes that occur when conventional small-diameter fumed silica is used as an external additive. It is possible to provide a toner external additive for developing an electrostatic charge image and a toner for developing an electrostatic charge image comprising the above.
  • the present inventors have found that by surface-treating spherical silica particles obtained by a sol-gel method with a specific organosilicon compound, good fluidity can be achieved when added to toner. can be imparted, and surface-treated sol-gel silica particles with little change in charge amount when the environment changes can be obtained, and the present invention has been completed.
  • a method for producing surface-treated sol-gel silica particles comprising: (A1) A hydrophilic sol-gel silica having silanol groups on the surface and substantially consisting of SiO2 units is obtained by hydrolyzing and condensing a tetrafunctional silane compound, a partial hydrolysis condensation product thereof, or a mixture thereof.
  • the hydrophilic sol-gel silica particles have (C 2 H 5 ) 3 Si—groups or R 1 R 2 2 Si—groups (wherein R 1 is an alkyl or alkenyl group having 2 to 8 carbon atoms, or an aryl group having 6 to 8 carbon atoms, and R 2 is the same or different substituted or unsubstituted alkyl group having 1 to 4 carbon atoms) to obtain the hydrophilic sol-gel silica particles.
  • Step (A1) Synthesis step of hydrophilic sol-gel silica particles Step (A1) involves hydrolyzing and condensing a tetrafunctional silane compound, a partial hydrolysis condensation product thereof, or a mixture thereof to form silanol groups on the surface. and substantially consisting of SiO 2 units.
  • the hydrophilic sol-gel silica particles “substantially consist of SiO2 units” means that the particles are basically composed of SiO2 units but composed only of SiO2 units. Rather, it means that at least the surface may have a large number of silanol groups as is commonly known. In some cases, a small amount of hydrolyzable groups (hydrocarbyloxy groups) derived from the raw material tetrafunctional silane compound and/or a partial hydrolysis condensation product thereof are not converted into silanol groups, and the particles are used as they are. It means that it may remain on the surface or inside.
  • the small-diameter sol-gel method silica particles obtained by hydrolysis of a tetrafunctional silane compound such as tetraalkoxysilane in the step (A1) are used as the silica raw material (silica particles before hydrophobization treatment).
  • the particle size after the hydrophobization treatment maintains the primary particle size of the silica raw material, is not aggregated, and has a small particle size, Surface-treated sol-gel silica particles that are excellent as an external additive for toner can be obtained.
  • Step (A1) comprises general formula (i): Si( OR4)4 ( i) (Wherein, each R 4 is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms)
  • a tetrafunctional silane compound represented by, a partial hydrolysis condensation product thereof or a mixture thereof in the presence of a basic substance in a mixture of a hydrophilic organic solvent and water hydrophilic It is preferably a step of obtaining a mixed solvent dispersion of sol-gel silica particles.
  • R 4 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. be.
  • Examples of the monovalent hydrocarbon group represented by R 4 include alkyl groups such as methyl group, ethyl group, propyl group and butyl group; and aryl groups such as phenyl group, preferably methyl group, Ethyl group, propyl group or butyl group, particularly preferably methyl group or ethyl group.
  • Examples of the tetrafunctional silane compound represented by the general formula (i) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane; and tetraphenoxysilane, preferably , tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane and tetrabutoxysilane, particularly preferably tetramethoxysilane and tetraethoxysilane.
  • Partial hydrolysis condensation products of the tetrafunctional silane compound represented by formula (i) include, for example, alkyl silicates such as methyl silicate and ethyl silicate.
  • the hydrophilic organic solvent is not particularly limited as long as it dissolves the tetrafunctional silane compound represented by the general formula (i), the partial hydrolysis condensation product thereof, and water.
  • cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, and cellosolve acetate; ketones such as acetone and methyl ethyl ketone; ethers such as dioxane and tetrahydrofuran; alcohols and cellosolves are particularly preferred; Alcohols are mentioned.
  • R5OH (vi) (Wherein, R 5 is a monovalent hydrocarbon group having 1 to 6 carbon atoms)
  • the alcohol represented by is mentioned.
  • R 5 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms. be.
  • Examples of the monovalent hydrocarbon group represented by R 5 include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and t-butyl group, preferably methyl group, ethyl , propyl and isopropyl groups, more preferably methyl and ethyl groups.
  • Examples of the alcohol represented by the general formula (vi) include methanol, ethanol, propanol, isopropanol, butanol and the like, preferably methanol and ethanol.
  • methanol is preferred for obtaining silica particles with a small particle size.
  • the basic substance examples include ammonia, dimethylamine, diethylamine, etc., preferably ammonia and diethylamine, particularly preferably ammonia.
  • the resulting aqueous solution may be mixed with the hydrophilic organic solvent.
  • the basic substance is used in an amount of 0.01 to 2 mol per 1 mol of hydrocarbyloxy groups in the tetrafunctional silane compound represented by general formula (i) and/or its partial hydrolysis condensation product. is preferred, 0.02 to 0.5 mol is more preferred, and 0.04 to 0.12 mol is particularly preferred. At this time, the smaller the amount of the basic substance, the smaller the silica particles.
  • the amount of water used in the above hydrolysis and condensation is 0.00 to 1 mol of total hydrocarbyloxy groups of the tetrafunctional silane compound represented by general formula (i) and/or its partial hydrolysis condensation product. It is preferably 1 to 2 mol, more preferably 0.1 to 1 mol.
  • the ratio of the hydrophilic organic solvent to water is preferably 0.2-10, more preferably 0.3-5, by mass. The larger the amount of the hydrophilic organic solvent, the smaller the silica particles obtained.
  • Hydrolysis and condensation of a tetrafunctional silane compound and the like can be performed by a known method, that is, by adding a tetrafunctional silane compound and a basic substance to a mixture of a hydrophilic organic solvent and water.
  • the temperature during hydrolysis and condensation is preferably 20 to 50°C, and the higher the temperature, the smaller the silica particles obtained.
  • the concentration of the hydrophilic sol-gel silica particles obtained in this step (A1) in the mixed solvent dispersion is generally 3-15% by mass, preferably 5-10% by mass.
  • Step (A2) comprises adding (C 2 H 5 ) 3 Si— groups or R 1 R 2 2 to the hydrophilic sol-gel silica particles obtained in the above step (A1).
  • Si—group wherein R 1 is an alkyl or alkenyl group having 2 to 8 carbon atoms or an aryl group having 6 to 8 carbon atoms, and R 2 is the same or different substituted or unsubstituted carbon atom (C 2 H 5 ) 3 SiO 1/2 units or R 1 R 2 2 SiO 1/2 units (wherein R 1 and R 2 are as defined above) to obtain pretreated silica particles.
  • the surface treatment in the following step (A3) proceeds more uniformly and to a high degree.
  • step (A2) general formula (ii): R1R22SiNHSiR1R22 ( ii ) _ _ (Wherein, R 1 and R 2 are as defined above)
  • the alkyl group having 2 to 8 carbon atoms for R 1 includes ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, cyclohexyl group, n-octyl group, cyclo An octyl group and the like can be mentioned.
  • the alkenyl group having 2 to 8 carbon atoms includes vinyl group, allyl group, n-butenyl group, n-hexenyl group, n-octenyl group and the like.
  • aryl group having 6 to 8 carbon atoms examples include a phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2 , 6-dimethylphenyl group and the like.
  • R 1 is preferably an alkyl group having 6 to 8 carbon atoms, a phenyl group or a vinyl group, particularly preferably an n-octyl group, a phenyl group or a vinyl group.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group and the like, preferably Methyl group, ethyl group, propyl group and isopropyl group, more preferably methyl group and ethyl group.
  • Some or all of the hydrogen atoms in these alkyl groups may be substituted with halogen atoms such as fluorine, chlorine and bromine atoms, preferably fluorine atoms.
  • R 2 is a group different from R 1 above.
  • hydrolyzable group represented by X examples include chlorine atom, alkoxy group, amino group and acyloxy group, preferably alkoxy group or amino group, particularly preferably alkoxy group.
  • Silazane compounds represented by formula (ii) include 1,3-diethyltetramethyldisilazane, 1,3-di-n-propyltetramethyldisilazane, and 1,3-di-n-butyltetramethyldisilazane. , 1,3-di-n-hexyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyl-tetramethyldisilazane, 1,3-divinyltetramethyldisilazane, 1,3-diallyltetramethyldisilazane and the like.
  • Examples of the monofunctional silane compound represented by formula (iii-1) include ethyldimethylmethoxysilane, n-propyldimethylmethoxysilane, isopropyldimethylmethoxysilane, n-butyldimethylmethoxysilane, n-hexyldimethylmethoxysilane, n -monoalkoxysilanes such as octyldimethylmethoxysilane, phenyldimethylmethoxysilane, and vinyldimethylmethoxysilane, and their silanol and monochloro silanes.
  • Examples of the monofunctional silane compound represented by the general formula (iii-2) include monoalkoxysilanes such as triethylmethoxysilane, and silanol and monochloro silanes thereof.
  • the total addition amount of the silazane compound represented by the general formula (ii), hexaethyldisilazane, and the monofunctional silane compounds represented by the general formulas (iii-1) and (iii-2) is the hydrophilic sol-gel silica particles. 0.001 to 1 mol, more preferably 0.02 to 0.5 mol, and particularly preferably 0.05 to 0.3 mol per 1 mol of SiO 2 units in the mixture. Within such a range, the surface treatment efficiency in step (A3) can be improved.
  • reaction temperature of the surface treatment in step (A2) is not particularly limited, but is preferably 20 to 80°C, more preferably 40 to 60°C.
  • Step (A3) includes adding R 3 3 Si— groups (wherein R 3 is substituted or unsubstituted is a C 1-6 monovalent hydrocarbon group) to form R 3 3 SiO 1/2 units (wherein R 3 is as defined above) on the surface of the pretreated silica particles. ) is introduced to obtain surface-treated sol-gel silica particles. In this step, R 3 3 SiO 1/2 units are introduced in the form of triorganosilylation of the silanol groups remaining on the surface of the pretreated silica particles, resulting in more highly surface treated sol-gel silica particles.
  • step (A3) general formula (iv): R33SiNHSiR333 ( iv ) ( Wherein, R3 is as defined above)
  • the step is to introduce R 3 3 SiO 1/2 units (where R 3 is as defined above) into the surface to obtain surface-treated sol-gel silica particles.
  • R 3 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms.
  • monovalent hydrocarbon groups represented by R 3 include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and t-butyl group; vinyl group, allyl group and the like.
