WO2022172872A1 - マイクロストリップアンテナおよびその製造方法 - Google Patents

マイクロストリップアンテナおよびその製造方法 Download PDF

Info

Publication number
WO2022172872A1
WO2022172872A1 PCT/JP2022/004445 JP2022004445W WO2022172872A1 WO 2022172872 A1 WO2022172872 A1 WO 2022172872A1 JP 2022004445 W JP2022004445 W JP 2022004445W WO 2022172872 A1 WO2022172872 A1 WO 2022172872A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polyimide
microstrip antenna
antenna
polyimide layer
Prior art date
Application number
PCT/JP2022/004445
Other languages
English (en)
French (fr)
Inventor
和幸 立石
誠二 細貝
和宏 小野
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202280013901.7A priority Critical patent/CN116830385A/zh
Priority to KR1020237028415A priority patent/KR20230145082A/ko
Priority to JP2022580606A priority patent/JPWO2022172872A1/ja
Publication of WO2022172872A1 publication Critical patent/WO2022172872A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Definitions

  • the present invention relates to a microstrip antenna and its manufacturing method.
  • Patent Document 1 proposes a method of arranging a plurality of antenna conductors in an array.
  • Patent Document 2 proposes a method of using a magnetic material for the base material.
  • Patent Document 1 has a problem that the planar size increases due to the use of a plurality of antenna conductors.
  • the method described in Patent Document 2 not only increases the material cost but also significantly reduces the magnetic properties of the magnetic material in the millimeter wave band. There was no problem.
  • An object of one aspect of the present invention is to provide a low-cost microstrip antenna and a method of manufacturing the same that exhibit an effect of improving gain in the millimeter wave band without increasing the planar size.
  • one embodiment of the present invention has the following configuration.
  • the first polyimide layer has a thickness of 75 to 200 ⁇ m and a dielectric loss tangent at 10 GHz of 0.0. 008 or less, a microstrip antenna.
  • a method for manufacturing a microstrip antenna wherein the microstrip antenna has at least an antenna conductor layer/first polyimide layer/ground conductor layer in this order, and the first polyimide layer has a thickness of
  • a method for manufacturing a microstrip antenna comprising using a polyimide film having a thickness of 75 to 200 ⁇ m and a dielectric loss tangent of 0.008 or less at 10 GHz.
  • transmission loss since transmission loss can be easily prevented, it can be suitably used for microstrip antenna applications that require high-speed and high-frequency transmission lines.
  • FIG. 1 is a schematic cross-sectional view of a microstrip antenna having multiple antenna conductor layers according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram which shows an example of the manufacturing method of a microstrip antenna.
  • 1 is a schematic cross-sectional view of a microstrip antenna having a second polyimide layer/adhesive layer/antenna conductor layer/first polyimide layer/ground conductor layer in this order according to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of a microstrip antenna having an adhesive layer 2 according to one embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of a microstrip antenna having multiple antenna conductor layers according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram showing a microstrip antenna in which the insulating layer is solder resist according to one embodiment of the present invention
  • FIG. It is a schematic diagram which shows an example of the manufacturing method of a microstrip antenna.
  • It is a schematic diagram which shows an example of the manufacturing method of a double-sided flexible metal-clad laminated board (microstrip antenna).
  • a microstrip antenna according to an embodiment of the present invention has at least an antenna conductor layer/first polyimide layer/ground conductor layer in this order, and the first polyimide layer has a thickness of 75 to 200 ⁇ m, Moreover, the dielectric loss tangent at 10 GHz is 0.008 or less.
  • a microstrip antenna according to another embodiment of the present invention further has a second polyimide layer/adhesive layer, and at least the second polyimide layer/adhesive layer/antenna conductor layer/first polyimide layer/ It may be a microstrip antenna having ground conductor layers in that order and the second polyimide layer being a polyimide film.
  • a microstrip antenna according to another embodiment of the present invention has an insulating layer instead of the second polyimide layer/adhesive layer, and at least the insulating layer/antenna conductor layer/first polyimide layer/ground conductor A microstrip antenna having layers in this order, wherein said insulating layer is a solder resist.
  • the polyimide film used for the first polyimide layer has a thickness of 75 to 200 ⁇ m and a dielectric loss tangent of 0.008 or less at 10 GHz.
  • the reflection loss at the resonance frequency of the microstrip antenna can be reduced to -10 dB or less.
  • the polyimide film used for the first polyimide layer is not particularly limited as long as it has a thickness of 75 to 200 ⁇ m and a dielectric loss tangent at 10 GHz of 0.008 or less. good too.
  • the first polyimide layer more preferably has a thermoplastic polyimide layer and a non-thermoplastic polyimide layer. It is preferable that the first polyimide layer has a thermoplastic polyimide layer and a non-thermoplastic polyimide layer, because the microstrip antenna can be easily manufactured.
  • the first polyimide layer it is preferable to use, as the first polyimide layer, a multi-layer polyimide film having a three-layer structure in which thermoplastic polyimide layers are provided on both sides of a non-thermoplastic polyimide layer.
  • a multi-layer polyimide film having a three-layer structure in which thermoplastic polyimide layers are provided on both sides of a non-thermoplastic polyimide layer.
  • the following films are particularly preferable as the polyimide film used for the first polyimide layer. That is, at least two or more polyimide films having a thickness of less than 75 ⁇ m having a three-layer structure with thermoplastic polyimide layers on both sides of a non-thermoplastic polyimide layer are laminated (crimped) to a thickness of 75 to 200 ⁇ m. . This is desirable because the total production cost of the film can be reduced most.
  • Polyimide adhesive sheet polyimide film having a three-layer structure with thermoplastic polyimide layers on both sides of a non-thermoplastic polyimide layer
  • a polyimide film having a three-layer structure having thermoplastic polyimide layers on both sides of a non-thermoplastic polyimide layer will be described below.
  • a polyimide film having a three-layer structure with thermoplastic polyimide layers on both sides of a non-thermoplastic polyimide layer is called a polyimide adhesive sheet.
  • thermoplastic polyimide layer a raw material monomer of polyamic acid which is a precursor of non-thermoplastic polyimide used in a non-thermoplastic polyimide layer, a method for producing polyamic acid which is a precursor of the non-thermoplastic polyimide, a method for producing a non-thermoplastic polyimide film, A detailed description will be given in order of the thermoplastic polyimide layer.
  • the raw material monomer of the polyamic acid that is the precursor of the non-thermoplastic polyimide is not particularly limited as long as the non-thermoplastic polyimide obtained by imidating the polyamic acid that is the precursor satisfies the following requirements: . That is, the non-thermoplastic polyimide has the solder heat resistance, dimensional stability, and flame retardancy required for conventional flexible printed circuit board materials, and the primary structure and manufacturing method improve the solder heat resistance, dimensional stability, and flame retardancy are not particularly limited.
  • the raw material monomers for example, diamines and acid dianhydrides that are commonly used in synthesizing polyamic acids can be used.
  • the diamine is not particularly limited as long as it can exhibit the effect of the present invention, but 2,2'-bis[4-(4-aminophenoxy)phenyl]propane, 4,4'-diaminodiphenylpropane, 4,4'-diamino Diphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 4,4'-oxydianiline, 3,3'-oxydianiline, 3,4 '-oxydianiline, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenyl N-methylamine, 4, 4′-diaminodiphen
  • Diamines advantageous for realizing a low dielectric loss tangent include aliphatic diamines having 36 carbon atoms, 1,4-diaminobenzene (p-phenylenediamine), 1,3-bis(4-aminophenoxy)benzene, 1, 3-bis(3-aminophenoxy)benzene, 4,4'-diamino-2,2'-dimethylbiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-2, 2'-bis(trifluoromethyl)biphenyl, 4,4'-diaminodiphenyl ether, bis(4-aminophenyl)terephthalate, 2,2-bis(4-aminophenoxyphenyl)propane, 2,2-bis(4- aminophenoxyphenyl)hexafluoropropane, 4,4'-bis(4-aminophenoxy)biphenyl, and
  • acid dianhydride compounds that can be used as raw material monomers for polyamic acid are not particularly limited as long as the effects of the present invention can be exhibited, but pyromellitic dianhydride and 2,3,6,7-naphthalenetetracarboxylic acid.
  • dianhydride 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2′,3,3′-biphenyltetracarboxylic dianhydride Carboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 2,2′,3,3′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride anhydride, 3,4′-oxydiphthalic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propanoic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, Bis(3,4-dicarboxyphenyl)propanoic acid dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride,
  • advantageous dianhydrides include 3,3′,4,4′-biphenyltetracarboxylic dianhydride, paraphenylene bis(trimellitate anhydride), 4,4′- Oxydiphthalic dianhydride, 2,2′-bis(4-(3,4-dicarboxyphenoxy)phenyl)propanoic dianhydride, pyromellitic dianhydride and the like can be listed. These may be used alone or in combination. These acid dianhydrides preferably contain 30 to 100 mol%, more preferably 50 to 100 mol%, and even more preferably 70 to 100 mol% of the total acid dianhydride.
  • the first polyimide layer can be produced, for example, by the following method. That is, using the diamine and the acid dianhydride as raw materials, a polyamic acid solution is obtained by subjecting the diamine and the acid dianhydride to a ring-opening polyaddition reaction in a solvent, and then the polyamic acid is heated to cause a dehydration cyclization reaction (imidization). can be manufactured by Thereby, the dielectric loss tangent of the first polyimide layer at 10 GHz can be controlled within the range of 0.008 or less.
  • Any organic solvent can be used as long as it dissolves the non-thermoplastic polyamic acid in the production of the polyamic acid, which is the precursor of the non-thermoplastic polyimide.
  • amide-based solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone are preferred, and N,N-dimethylformamide and N,N-dimethylacetamide are more preferred.
  • the solid content concentration of the polyamic acid, which is the precursor of the non-thermoplastic polyimide is not particularly limited. Polyamic acid, a precursor of thermoplastic polyimide, is obtained.
  • the addition order of the aromatic diamine and aromatic dianhydride raw materials is not particularly limited, but the properties of the resulting non-thermoplastic polyimide can be controlled not only by controlling the chemical structure of the raw materials but also by controlling the order of addition. It is possible to
  • a filler can also be added to the non-thermoplastic polyamic acid for the purpose of improving various properties of the film such as slidability, thermal conductivity, electrical conductivity, corona resistance, and loop stiffness.
  • Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
  • Method for producing non-thermoplastic polyimide film in one embodiment of the present invention, as a method for obtaining the non-thermoplastic polyimide film, for example, a method including the following steps i) to iv) can be suitably used.
  • a step of reacting an aromatic diamine and an aromatic dianhydride in an organic solvent to obtain a polyamic acid solution (hereinafter also referred to as a non-thermoplastic polyamic acid), which is a precursor of a non-thermoplastic polyimide; ii) a step of casting a film-forming dope containing the non-thermoplastic polyamic acid solution from a die onto a support to form a resin layer (also referred to as a liquid film); iii) a step of heating the resin layer on the support to form a self-supporting gel film, and then peeling off the gel film from the support; iv) Further heating to imidize the remaining amic acid and dry to obtain a non-thermoplastic polyimide film.
  • a non-thermoplastic polyamic acid which is a precursor of a non-thermoplastic polyimide
  • imidization methods are broadly classified into thermal imidization methods and chemical imidization methods.
  • the thermal imidization method is a method in which a polyamic acid solution as a film forming dope is cast on a support without using a dehydration ring-closing agent or the like, and imidization is proceeded only by heating.