  • phenyl group preferably methyl group or ethyl group, more preferably methyl group.
  • some or all of the hydrogen atoms in these groups may be substituted with halogen atoms such as fluorine, chlorine and bromine atoms, preferably fluorine atoms.
  • silazane compound represented by the general formula (iv) examples include hexamethyldisilazane, hexaethyldisilazane and the like, with hexamethyldisilazane being preferred.
  • Examples of monofunctional silane compounds represented by general formula (v) include monosilanol compounds such as trimethylsilanol and triethylsilanol; monochlorosilanes such as trimethylchlorosilane and triethylchlorosilane; monoalkoxy compounds such as trimethylmethoxysilane and trimethylethoxysilane; Silanes; monoaminosilanes such as trimethylsilyldimethylamine and trimethylsilyldiethylamine; and monoacyloxysilanes such as trimethylacetoxysilane, preferably trimethylsilanol, trimethylmethoxysilane or trimethylsilyldiethylamine, particularly preferably trimethylsilanol or trimethylmethoxysilane. be done.
  • monosilanol compounds such as trimethylsilanol and triethylsilanol
  • monochlorosilanes such as trimethylchlorosilane
  • the total addition amount of the silazane compound represented by general formula (iv) and the monofunctional silane compound represented by general formula (v) is preferably 5 to 50 mol per 1 mol of SiO 2 units in the pretreated silica particles, More preferably 10 to 30 mol. Within such a range, aggregation of particles is unlikely to occur, and surface-treated sol-gel silica particles having excellent dispersibility in toner can be obtained.
  • the number of SiO 2 units in the pretreated silica particles is the same as the number of SiO 2 units in the hydrophilic sol-gel silica particles used as raw materials.
  • reaction temperature of the surface treatment in step (A3) is not particularly limited, but is preferably 20 to 80°C, more preferably 50 to 70°C.
  • the unit introduced onto the surface of the hydrophilic sol-gel silica particles in step (A2) differs from the unit introduced onto the surface of the pretreated silica particles in step (A3). That is, when (C 2 H 5 ) 3 SiO 1/2 units are introduced onto the surface of the hydrophilic sol-gel silica particles in step (A2), (C 2 H 5 ) introducing units other than 3 SiO 1/2 units.
  • the above surface-treated sol-gel silica particles can be obtained as powder by ordinary methods such as normal pressure drying and reduced pressure drying.
  • the surface-treated sol-gel silica particles obtained by the method for producing surface-treated sol-gel silica particles of the present invention are R 1 R 2 2 SiO 1/2 units (wherein R 1 is an alkyl or aryl group having 6 to 8 carbon atoms or a vinyl group, and R 2 is the same or different and has 1 to 2 carbon atoms) 4) and R 3 3 SiO 1/2 units (wherein R 3 is the same or different substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms).
  • a surface-treated sol-gel silica particle that is (1) the median diameter in the dynamic light scattering method is 5 nm to 99 nm; (2) an average circularity of 0.8 to 1.0, (3) a refractive index of 1.38 to 1.42; (4) a true density of 1.7 g/cm 3 or more and less than 1.9 g/cm 3 ; (5) the ratio represented by water vapor adsorption specific surface area/nitrogen adsorption specific surface area is 0.4 to 1.9; (6) Surface-treated sol-gel silica particles having a methanol hydrophobicity of 67% or more and 75% or less.
  • R 1 to R 3 are the same as those described above.
  • the median diameter of the surface-treated sol-gel silica particles of the present invention in dynamic light scattering method is preferably 10 nm to 70 nm. If the median diameter is less than 5 nm, a large amount of silica particles are embedded in the toner particles, and when used as an external additive to toner, the required addition amount increases, which is not preferable. On the other hand, if the median diameter exceeds 99 nm, the fluidity is lowered, the charge amount is lowered due to the decrease in the surface area, and the adhesion to the toner particles is lowered.
  • the median diameter can be obtained from the particle size distribution of the surface-treated sol-gel silica particles measured by the dynamic light scattering method.
  • the dynamic light scattering method uses a dynamic light scattering particle size distribution analyzer (for example, NanotracWave II-Ex150 manufactured by Microtrack Bell) to irradiate a dispersion of silica particles with a laser beam, and measures the scattered light obtained. This is a method of determining the particle size distribution obtained from the scattering intensity by utilizing the fact that the scattering intensity varies depending on the particle size of silica-based fine particles.
  • the circularity of the surface-treated sol-gel silica particles of the present invention is defined by (perimeter of a circle with an area equal to the particle area/perimeter of the particle) when the particles are projected two-dimensionally.
  • the average is between 0.92 and 1. If the average circularity is less than 0.8, the proportion of irregularly shaped particles increases, which is not preferable because toner contamination tends to occur.
  • the refractive index indicates voids inside the surface-treated sol-gel silica particles. If the refractive index is less than 1.38, it means that there are many voids and the crosslinked structure of the sol-gel silica particles is fragile, which is not preferable. On the other hand, if the refractive index exceeds 1.42, the voids are small and the specific gravity is large, so that the charge amount may be lowered and the adhesive force to the toner particles may be lowered, which is not preferable.
  • the refractive index of the surface-treated sol-gel silica particles is determined by adding and dispersing the surface-treated sol-gel silica particles in a mixed solvent of toluene (refractive index: 1.4962) and methyl isobutyl ketone (refractive index: 1.3958).
  • the refractive index is adjusted by adjusting the blending ratio of the solvent, and the refractive index of the mixed solvent is defined as the point at which the dispersion becomes transparent at 25° C. (the point where the refractive indices of the mixed solvent and the surface-treated silica fine particles match).
  • the true density is preferably 1.75 g/cm 3 to 1.85 g/cm 3 . If the true density is less than 1.7 g/cm 3 , the strength of the surface-treated sol-gel silica particles may decrease, which is not preferable. In addition, those having a true density of 1.9 g/cm 3 or more are preferable in that the weight per silica particle increases, so that when used as a toner external additive, the impact on the toner particles increases. do not have.
  • Water vapor adsorption specific surface area/nitrogen adsorption specific surface area The ratio of water vapor adsorption specific surface area/nitrogen adsorption specific surface area is a measure of hygroscopicity, and the adsorption specific surface area of each gas can be obtained by the BET method. Water molecules (approximately 2 ⁇ ) are smaller than nitrogen molecules (approximately 3 ⁇ ), so the water vapor adsorption specific surface area/nitrogen adsorption specific surface area ratio is small. indicates that there is a gap of
  • the ratio of water vapor adsorption specific surface area/nitrogen adsorption specific surface area is preferably 0.5 to 1.5. If the specific surface area ratio is more than 1.9, the hygroscopicity is too high, and the charge amount of the toner is greatly affected by humidity, which is not preferable.
  • Methanol Hydrophobicity indicates the hydrophobicity of the surface-treated sol-gel silica particles.
  • the charge amount of the toner is greatly affected by humidity, which is not preferable.
  • the silica fine particles tend to aggregate with each other, resulting in poor dispersibility in the toner, poor fluidity of the toner, and poor print image quality.
  • the degree of hydrophobicity of methanol exceeds 75%, the charge amount of the toner may become too high when added to the toner.
  • the degree of hydrophobicity of methanol in the present invention is measured under the following conditions.
  • the transmittance is measured by irradiating the aqueous solution with light having a wavelength of 780 nm, and the volume concentration (%) of methanol in the aqueous methanol solution when the silica particles are suspended and sedimented and the transmittance reaches 80% is the methanol hydrophobicity. degrees.
  • the present invention also provides a toner external additive for electrostatic charge image development, which contains the surface-treated sol-gel silica particles.
  • the surface-treated sol-gel silica particles of the present invention when used as a toner external additive, impart good fluidity and printing properties to the toner.
  • Step (A1) 793.0 g of methanol, 32.1 g of water, and 40.6 g of 28% aqueous ammonia were added and mixed in a 3-liter glass reactor equipped with a stirrer, a dropping funnel, and a thermometer. This solution was adjusted to 45° C., and while stirring, 160.9 g of 5.5% aqueous ammonia and 646.5 g of tetramethoxysilane were simultaneously started dropwise, the former over 4 hours and the latter over 6 hours. After the dropwise addition of tetramethoxysilane was completed, hydrolysis was continued for 0.5 hour to obtain a suspension of hydrophilic sol-gel silica particles.
  • Step (A2) 2.0 g of 1,3-divinyl-1,1,3,3 - tetramethyldisilazane (per 0.26 mol equivalent) was added and stirred at 50° C. for 1 hour to obtain a dispersion of pretreated silica particles whose surfaces were dimethylvinylsilylated.
  • Step (A3) After dropping 205.3 g of hexamethyldisilazane (equivalent to 30 mol per 1 mol of SiO 2 ) at 25° C. over 0.5 hour to the dispersion liquid obtained in the above step (A2), By reacting at 60° C. for 8 hours, a dispersion liquid of surface-treated sol-gel silica particles whose surfaces were further trimethylsilylated was obtained. Then, the dispersion medium in this dispersion was distilled off at 130° C. under reduced pressure (6650 Pa) to obtain 271 g of white powder of surface-treated sol-gel silica particles (I).
  • Example 1-2 272 g of white powder of surface-treated sol-gel silica particles (II) was obtained in the same manner as in Example 1-1, except that the reaction temperature in step (A1) was changed to 35°C.
  • Example 1-3 269 g of white powder of surface-treated sol-gel silica particles (III) was obtained in the same manner as in Example 1-1, except that the reaction temperature in step (A1) was changed to 27°C.
  • Example 1-4 In Example 1-1, 273 g of white powder of surface-treated sol-gel silica particles (IV) was obtained in the same manner as in Example 1-1, except that the reaction temperature in step (A1) was changed to 25°C.
  • Example 1-5 In Example 1-1, 1,3-diphenyl-1,1,3,3-tetramethyldisilazane was substituted for 1,3-divinyl-1,1,3,3-tetramethyldisilazane in step (A2). 274 g of white powder of surface-treated sol-gel silica particles (V) was obtained in the same manner as in Example 1-1, except that 3.1 g of silazane (equivalent to 0.26 mol per 1 mol of SiO 2 ) was used. .
  • Example 1-6 In Example 1-1, 1,3-di-n-octyl-1,1,3,3 was substituted for 1,3-divinyl-1,1,3,3-tetramethyldisilazane in step (A2).
  • White powder of surface-treated sol-gel silica particles (VI) was prepared in the same manner as in Example 1-1 except that 3.9 g of -tetramethyldisilazane (equivalent to 0.26 mol per 1 mol of SiO 2 ) was used. 275 g was obtained.
  • Example 1-1 In Example 1-1, step (A1) was performed, step (A2) was not performed, and 205.3 g of hexamethyldisilazane was added to the suspension obtained in step (A1) at 25° C. as step (A3). (equivalent to 30 mol per 1 mol of SiO 2 ) was added dropwise over 0.5 hours, followed by reaction at 60° C. for 8 hours to obtain a dispersion of surface-treated sol-gel silica particles whose surfaces were trimethylsilylated. . Then, the dispersion medium in this dispersion was distilled off at 130° C. under reduced pressure (6650 Pa) to obtain 268 g of white powder of surface-treated sol-gel silica particles (VII).
  • Example 1-3 In Example 1-3, step (A1) was performed, step (A2) was not performed, and 205.3 g of hexamethyldisilazane was added to the suspension obtained in step (A1) at 25° C. as step (A3). (equivalent to 30 mol per 1 mol of SiO 2 ) was added dropwise over 0.5 hours, followed by reaction at 60° C. for 8 hours to obtain a dispersion of surface-treated sol-gel silica particles whose surfaces were trimethylsilylated. . Then, the dispersion medium in this dispersion was distilled off at 130° C. under reduced pressure (6650 Pa) to obtain 268 g of white powder of surface-treated sol-gel silica particles (VIII).
  • Table 1 shows the results of measuring the surface-treated sol-gel silica particles (I) to (VIII) obtained by the above steps according to the following measurement methods (1) to (6).
  • [Measuring method] Median diameter in dynamic light scattering method 0.1 g of surface-treated sol-gel silica particles and 19.9 g of methanol were placed in a glass bottle, placed in an ultrasonic cleaner, and irradiated with ultrasonic waves at an output of 30 W / L for 10 minutes. Silica particles were dispersed in methanol. The median diameter of the dispersion was measured using a dynamic light scattering particle size distribution analyzer (NanotracWave II-Ex150 manufactured by Microtrack Bell).
  • Refractive index Surface-treated sol-gel silica particles are added and dispersed in a mixed solvent of toluene (refractive index 1.4962) and methyl isobutyl ketone (refractive index 1.3958), and the refractive index is adjusted by the blending ratio of the above solvents.
  • the refractive index of the mixed solvent at the point where the dispersion becomes transparent was taken as the refractive index of the surface-treated sol-gel silica particles.
  • the refractive index of the mixed solvent is a value at 25° C. measured using a digital refractometer (RX-9000 ⁇ manufactured by Atago Co., Ltd.).
  • the true density of the surface-treated sol-gel silica particles was measured using an automatic true density measuring device (Auto True Denser MAT-7000 manufactured by Seishin Enterprise Co., Ltd.) using a liquid phase substitution method.
  • the surface-treated sol-gel silica particles of Examples 1-1 to 1-6 exhibited a high degree of methanol hydrophobization, and their surfaces were highly hydrophobized. On the other hand, in Comparative Examples 1-1 and 1-2, the hydrophobization of the surface was insufficient.
  • Aggregation degree (%) (W 1 + 0.6 x W 2 + 0.2 x W 3 )/5 x 100
  • W 1 Amount remaining on 150 ⁇ m mesh sieve
  • W 2 Amount remaining on 75 ⁇ m mesh sieve
  • W 3 Amount remaining on 45 ⁇ m mesh sieve
  • the external additive-mixed toners of Examples 2-1 to 2-6 have low agglomeration degrees, indicating that the surface-treated sol-gel silica particles of the present invention can be suitably used as external toner additives.
  • the surface treatment of the silica particles was not sufficient, resulting in a high degree of agglomeration.
  • the presence or absence of image defects (white spots) in the image of the printed matter 2 obtained above was evaluated according to the following criteria.
  • the two-component developer using the surface-treated sol-gel silica particles obtained in Examples 1-1 to 1-6 as a toner external additive has a small change in the toner charge amount depending on the environment. There were no print image defects.
  • the toner using the surface-treated sol-gel silica particles obtained in Comparative Examples 1-1 and 1-2 had a large fluctuation in the toner charge amount depending on the environment, and was inferior in printing characteristics.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Abstract

本発明は、(A1)表面にシラノール基を有し、かつ実質的にSiO2単位からなる親水性ゾルゲルシリカ粒子を得る工程、(A2)(C2H5)3Si-基又はR1R2 2Si-基(R1は炭素原子数2~8のアルキル基もしくはアルケニル基、又は炭素原子数6~8のアリール基であり、R2は同一又は異種の置換又は非置換の炭素原子数1~4のアルキル基である)を有する化合物を添加して、前記親水性ゾルゲルシリカ粒子の表面に(C2H5)3SiO1/2単位又はR1R2 2SiO1/2単位を導入して予備処理シリカ粒子を得る工程、及び(A3)R3 3Si-基(R3は置換又は非置換の炭素原子数1~6の一価炭化水素基である)を有する化合物を添加して、前記予備処理シリカ粒子の表面に更にR3 3SiO1/2単位を導入して表面処理ゾルゲルシリカ粒子を得る工程を含む表面処理ゾルゲルシリカ粒子の製造方法である。これにより、トナーに添加された場合に良好な流動性を付与でき、かつ環境変化時の帯電変化が少ない表面処理ゾルゲルシリカ粒子及びその製造方法、及び該表面処理ゾルゲルシリカ粒子からなるトナー用外添剤が提供される。

Description

表面処理ゾルゲルシリカ粒子の製造方法、表面処理ゾルゲルシリカ粒子、及び静電荷像現像用トナー外添剤
 本発明は、表面処理ゾルゲルシリカ粒子、その製造方法及び電子写真法、静電記録法等における静電荷像を現像するために使用する静電荷像現像用トナー外添剤に関する。