  • the chemical imidization method is a method in which at least one of a dehydration ring-closing agent and a catalyst is added to a polyamic acid solution as an imidization accelerator, and a film-forming dope is used to promote imidization. Either method may be used, but the chemical imidization method is superior in productivity.
  • an acid anhydride represented by acetic anhydride can be suitably used as the dehydration ring-closing agent.
  • Tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines, and heterocyclic tertiary amines can be suitably used as the catalyst.
  • a glass plate, an aluminum foil, an endless stainless steel belt, a stainless drum, or the like can be suitably used as a support for casting the film-forming dope.
  • the heating conditions are set according to the thickness of the film to be finally obtained and the production rate, and after at least one of partial imidization and drying, the polyamic acid film (hereinafter referred to as gel film) is peeled off from the support. ).
  • the ends of the gel film are fixed and dried to avoid shrinkage during curing, the gel film is freed of water, residual solvent, imidization accelerator, and the remaining amic acid is completely imidized, A film containing polyimide is obtained.
  • the heating conditions may be appropriately set according to the thickness of the film to be finally obtained and the production speed.
  • thermoplastic polyimide (layer) the thermoplastic polyimide contained in the thermoplastic polyimide (layer) is obtained by imidating a polyamic acid that is a precursor thereof (hereinafter referred to as a polyamic acid that is a precursor of the thermoplastic polyimide , also called thermoplastic polyamic acid).
  • the aromatic diamine and aromatic tetracarboxylic dianhydride used in the polyamic acid which is the precursor of the thermoplastic polyimide used in the present invention, are the same as those used in the non-thermoplastic polyimide layer.
  • Examples of flexible diamines include 4,4′-diaminodiphenyl ether, 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′-bis(3-aminophenoxy)biphenyl, 1,3- bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 2,2-bis(4-aminophenoxyphenyl)propane and the like.
  • the diamine may be used in combination with 1,4-diaminobenzene and/or 4,4'-diamino-2,2'-dimethylbiphenyl to adjust the glass transition temperature (Tg) of the polyimide film.
  • acid dianhydrides suitable for combination with these diamines include pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4, 4'-biphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride and the like.
  • thermoplastic polyamic acid in the present invention Any known method for producing the thermoplastic polyamic acid in the present invention can be used as long as the resulting thermoplastic polyimide satisfies the following requirements. That is, if the thermoplastic polyimide obtained by imidating the resulting polyamic acid has the adhesiveness to metal foil, solder heat resistance, dimensional stability, and flame retardancy required for conventional flexible printed circuit board materials. , any known method can be used.
  • steps (Aa) to (Ac) (Aa) a step of reacting an aromatic diamine and an aromatic acid dianhydride in an organic solvent in an excess amount of the aromatic diamine to obtain a prepolymer having amino groups at both ends; (Ab) step of additionally adding an aromatic diamine having a structure different from that used in step (Aa); (Ac) Furthermore, an aromatic acid dianhydride having a different structure from that used in step (Aa) is added to the aromatic dianhydride used in all steps from steps (Aa) to (Ac).
  • a step of adding and polymerizing so that the total amount of the group diamine and the total amount of the aromatic dianhydride are substantially equimolar; can be manufactured by
  • step (Ba) An aromatic diamine and an aromatic dianhydride are reacted in an organic polar solvent in an excess amount of the aromatic dianhydride to obtain a prepolymer having acid anhydride groups at both ends.
  • step of obtaining (Bb) step of additionally adding an aromatic acid dianhydride having a structure different from that used in step (Ba);
  • step of adding an aromatic diamine having a different structure from that used in step (Ba) is added to the aromatic diamine used in all steps from steps (Ba) to (Bc).
  • the solid content concentration of the polyamic acid which is the precursor of the thermoplastic polyimide, is not particularly limited, but is usually 5% to 35% by weight, preferably 10% to 30% by weight. Appropriate molecular weights and solution viscosities are obtained at concentrations in this range.
  • thermoplastic polyimide adhesive sheet A method for manufacturing a laminate having a thermoplastic polyimide layer and a non-thermoplastic polyimide layer in one embodiment of the present invention will be described in detail.
  • the non-thermoplastic polyamic acid is synthesized in i), and then the non-thermoplastic polyamic acid is applied to both sides of the non-thermoplastic polyimide film once collected by proceeding to the steps ii) to iv). may be applied and then imidized.
  • a polyimide adhesive sheet can also be obtained by coating and drying a thermoplastic polyimide solution capable of forming a thermoplastic polyimide layer on both sides of the non-thermoplastic polyimide film.
  • a polyamic acid that is a precursor of a thermoplastic polyimide is separately synthesized.
  • a dope containing thermoplastic polyamic acid/a film-forming dope containing a non-thermoplastic polyamic acid solution/a dope containing thermoplastic polyamic acid are cast from a die onto a support so as to form three layers. to form a resin layer (sometimes called a liquid film).
  • steps iii) and iv) are performed in the same manner to obtain the polyimide adhesive sheet of the present invention.
  • a microstrip antenna according to an embodiment of the present invention, that is, having at least an antenna conductor layer/first polyimide layer/ground conductor layer in this order. and the first polyimide layer has a thickness of 75 to 200 ⁇ m and a dielectric loss tangent of 0.008 or less at 10 GHz.
  • a microstrip antenna has an antenna conductor layer/first polyimide layer/ground conductor layer in this order as shown in FIG.
  • the microstrip antenna includes a ground conductor layer 1, a first polyimide layer 2 arranged on the ground conductor layer 1, and an antenna conductor layer 3 arranged on the first polyimide layer 2.
  • a polyimide film having a thickness of 75 to 200 ⁇ m and a dielectric loss tangent of 0.008 or less at 10 GHz is used for the first polyimide layer.
  • the reflection loss is preferably as small as possible, more preferably -12 dB or less, even more preferably -15 dB or less, and even more preferably -20 dB or less.
  • the microstrip antenna according to one embodiment of the present invention can have a plurality of antenna conductor layers as shown in FIG. In such a case, each of the plurality of antenna conductor layers is arranged on the first polyimide layer.
  • the microstrip antenna includes a ground conductor layer 1, a first polyimide layer 2 arranged on the ground conductor layer 1, and two antenna conductors respectively arranged on the first polyimide layer 2. and layer 3.
  • FIG. 3 shows an example of a method of manufacturing a microstrip antenna according to one embodiment of the present invention.
  • a plurality of polyimide adhesive sheets (each polyimide adhesive sheet having a thermoplastic polyimide layer 11 on both sides of a non-thermoplastic polyimide layer 10) are placed between two metal foils, such as copper foils.
  • a polyimide film having a three-layer structure) is sandwiched and bonded together. After that, one of the two copper foils (metal foils) is etched to form the antenna conductor layer 3, thereby easily forming the microstrip antenna.
  • the first polyimide layer includes a plurality of adhesive sheets, but a single adhesive sheet may be used as the first polyimide layer.
  • thermoplastic polyimide film a single layer non-thermoplastic polyimide film
  • thermoplastic polyimide/copper foil Metal foil
  • the total thickness of the thermoplastic polyimide and the non-thermoplastic polyimide is preferably 75 ⁇ m or more.
  • a laminate obtained by laminating the metal foil and the first polyimide layer may be referred to as "metal-clad laminate” or “flexible metal-clad laminate (FCCL)".
  • a laminate obtained by laminating a first polyimide layer between two metal foils is a "double-sided flexible metal-clad laminate", and one metal foil and a first polyimide layer are laminated.
  • Such a laminate may be referred to as a "single-sided flexible metal-clad laminate”.
  • thermoplastic polyimide (single layer)
  • the thermoplastic polyimide (single layer) is a sheet (film) obtained by imidizing the same polyamic acid as the polyamic acid that is the precursor of the thermoplastic polyimide described in the section "Thermoplastic polyimide (layer)". is.
  • the production of the thermoplastic polyimide (single layer) is preferably carried out by the same method as the production method of the non-thermoplastic polyimide film.
  • Non-thermoplastic polyimide (single layer)
  • the non-thermoplastic polyimide (single layer) is a single-layer sheet (film) obtained by imidating the same polyamic acid as the polyamic acid that is the precursor of the non-thermoplastic polyimide.
  • the production of the non-thermoplastic polyimide (single layer) is preferably carried out by the same method as the production method of the non-thermoplastic polyimide film.
  • the metal foil and the first polyimide layer are laminated by collectively bonding them together.
  • various known methods can be applied, but a thermocompression bonding method is preferable because it can suppress the generation of wrinkles and the like in the metal-clad laminate.
  • a thermocompression bonding method for bonding the polyimide adhesive sheet and the metal foil, for example, a thermocompression bonding method by batch processing by a single plate press, a continuous treatment by a hot roll laminating device (also referred to as a thermal laminating device) or a double belt press (DBP) device.
  • thermocompression bonding method can be mentioned.
  • the thermocompression bonding method using a hot roll laminator having at least one pair of metal rolls is preferable from the viewpoint of productivity and facility costs including maintenance costs.
  • the "heat roll laminating apparatus having a pair or more of metal rolls” as used herein means any apparatus having metal rolls for heating and pressing the material, and the specific configuration of the apparatus is particularly limited. not a thing
  • the surface roughness (Ra) of the first polyimide layer side of the antenna conductor layer is preferably as small as possible in terms of contributing to transmission loss reduction, but it is also necessary to ensure adhesion. Therefore, it is preferably 0.05 ⁇ m to 0.5 ⁇ m, more preferably 0.08 ⁇ m to 0.3 ⁇ m, and even more preferably 0.1 ⁇ m to 0.2 ⁇ m. Since this surface roughness is due to the surface roughness of the polyimide layer, it can be controlled by the metal foil used.
  • the method of bonding metal foil has been described. may be applied and dried, or may be formed by laminating a conductive shield film.
  • thermocompression bonding method in which laminates are laminated by thermocompression bonding, is preferable from the viewpoint of suppressing appearance defects of the laminate.
  • the bonding method include a thermocompression bonding method by batch processing using a single plate press, and a thermocompression bonding method by continuous processing using a hot roll laminating device (also referred to as a thermal laminating device) or a double belt press (DBP) device.
  • thermocompression bonding method using a hot roll laminator having at least one pair of metal rolls is preferred.
  • the "heat roll laminating apparatus having a pair or more of metal rolls” as used herein means any apparatus having metal rolls for heating and pressing the material, and the specific configuration of the apparatus is particularly limited. not a thing
  • the metal foil or conductive layer is used when manufacturing the single-sided flexible metal (conductive layer) clad laminate and when manufacturing the double-sided flexible metal (conductive layer) clad laminate. Since the high heat treatment is performed twice, there is a problem that the metal foil (conductive layer) tends to cause poor appearance due to heat burn and thermal deformation.
  • thermocompression bonding method In order to improve thermal deformation, in the thermocompression bonding method, a thermocompression bonding method using a hot roll laminating device having at least one pair of metal rolls is used, and a metal foil or conductive layer and a single-sided flexible metal (conductive layer) clad laminate are used. or tension between the metal foil or the conductive layer and the double-sided flexible metal (conductive layer) clad laminate. Specifically, it is preferable to set a high tension before thermocompression bonding. 270 mm or more is preferable. In order to improve heat burn, it is preferable to use a protective film during hot roll lamination.
  • the method of heating the material to be laminated in the thermocompression bonding method is not particularly limited, and for example, a heat circulation method, a hot air heating method, an induction heating method, or the like, which employs a conventionally known method capable of heating at a predetermined temperature. means can be used.
  • the method of pressurizing the material to be laminated in the thermocompression bonding method is not particularly limited. can be used.
  • the heating temperature in the thermocompression bonding step that is, the crimping temperature (laminating temperature), when manufacturing a single-sided flexible metal (conductive layer) clad laminate, the temperature of the polyimide adhesive sheet on the side that is in close contact with the metal foil (conductive layer) is The minimum temperature at which the foil (conductive layer) can be adhered is sufficient.
  • the temperature of the polyimide adhesive sheet on the side that does not adhere to the metal foil (conductive layer) may be any temperature as long as it does not stick to other materials, peripheral members, and the like. Therefore, the lamination temperature during the production of the single-sided flexible metal (conductive layer) clad laminate should be the glass transition temperature (Tg) of the polyimide adhesive sheet used +20°C to (Tg) +60°C.
  • the polyimide adhesive sheet When the polyimide adhesive sheet is heated at a temperature exceeding Tg, the higher the heating temperature, the softer the polyimide adhesive sheet and the easier it is to adhere to the peripheral members. At this time, since the polyimide adhesive sheet on the side that does not adhere to the metal foil may come into contact with peripheral members during processing, it is preferable that the adhesiveness is low. Therefore, it is preferable to adopt the lamination temperature.
  • the lamination temperature during the production of the double-sided flexible metal (conductive layer) clad laminate is preferably a temperature of the glass transition temperature (Tg) of the polyimide adhesive sheet used + 20 ° C. to (Tg) + 90 ° C., and the adhesive sheet ( Tg+50° C. to (Tg)+80° C. of C) is more preferred.
  • the lamination speed in the thermocompression bonding step is preferably 0.5 m/min or higher, more preferably 1.0 m/min or higher. If it is 0.5 m/min or more, sufficient thermocompression bonding becomes possible, and if it is 1.0 m/min or more, productivity can be further improved.
  • the lamination pressure is preferably within the range of 49 N/cm to 490 N/cm (5 kgf/cm to 50 kgf/cm), and within the range of 98 N/cm to 294 N/cm (10 kgf/cm to 30 kgf/cm). It is more preferable to have Within this range, the three conditions of lamination temperature, lamination speed and lamination pressure can be improved, and productivity can be further improved.
  • a hot roll laminator that continuously heats and crimps the material to be laminated.
  • a laminated material feeding means for feeding the laminated material may be provided before the thermal laminating means, and a laminated material winding means for winding the laminated material may be provided after the thermal laminating means. may be provided.
  • the specific configurations of the means for feeding the material to be laminated and the means for winding up the material to be laminated are not particularly limited. A known roll winder or the like that can be used can be mentioned.
  • winding means and feeding means for winding and feeding the protective film. If these winding means and feeding means are provided, the protective film can be reused by winding the once used protective film and installing it again on the feeding side in the thermocompression bonding process. Further, in order to align both ends of the protective film when the protective film is wound, an end position detecting means and a winding position correcting means may be provided. As a result, these ends can be aligned with high precision and wound up, so that the efficiency of reuse can be improved.
  • the specific configurations of these winding means, feeding means, end position detecting means, and winding position correcting means are not particularly limited, and conventionally known various devices can be used.
  • metal foil The metal foil that can be used in one embodiment of the present invention is not particularly limited.
  • a microstrip antenna When used in a microstrip antenna according to an embodiment of the present invention for use in electronic devices and electrical devices, for example, copper or copper alloys, stainless steel or alloys thereof, nickel or nickel alloys (including 42 alloy) Alternatively, foils made of aluminum or aluminum alloys may be mentioned.
  • copper foils such as rolled copper foils and electrolytic copper foils are often used as the metal foils, and these can also be preferably used in the present invention.
  • a rust preventive layer, a heat resistant layer, or an adhesive layer may be applied to the surface of these metal foils.
  • the thickness of the metal foil is not particularly limited, and may be any thickness that can exhibit sufficient functions according to the application.
  • Transmission loss is mainly composed of conductor loss caused by conductors such as metal foil such as copper foil, and dielectric loss caused by insulating resin base material. Conductor loss is affected by the skin effect of metal foil such as copper foil, which becomes more pronounced at higher frequencies. Therefore, a metal foil such as copper foil with low roughness is required to suppress transmission loss in high-frequency applications.
  • the conductivity of alloys containing magnetic substances such as nickel and cobalt, which are used for rust prevention and adhesion improvement changes depending on the frequency, which may lead to deterioration of transmission loss. It is necessary to pay attention to
  • the thickness of the conductor layer such as the metal foil, and therefore the thickness of the antenna conductor layer and the ground conductor layer are, for example, preferably 3 ⁇ m to 30 ⁇ m, more preferably 5 ⁇ m to 20 ⁇ m.
  • the surface roughness (Ra) of the conductor layer such as the metal foil that is, the surface roughness (Ra) of the antenna conductor layer and the ground conductor layer on the first polyimide layer side is 0.00, considering the adhesion to the polyimide layer. It is preferably 05 ⁇ m to 0.5 ⁇ m, more preferably 0.08 ⁇ m to 0.3 ⁇ m, even more preferably 0.1 ⁇ m to 0.2 ⁇ m.
  • the surface roughness (Ra) is at least the lower limit of this range, the adhesion with the polyimide layer is high, and when Ra is at most the upper limit of this range, the conductor loss is small, so the transmission loss is preferably reduced. can be reduced.
  • the surface treatment method is not particularly limited, and for example, corona treatment, plasma treatment, sandblasting, etc. can be used.
  • Microstrip antenna according to another embodiment of the present invention in addition to the microstrip antenna according to another embodiment of the present invention, that is, the antenna conductor layer/first polyimide layer/ground conductor layer, Furthermore, a microstrip antenna having a second polyimide layer/adhesive layer and at least a second polyimide layer/adhesive layer/antenna conductor layer/first polyimide layer/ground conductor layer in this order will be described.
  • the microstrip antenna according to this embodiment has, as shown in FIG. 4, a second polyimide layer/adhesive layer (adhesive layer 1)/antenna conductor layer/first polyimide layer/ground conductor layer in this order.
  • the microstrip antenna includes a ground conductor layer 1, a first polyimide layer 2 arranged on the ground conductor layer 1, and an antenna conductor layer 3 arranged on the first polyimide layer 2.
  • an adhesive layer 5 (adhesive layer 1 ) disposed on the antenna conductor layer 3 and a second polyimide layer 4 disposed on the adhesive layer 5 .
  • An adhesive layer 5 (adhesive layer 1) is arranged on the first polyimide layer 2 in a portion on the first polyimide layer 2 where the antenna conductor layer 3 is not arranged.
  • a polyimide film having a thickness of 75 to 200 ⁇ m and a dielectric loss tangent of 0.008 or less at 10 GHz is used for the first polyimide layer.
  • a polyimide film having a dielectric loss tangent at 10 GHz used for the first polyimide layer of 0.008 or less may be used, or a commercially available polyimide film having a dielectric loss tangent at 10 GHz exceeding 0.008. may be used.
  • the microstrip antenna according to this embodiment has a second polyimide layer on the adhesive layer (adhesive layer 1). It is also possible to use films such as Although the thickness of the second polyimide layer is not particularly limited as long as it has insulating properties, it is preferably 200 ⁇ m or less, most preferably 25 ⁇ m or less, from the viewpoint of the total thickness of the laminate.
  • the microstrip antenna may have an adhesive layer (adhesive layer 2) between the antenna conductor layer and the first polyimide layer, as shown in FIG.
  • the microstrip antenna includes a ground conductor layer 1, a first polyimide layer 2 arranged on the ground conductor layer 1, and an adhesive layer 6 arranged on the first polyimide layer 2 ( an adhesive layer 2), an antenna conductor layer 3 arranged on the adhesive layer 6, an adhesive layer 5 (adhesive layer 1) arranged on the antenna conductor layer 3, and an adhesive layer 5 arranged on the and a second polyimide layer 4 .
  • An adhesive layer 5 (adhesive layer 1) is arranged on the first polyimide layer 2 in a portion on the adhesive layer 6 where the antenna conductor layer 3 is not arranged.
  • the adhesive used for the adhesive layer 1 and the adhesive layer 2 is not particularly limited as long as it does not adversely affect the effect of the present invention.
  • thermoplastic polyimide resin Acrylic resin, epoxy resin, etc. can be used.
  • the microstrip antenna according to this embodiment can also have a plurality of antenna conductor layers as shown in FIG. In such a case, each of the plurality of antenna conductor layers is arranged on the first polyimide layer.
  • the microstrip antenna according to this embodiment includes a polyimide film (second polyimide layer) 4, an adhesive layer (bonding sheet) 8, and the antenna conductor layer / It can be manufactured by bonding a microstrip antenna having a first polyimide layer/a ground conductor layer in this order.
  • a bonding sheet is used for the adhesive layer.
  • a microstrip antenna can be manufactured in the same way by applying an adhesive to the film surface side and sticking them together.
  • a microstrip antenna has at least an insulating layer/antenna conductor layer/first polyimide layer/ground conductor layer in this order.
  • it may be a microstrip antenna in which the insulating layer is a solder resist.
  • the microstrip antenna includes a ground conductor layer 1, a first polyimide layer 2 arranged on the ground conductor layer 1, and an antenna conductor layer 3 arranged on the first polyimide layer 2. , and an insulating layer 12 which is a solder resist disposed on the antenna conductor layer 3 .
  • An insulating layer 12 is arranged on the first polyimide layer 2 in a portion where the antenna conductor layer 3 is not arranged on the first polyimide layer 2 .
  • solder resist used for the insulating layer various commercially available solder resists can be used as long as they have insulating properties.
  • the microstrip antenna shown in FIG. A polyimide adhesive sheet obtained by pasting (laminating) a plurality of single-layer non-thermoplastic polyimide films and single-layer thermoplastic polyimide films each having a thickness of 75 ⁇ m or less may be used.
  • an antenna conductor layer is formed by etching one side of the double-sided flexible metal-clad laminate (FIGS. 3b and 9b).
  • a plurality of antenna conductor layers may be provided as shown in FIG.
  • a microstrip antenna (microstrip antenna: FIGS. 3c and 9c) having the antenna conductor layer/first polyimide layer/ground conductor layer described in [1] in this order by the above method. can be done.
  • the surface roughness (Ra) of the antenna conductor layer on the first polyimide layer side is preferably as small as possible in terms of contributing to transmission loss reduction.
  • the thickness is preferably 0.05 ⁇ m to 0.5 ⁇ m, more preferably 0.08 ⁇ m to 0.3 ⁇ m, and more preferably 0.1 ⁇ m to 0.2 ⁇ m. More preferred.
  • This surface roughness is due to the surface roughness of the first polyimide layer side of the metal foil (conductor layer) laminated on the double-sided flexible metal (conductor layer) clad laminate, so it is controlled by the metal foil (conductor layer) used. can do.
  • the method of laminating metal foils As a method for forming the ground conductor layer and the antenna conductive layer before etching, the method of laminating metal foils has been described. A method similar to the method of forming the conductive layer may be employed. That is, one or both of the ground conductor layer and the antenna conductive layer before etching may be formed by coating and drying a conductive paste, or may be formed by laminating a conductive shield film.
  • thermoplastic polyimide layer of the polyimide adhesive sheet or a single layer of thermoplastic polyimide various known methods can be applied, and the antenna conductor layer / The same method as the lamination method in the manufacturing method of the microstrip antenna having the first polyimide layer/ground conductor layer in this order can be adopted.
  • metal foil The metal foil that can be used in the manufacture of the microstrip antenna according to the present embodiment is not particularly limited. The same metal foil as the metal foil in the microstrip antenna used can be employed.