 電子写真法等で使用する乾式現像剤は、結着樹脂中に着色剤を分散したトナーそのものを用いる一成分現像剤と、そのトナーにキャリアを混合した二成分現像剤とに大別でき、そしてこれらの現像剤を用いてコピー操作を行う場合、プロセス適合性を有するためには、現像剤が流動性、耐ケーキング性、定着性、帯電性、クリーニング性等に優れていることが必要である。そして特に、流動性、耐ケーキング性、定着性、クリーニング性を高めるために、無機微粒子をトナー外添剤として使用することがしばしば行われている。
 しかしながら、無機微粒子の分散性がトナー特性に大きな影響を与え、分散性が不均一な場合、流動性、耐ケーキング性、定着性に所望の特性が得られなかったり、クリーニング性が不十分になって、感光体上にトナー固着等が発生し、黒点状の画像欠陥が生じる原因となることがあった。これらの点を改善する目的で、無機微粒子の表面を疎水化処理したものが種々提案されている。
 また最近では複写機の高速化、低エネルギー消費が求められており、従来のトナーよりもより高い劣化耐性が求められるにようになってきた。トナーの劣化耐性が高くないと、使用開始直後から終了時までトナーの転写効率を高い状態に維持できない。その対策の一つとして、大粒径トナー外添剤のスペーサ効果を利用したトナーの劣化抑制技術が提案されている(特許文献1、2)。
 またトナー外添剤として、小粒径トナー外添剤と大粒径トナー外添剤を併用することがしばしば行われている。トナー粒子表面に付着した大粒径トナー外添剤の存在により、その近傍のトナー粒子表面上に付着した小粒径トナー外添剤が直接せん断力や衝撃力などの外力を受ける頻度が低下し、その外力による小粒径トナー外添剤のトナー粒子表面への埋没を防止できる(スペーサ効果)ことから、トナーの劣化を抑制することが可能となる。
 また、大粒径トナー外添剤を外添することで、感光体からトナーが離れ易くなり、感光体上に乗ったトナーが速やかに紙上に転写され、転写効率を高い状態に維持できることから、大粒径トナー外添剤は転写助剤としても機能すると考えられる。
 この時使用される小粒径シリカは主に流動化剤として使用される場合が多いが、今までは燃焼法により製造されたフュームドシリカ粒子が主に使用されてきた。しかし従来のフュームドシリカ粒子では確かに流動性は向上するが、昨今の小粒径化したトナーの流動性を向上させるには添加量が多くなるきらいがあった。また高画質化が進むにつれ、転写性、クリーニング性がより厳密に求められるようになり、凝集物がなく、分散性が優れるものが要求されてきた。
 一方、帯電特性等の改善などを目的として上述したようなフュームドシリカ粒子が用いられるが、一般的に表面疎水化が充分でなく、表面にシラノール基が残存しているため、特に環境変化時に帯電コントロールがしにくいという問題があり、流動性と共に帯電制御も良好な小粒径のシリカ粒子が求められていた。
特開平06-027718号公報 特開平11-143118号公報
 本発明は、上記事情に鑑みなされたもので、トナーに添加された場合に良好な流動性を付与でき、かつ環境変化時の帯電変化が少ない表面処理ゾルゲルシリカ粒子及びその製造方法、並びに該表面処理ゾルゲルシリカ粒子からなるトナー用外添剤を提供することを目的とする。
 上記課題を解決するために、本発明では、
 表面処理ゾルゲルシリカ粒子の製造方法であって、
(A1)4官能性シラン化合物、その部分加水分解縮合生成物又はこれらの混合物を加水分解及び縮合することによって、表面にシラノール基を有し、かつ実質的にSiO2単位からなる親水性ゾルゲルシリカ粒子を得る工程、
(A2)前記親水性ゾルゲルシリカ粒子に(CSi-基又はR Si-基(式中、R1は炭素原子数2~8のアルキル基もしくはアルケニル基、又は炭素原子数6~8のアリール基であり、Rは同一又は異種の置換又は非置換の炭素原子数1~4のアルキル基である)を有する化合物を添加して、前記親水性ゾルゲルシリカ粒子の表面に(CSiO1/2単位又はR SiO1/2単位(式中、R1及びRは前記の通りである)を導入して予備処理シリカ粒子を得る工程、及び
(A3)前記予備処理シリカ粒子にR Si-基(式中、Rは置換又は非置換の炭素原子数1~6の一価炭化水素基である)を有する化合物を添加して、前記予備処理シリカ粒子の表面に更にR SiO1/2単位(式中、Rは前記の通りである)を導入して表面処理ゾルゲルシリカ粒子を得る工程を含み、かつ、
 前記工程(A2)で前記親水性ゾルゲルシリカ粒子の表面に導入する単位と、前記工程(A3)で前記予備処理シリカ粒子の表面に導入する単位はそれぞれ異なる表面処理ゾルゲルシリカ粒子の製造方法を提供する。
 このような表面処理ゾルゲルシリカ粒子の製造方法であれば、トナーに添加された場合に良好な流動性を付与でき、かつ環境変化時の帯電変化が少ない表面処理ゾルゲルシリカ粒子を製造することができる。
 また、前記工程(A1)を、一般式(i):
     Si(OR            (i)
(式中、各Rは同一又は異種の炭素原子数1~6の一価炭化水素基である)
で示される4官能性シラン化合物、その部分加水分解縮合生成物又はこれらの混合物を、塩基性物質の存在下、親水性有機溶媒と水の混合液中で加水分解及び縮合することによって、表面にシラノール基を有し、かつ実質的にSiO2単位からなる親水性ゾルゲルシリカ粒子の混合溶媒分散液を得る工程とし、
 前記工程(A2)を、得られた前記親水性ゾルゲルシリカ粒子の混合溶媒分散液に、一般式(ii):
     R SiNHSiR         (ii)
(式中、R1及びRは前記の通りである)
で示されるシラザン化合物、ヘキサエチルジシラザン、一般式(iii-1):
     R SiX              (iii-1)
(式中、R1及びRは前記の通りであり、XはOH基又は加水分解性基である)
で示される1官能性シラン化合物、一般式(iii-2):
     (CSiX              (iii-2)
(式中、Xは前記の通りである)
で示される1官能性シラン化合物、又はこれらの混合物を、前記親水性ゾルゲルシリカ粒子中のSiO単位1モルあたり0.001~1モルを添加して、前記親水性ゾルゲルシリカ粒子の表面に(CSiO1/2単位又はR SiO1/2単位(R1及びRは前記の通りである)を導入して予備処理シリカ粒子の混合溶媒分散液を得る工程とし、
 前記工程(A3)を、得られた前記予備処理シリカ粒子の混合溶媒分散液に、一般式(iv):
     R SiNHSiR         (iv)
(式中、Rは前記の通りである)
で示されるシラザン化合物、一般式(v):
     R SiX              (v)
(式中、R及びXは前記の通りである)
で示される1官能性シラン化合物、又はこれらの混合物を、前記予備処理シリカ粒子中のSiO単位1モルあたり5~50モルを添加して、前記予備処理シリカ粒子の表面にR SiO1/2単位(Rは前記の通りである)を導入して表面処理ゾルゲルシリカ粒子を得る工程とすることが好ましい。
 本発明の表面処理ゾルゲルシリカ粒子の製造方法はこのような製造方法とすることができる。
 また、前記Rを炭素原子数6~8のアルキル基、フェニル基、又はビニル基とし、前記Rをメチル基、エチル基、プロピル基又はイソプロピル基とし、前記Rをメチル基又はエチル基とすることが好ましい。
 本発明では、親水性ゾルゲルシリカ粒子の表面処理を、特にこのような化合物を用いて行うことが好ましい。
 また本発明では、
 表面にR SiO1/2単位(式中、R1は炭素原子数6~8のアルキル基もしくはアリール基、又はビニル基であり、Rは同一又は異種の炭素原子数1~4のアルキル基である)及びR SiO1/2単位(式中、Rは同一又は異種の置換又は非置換の炭素原子数1~6の1価炭化水素基である)を有するものである表面処理ゾルゲルシリカ粒子であって、
 動的光散乱法におけるメジアン径が5nm~99nmであり、
 平均円形度が0.8~1.0であり、
 屈折率が1.38~1.42であり、
 真密度が1.7g/cm以上1.9g/cm未満であり、
 水蒸気吸着比表面積/窒素吸着比表面積で表される比が0.4~1.9であり、
 メタノール疎水化度が67%以上75%以下
のものである表面処理ゾルゲルシリカ粒子を提供する。
 本発明では、このような特性を有する表面処理ゾルゲルシリカ粒子とすることができる。
 このとき、前記Rが炭素原子数6~8のアルキル基、フェニル基、又はビニル基であり、前記Rがメチル基、エチル基、プロピル基又はイソプロピル基であり、前記Rがメチル基又はエチル基であることが好ましい。
 本発明の表面処理ゾルゲルシリカ粒子は、特にこのような表面処理が施されたものとすることが好ましい。
 また本発明では、上記の表面処理ゾルゲルシリカ粒子を含有するものである静電荷像現像用トナー外添剤を提供する。
 本発明の表面処理ゾルゲルシリカ粒子は、トナー外添剤として用いた場合、トナーに良好な流動性および印刷特性を与えることができる。
 以上説明したように、本発明によれば、外添剤として従来の小粒径フュームドシリカを用いた場合に発生していた環境変化による帯電異常やトナー流動性を改善できる表面処理ゾルゲルシリカ粒子、これからなる静電荷像現像用トナー外添剤、並びに静電荷像現像用トナーを提供することができる。
 上述のように、トナーに添加された場合に良好な流動性を付与でき、かつ環境変化時の帯電量変化が少ないトナー用外添剤が求められていた。
 本発明者は、上記目的を達成するため鋭意検討を行った結果、ゾルゲル法から得られる球状シリカ粒子を特定の有機ケイ素化合物により表面処理することで、トナーに添加された場合に良好な流動性を付与でき、環境変化時における帯電量変化が少ない表面処理ゾルゲルシリカ粒子が得られることを見出し、本発明を完成した。
 即ち、本発明は、
 表面処理ゾルゲルシリカ粒子の製造方法であって、
(A1)4官能性シラン化合物、その部分加水分解縮合生成物又はこれらの混合物を加水分解及び縮合することによって、表面にシラノール基を有し、かつ実質的にSiO2単位からなる親水性ゾルゲルシリカ粒子を得る工程、
(A2)前記親水性ゾルゲルシリカ粒子に(CSi-基又はR Si-基(式中、R1は炭素原子数2~8のアルキル基もしくはアルケニル基、又は炭素原子数6~8のアリール基であり、Rは同一又は異種の置換又は非置換の炭素原子数1~4のアルキル基である)を有する化合物を添加して、前記親水性ゾルゲルシリカ粒子の表面に(CSiO1/2単位又はR SiO1/2単位(式中、R1及びRは前記の通りである)を導入して予備処理シリカ粒子を得る工程、及び
(A3)前記予備処理シリカ粒子にR Si-基(式中、Rは置換又は非置換の炭素原子数1~6の一価炭化水素基である)を有する化合物を添加して、前記予備処理シリカ粒子の表面に更にR SiO1/2単位(式中、Rは前記の通りである)を導入して表面処理ゾルゲルシリカ粒子を得る工程を含み、かつ、
 前記工程(A2)で前記親水性ゾルゲルシリカ粒子の表面に導入する単位と、前記工程(A3)で前記予備処理シリカ粒子の表面に導入する単位はそれぞれ異なる表面処理ゾルゲルシリカ粒子の製造方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
(表面処理ゾルゲルシリカ粒子の製造方法)
・工程(A1):親水性ゾルゲルシリカ粒子の合成工程
 工程(A1)は、4官能性シラン化合物、その部分加水分解縮合生成物又はこれらの混合物を加水分解及び縮合することによって、表面にシラノール基を有し、かつ実質的にSiO2単位からなる親水性ゾルゲルシリカ粒子を得る工程である。
 工程(A1)において、親水性ゾルゲルシリカ粒子が「実質的にSiO単位からなる」とは、該粒子は基本的にはSiO単位から構成されているがSiO単位のみから構成されている訳ではなく、少なくとも表面に通常知られているようにシラノール基を多数個有してもよいことを意味する。また、場合によっては、原料である4官能性シラン化合物および/またはその部分加水分解縮合生成物に由来する加水分解性基(ヒドロカルビルオキシ基)が一部シラノール基に転化されずに若干量そのまま粒子表面や内部に残存していてもよいことを意味する。
 本発明においては、工程(A1)でテトラアルコキシシラン等の4官能性シラン化合物の加水分解によって得られる小粒径ゾルゲル法シリカ粒子をシリカ原体(疎水化処理前のシリカ粒子)として、これに特定の表面処理を行なうことにより、粉体として得たときに、疎水化処理後の粒子径がシリカ原体の一次粒子径を維持しており、凝集しておらず、小粒径であり、トナー用外添剤として良好な表面処理ゾルゲルシリカ粒子が得られる。
 工程(A1)は、一般式(i):
     Si(OR            (i)
(式中、各Rは同一又は異種の炭素原子数1~6の一価炭化水素基である)
で示される4官能性シラン化合物、その部分加水分解縮合生成物又はこれらの混合物を、塩基性物質の存在下、親水性有機溶媒と水の混合液中で加水分解及び縮合することによって、親水性ゾルゲルシリカ粒子の混合溶媒分散液を得る工程であることが好ましい。
 上記一般式(i)中、Rは、炭素原子数1~6の一価炭化水素基であるが、好ましくは炭素原子数1~4、特に好ましくは1~2の1価炭化水素基である。Rで表される1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基のようなアルキル基;フェニル基のようなアリール基が挙げられ、好ましくは、メチル基、エチル基、プロピル基又はブチル基、特に好ましくはメチル基又はエチル基が挙げられる。
 上記一般式(i)で示される4官能性シラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン;及びテトラフェノキシシランが挙げられ、好ましくは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン及びテトラブトキシシラン、特に好ましくは、テトラメトキシシラン及びテトラエトキシシランが挙げられる。また、一般式(i)で示される4官能性シラン化合物の部分加水分解縮合生成物としては、例えば、メチルシリケート、エチルシリケート等のアルキルシリケートが挙げられる。
 上記親水性有機溶媒としては、一般式(i)で示される4官能性シラン化合物と、この部分加水分解縮合生成物と、水とを溶解するものであれば特に制限されず、例えば、アルコール類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソルブ等のセロソルブ類;アセトン、メチルエチルケトン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられ、好ましくは、アルコール類、セロソルブ類であり、特に好ましくはアルコール類が挙げられる。該アルコール類としては、一般式(vi):
     ROH  (vi)
(式中、Rは炭素原子数1~6の1価炭化水素基である)
で示されるアルコールが挙げられる。
 上記一般式(vi)中、Rは、炭素原子数1~6の1価炭化水素基であるが、好ましくは炭素原子数1~4、特に好ましくは1~2の1価炭化水素基である。Rで表される1価炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等のアルキル基、好ましくはメチル基、エチル基、プロピル基及びイソプロピル基、より好ましくはメチル基及びエチル基が挙げられる。一般式(vi)で示されるアルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等が挙げられ、好ましくはメタノール、エタノールが挙げられる。アルコールの炭素原子数が増えると、生成する親水性ゾルゲルシリカ粒子の粒子径が大きくなる。従って、小粒径のシリカ粒子を得るためには、メタノールが好ましい。
 上記塩基性物質としては、アンモニア、ジメチルアミン、ジエチルアミン等、好ましくは、アンモニア、ジエチルアミン、特に好ましくはアンモニアが挙げられる。これらの塩基性物質は、所要量を水に溶解した後、得られた水溶液(塩基性)を上記親水性有機溶媒と混合すればよい。
 塩基性物質の使用量は、一般式(i)で示される4官能性シラン化合物および/またはその部分加水分解縮合生成物のヒドロカルビルオキシ基の合計1モルに対して0.01~2モルであることが好ましく、0.02~0.5モルであることがより好ましく、0.04~0.12モルであることが特に好ましい。このとき、塩基性物質の量が少ないほど小粒径のシリカ粒子となる。
 上記加水分解及び縮合で使用される水の量は、一般式(i)で示される4官能性シラン化合物および/またはその部分加水分解縮合生成物のヒドロカルビルオキシ基の合計1モルに対して0.1~2モルであることが好ましく、0.1~1モルであることがより好ましい。水に対する上記親水性有機溶媒の比率(親水性有機溶媒の量/水の量)は、質量比で0.2~10であることが好ましく、0.3~5であることがより好ましい。親水性有機溶媒の量が多いほど小粒径のシリカ粒子が得られる。
 4官能性シラン化合物等の加水分解および縮合は、周知の方法、即ち、親水性有機溶媒と水との混合物中に、4官能性シラン化合物及び塩基性物質を添加することにより行うことができる。
 加水分解および縮合の際の温度は、20~50℃であることが好ましく、温度が高いほど小粒径のシリカ粒子が得られる。
 この工程(A1)で得られる親水性ゾルゲルシリカ粒子の混合溶媒分散液中の濃度は一般に、3~15質量%であり、好ましくは5~10質量%である。
・工程(A2):予備処理シリカ粒子を得る工程
 工程(A2)は、上記工程(A1)で得られた親水性ゾルゲルシリカ粒子に(CSi-基又はR Si-基(式中、R1は炭素原子数2~8のアルキル基もしくはアルケニル基、又は炭素原子数6~8のアリール基であり、Rは同一又は異種の置換又は非置換の炭素原子数1~4のアルキル基である)を有する化合物を添加して、親水性ゾルゲルシリカ粒子の表面に(CSiO1/2単位又はR SiO1/2単位(式中、R1及びRは前記の通りである)を導入して予備処理シリカ粒子を得る工程である。本工程により、下記工程(A3)における表面処理がより均一に、且つ高度に進行する。
 工程(A2)は、得られた親水性ゾルゲルシリカ粒子の混合溶媒分散液に、一般式(ii):
     R SiNHSiR         (ii)
(式中、R1及びRは前記の通りである)
で示されるシラザン化合物、ヘキサエチルジシラザン、一般式(iii-1):
     R SiX              (iii-1)
(式中、R1及びRは前記の通りであり、XはOH基又は加水分解性基である)
で示される1官能性シラン化合物、一般式(iii-2):
     (CSiX              (iii-2)
(式中、Xは前記の通りである)
で示される1官能性シラン化合物、又はこれらの混合物を添加して、親水性ゾルゲルシリカ粒子の表面を上記シラザン化合物、上記1官能性シラン化合物、またはこれらの混合物により処理して、親水性ゾルゲルシリカ粒子の表面に(CSiO1/2単位又はR SiO1/2単位(R1及びRは前記の通りである)を導入して予備処理シリカ粒子の混合溶媒分散液を得る工程であることが好ましい。
 Rの炭素原子数2~8のアルキル基としては、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、シクロオクチル基等が挙げらる。炭素原子数2~8のアルケニル基としては、ビニル基、アリル基、n-ブテニル基、n-ヘキセニル基、n-オクテニル基等が挙げらる。炭素原子数6~8のアリール基としては、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,6-ジメチルフェニル基等が挙げられる。Rは、炭素原子数6~8のアルキル基、フェニル基、ビニル基が好ましく、n-オクチル基、フェニル基、ビニル基が特に好ましい。
 Rで表される炭素原子数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等が挙げられ、好ましくはメチル基、エチル基、プロピル基及びイソプロピル基、より好ましくはメチル基及びエチル基が挙げられる。これらのアルキル基は、その水素原子の一部または全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。なお、Rは上記Rとは異なる基である。
 Xで表される加水分解性基としては、例えば、塩素原子、アルコキシ基、アミノ基、アシルオキシ基が挙げられ、好ましくはアルコキシ基又はアミノ基、特に好ましくはアルコキシ基が挙げられる。
 一般式(ii)で示されるシラザン化合物としては、1,3-ジエチルテトラメチルジシラザン、1,3-ジ-n-プロピルテトラメチルジシラザン、1,3-ジ-n-ブチルテトラメチルジシラザン、1,3-ジ-n-ヘキシルテトラメチルジシラザン、1,3-ジ-n-オクチルテトラメチルジシラザン、1,3-ジフェニル-テトラメチルジシラザン、1,3-ジビニルテトラメチルジシラザン、1,3-ジアリルテトラメチルジシラザン等が挙げられる。
 一般式(iii-1)で示される1官能性シラン化合物としては、エチルジメチルメトキシシラン、n-プロピルジメチルメトキシシラン、イソプロピルジメチルメトキシシラン、n-ブチルジメチルメトキシシラン、n-ヘキシルジメチルメトキシシラン、n-オクチルジメチルメトキシシラン、フェニルジメチルメトキシシラン、ビニルジメチルメトキシシラン等のモノアルコキシシランやそれらのシラノール体やモノクロロ体等が挙げられる。
 一般式(iii-2)で示される1官能性シラン化合物としては、トリエチルメトキシシラン等のモノアルコキシシランやそれらのシラノール体やモノクロロ体等が挙げられる。
 一般式(ii)で示されるシラザン化合物、ヘキサエチルジシラザン、および一般式(iii-1)、(iii-2)で示される1官能性シラン化合物の合計の添加量は、親水性ゾルゲルシリカ粒子中のSiO単位1モルあたり0.001~1モルが好ましく、0.02~0.5モルがより好ましく、0.05~0.3モルが特に好ましい。このような範囲であれば、工程(A3)における表面処理効率を向上させることができる。
 また、工程(A2)における表面処理の反応温度は特に限定されないが、好ましくは20~80℃、より好ましくは40~60℃である。
・工程(A3):表面処理ゾルゲルシリカ粒子を得る工程
 工程(A3)は、(A2)工程で得られた予備処理シリカ粒子にR Si-基(式中、Rは置換又は非置換の炭素原子数1~6の一価炭化水素基である)を有する化合物を添加して、予備処理シリカ粒子の表面にR SiO1/2単位(式中、Rは前記の通りである)を導入して表面処理ゾルゲルシリカ粒子を得る工程である。この工程では、予備処理シリカ粒子表面に残存するシラノール基をトリオルガノシリル化する形でR SiO1/2単位が導入され、より高度に表面処理されたゾルゲルシリカ粒子が得られる。
 工程(A3)は、得られた予備処理シリカ粒子の混合溶媒分散液に、一般式(iv):
     R SiNHSiR         (iv)
(式中、Rは前記の通りである)
で示されるシラザン化合物、一般式(v):
     R SiX              (v)
(式中、R及びXは前記の通りである)
で示される1官能性シラン化合物、又はこれらの混合物を添加して、予備処理シリカ粒子の表面を上記シラザン化合物、上記1官能性シラン化合物、またはこれらの混合物により処理して、予備処理シリカ粒子の表面にR SiO1/2単位(Rは前記の通りである)を導入して表面処理ゾルゲルシリカ粒子を得る工程であることが好ましい。
 Rは、炭素原子数1~6の1価炭化水素基であるが、好ましくは炭素原子数1~4、特に好ましくは1~2の1価炭化水素基である。Rで表される1価炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等のアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基等が挙げられ、好ましくはメチル基、エチル基、より好ましくはメチル基である。また、これらの基の水素原子の一部または全部が、フッ素原子、塩素原子、臭素原子等のハロゲン原子、好ましくは、フッ素原子で置換されていてもよい。