  • the polyimide adhesive sheet in the microstrip antenna according to the present embodiment is the same as the polyimide adhesive sheet in the microstrip antenna having the antenna conductor layer/first polyimide layer/ground conductor layer described in [1] above in this order.
  • it has an adhesive layer as the outermost layer. Therefore, it is not necessary to carry out general surface treatment to improve adhesion.
  • adhesive sheets are stuck together, since they are made of the same material, they tend to have similar surface conditions, resulting in a small anchoring effect and low adhesion.
  • at least one of the bonding surfaces is subjected to a surface treatment for the adhesive layer, which is not usually performed, so that the adhesion between the polyimide adhesive sheets can be improved.
  • the method of surface treatment is not particularly limited, and for example, corona treatment, plasma treatment, sandblasting, etc. can be used.
  • One embodiment of the present invention may have the following configuration. 1) At least, it has an antenna conductor layer/first polyimide layer/ground conductor layer in this order, and the first polyimide layer has a thickness of 75 to 200 ⁇ m and a dielectric loss tangent at 10 GHz of 0.008.
  • a microstrip antenna characterized by: 2) It further has a second polyimide layer/adhesive layer, and has at least a second polyimide layer/adhesive layer/antenna conductor layer/first polyimide layer/ground conductor layer in this order. , 1).
  • microstrip according to any one of 1) to 9), wherein the surface roughness (Ra) of the antenna conductor layer on the first polyimide layer side is 0.05 ⁇ m to 0.5 ⁇ m. antenna.
  • Ra surface roughness of the antenna conductor layer on the first polyimide layer side
  • the first polyimide layer has a thickness of 75
  • a method for producing a microstrip antenna characterized by using a polyimide film having a thickness of up to 200 ⁇ m and a dielectric loss tangent of 0.008 or less at 10 GHz.
  • the microstrip antenna further has a second polyimide layer/adhesive layer, and has at least a second polyimide layer/adhesive layer/antenna conductor layer/first polyimide layer/ground conductor layer in this order. 11), wherein a polyimide film is used as the second polyimide layer. 13) The method of manufacturing a microstrip antenna according to 11) or 12), wherein the microstrip antenna has a return loss of -10 dB or less at a resonance frequency. 14) The method for manufacturing a microstrip antenna according to any one of 11) to 13), wherein the first polyimide layer has a thermoplastic polyimide layer and a non-thermoplastic polyimide layer.
  • the antenna conductor layer is a copper layer;
  • Measurement frequency 10GHz
  • Measurement conditions temperature 22°C to 24°C, humidity 45% to 55%
  • Measurement sample A sample left for 24 hours under the above measurement conditions was used.
  • FCCL flexible metal-clad laminate
  • one side of the double-sided FCCL was etched such that the patch conductor (i.e. antenna conductor layer) was approximately 3mm x 3mm and the opposing ground section (i.e. ground conductor layer) was 10mm x 10mm. processed by cutting.
  • a feeding point was drilled with a diameter of 0.3 mm to fabricate a patch antenna FPC.
  • This patch antenna FPC was adhered to a gold-plated stainless steel plate of 30 mm ⁇ 30 mm ⁇ 1.5 mm thickness via silver paste, and fixed by heating at 150° C. for 30 minutes.
  • a coaxial cable connection terminal was attached via a connector K103F-R manufactured by Anritsu Corporation and a glass bead K100. The connection between the terminal of the glass bead K100 and the patch conductive portion was fixed by bonding with silver paste and heating at 150° C. for 30 minutes.
  • the obtained microstrip antenna was subjected to the following treatment. That is, the humidity was adjusted for 48 hours or more in a test room adjusted to 23° C. and 55% RH. Thereafter, the reflection loss (S11) was measured using a network analyzer E5221B (Keysight Technologies) to measure the resonance frequency and the reflection loss amount (dB) at the resonance frequency.
  • the measurement was carried out in an anechoic chamber having radio wave absorbers on six sides and a turntable and a positioner.
  • a microstrip antenna was installed in the center of a turntable that rotates 360°, and a receiver for receiving radio waves was installed on a positioner that rotates 180° just above the antenna.
  • radio waves radiated from the microstrip antenna when a signal of 28 GHz was incident were measured by automatically controlling the turntable and positioner outside the anechoic chamber.
  • the obtained gain data in each direction was expressed as a relative gain based on the omnidirectional antenna.
  • Directional gain and antenna gain are listed as measurement data.
  • millimeter waves refer to frequencies above 30 GHz, but 28 GHz, which is the frequency band for 5G communication, is also called millimeter waves. Also in this specification, 28 GHz is intended to be included in the millimeter wave band.
  • FCCL flexible metal-clad laminate
  • the thickness of the film was measured using a contact-type thickness gauge LASER HOLOGAGE manufactured by Mitsui.
  • An imidization accelerator consisting of acetic anhydride/isoquinoline/DMF (weight ratio 2.0/0.7/4.0) was added to this polyamic acid solution in a weight ratio of 50% with respect to the polyamic acid solution, and The mixture was stirred with a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130°C for 100 seconds, the self-supporting gel film was peeled off from the endless belt and fixed to a tenter clip, followed by heating at 250°C for 17 seconds, 350°C for 17 seconds, and 400°C for 120 seconds. to obtain a polyimide film having a thickness of 17 ⁇ m.
  • An imidization accelerator consisting of acetic anhydride/isoquinoline/DMF (weight ratio 2.0/0.7/4.0) was added to this polyamic acid solution in a weight ratio of 50% with respect to the polyamic acid solution, and The mixture was stirred with a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130°C for 100 seconds, the self-supporting gel film was peeled off from the endless belt and fixed to a tenter clip, followed by heating at 250°C for 17 seconds, 350°C for 17 seconds, and 400°C for 120 seconds. to obtain a polyimide film having a thickness of 17 ⁇ m.
  • An imidization accelerator consisting of acetic anhydride/isoquinoline/DMF (weight ratio 2.0/0.7/4.0) was added to this polyamic acid solution in a weight ratio of 50% with respect to the polyamic acid solution, and The mixture was stirred with a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130° C. for 100 seconds, the self-supporting gel film was peeled off from the endless belt and fixed to a tenter clip, followed by heating at 250° C. for 17 seconds, 350° C. for 17 seconds, and 400° C. for 120 seconds. to obtain a polyimide film having a thickness of 17 ⁇ m.
  • An imidization accelerator consisting of acetic anhydride/isoquinoline/DMF (weight ratio 2.0/0.7/4.0) was added to this polyamic acid solution in a weight ratio of 50% with respect to the polyamic acid solution, and The mixture was stirred with a mixer, extruded from a T-die, and cast on a stainless steel endless belt. After heating this resin film at 130° C. for 100 seconds, the self-supporting gel film was peeled off from the endless belt and fixed to a tenter clip, followed by heating at 250° C. for 17 seconds, 350° C. for 17 seconds, and 400° C. for 120 seconds. to obtain a polyimide film having a thickness of 17 ⁇ m.
  • thermoplastic polyimide precursor polyamic acid
  • 29.8 g of BAPP was dissolved in 249 g of DMF cooled to 10°C. After 21.4 g of BPDA was added and dissolved therein, the mixture was stirred for 30 minutes to form a prepolymer. Furthermore, a separately prepared DMF solution of BAPP (1.57 g of BAPP/31.4 g of DMF) was carefully added to this solution, and the addition was stopped when the viscosity reached about 1000 poise. After stirring for 1 hour, a polyamic acid solution having a solid concentration of about 17% by weight and a rotational viscosity of 1000 poise at 23° C. was obtained.
  • Example 1 ⁇ Microstrip antenna having antenna conductor layer/first polyimide layer/ground conductor layer in this order> (Example 1)
  • polyamic acid was applied to one side of the film obtained in Synthesis Example 1 with a comma coater so that the final thickness of one side was 4 ⁇ m. , for 1 minute in a drying oven set at 140°C.
  • the other side was similarly coated with polyamic acid so as to have a final thickness of 4 ⁇ m, and then heated in a drying oven set at 140° C. for 1 minute. Subsequently, heat treatment was performed for 20 seconds in a far-infrared heater furnace at an ambient temperature of 360° C.
  • a polyimide laminate having a total thickness of 25.0 ⁇ m Furthermore, copper foil/three polyimide laminates having a total thickness of 25.0 ⁇ m/copper foil were laminated in this order, and a hot roll laminator was used to laminate at a lamination temperature of 360° C., a lamination pressure of 0.8 tons, and a lamination speed of 1.0 m/.
  • the three polyimide laminates correspond to the "first polyimide layer".
  • one side of the double-sided FCCL was etched so that the patch conductive part was about 3 mm x 3 mm, and the opposing ground part was cut so that it was 10 mm x 10 mm.
  • a feeding point was drilled to fabricate a patch antenna FPC.
  • This patch antenna FPC was fixed to a stainless steel plate, and a coaxial cable connection terminal was attached via a connector to produce a microstrip antenna.
  • Example 2 A microstrip antenna of a flexible metal-clad laminate was produced in the same manner as in Example 1, except that four polyimide laminates having a total thickness of 25.0 ⁇ m obtained in Example 1 were stacked. The four polyimide laminates correspond to the "first polyimide layer".
  • Example 3 A microstrip antenna of a flexible metal-clad laminate was produced in the same manner as in Example 1, except that six polyimide laminates having a total thickness of 25.0 ⁇ m obtained in Example 1 were stacked. The six polyimide laminates correspond to the "first polyimide layer".
  • Example 4 A microstrip antenna of a flexible metal-clad laminate was produced in the same manner as in Example 1, except that eight polyimide laminates having a total thickness of 25.0 ⁇ m obtained in Example 1 were stacked. The eight polyimide laminates correspond to the "first polyimide layer".
  • Example 5 In the same manner as in Example 1, the film obtained in Synthesis Example 2 was coated with a thermoplastic polyamic acid solution, dried, and heat-treated to obtain a polyimide laminate. Furthermore, using the same bonding conditions as in Example 1 and using the same copper foil as in Example 1, a microstrip antenna of a flexible metal-clad laminate was produced.
  • Example 6 In the same manner as in Example 1, the film obtained in Synthesis Example 4 was coated with a thermoplastic polyamic acid solution, dried, and heat-treated to obtain a polyimide laminate. Furthermore, using the same bonding conditions as in Example 1 and using the same copper foil as in Example 1, a microstrip antenna of a flexible metal-clad laminate was produced.
  • Example 1 A microstrip antenna of a flexible metal-clad laminate was prepared in the same manner as in Example except that only one polyimide laminate having a total thickness of 25.0 ⁇ m obtained in Example 1 was used and the thickness of the polyimide laminate was 25 ⁇ m. was made. One sheet of the polyimide laminate corresponds to the "first polyimide layer".
  • Example 2 A microstrip antenna of a flexible metal-clad laminate was produced in the same manner as in Example 1, except that two polyimide laminates having a total thickness of 25.0 ⁇ m obtained in Example 1 were stacked and the thickness of the polyimide laminate was 50 ⁇ m. was made. The two polyimide laminates correspond to the "first polyimide layer".
  • Example 1 and Comparative Examples 1 and 2 As the thickness of the polyimide laminate decreases, the antenna gain decreases, and the insertion loss of the flexible metal-clad laminate worsens (absolute value increases). confirmed.
  • Example 2 and Comparative Example 3 From Example 2 and Comparative Example 3, it was confirmed that the antenna gain of the flexible metal-clad laminate decreases when a polyimide laminate having a large dielectric loss tangent is used. Moreover, from Example 1 and Comparative Example 3, it can be seen that when a polyimide laminate having a large dielectric loss tangent is used, the antenna gain of the flexible metal-clad laminate becomes small even if the thickness of the laminate is large. From the above results, in order to obtain a good antenna gain, it is essential to use a polyimide laminate with a small dielectric loss tangent and to laminate it thickly.