 Xは工程(A2)のところで説明したものと同じものが挙げられる。
 一般式(iv)で示されるシラザン化合物としては、例えば、ヘキサメチルジシラザン、ヘキサエチルジシラザン等が挙げられ、ヘキサメチルジシラザンが好ましい。
 一般式(v)で示される1官能性シラン化合物としては、例えば、トリメチルシラノール、トリエチルシラノール等のモノシラノール化合物;トリメチルクロロシラン、トリエチルクロロシラン等のモノクロロシラン;トリメチルメトキシシラン、トリメチルエトキシシラン等のモノアルコキシシラン;トリメチルシリルジメチルアミン、トリメチルシリルジエチルアミン等のモノアミノシラン;トリメチルアセトキシシラン等のモノアシルオキシシランが挙げられ、好ましくは、トリメチルシラノール、トリメチルメトキシシラン又はトリメチルシリルジエチルアミン、特に好ましくは、トリメチルシラノール又はトリメチルメトキシシランが挙げられる。
 一般式(iv)で示されるシラザン化合物および一般式(v)で示される1官能性シラン化合物の合計の添加量は、予備処理シリカ粒子中のSiO単位1モルあたり好ましくは5~50モル、より好ましくは10~30モルである。このような範囲であれば、粒子同士の凝集が起こり難く、トナーへの分散性に優れる表面処理ゾルゲルシリカ粒子が得られる。なお、予備処理シリカ粒子中のSiO単位の数は、その原料となった親水性ゾルゲルシリカ粒子中のSiO単位の数と同じである。
 また、工程(A3)における表面処理の反応温度は特に限定されないが、好ましくは20~80℃、より好ましくは50~70℃である。
 また、工程(A2)で親水性ゾルゲルシリカ粒子の表面に導入する単位と、工程(A3)で予備処理シリカ粒子の表面に導入する単位はそれぞれ異なる。即ち、工程(A2)で親水性ゾルゲルシリカ粒子の表面に(CSiO1/2単位を導入した場合には、工程(A3)では予備処理シリカの表面に(CSiO1/2単位以外の単位を導入する。
 上記表面処理ゾルゲルシリカ粒子は、常圧乾燥、減圧乾燥等の常法によって粉体として得られる。
(表面処理ゾルゲルシリカ粒子)
 本発明の表面処理ゾルゲルシリカ粒子の製造方法により得られる表面処理ゾルゲルシリカ粒子は、
 表面にR SiO1/2単位(式中、R1は炭素原子数6~8のアルキル基もしくはアリール基、又はビニル基であり、Rは同一又は異種の炭素原子数1~4のアルキル基である)及びR SiO1/2単位(式中、Rは同一又は異種の置換又は非置換の炭素原子数1~6の1価炭化水素基である)を有するものである表面処理ゾルゲルシリカ粒子であって、
(1)動的光散乱法におけるメジアン径が5nm~99nmであり、
(2)平均円形度が0.8~1.0であり、
(3)屈折率が1.38~1.42であり、
(4)真密度が1.7g/cm以上1.9g/cm未満であり、
(5)水蒸気吸着比表面積/窒素吸着比表面積で表される比が0.4~1.9であり、
(6)メタノール疎水化度が67%以上75%以下
のものである表面処理ゾルゲルシリカ粒子である。
 R~Rの具体例としては、上述のものと同じものが挙げられる。
 上記物性(1)~(6)を併せ持つことで、トナー外添剤として用いた場合、トナーに良好な流動性および印刷特性を与える。
(1)動的光散乱法におけるメジアン径
 本発明の表面処理ゾルゲルシリカ粒子の動的光散乱法におけるメジアン径は、好ましくは、10nm~70nmである。メジアン径が5nmを下回ると、トナー粒子中に埋没するシリカ粒子が多くなり、トナー外添剤として用いた場合に、必要な添加量が増えるため好ましくない。また、メジアン径が99nmを超えると、流動性の低下、表面積の減少による帯電量の低下、トナー粒子への付着力が低下する等好ましくない。
 メジアン径は、動的光散乱法によって測定される表面処理ゾルゲルシリカ粒子の粒度分布から求めることができる。動的光散乱法とは、動的光散乱粒度分布測定装置(例えば、マイクロトラックベル社製NanotracWave II-Ex150)を用いて、レーザー光をシリカ粒子の分散液に照射し得られた散乱光の散乱強度がシリカ系微粒子の粒径によって変わることを利用して、散乱強度から得られる粒度分布を求める方法である。
(2)平均円形度
 本発明の表面処理ゾルゲルシリカ粒子の円形度は、粒子を二次元に投影した時の、(粒子面積と等しい面積の円の周囲長/粒子周囲長)で定義され、その平均が0.92~1であることが好ましい。平均円形度が0.8を下回ると不規則形状の粒子の割合が多くなり、トナーの汚染を引き起こしやすくなるため好ましくない。
(3)屈折率
 屈折率は表面処理ゾルゲルシリカ粒子内部の空隙を示し、屈折率が1.38より小さいと、空隙が多く存在しゾルゲルシリカ粒子の架橋構造が脆いことを意味するため好ましくない。また、屈折率が1.42を超えると空隙が少なく比重が大きくなるため、帯電量が低下したり、トナー粒子への付着力が低下する場合があるため好ましくない。
 本発明において、表面処理ゾルゲルシリカ粒子の屈折率は、トルエン(屈折率1.4962)とメチルイソブチルケトン(屈折率1.3958)との混合溶媒に表面処理ゾルゲルシリカ粒子を添加し分散させ、上記溶媒の配合比率により屈折率を調整し、25℃において分散液が透明になる点(混合溶媒と表面処理シリカ微粒子の屈折率が合致する点)での混合溶媒の屈折率とする。
(4)真密度
 真密度は、好ましくは、1.75g/cm~1.85g/cmである。真密度が1.7g/cm未満であると、表面処理ゾルゲルシリカ粒子の強度が低下する場合があるため好ましくない。また、真密度が1.9g/cm以上であるものは、シリカ粒子1個当たりの重量が重くなるため、トナー外添剤として用いた場合に、トナー粒子へ与える衝撃が大きくなる点で好ましくない。
(5)水蒸気吸着比表面積/窒素吸着比表面積の比
 水蒸気吸着比表面積/窒素吸着比表面積の比は、吸湿性を示す尺度であり、各気体の吸着比表面積はBET法により求めることができる。水分子(約2Å)の方が窒素分子(約3Å)より小さいため、水蒸気吸着比表面積/窒素吸着比表面積比が小さいということは、即ち、水分子は通過しにくいが、窒素は通過する程度の空隙があることを示す。
 水蒸気吸着比表面積/窒素吸着比表面積の比は好ましくは0.5~1.5である。この比表面積比が1.9より大きいと吸湿性が高すぎて、トナーの帯電量が湿度の影響を大きく受けるため好ましくない。
(6)メタノール疎水化度
 メタノール疎水化度は表面処理ゾルゲルシリカ粒子の疎水性を示し、メタノール疎水化度が67%未満であると、シリカ表面の残存シラノール基により、静電荷像現像用トナー外添剤としてトナーに添加した場合、トナーの帯電量が湿度の影響を大きく受けるため好ましくない。また、シリカ微粒子同士の凝集が起きやすくなり、トナーへの分散性が劣り、トナーの流動性および印刷画質に劣るものとなる。メタノール疎水化度が75%を超えると、トナーに添加した場合、トナーの帯電量が高くなりすぎる場合がある。なお、本発明におけるメタノール疎水化度は、以下の条件で測定したものを指す。
<メタノール疎水化度の測定方法>
 体積濃度50%(温度25℃)のメタノール水溶液60mlに表面処理ゾルゲルシリカ粒子を0.2g添加し、撹拌子で攪拌し、次いでシリカ粒子が表面に浮遊した液中にメタノールを滴下しながら、メタノール水溶液に波長780nmの光を照射して透過率を測定し、シリカ粒子が懸濁・沈降して、透過率が80%になったときのメタノール水溶液中のメタノール体積濃度(%)をメタノール疎水化度とする。
(静電荷像現像用トナー外添剤)
 また本発明では、上記の表面処理ゾルゲルシリカ粒子を含有するものである静電荷像現像用トナー外添剤を提供する。本発明の表面処理ゾルゲルシリカ粒子は、トナー外添剤として用いた場合、トナーに良好な流動性および印刷特性を与える。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(表面処理ゾルゲルシリカ粒子の製造)
[実施例1-1]
 工程(A1):撹拌機、滴下ロート、温度計を備えた3リットルのガラス製反応器にメタノール793.0g、水32.1g、28%アンモニア水40.6gを添加して混合した。この溶液を45℃に調整し、撹拌しながら5.5%アンモニア水160.9gおよびテトラメトキシシラン646.5gを同時に滴下を開始し、前者は4時間、後者は6時間かけて滴下した。テトラメトキシシランの滴下が終了した後も、さらに0.5時間撹拌を継続して加水分解を行うことにより、親水性ゾルゲルシリカ粒子の懸濁液を得た。
 工程(A2):上記工程(A1)で得られた懸濁液に25℃で1,3-ジビニル-1,1,3,3-テトラメチルジシラザン2.0g(SiO1モルに対して0.26モル相当量)を投入後、50℃で1時間撹拌し、表面がジメチルビニルシリル化された予備処理シリカ粒子の分散液を得た。
 工程(A3):上記工程(A2)で得られた分散液に25℃でヘキサメチルジシラザン205.3g(SiO1モルに対して30モル相当量)を0.5時間かけて滴下後、60℃で8時間反応させることにより、表面が更にトリメチルシリル化された表面処理ゾルゲルシリカ粒子の分散液を得た。次いで、この分散液中の分散媒を130℃、減圧下(6650Pa)で留去することにより、表面処理ゾルゲルシリカ粒子(I)の白色粉体271gを得た。
[実施例1-2]
 実施例1-1において、工程(A1)の反応温度を35℃とした以外は実施例1-1と同様にして、表面処理ゾルゲルシリカ粒子(II)の白色粉体272gを得た。
[実施例1-3]
 実施例1-1において、工程(A1)の反応温度を27℃とした以外は実施例1-1と同様にして、表面処理ゾルゲルシリカ粒子(III)の白色粉体269gを得た。
[実施例1-4]
 実施例1-1において、工程(A1)の反応温度を25℃とした以外は実施例1-1と同様にして、表面処理ゾルゲルシリカ粒子(IV)の白色粉体273gを得た。
[実施例1-5]
 実施例1-1において、工程(A2)の1,3-ジビニル-1,1,3,3-テトラメチルジシラザンに代えて1,3-ジフェニル-1,1,3,3-テトラメチルジシラザン3.1g(SiO1モルに対して0.26モル相当量)を用いた以外は実施例1-1と同様にして、表面処理ゾルゲルシリカ粒子(V)の白色粉体274gを得た。
[実施例1-6]
 実施例1-1において、工程(A2)の1,3-ジビニル-1,1,3,3-テトラメチルジシラザンに代えて1,3-ジ-n-オクチル-1,1,3,3-テトラメチルジシラザン3.9g(SiO1モルに対して0.26モル相当量)を用いた以外は実施例1-1と同様にして、表面処理ゾルゲルシリカ粒子(VI)の白色粉体275gを得た。
[比較例1-1]
 実施例1-1において、工程(A1)を行い、工程(A2)を行わず、工程(A3)として、工程(A1)で得られた懸濁液に25℃でヘキサメチルジシラザン205.3g(SiO1モルに対して30モル相当量)を0.5時間かけて滴下後、60℃で8時間反応させることにより、表面がトリメチルシリル化された表面処理ゾルゲルシリカ粒子の分散液を得た。次いで、この分散液中の分散媒を130℃、減圧下(6650Pa)で留去することにより、表面処理ゾルゲルシリカ粒子(VII)の白色粉体268gを得た。
[比較例1-2]
 実施例1-3において、工程(A1)を行い、工程(A2)を行わず、工程(A3)として、工程(A1)で得られた懸濁液に25℃でヘキサメチルジシラザン205.3g(SiO1モルに対して30モル相当量)を0.5時間かけて滴下後、60℃で8時間反応させることにより、表面がトリメチルシリル化された表面処理ゾルゲルシリカ粒子の分散液を得た。次いで、この分散液中の分散媒を130℃、減圧下(6650Pa)で留去することにより、表面処理ゾルゲルシリカ粒子(VIII)の白色粉体268gを得た。
 上記工程により得られた表面処理ゾルゲルシリカ粒子(I)~(VIII)について、下記の測定方法(1)~(6)に従って測定を行った結果を表1に示す。