  • Example 7 the dielectric constant, dielectric loss tangent, and thickness of each "first polyimide layer", the peel strength of each double-sided FCCL, and the reflection loss and directional gain of each microstrip antenna , and the antenna gain are shown in Table 1.
  • polyamic acid was applied to one side of the film obtained in Synthesis Example 1 with a comma coater so that the final thickness of one side was 4 ⁇ m.
  • the three polyimide laminates correspond to the "first polyimide layer”.
  • a patch antenna conductor layer was fabricated by etching one side of the double-sided FCCL including the first polyimide layer. This patch antenna conductor layer is bonded to the second polyimide laminate via a bonding sheet SAFY manufactured by Nikkan Kogyo Co., Ltd. under reduced pressure and heating at 150° C. for 30 minutes under conditions of 1 to 2 MPa. Got a strip antenna.
  • Example 8 A microstrip antenna was produced in the same manner as in Example 7, except that four polyimide laminates having a total thickness of 25.0 ⁇ m obtained in Example 7 were stacked. The four polyimide laminates correspond to the "first polyimide layer".
  • Example 9 A microstrip antenna was produced in the same manner as in Example 7, except that six polyimide laminates having a total thickness of 25.0 ⁇ m obtained in Example 7 were stacked. The six polyimide laminates correspond to the "first polyimide layer".
  • Example 10 A microstrip antenna was fabricated in the same manner as in Example 7, except that eight polyimide laminates having a total thickness of 25.0 ⁇ m obtained in Example 7 were stacked. The eight polyimide laminates correspond to the "first polyimide layer".
  • Example 11 In the same manner as in Example 7, the film obtained in Synthesis Example 2 was coated with a thermoplastic polyamic acid solution, dried, and heat-treated to obtain a polyimide laminate. Furthermore, using the same bonding conditions as in Example 7 and using the same copper foil as in Example 7, a microstrip antenna was fabricated.
  • Example 4 In the same manner as in Example 7, except that only one polyimide laminate having a total thickness of 25.0 ⁇ m obtained in Example 7 was used, and the thickness of each of the first and second polyimide layers was 25 ⁇ m, a microstrip I made an antenna.
  • Example 5 A microstrip antenna was produced in the same manner as in Example 7, except that two polyimide laminates having a total thickness of 25.0 ⁇ m obtained in Example 7 were stacked and the thickness of the first polyimide layer was set to 50 ⁇ m.
  • Example 8 and Comparative Example 6 From Example 8 and Comparative Example 6, it was confirmed that the use of a polyimide laminate having a large dielectric loss tangent reduces the antenna gain. Further, from Example 7 and Comparative Example 6, it can be seen that the use of a polyimide laminate having a large dielectric loss tangent reduces the antenna gain even if the thickness of the laminate is large. From the above results, in order to obtain a good antenna gain, it is essential to use a polyimide laminate with a small dielectric loss tangent and to laminate it thickly.
  • ground conductor layer 2 First polyimide layer 3 . Antenna conductor layer 4 . 5. Second polyimide layer; adhesive layer 1 6. Adhesive layer 2 8. Adhesive layer (bonding sheet) 10. Non-thermoplastic polyimide 11 . Thermoplastic polyimide 12 . Solder resist (insulating layer)

Landscapes

  • Laminated Bodies (AREA)

Abstract

平面サイズを大型化することなく、低コストでかつミリ波帯で利得向上の効果が発現するマイクロストリップアンテナを提供することが課題である。少なくとも、アンテナ導体層(3)/第1ポリイミド層(2)/グランド導体層(1)をこの順に有しており、前記第1ポリイミド層(2)は、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であるマイクロストリップアンテナにより前記課題を解決することができる。

Description

マイクロストリップアンテナおよびその製造方法
 本発明は、マイクロストリップアンテナおよびその製造方法に関する。
 近年、情報通信ネットワークの進化により無線通信技術の発展が益々加速し、スマートフォンをはじめモバイル端末数が増加している。また新たなシステム規格により高速・大容量化が求められおり、無線通信のキーデバイスでもあるアンテナにおいてもより高周波帯域における低損失化が必須となっている。
 マイクロストリップアンテナの利得を向上させる方法として、特許文献1には、複数のアンテナ導体をアレイ状に配列する方法が提案されている。
 また、マイクロストリップアンテナの利得を向上させる別の方法として、特許文献2には、基材に磁性材料を用いる方法が提案されている。
日本国公開特許公報「特開2001-267839号公報」 日本国公開特許公報「特表2011-528527号公報」
 しかしながら、特許文献1に記載された方法では、複数のアンテナ導体を用いることから、平面サイズが大型化するという問題があった。また、特許文献2に記載された方法では、材料コストが増大するだけでなく、磁性材料の磁気特性がミリ波帯では著しく低下することから、ミリ波帯においては利得向上の効果がほとんど得られないという問題があった。
 本発明の一態様は、平面サイズを大型化することなく、低コストでかつミリ波帯で利得向上の効果が発現するマイクロストリップアンテナおよびその製造方法を提供することを目的とする。
 本発明者らは、鋭意検討の結果、以下に記載の構成により、前記課題が解決できることを見出した。すなわち本発明の一実施形態は、以下の構成をなす。
 〔1〕少なくとも、アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記第1ポリイミド層は、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であることを特徴とするマイクロストリップアンテナ。
 〔2〕マイクロストリップアンテナの製造方法であって、前記マイクロストリップアンテナは、少なくとも、アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記第1ポリイミド層として、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であるポリイミドフィルムを用いることを特徴とするマイクロストリップアンテナの製造方法。
 本件発明によれば、簡便に伝送損失を防ぐことができるため、高速・高周波伝送路を必要とするマイクロストリップアンテナ用途に好適に使用できる。
本発明の一実施形態に係るマイクロストリップアンテナの断面模式図である。 本発明の一実施形態に係る、アンテナ導体層を複数有するマイクロストリップアンテナの断面模式図である。 マイクロストリップアンテナの製造方法の一例を示す模式図である。 本発明の一実施形態に係る、第2ポリイミド層/接着剤層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有するマイクロストリップアンテナの断面模式図である。 本発明の一実施形態に係る、接着剤層2を有するマイクロストリップアンテナの断面模式図である。 本発明の一実施形態に係る、アンテナ導体層を複数有するマイクロストリップアンテナの断面模式図である。 本発明の一実施形態に係る、絶縁層がソルダーレジストであるマイクロストリップアンテナを示す模式図である。 マイクロストリップアンテナの製造方法の一例を示す模式図である。 両面フレキシブル金属張積層板(マイクロストリップアンテナ)の製造方法の一例を示す模式図である。
 本発明の一実施形態に係るマイクロストリップアンテナは、少なくとも、アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記第1ポリイミド層は、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下である。
 また、本発明の他の一実施形態に係るマイクロストリップアンテナは、更に第2ポリイミド層/接着剤層を有し、少なくとも、第2ポリイミド層/接着剤層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有し、第2ポリイミド層がポリイミドフィルムである、マイクロストリップアンテナであってもよい。
 或いは、本発明の他の一実施形態に係るマイクロストリップアンテナは、第2ポリイミド層/接着剤層の代わりに絶縁層を有し、少なくとも、絶縁層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記絶縁層がソルダーレジストである、マイクロストリップアンテナであってもよい。
 〔1〕第1ポリイミド層に用いられるポリイミドフィルム
 まず、前記第1ポリイミド層に用いられるポリイミドフィルムについて説明する。前記第1ポリイミド層に用いられるポリイミドフィルムは、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下である。当該ポリイミドフィルムを用いることにより、マイクロストリップアンテナの共振周波数の反射損失を-10dB以下とすることができる。
 前記第1ポリイミド層に用いられるポリイミドフィルムは、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であれば特に限定されず、単層であっても多層であってもよい。
 前記第1ポリイミド層は、熱可塑ポリイミド層と非熱可塑ポリイミド層とを有することがより好ましい。前記第1ポリイミド層が熱可塑ポリイミド層と非熱可塑ポリイミド層とを有することにより、容易にマイクロストリップアンテナを製造できるため好ましい。
 本発明の一実施形態においては、前記第1ポリイミド層として、非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有する多層構造のポリイミドフィルムを用いることが好ましい。この場合、単層のポリイミドフィルムを使用する場合と比べ、複数の層を積層又は貼り合わせる工程は増えるものの、フィルムのトータル製造コストが低減できる傾向にあるため望ましい。
 前記第1ポリイミド層に用いられるポリイミドフィルムとしては、特に、以下のフィルムが好ましい。すなわち、非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有する厚み75μm未満のポリイミドフィルムを少なくとも2枚以上積層(圧着)して、75~200μmの厚みにしたものである。これにより、フィルムのトータル製造コストが最も低減できるため望ましい。
 (ポリイミド接着シート:非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有するポリイミドフィルム)
 以下、非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有するポリイミドフィルムについて説明する。便宜上、非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有するポリイミドフィルムを、ポリイミド接着シートと呼ぶ。まず非熱可塑ポリイミド層に使用される非熱可塑性ポリイミドの前駆体であるポリアミド酸の原料モノマー、前記非熱可塑性ポリイミドの前駆体であるポリアミド酸の製造方法、非熱可塑性ポリイミドフィルムの製造方法、熱可塑性ポリイミド層の順に詳述する。
 (非熱可塑性ポリイミドの前駆体であるポリアミド酸の原料モノマー)
 本発明の一実施形態において、前記非熱可塑性ポリイミドの前駆体であるポリアミド酸の原料モノマーは、前駆体であるポリアミド酸をイミド化した非熱可塑性ポリイミドが、以下の要件を満たせば特に制限されない。すなわち、前記非熱可塑性ポリイミドが、従来のフレキシブルプリント基板材料に求められる半田耐熱性、寸法安定性、および難燃性を有し、一次構造と製造方法により、前記半田耐熱性、寸法安定性、および難燃性が制御されれば特に制限されない。前記原料モノマーとしては、例えば、ポリアミド酸の合成に通常用いられるジアミンおよび酸二無水物を使用可能である。
 前記ジアミンとしては本発明の効果を発現できれば特に制限されないが、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-オキシジアニリン、3,3’-オキシジアニリン、3,4’-オキシジアニリン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジアミノジフェニルエチルホスフィンオキシド、4,4’-ジアミノジフェニルN-メチルアミン、4,4’-ジアミノジフェニルN-フェニルアミン、1,4-ジアミノベンゼン(p-フェニレンジアミン)、ビス{4-(4-アミノフェノキシ)フェニル}スルホン、ビス{4-(3-アミノフェノキシ)フェニル}スルホン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,3’-ジアミノベンゾフェノン、4,4'-ジアミノベンゾフェノン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、ビス(4-アミノフェニル)テレフタレート、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン等が挙げられ、これらを単独で使用してもよいし、または複数併用することができる。
 低誘電正接を実現するために有利なジアミンとしては、炭素数36の脂肪族ジアミン、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-ジアミノジフェニルエーテル、ビス(4-アミノフェニル)テレフタレート、2,2-ビス(4-アミノフェノキシフェニル)プロパン、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、等を列挙することができる。これらは単独で使用してもよいし、または複数併用することができる。これらのジアミンは、全ジアミン成分中、30~100モル%含まれることが好ましく、50~100モル%含まれることがより好ましく、70~100モル%含まれることが更に好ましい。
 また、ポリアミド酸の原料モノマーとして使用し得る酸二無水物系化合物としては本発明の効果を発現できれば特に制限されないが、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、3,4’-オキシジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)プロパン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン酸二無水物、ビス(3,4-ジカルボキシフェニル)エタン酸二無水物、オキシジフタル酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン酸二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物等が挙げられる。これらは単独で使用してもよいし、または複数併用することができる。
 低誘電正接を実現するために、有利な酸二無水物としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、パラフェニレンビス(トリメリテート無水物)、4,4’-オキシジフタル酸二無水物、2,2’-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン酸二無水物、ピロメリット酸二無水物等を列挙することができる。これらは単独で使用してもよいし、または複数併用することができる。これらの酸二無水物は、全酸二無水物中、30~100モル%含まれることが好ましく、50~100モル%含まれることがより好ましく、70~100モル%含まれることが更に好ましい。
 前記第1ポリイミド層は、例えば、以下の方法により製造することができる。すなわち、前記ジアミンおよび前記酸二無水物を原料とし、溶媒中で開環重付加反応させることによりポリアミド酸溶液を取得し、その後ポリアミド酸を加熱して脱水環化反応(イミド化)させる方法にて製造することができる。これにより、前記第1ポリイミド層の10GHzでの誘電正接が0.008以下の範囲に制御され得る。
 (非熱可塑性ポリイミドの前駆体であるポリアミド酸の製造方法)
 非熱可塑性ポリイミドの前駆体であるポリアミド酸の製造の際に使用する有機溶媒は、非熱可塑性ポリアミド酸を溶解する溶媒であればいかなるものも用いることができる。例えば、アミド系溶媒すなわちN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどが好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドがより好ましく用いられ得る。非熱可塑性ポリイミドの前駆体であるポリアミド酸の固形分濃度は特に限定されないが、5重量%~35重量%の範囲内であれば非熱可塑性ポリイミドフィルムとした際に十分な機械強度を有する非熱可塑性ポリイミドの前駆体であるポリアミド酸が得られる。
 原料である芳香族ジアミンと芳香族酸二無水物の添加順序についても特に限定されないが、原料の化学構造だけでなく、添加順序を制御することによっても、得られる非熱可塑性ポリイミドの特性を制御することが可能である。
 前記非熱可塑性ポリアミド酸には、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。前記フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。
 (非熱可塑性ポリイミドフィルムの製造方法)
 本発明の一実施形態において、前記非熱可塑性ポリイミドフィルムを得る方法としては、例えば、以下の工程i)~iv)を含む方法を好適に用いることができる。
 i)有機溶剤中で芳香族ジアミンと芳香族酸二無水物を反応させて非熱可塑性ポリイミドの前駆体であるポリアミド酸溶液(以下、非熱可塑性ポリアミド酸ともいう)を得る工程、
 ii)前記非熱可塑性ポリアミド酸溶液を含む製膜ドープをダイスから支持体上に流延して、樹脂層(液膜ともいうことがある)を形成する工程、
 iii)樹脂層を支持体上で加熱して自己支持性を持ったゲルフィルムとした後、支持体からゲルフィルムを引き剥がす工程、
 iv)更に加熱して、残ったアミド酸をイミド化し、かつ乾燥させ非熱可塑性ポリイミドフィルムを得る工程。
 ii)以降の工程においては、イミド化の方法は、熱イミド化法と化学イミド化法に大別される。熱イミド化法は、脱水閉環剤等を使用せず、ポリアミド酸溶液を製膜ドープとして支持体に流延、加熱だけでイミド化を進める方法である。一方の化学イミド化法は、ポリアミド酸溶液に、イミド化促進剤として脱水閉環剤及び触媒の少なくともいずれかを添加したものを製膜ドープとして使用し、イミド化を促進する方法である。どちらの方法を用いても構わないが、化学イミド化法の方が生産性に優れる。
 前記脱水閉環剤としては、無水酢酸に代表される酸無水物が好適に用いられ得る。前記触媒としては、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等の三級アミンが好適に用いられ得る。
 製膜ドープを流延する支持体としては、ガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラム等が好適に用いられ得る。最終的に得られるフィルムの厚み、生産速度に応じて加熱条件を設定し、部分的にイミド化または乾燥の少なくとも一方を行った後、支持体から剥離してポリアミド酸フィルム(以下、ゲルフィルムという)を得る。
 前記ゲルフィルムの端部を固定して硬化時の収縮を回避して乾燥し、ゲルフィルムから、水、残留溶媒、イミド化促進剤を除去し、そして残ったアミド酸を完全にイミド化して、ポリイミドを含有するフィルムが得られる。加熱条件については、最終的に得られるフィルムの厚み、生産速度に応じて適宜設定すれば良い。
 (熱可塑性ポリイミド(層))
 本発明の一実施形態において、前記熱可塑性ポリイミド(層)に含まれる熱可塑性ポリイミドは、その前駆体であるポリアミド酸をイミド化して得られる(以下、熱可塑性ポリイミドの前駆体であるポリアミド酸を、熱可塑性ポリアミド酸ともいう)。
 本発明において用いられる熱可塑性ポリイミドの前駆体であるポリアミド酸に使用される芳香族ジアミンと芳香族テトラカルボン酸二無水物は、非熱可塑性ポリイミド層に使用されるそれらと同じものが挙げられる。一方、熱可塑性のポリイミドフィルムとするためには、屈曲性を有するジアミンと酸二無水物とを反応させることが好ましい。屈曲性を有するジアミンの例としては、4,4’-ジアミノジフェニルエーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス(4-アミノフェノキシフェニル)プロパンなどが挙げられる。前記ジアミンは、前記ポリイミドフィルムのガラス転移温度(Tg)を調整するために、1,4-ジアミノベンゼンおよび/または4,4’-ジアミノ-2,2’-ジメチルビフェニルと併用してもよい。またこれらのジアミンと好適に組合せられる酸二無水物の例としては、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物などが挙げられる。
 本発明における熱可塑性ポリアミド酸の製造方法は、得られる熱可塑性ポリイミドが以下の要件を満たすものであれば、公知のどのような方法も用いうる。すなわち、得られるポリアミド酸をイミド化して得られる熱可塑性ポリイミドが従来のフレキシブルプリント基板材料に求められる金属箔との接着性、半田耐熱性、寸法安定性、および難燃性を有するものであれば、公知のどのような方法も用いることが可能である。
 例えば、下記の工程(A-a)~(A-c):
 (A-a)芳香族ジアミンと、芳香族酸二無水物とを、芳香族ジアミンが過剰の状態で有機溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る工程、
 (A-b)工程(A-a)で用いたものとは構造の異なる芳香族ジアミンを追加添加する工程、
 (A-c)更に、工程(A-a)で用いたものとは構造の異なる芳香族酸二無水物を、工程(A-a)から(A-c)の全工程において使用される芳香族ジアミンの合計量と芳香族酸二無水物の合計量とが実質的に等モルとなるように添加して重合する工程、
によって製造することができる。
 または、下記の工程(B-a)~(B-c):
 (B-a)芳香族ジアミンと、芳香族酸二無水物とを、芳香族酸二無水物が過剰の状態で有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る工程、
 (B-b)工程(B-a)で用いたものとは構造の異なる芳香族酸二無水物を追加添加する工程、
 (B-c)更に、工程(B-a)で用いたものとは構造の異なる芳香族ジアミンを、工程(B-a)から(B-c)の全工程において使用される芳香族ジアミンの合計量と芳香族酸二無水物の合計量とが実質的に等モルとなるように添加して重合する工程、
を経ることによってポリアミド酸を得ることも可能である。
 前記熱可塑性ポリイミドの前駆体であるポリアミド酸の固形分濃度は特に限定されないが、通常5重量%~35重量%、好ましくは10重量%~30重量%である。この範囲の濃度である場合に適当な分子量と溶液粘度を得る。
 (ポリイミド接着シートの製造方法)
 本発明の一実施形態における、熱可塑ポリイミド層と非熱可塑ポリイミド層とを有する積層体の製造方法について詳述する。前記積層体の製造方法は、例えば、前記i)において非熱可塑性ポリアミド酸を合成し、その後前記ii)~iv)工程まで進めて一旦回収した非熱可塑性ポリイミドフィルムの両面に、熱可塑性ポリアミド酸を塗布し、その後イミド化を行ってもよい。また、前記非熱可塑性ポリイミドフィルムの両面に、熱可塑性ポリイミド層を形成することができる熱可塑性ポリイミド溶液を塗布・乾燥しても、ポリイミド接着シートとすることができる。