[測定方法]
(1)動的光散乱法におけるメジアン径
 表面処理ゾルゲルシリカ粒子0.1g及びメタノール19.9gをガラス瓶に入れ、超音波洗浄機に入れて、出力30W/Lの超音波を10分間照射させてメタノール中にシリカ粒子を分散させた。その分散液について動的光散乱法粒度分布測定装置(マイクロトラックベル社製NanotracWave II-Ex150)を用いてメジアン径を測定した。
(2)円形度
 表面処理ゾルゲルシリカ粒子を電子顕微鏡(日立製作所製、S-4700、倍率:10万倍)を用いて撮影し、粒子を二次元に投影した時の円形度(粒子面積と等しい面積の円の周囲長/粒子周囲長)を画像解析式粒度分布測定ソフト(株式会社マウンテック製Mac-View  Ver.5)で評価した。なお、円形度は1次粒子100個を測定した平均値を用いた。
(3)屈折率
 トルエン(屈折率1.4962)とメチルイソブチルケトン(屈折率1.3958)との混合溶媒に表面処理ゾルゲルシリカ粒子を添加し分散させ、上記溶媒の配合比率により屈折率を調整し、分散液が透明になる点(混合溶媒と表面処理シリカ微粒子の屈折率が合致する点)における混合溶媒の屈折率を表面処理ゾルゲルシリカ粒子の屈折率とした。なお、混合溶媒の屈折率はデジタル屈折計(株式会社アタゴ製RX-9000α)を用いて測定した25℃における値である。
(4)真密度
 液相置換法を用いた自動真密度測定装置(株式会社セイシン企業製オートトゥルーデンサーMAT-7000)を用いて、表面処理ゾルゲルシリカ粒子の真密度を測定した。
(5)水蒸気吸着比表面積/窒素吸着比表面積比
 高精度ガス吸着量測定装置(マイクロトラックベル社製BELSORP MAX II)を用いて、BET1点法により水蒸気媒体及び窒素媒体それぞれに対する表面処理ゾルゲルシリカ粒子の比表面積を測定し、水蒸気吸着比表面積/窒素吸着比表面積の比を求めた。
(6)メタノール疎水化度
 粉体濡れ性試験機(株式会社レスカ製WET101P)を用い、体積濃度50%(温度25℃)のメタノール水溶液60mlに表面処理ゾルゲルシリカ粒子を0.2g添加し、撹拌子で攪拌した。次いでシリカ粒子が表面に浮遊した液中にメタノールを滴下しながら、メタノール水溶液に波長780nmの光を照射して透過率を測定した。表面処理ゾルゲルシリカ粒子が懸濁・沈降して、透過率が80%になったときのメタノール水溶液中のメタノール体積濃度(%)をメタノール疎水化度とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1-1~1-6の表面処理ゾルゲルシリカ粒子は高いメタノール疎水化度を示し、高度に表面が疎水化されているものであった。一方、比較例1-1,1-2では、表面の疎水化が不足する結果となった。
(外添剤混合トナーの製造)
[実施例2-1~2-6、比較例2-1,2-2]
 Tg60℃、軟化点110℃のポリエステル樹脂96重量部と色剤としてカーミン6BC(住化カラー(株)製)4重量部を溶融混練、粉砕、分級後、体積メジアン径7μmのトナーを得た。このトナー10gと実施例1-1~1-6、及び比較例1-1、1-2で得られた表面処理ゾルゲルシリカ粒子0.2gとをサンプルミルにて混合し、外添剤混合トナーを得た。これらについて下記(7)の方法による評価を行った。
(7)トナー凝集度
 20mlポリエチレン容器に、外添剤混合トナー10gを入れ、容器の蓋を開けた状態で60℃、30%RHの恒温恒湿条件に100時間曝露した後、トナー5gを、粉体特性評価装置(ホソカワミクロン株式会社製パウダーテスターPT-X)を使用して、篩の目開きが上から150μm、75μm、45μm、振動幅1mm、振動数1Hzで60秒間振動させた後、篩上に残った量を測定し、凝集度を下式にて算出した。その結果を表2に示す。
凝集度(%)=(W+0.6×W+0.2×W)/5×100
:150μm目開き篩上の残存量(g)
:75μm目開き篩上の残存量(g)
:45μm目開き篩上の残存量(g)
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例2-1~2-6の外添剤混合トナーは凝集度が低く、本発明の表面処理ゾルゲルシリカ粒子はトナー外添剤として好適に用いられることが分かる。一方、比較例2-1、2-2ではシリカ粒子の表面処理が十分ではないため、凝集度が高い結果となった。
(二成分現像剤の製造)
[実施例3-1~3-6、比較例3-1,3-2]
 実施例2-1~2-6、比較例2-1、2-2の外添剤混合トナー3質量部と、キャリアである標準フェライトL(日本画像学会)97質量部とを混合して二成分現像剤を調製した。上記工程により得られた二成分現像剤について、下記の方法(8)~(12)に従って測定を行った結果を表3に示す。
(8)トナー帯電量
 上記二成分現像剤を高温高湿(30℃、90%RH)、中温中湿(25℃、55%RH)及び低温低湿(10℃、15%RH)の各条件下に1日間曝露した後、同一条件下でそれぞれの試料を摩擦帯電した際の帯電量をブローオフ粉体帯電量測定装置(東芝ケミカル(株)製、TB-200)を用いて測定した。
(9)感光体へのトナー付着
 上記二成分現像剤を、有機感光体を備えた現像機に入れ、25℃、50%RH環境下で30,000枚のプリントテストを実施した。このとき、感光体へのトナーの付着は、全ベタ画像での白抜けとして感知できる。ここで、白抜けの程度は、1cmあたりの白抜け個所の数が10個以上を「多い」、1~9個を「少ない」、0個を「なし」と評価した。
(10)感光体摩耗
 上記(9)のプリントテストにおいて、画像の乱れとして検出される感光体摩耗について、下記基準で評価した。
A:画像の乱れのないもの
B:大きな画像の乱れのないもの
C:画像の乱れがあるもの
(11)画像欠損(白点)評価
 上記二成分現像剤を30℃、90%RHの環境に1日間曝露し、その後20cm四方のベタ印刷(画像濃度100%)を5,000枚連続印刷を行った後、再び上記二成分現像剤を30℃、90%RH環境下で静置した。これを60回繰返し、合計300,000枚の印刷を行った。初日の10枚目の印刷物を印刷物1、最終日の最終印刷物を印刷物2とした。
 上記で得られた印刷物2の画像観察による画像欠損(白点)の有無を下記基準で評価した。
A:目視で画像欠損なし(白点なし)
B:目視で白点(粒子状に白く抜けた画像)が1個以上4個以下
C:目視で白点が5個以上9個以下
D:目視で白点が10個以上
(12)濃度変化(ΔE)評価
 上記印刷物1に対する印刷物2の濃度変化について、反射濃度計X-rite938(X-rite社製)を使用し、JIS Z 8781-5に準拠してCIE1976(L*a*b*)色空間における色差(ΔE)を測定し、下記基準により評価した。
A:ΔE差が1未満
B:ΔE差が1以上2.5未満
C:ΔE差が2.5以上3.0未満
D:ΔE差が3.0以上
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、実施例1-1~1-6で得られた表面処理ゾルゲルシリカ粒子をトナー外添剤として用いた二成分現像剤は、トナー帯電量の環境による変動が小さく、印刷画像欠陥のないものであった。一方、比較例1-1、1-2で得られた表面処理ゾルゲルシリカ粒子を用いたものは、トナー帯電量の環境による変動が大きく、印刷特性に劣っていた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  表面処理ゾルゲルシリカ粒子の製造方法であって、
    (A1)4官能性シラン化合物、その部分加水分解縮合生成物又はこれらの混合物を加水分解及び縮合することによって、表面にシラノール基を有し、かつ実質的にSiO2単位からなる親水性ゾルゲルシリカ粒子を得る工程、
    (A2)前記親水性ゾルゲルシリカ粒子に(CSi-基又はR Si-基(式中、R1は炭素原子数2~8のアルキル基もしくはアルケニル基、又は炭素原子数6~8のアリール基であり、Rは同一又は異種の置換又は非置換の炭素原子数1~4のアルキル基である)を有する化合物を添加して、前記親水性ゾルゲルシリカ粒子の表面に(CSiO1/2単位又はR SiO1/2単位(式中、R1及びRは前記の通りである)を導入して予備処理シリカ粒子を得る工程、及び
    (A3)前記予備処理シリカ粒子にR Si-基(式中、Rは置換又は非置換の炭素原子数1~6の一価炭化水素基である)を有する化合物を添加して、前記予備処理シリカ粒子の表面に更にR SiO1/2単位(式中、Rは前記の通りである)を導入して表面処理ゾルゲルシリカ粒子を得る工程を含み、かつ、
     前記工程(A2)で前記親水性ゾルゲルシリカ粒子の表面に導入する単位と、前記工程(A3)で前記予備処理シリカ粒子の表面に導入する単位はそれぞれ異なることを特徴とする表面処理ゾルゲルシリカ粒子の製造方法。
  2.  前記工程(A1)を、一般式(i):
         Si(OR            (i)
    (式中、各Rは同一又は異種の炭素原子数1~6の一価炭化水素基である)
    で示される4官能性シラン化合物、その部分加水分解縮合生成物又はこれらの混合物を、塩基性物質の存在下、親水性有機溶媒と水の混合液中で加水分解及び縮合することによって、表面にシラノール基を有し、かつ実質的にSiO2単位からなる親水性ゾルゲルシリカ粒子の混合溶媒分散液を得る工程とし、
     前記工程(A2)を、得られた前記親水性ゾルゲルシリカ粒子の混合溶媒分散液に、一般式(ii):
         R SiNHSiR         (ii)
    (式中、R1及びRは前記の通りである)
    で示されるシラザン化合物、ヘキサエチルジシラザン、一般式(iii-1):
         R SiX              (iii-1)
    (式中、R1及びRは前記の通りであり、XはOH基又は加水分解性基である)
    で示される1官能性シラン化合物、一般式(iii-2):
         (CSiX              (iii-2)
    (式中、Xは前記の通りである)
    で示される1官能性シラン化合物、又はこれらの混合物を、前記親水性ゾルゲルシリカ粒子中のSiO単位1モルあたり0.001~1モルを添加して、前記親水性ゾルゲルシリカ粒子の表面に(CSiO1/2単位又はR SiO1/2単位(R1及びRは前記の通りである)を導入して予備処理シリカ粒子の混合溶媒分散液を得る工程とし、
     前記工程(A3)を、得られた前記予備処理シリカ粒子の混合溶媒分散液に、一般式(iv):
         R SiNHSiR         (iv)
    (式中、Rは前記の通りである)
    で示されるシラザン化合物、一般式(v):
         R SiX              (v)
    (式中、R及びXは前記の通りである)
    で示される1官能性シラン化合物、又はこれらの混合物を、前記予備処理シリカ粒子中のSiO単位1モルあたり5~50モルを添加して、前記予備処理シリカ粒子の表面にR SiO1/2単位(Rは前記の通りである)を導入して表面処理ゾルゲルシリカ粒子を得る工程とする
    ことを特徴とする請求項1に記載の表面処理ゾルゲルシリカ粒子の製造方法。
  3.  前記Rを炭素原子数6~8のアルキル基、フェニル基、又はビニル基とし、前記Rをメチル基、エチル基、プロピル基又はイソプロピル基とし、前記Rをメチル基又はエチル基とすることを特徴とする請求項1又は請求項2に記載の表面処理ゾルゲルシリカ粒子の製造方法。
  4.  表面にR SiO1/2単位(式中、R1は炭素原子数6~8のアルキル基もしくはアリール基、又はビニル基であり、Rは同一又は異種の炭素原子数1~4のアルキル基である)及びR SiO1/2単位(式中、Rは同一又は異種の置換又は非置換の炭素原子数1~6の1価炭化水素基である)を有するものである表面処理ゾルゲルシリカ粒子であって、
     動的光散乱法におけるメジアン径が5nm~99nmであり、