 別の方法として、以下の方法を上げることができる。前記i)において非熱可塑性ポリアミド酸を合成すると同時に、別途熱可塑性ポリイミドの前駆体であるポリアミド酸を合成する。前記ii)の工程で、熱可塑性ポリアミド酸を含むドープ/非熱可塑性ポリアミド酸溶液を含む製膜ドープ/熱可塑性ポリアミド酸を含むドープを3層になるようにダイスから支持体上に流延して、樹脂層(液膜ともいうことがある)を形成する。以下同様にiii)、iv)の工程を行い、本発明のポリイミド接着シートとすることができる。
 〔2〕本発明の一実施形態に係るマイクロストリップアンテナ
 以下、本発明の一実施形態に係るマイクロストリップアンテナ、すなわち、少なくとも、アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記第1ポリイミド層は、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下である、マイクロストリップアンテナについて説明する。
 本発明の一実施形態に係るマイクロストリップアンテナは、図1に示すようにアンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有している。図1に示す例では、前記マイクロストリップアンテナは、グランド導体層1と、グランド導体層1上に配置された第1ポリイミド層2と、第1ポリイミド層2上に配置されたアンテナ導体層3とを含む。また、前記マイクロストリップアンテナでは、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であるポリイミドフィルムを、第1ポリイミド層に用いる。これにより、共振周波数の反射損失を-10dB以下とすることができる。反射損失は、小さい方が好ましく、-12dB以下がより好ましく、-15dB以下がさらに好ましく、-20dB以下がさらにより好ましい。
 また、本発明の一実施形態に係るマイクロストリップアンテナは、図2に示すように、アンテナ導体層を複数有することもできる。かかる場合、前記複数のアンテナ導体層は、それぞれ前記第1ポリイミド層上に配置される。図2に示す例では、前記マイクロストリップアンテナは、グランド導体層1と、グランド導体層1上に配置された第1ポリイミド層2と、第1ポリイミド層2上にそれぞれ配置された2つのアンテナ導体層3とを含む。アンテナ導体層を複数設けることにより、利得の向上が期待でき、それぞれのアンテナの位相をコントロールすることにより、電波の放射を広い範囲に行うことが可能となる。
 <マイクロストリップアンテナの製造方法>
 図3に本発明の一実施形態に係るマイクロストリップアンテナの製造方法の一例を示す。図3に示すように、2枚の例えば銅箔等の金属箔の間に、複数のポリイミド接着シート(それぞれのポリイミド接着シートは、非熱可塑ポリイミド層10の両面に熱可塑性ポリイミド層11を持った3層構造を有するポリイミドフィルムである)を挟み、一括で貼り合わせる。その後、2枚の銅箔(金属箔)の一方にエッチングを行ってアンテナ導体層3を形成することにより、マイクロストリップアンテナを容易に形成することができる。なお、図3の例では、第1ポリイミド層として、複数の接着シートを含む例を挙げたが、第1ポリイミド層として、単一の接着シートを使用してもよい。
 或いは、図3の例では第1ポリイミド層として複数のポリイミド接着シートを用いているが、前記ポリイミド接着シートの代わりに、単層の熱可塑ポリイミドフィルムおよび単層の非熱可塑ポリイミドフィルムを用い、以下の方法を採用してもよい。すなわち、例えば、銅箔(金属箔)/単層の熱可塑ポリイミド/単層の非熱可塑ポリイミド/単層の熱可塑ポリイミド/単層の非熱可塑ポリイミド/単層の熱可塑ポリイミド/銅箔(金属箔)の順に重ね合わせ、一括で貼り合わせてもよい。その後、同様にしてアンテナ導体層3を形成することにより、マイクロストリップアンテナを形成することができる。この際の熱可塑ポリイミドと非熱可塑ポリイミドの厚みの合計(第1ポリイミド層の厚み)は、75μm以上であることが好ましい。
 以下、本明細書において、前記金属箔と、前記第1ポリイミド層とを積層してなる積層体を「金属張積層板」または「フレキシブル金属張積層板(FCCL)」と称することがある。また、2枚の金属箔の間に、第1ポリイミド層を挟んで積層してなる積層体を「両面フレキシブル金属張積層板」、1枚の金属箔と、第1ポリイミド層とを積層してなる積層体を「片面フレキシブル金属張積層板」と称することがある。
 (熱可塑ポリイミド(単層))
 前記熱可塑ポリイミド(単層)は、前記「熱可塑性ポリイミド(層)」の項で記載した熱可塑性ポリイミドの前駆体であるポリアミド酸と同じポリアミド酸をイミド化してシート状(フィルム)にしたものである。前記熱可塑ポリイミド(単層)の製造は、非熱可塑性ポリイミドフィルムの製造方法と同様の方法にて行うことが好ましい。
 (非熱可塑ポリイミド(単層))
 前記非熱可塑ポリイミド(単層)は、非熱可塑性ポリイミドの前駆体であるポリアミド酸と同じポリアミド酸をイミド化して単層のシート状(フィルム)にしたものである。前記非熱可塑ポリイミド(単層)の製造は、非熱可塑性ポリイミドフィルムの製造方法と同様の方法にて行うことが好ましい。
 前述の、前記金属箔と、前記第1ポリイミド層(例えば、前記ポリイミド接着シート、或いは、単層の熱可塑ポリイミドフィルムおよび単層の非熱可塑ポリイミドフィルム)とを一括で貼り合せることにより積層する方法としては各種公知の方法を適用可能であるが、熱圧着により貼り合わせて得る熱圧着方法が金属張積層板のシワ等の発生を抑制できる点から好ましい。ポリイミド接着シートと金属箔との貼り合わせ方法としては、例えば、単板プレスによるバッチ処理による熱圧着方法、熱ロールラミネート装置(熱ラミネート装置ともいう)或いはダブルベルトプレス(DBP)装置による連続処理による熱圧着方法が挙げられる。中でも、生産性、維持費も含めた設備コストの点から、一対以上の金属ロールを有する熱ロールラミネート装置を使用した熱圧着方法が好ましい。ここでいう「一対以上の金属ロールを有する熱ロールラミネート装置」とは、材料を加熱加圧するための金属ロールを有している装置であればよく、その具体的な装置構成は特に限定されるものではない。
 アンテナ導体層の前記第1ポリイミド層側の表面粗さ(Ra)は、伝送損失低減に寄与するという点では、小さい方が好ましいが、密着性を担保する必要もある。そのため、0.05μm~0.5μmであることが好ましく、0.08μm~0.3μmであることがより好ましく、0.1μm~0.2μmであることが更に好ましい。この表面粗さはポリイミド層側の表面粗さによるものであるので、用いる金属箔により制御することができる。
 グランド導体層およびエッチングを行う前のアンテナ導電層を形成する方法として、金属箔を貼り合わせる方法について説明したが、グランド導体層およびエッチングを行う前のアンテナ導電層の片方または両方を、導電性ペーストを塗布・乾燥して形成してもいいし、導電性シールドフィルムを貼り合わせて形成してもよい。
 かかる場合、グランド導体層またはエッチングを行う前のアンテナ導電層と、前記ポリイミド接着シートの熱可塑性ポリイミド層または単層の熱可塑ポリイミドとを積層する方法としては各種公知の方法を適用可能であるが、熱圧着により貼り合わせて得る熱圧着方法が積層板の外観不良等の発生を抑制できる点から好ましい。貼り合わせ方法としては、例えば、単板プレスによるバッチ処理による熱圧着方法、熱ロールラミネート装置(熱ラミネート装置ともいう)或いはダブルベルトプレス(DBP)装置による連続処理による熱圧着方法などが挙げられる。生産性、維持費も含めた設備コストの点から、一対以上の金属ロールを有する熱ロールラミネート装置を使用した熱圧着方法が好ましい。ここでいう「一対以上の金属ロールを有する熱ロールラミネート装置」とは、材料を加熱加圧するための金属ロールを有している装置であればよく、その具体的な装置構成は特に限定されるものではない。
 前述の熱圧着方法において、2枚の金属箔の貼り合せを順次行う場合、或いは、グランド導体層およびエッチングを行う前のアンテナ導電層(以下、グランド導体層およびエッチングを行う前のアンテナ導電層をまとめて「導電層」と称することがある)を順次形成する場合、金属箔または導電層は片面フレキシブル金属(導電層)張積層板製造時及び両面フレキシブル金属(導電層)張積層板製造時の2回高熱処理をされる為、金属箔(導電層)が熱焼け及び熱変形により外観不良を起こしやすい問題がある。熱変形を改善するためには、前記熱圧着方法において、一対以上の金属ロールを有する熱ロールラミネート装置による熱圧着方法を使用し、金属箔または導電層と片面フレキシブル金属(導電層)張積層板との張力、または、金属箔または導電層と両面フレキシブル金属(導電層)張積層板との張力を制御すると良い。具体的には、熱圧着前の張力を高く設定することが好ましく、片面フレキシブル金属(導電層)張積層板の繰出し張力、または、両面フレキシブル金属(導電層)張積層板の繰出し張力を40kgf/270mm以上とするのが好ましい。また、熱焼けを改善するためには、熱ロールラミネート時に保護フィルムを使用することが好ましい。
 前記熱圧着方法における被積層材料の加熱方式は特に限定されるものではなく、例えば、熱循環方式、熱風加熱方式、誘導加熱方式等、所定の温度で加熱し得る従来公知の方式を採用した加熱手段を用いることができる。同様に、前記熱圧着方法における被積層材料の加圧方式も特に限定されるものではなく、例えば、油圧方式、空気圧方式、ギャップ間圧力方式等、所定の圧力を加えることができる従来公知の方式を採用した加圧手段を用いることができる。
 前記熱圧着工程における加熱温度、すなわち圧着温度(ラミネート温度)は、片面フレキシブル金属(導電層)張積層板の製造時には、金属箔(導電層)と密着する側のポリイミド接着シートの温度が、金属箔(導電層)と密着できる最低限の温度であれば良い。また、金属箔(導電層)と密着しない側のポリイミド接着シートは、他の材料、周辺部材等に貼り付かない温度であればよい。そのため、片面フレキシブル金属(導電層)張積層板の製造時のラミネート温度は、用いるポリイミド接着シートのガラス転移温度(Tg)+20℃~(Tg)+60℃とすることがよい。
 なお、Tgを超える温度で前記ポリイミド接着シートを加熱した場合、加熱温度が高くなるに従って前記ポリイミド接着シートが軟化し、周辺部材と接着しやすくなる。このとき、金属箔と密着しない側のポリイミド接着シートは、加工時に周辺部材と接触する可能性があるため、接着性が低い方が好ましい。このため、前記ラミネート温度を採用することが好ましい。
 一方、両面フレキシブル金属(導電層)張積層板の製造時においては、各層全ての密着力が高い状況が望まれる。その為、片面フレキシブル金属(導電層)張積層板よりも高い温度でラミネートすることがよい。よって、両面フレキシブル金属(導電層)張積層板の製造時のラミネート温度は、用いるポリイミド接着シートのガラス転移温度(Tg)+20℃~(Tg)+90℃の温度であることが好ましく、接着シート(C)のTg+50℃~(Tg)+80℃がより好ましい。
 前記熱圧着工程におけるラミネート速度は、0.5m/分以上であることが好ましく、1.0m/分以上であることがより好ましい。0.5m/分以上であれば十分な熱圧着が可能になり、1.0m/分以上であれば生産性をより一層向上することができる。
 前記熱圧着工程における圧力、すなわちラミネート圧力は、高ければ高いほどラミネート温度を低く、かつラミネート速度を速くすることができる利点があるが、一般にラミネート圧力が高すぎると得られる金属(導電層)張積層板の寸法変化が悪化する傾向がある。また、逆にラミネート圧力が低すぎると、得られる金属(導電層)張積層板の金属箔の接着強度が低くなる傾向がある。そのためラミネート圧力は、49N/cm~490N/cm(5kgf/cm~50kgf/cm)の範囲内であることが好ましく、98N/cm~294N/cm(10kgf/cm~30kgf/cm)の範囲内であることがより好ましい。この範囲内であれば、ラミネート温度、ラミネート速度およびラミネート圧力の三条件を良好なものにすることができ、生産性をより一層向上することができる。
 本発明の一実施形態において、前記両面フレキシブル金属(導電層)張積層板を得るためには、連続的に被積層材料を加熱しながら圧着する熱ロールラミネート装置を用いることが好ましい。この熱ロールラミネート装置では、熱ラミネート手段の前段に、被積層材料を繰り出す被積層材料繰出手段を設けてもよいし、熱ラミネート手段の後段に、被積層材料を巻き取る被積層材料巻取手段を設けてもよい。これらの手段を設けることで、前記熱ロールラミネート装置の生産性をより一層向上させることができる。前記被積層材料繰出手段および被積層材料巻取手段の具体的な構成は特に限定されるものではなく、例えば、接着シートや金属箔、あるいは得られる金属(導電層)張積層板を巻き取ることのできる公知のロール状巻取機等を挙げることができる。
 さらに、保護フィルムを巻き取ったり繰り出したりする巻取手段および繰出手段を設けると、より好ましい。これら巻取手段および繰出手段を備えていれば、熱圧着工程で、一度使用された保護フィルムを巻き取って繰り出し側に再度設置することで、保護フィルムを再使用することができる。また、保護フィルムを巻き取る際に、これらの両端部を揃えるために、端部位置検出手段および巻取位置修正手段を設けてもよい。これによって、精度よくこれらの端部を揃えて巻き取ることができるので、再使用の効率を高めることができる。なお、これら巻取手段、繰出手段、端部位置検出手段および巻取位置修正手段の具体的な構成は特に限定されるものではなく、従来公知の各種装置を用いることができる。
 (金属箔)