     平均円形度が0.8~1.0であり、
     屈折率が1.38~1.42であり、
     真密度が1.7g/cm以上1.9g/cm未満であり、
     水蒸気吸着比表面積/窒素吸着比表面積で表される比が0.4~1.9であり、
     メタノール疎水化度が67%以上75%以下
    のものであることを特徴とする表面処理ゾルゲルシリカ粒子。
  5.  前記Rが炭素原子数6~8のアルキル基、フェニル基、又はビニル基であり、前記Rがメチル基、エチル基、プロピル基又はイソプロピル基であり、前記Rがメチル基又はエチル基であることを特徴とする請求項4に記載の表面処理ゾルゲルシリカ粒子。
  6.  請求項4又は請求項5に記載の表面処理ゾルゲルシリカ粒子を含有するものであることを特徴とする静電荷像現像用トナー外添剤。
PCT/JP2021/047477 2021-02-24 2021-12-22 表面処理ゾルゲルシリカ粒子の製造方法、表面処理ゾルゲルシリカ粒子、及び静電荷像現像用トナー外添剤 WO2022181018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180094301.3A CN116897139A (zh) 2021-02-24 2021-12-22 表面处理溶胶凝胶二氧化硅颗粒的制造方法、表面处理溶胶凝胶二氧化硅颗粒、及静电图像显影用调色剂外部添加剂
KR1020237027820A KR20230150276A (ko) 2021-02-24 2021-12-22 표면처리 졸겔실리카입자의 제조방법, 표면처리 졸겔실리카입자,및 정전하상현상용 토너외첨제
EP21928111.0A EP4299518A1 (en) 2021-02-24 2021-12-22 Surface-treated sol-gel silica particle manufacturing method, surface-treated sol-gel silica particles, and toner external additive for electrostatic charge image development

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021027678A JP2022129112A (ja) 2021-02-24 2021-02-24 表面処理ゾルゲルシリカ粒子の製造方法、表面処理ゾルゲルシリカ粒子、及び静電荷像現像用トナー外添剤
JP2021-027678 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181018A1 true WO2022181018A1 (ja) 2022-09-01

Family

ID=83048030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047477 WO2022181018A1 (ja) 2021-02-24 2021-12-22 表面処理ゾルゲルシリカ粒子の製造方法、表面処理ゾルゲルシリカ粒子、及び静電荷像現像用トナー外添剤

Country Status (5)

Country Link
EP (1) EP4299518A1 (ja)
JP (1) JP2022129112A (ja)
KR (1) KR20230150276A (ja)
CN (1) CN116897139A (ja)
WO (1) WO2022181018A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145780A1 (ja) * 2022-01-28 2023-08-03 日産化学株式会社 低誘電正接シリカゾル及び低誘電正接シリカゾルの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627718A (ja) 1992-07-09 1994-02-04 Konica Corp 静電荷現像用トナー及び画像形成方法
JPH11143118A (ja) 1997-11-14 1999-05-28 Canon Inc 静電荷像現像用トナー及び画像形成方法
JP2008174430A (ja) * 2007-01-22 2008-07-31 Shin Etsu Chem Co Ltd 疎水性球状シリカ微粒子、その製造方法、及び、それを用いた静電荷像現像用トナー外添剤
JP2008273757A (ja) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd 高度の流動性を有する疎水性球状シリカ微粒子、その製造方法、それを用いた静電荷像現像用トナー外添剤およびそれを含有する有機樹脂組成物
JP2011032114A (ja) * 2009-07-30 2011-02-17 Shin-Etsu Chemical Co Ltd 疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷像現像用トナー外添剤
JP2014114175A (ja) * 2012-12-06 2014-06-26 Shin Etsu Chem Co Ltd 表面疎水化球状シリカ微粒子、その製造方法及びそれを用いた静電荷像現像用トナー外添剤
JP2015059054A (ja) * 2013-09-18 2015-03-30 信越化学工業株式会社 表面有機樹脂被覆疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷像現像用トナー外添剤
JP2020033224A (ja) * 2018-08-29 2020-03-05 信越化学工業株式会社 正帯電型疎水性球状シリカ粒子、その製造方法及びそれを用いた正帯電トナー組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627718A (ja) 1992-07-09 1994-02-04 Konica Corp 静電荷現像用トナー及び画像形成方法
JPH11143118A (ja) 1997-11-14 1999-05-28 Canon Inc 静電荷像現像用トナー及び画像形成方法
JP2008174430A (ja) * 2007-01-22 2008-07-31 Shin Etsu Chem Co Ltd 疎水性球状シリカ微粒子、その製造方法、及び、それを用いた静電荷像現像用トナー外添剤
JP2008273757A (ja) * 2007-04-25 2008-11-13 Shin Etsu Chem Co Ltd 高度の流動性を有する疎水性球状シリカ微粒子、その製造方法、それを用いた静電荷像現像用トナー外添剤およびそれを含有する有機樹脂組成物
JP2011032114A (ja) * 2009-07-30 2011-02-17 Shin-Etsu Chemical Co Ltd 疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷像現像用トナー外添剤
JP2014114175A (ja) * 2012-12-06 2014-06-26 Shin Etsu Chem Co Ltd 表面疎水化球状シリカ微粒子、その製造方法及びそれを用いた静電荷像現像用トナー外添剤
JP2015059054A (ja) * 2013-09-18 2015-03-30 信越化学工業株式会社 表面有機樹脂被覆疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷像現像用トナー外添剤
JP2020033224A (ja) * 2018-08-29 2020-03-05 信越化学工業株式会社 正帯電型疎水性球状シリカ粒子、その製造方法及びそれを用いた正帯電トナー組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145780A1 (ja) * 2022-01-28 2023-08-03 日産化学株式会社 低誘電正接シリカゾル及び低誘電正接シリカゾルの製造方法

Also Published As

Publication number Publication date
JP2022129112A (ja) 2022-09-05
EP4299518A1 (en) 2024-01-03
KR20230150276A (ko) 2023-10-30
CN116897139A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
JP3927741B2 (ja) 静電荷像現像用トナー外添剤
JP3988936B2 (ja) シラン表面処理球状シリカチタニア系微粒子、その製造方法、および、それを用いた静電荷像現像用トナー外添剤
JP4781769B2 (ja) 高疎水性球状ゾルゲルシリカ微粒子、その製造方法、該微粒子からなる静電荷像現像用トナー外添剤および該トナー外添剤を用いた現像剤
JP4579265B2 (ja) 高度の流動性を有する疎水性球状シリカ微粒子、その製造方法、それを用いた静電荷像現像用トナー外添剤およびそれを含有する有機樹脂組成物
JP2008174430A (ja) 疎水性球状シリカ微粒子、その製造方法、及び、それを用いた静電荷像現像用トナー外添剤
JP2011032114A (ja) 疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷像現像用トナー外添剤
JP5439308B2 (ja) 会合シリカ微粒子の製造方法
JPH0810341B2 (ja) 磁性トナ−
WO2010038538A1 (ja) 疎水性シリカ微粒子及び電子写真用トナー組成物
JP4060241B2 (ja) 疎水性球状シリカ系微粒子、その製造方法、および、それを用いた静電荷像現像用トナー外添剤
JP5655800B2 (ja) 会合シリカの製造方法
WO2022181018A1 (ja) 表面処理ゾルゲルシリカ粒子の製造方法、表面処理ゾルゲルシリカ粒子、及び静電荷像現像用トナー外添剤
TWI804672B (zh) 正電荷型疏水性球形二氧化矽顆粒、其製造方法以及使用該正電荷型疏水性球形二氧化矽顆粒的正電荷調色劑組成物
JP3319114B2 (ja) 疎水性シリカ粉体、その製法とそれを含む電子写真用現像剤
JP4347201B2 (ja) 静電荷像現像用トナー外添剤およびトナー
JP3767788B2 (ja) 静電荷像現像用トナー外添剤
JP4628760B2 (ja) 球状疎水性ポリジオルガノシロキサン含有シリカ微粒子、静電荷像現像用トナー外添剤およびトナー
JP2014136670A (ja) 強負帯電付与性疎水性球状シリカ微粒子、その製造方法及びそれを用いた静電荷現像用電荷制御剤
JP4611006B2 (ja) 球状シリカ微粒子、静電荷像現像用トナー外添剤およびトナー
JP3856744B2 (ja) 静電荷像現像用トナー外添剤
JP3930236B2 (ja) 静電荷像現像用トナー外添剤
JP7456957B2 (ja) 表面処理気相法シリカ粒子の製造方法、表面処理気相法シリカ粒子、及び静電荷像現像用トナー外添剤
JP4198108B2 (ja) 静電荷像現像用トナー外添剤およびトナー
WO2016117344A1 (ja) シリコーンオイル処理シリカ粒子、及び電子写真用トナー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180094301.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021928111

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021928111

Country of ref document: EP

Effective date: 20230925