 本発明の一実施形態において用いることができる前記金属箔としては特に限定されるものではない。電子機器用途および電気機器用途に用いられる本発明の一実施形態に係るマイクロストリップアンテナに用いる場合には、例えば、銅または銅合金、ステンレス鋼またはその合金、ニッケルまたはニッケル合金(42合金も含む)、或いは、アルミニウムまたはアルミニウム合金からなる箔を挙げることができる。一般的なフレキシブル金属張積層板では、前記金属箔として、圧延銅箔、電解銅箔といった銅箔が多用されるが、本発明においてもこれらを好ましく用いることができる。なお、これらの金属箔の表面には、防錆層や耐熱層あるいは接着層が塗布されていてもよい。また、前記金属箔の厚みについては特に限定されるものではなく、その用途に応じて、十分な機能が発揮できる厚みであればよい。
 伝送損失は、主として銅箔等の金属箔をはじめとする導体に起因する導体損失と、絶縁樹脂基材に起因する誘電体損失とから構成される。導体損失は、高周波になるほど顕著に現れる銅箔等の金属箔の表皮効果の影響を受けるため、高周波用途における伝送損失を抑制するには、低粗度の銅箔等の金属箔が求められる。また、防錆、接着性向上のため使用されるニッケル、コバルト等の磁性体を含む合金は、周波数により導電率が変化することが知られており、伝送損失悪化に繋がる可能性があり、使用については注意が必要となる。
 前記金属箔等の導体層の厚み、したがってアンテナ導体層の厚みおよびグランド導体層の厚みは例えば、3μm~30μmが好ましく、より好ましくは5μm~20μmである。前記金属箔等の導体層の表面粗さ(Ra)、したがってアンテナ導体層およびグランド導体層の前記第1ポリイミド層側の表面粗さ(Ra)は、ポリイミド層との密着性を考慮すると0.05μm~0.5μmであることが好ましく、0.08μm~0.3μmであることがより好ましく、0.1μm~0.2μmであることが更に好ましい。表面粗さ(Ra)がこの範囲の下限以上である場合、ポリイミド層との接着性が高くなり、Raがこの範囲の上限以下である場合は、導体損失が小さくなるため、伝送損失を好適に低減することができる。
 (ポリイミド接着シートの表面処理)
 ポリイミド接着シートは、最外層に接着性の層を有している為、密着力を向上させるような一般的な表面処理を実施する必要はない。しかし、接着シート同士を貼り合せる場合においては、同一物質同士となるため、表面状態が同様なもの同士となり、アンカー効果が小さく、密着性が低い傾向にある。この場合、少なくとも貼り合わせ面の片方に、通常実施しない接着層に対する表面処理を実施することで、ポリイミド接着シート同士の密着力を向上させることが出来る。
 前記表面処理の方法としては、特に限定されるものではなく、例えばコロナ処理、プラズマ処理、サンドブラスト処理等を用いることが出来る。
 〔3〕本発明の他の一実施形態に係るマイクロストリップアンテナ
 以下、本発明の他の一実施形態に係るマイクロストリップアンテナ、すなわち、アンテナ導体層/第1ポリイミド層/グランド導体層に加えて、更に第2ポリイミド層/接着剤層を有し、少なくとも、第2ポリイミド層/接着剤層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しているマイクロストリップアンテナについて説明する。
 本実施形態に係るマイクロストリップアンテナは、図4に示すように第2ポリイミド層/接着剤層(接着剤層1)/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有している。図4に示す例では、前記マイクロストリップアンテナは、グランド導体層1と、グランド導体層1上に配置された第1ポリイミド層2と、第1ポリイミド層2上に配置されたアンテナ導体層3と、アンテナ導体層3上に配置された接着剤層5(接着剤層1)と、接着剤層5上に配置された第2ポリイミド層4とを含む。なお、第1ポリイミド層2上であって、アンテナ導体層3が配置されていない部分には、第1ポリイミド層2上に接着剤層5(接着剤層1)が配置される。また、前記マイクロストリップアンテナでは、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であるポリイミドフィルムを、第1ポリイミド層に用いる。
 前記第2ポリイミド層には、第1ポリイミド層に用いる10GHzでの誘電正接が0.008以下であるポリイミドフィルムを用いてもよいし、10GHzでの誘電正接が0.008を超える市販のポリイミドフィルムを用いてもよい。
 本実施形態に係るマイクロストリップアンテナは、接着剤層(接着剤層1)上に第2ポリイミド層を有するが、絶縁性があれば、前記第2ポリイミド層に代えて、例えばPETフィルム、液晶フィルム等のフィルムを利用することも可能である。絶縁性があれば、前記第2ポリイミド層の厚みは特に制限はないが、積層体の総厚みの観点より200μm以下が好ましく、25μm以下が最も好ましい。
 また、本実施形態に係るマイクロストリップアンテナは、図5で示したように、アンテナ導体層と第1ポリイミド層との間に接着剤層(接着剤層2)を有してもよい。図5に示す例では、前記マイクロストリップアンテナは、グランド導体層1と、グランド導体層1上に配置された第1ポリイミド層2と、第1ポリイミド層2上に配置された接着剤層6(接着剤層2)と、接着剤層6上に配置されたアンテナ導体層3と、アンテナ導体層3上に配置された接着剤層5(接着剤層1)と、接着剤層5上に配置された第2ポリイミド層4とを含む。なお、接着剤層6上であって、アンテナ導体層3が配置されていない部分には、第1ポリイミド層2上に接着剤層5(接着剤層1)が配置される。
 前記接着剤層1、接着剤層2に使用される接着剤としては、本発明の効果に好ましくない影響を及ぼさない接着剤であれば特に限定されるものではないが、例えば熱可塑性ポリイミド樹脂、アクリル樹脂、エポキシ樹脂等を使用することができる。
 更に、本実施形態に係るマイクロストリップアンテナは、図6に示したように、アンテナ導体層を複数有することもできる。かかる場合、前記複数のアンテナ導体層は、それぞれ前記第1ポリイミド層上に配置される。
 本実施形態に係るマイクロストリップアンテナは、図8に示したようにポリイミドフィルム(第2ポリイミド層)4と、接着剤層(ボンディングシート)8と、前述の〔1〕に記載のアンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しているマイクロストリップアンテナと、を貼り合わせることにより製造することができる。ここでは接着剤層にボンディングシートを用いる例を記載した。一方、ボンディングシートの代わりに、ポリイミドフィルム(第2ポリイミド層)か、前述の〔1〕に記載のアンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しているマイクロストリップアンテナのポリイミドフィルム面側に接着剤を塗布し、貼り合わせることで同様にマイクロストリップアンテナを製造することができる。
 また、本発明の更に他の一実施形態に係るマイクロストリップアンテナは、図7に示したように、少なくとも、絶縁層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、絶縁層がソルダーレジストであるマイクロストリップアンテナとしてもよい。図7に示す例では、前記マイクロストリップアンテナは、グランド導体層1と、グランド導体層1上に配置された第1ポリイミド層2と、第1ポリイミド層2上に配置されたアンテナ導体層3と、アンテナ導体層3上に配置されたソルダーレジストである絶縁層12とを含む。なお、第1ポリイミド層2上であって、アンテナ導体層3が配置されていない部分には、第1ポリイミド層2上に絶縁層12が配置される。前記絶縁層に用いられるソルダーレジストは、絶縁性を有していれば、市販の各種ソルダーレジストを用いることができる。
 <マイクロストリップアンテナの製造方法>
 本実施形態に係るマイクロストリップアンテナの製造に用いられる、前述の〔1〕に記載のアンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しているマイクロストリップアンテナは、前記ポリイミド接着シート(非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有するポリイミドフィルム)の接着層となる熱可塑性ポリイミド層に金属箔を積層することにより得ることができる。図3で示したように、金属箔/複数のポリイミド接着シート/金属箔を一括して積層して、両面フレキシブル金属張積層板(図3b)としてもよい。
 或いは、前述の〔1〕に記載のアンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しているマイクロストリップアンテナの製造には、複数のポリイミド接着シートの代わりに、図9で示した厚みがそれぞれ75μm以下の、単層の非熱可塑ポリイミドフィルムと単層の熱可塑ポリイミドフィルムの複数枚を貼り合わせ(積層し)たポリイミド接着シートを用いてもよい。次に、両面フレキシブル金属張積層板(図3b、図9b)の片面をエッチングすることでアンテナ導体層を形成する。このアンテナ導体層は、図6で示したように複数であってもよい。前記の方法により、前述の〔1〕に記載のアンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しているマイクロストリップアンテナ(マイクロストリップアンテナ:図3c、図9c)を作製することができる。
 アンテナ導体層の第1ポリイミド層側の表面粗さ(Ra)は、伝送損失低減に寄与するという点では、小さい方が好ましい。しかし、密着性を担保する必要もあるため、0.05μm~0.5μmであることが好ましく、0.08μm~0.3μmであることがより好ましく、0.1μm~0.2μmであることが更に好ましい。この表面粗さは、両面フレキシブル金属(導体層)張積層板に積層した金属箔(導体層)の第1ポリイミド層側の表面粗さによるものであるので、用いる金属箔(導体層)により制御することができる。
 グランド導体層およびエッチングを行う前のアンテナ導電層を形成する方法として、金属箔を貼り合わせる方法について説明したが、前記フレキシブル金属張積層板1の製造方法におけるグランド導体層およびエッチングを行う前のアンテナ導電層を形成する方法と同様の方法を採用してもよい。すなわち、グランド導体層およびエッチングを行う前のアンテナ導電層の片方または両方を、導電性ペーストを塗布・乾燥して形成してもいいし、導電性シールドフィルムを貼り合わせて形成してもよい。
 前記金属箔と、前記ポリイミド接着シートの熱可塑性ポリイミド層または単層の熱可塑ポリイミドとを積層する方法としては各種公知の方法を適用可能であり、前述の〔1〕に記載のアンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しているマイクロストリップアンテナの製造方法における積層方法と同一の方法を採用することができる。
 (金属箔)
 本実施形態に係るマイクロストリップアンテナの製造において用いることができる金属箔としては特に限定されるものではなく、前述の〔1〕に記載のアンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しているマイクロストリップアンテナにおける金属箔と同一の金属箔を採用することができる。
 (ポリイミド接着シートの表面処理)
 本実施形態に係るマイクロストリップアンテナにおけるポリイミド接着シートは、前述の〔1〕に記載のアンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しているマイクロストリップアンテナにおけるポリイミド接着シートと同様に、最外層に接着性の層を有している。その為、密着力を向上させるような一般的な表面処理を実施する必要はない。しかし、接着シート同士を貼り合せる場合においては、同一物質同士となるため、表面状態が同様なもの同士となり、アンカー効果が小さく、密着性が低い傾向にある。この場合、少なくとも貼り合わせ面の片方に、通常実施しない接着層に対する表面処理を実施することで、ポリイミド接着シート同士の密着力を向上させることが出来る。
 表面処理の方法としては、特に限定されるものではなく、例えばコロナ処理、プラズマ処理、サンドブラスト処理等を用いることが出来る。
 本発明の一実施形態は、以下の構成であってよい。
1)少なくとも、アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記第1ポリイミド層は、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であることを特徴とするマイクロストリップアンテナ。
2)更に第2ポリイミド層/接着剤層を有し、少なくとも、第2ポリイミド層/接着剤層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有していることを特徴とする、1)に記載のマイクロストリップアンテナ。
3)更に絶縁層を有し、少なくとも、絶縁層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記絶縁層がソルダーレジストであることを特徴とする、1)に記載のマイクロストリップアンテナ。
4)共振周波数の反射損失が-10dB以下であることを特徴とする、1)~3)のいずれかに記載のマイクロストリップアンテナ。
5)前記第1ポリイミド層が、熱可塑ポリイミド層と非熱可塑ポリイミド層とを有することを特徴とする、1)~4)のいずれかに記載のマイクロストリップアンテナ。
6)前記第1ポリイミド層が、非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有することを特徴とする、1)~5)のいずれかに記載のマイクロストリップアンテナ。
7)前記第1ポリイミド層が、前記3層構造を有する厚み75μm未満のポリイミドフィルムの2枚以上の積層物であることを特徴とする、6)に記載のマイクロストリップアンテナ。
8)前記アンテナ導体層は、銅層であり、前記銅層と前記第1ポリイミド層との間に接着剤層を更に有することを特徴とする、1)~7)のいずれかに記載のマイクロストリップアンテナ。
9)前記アンテナ導体層を2つ以上有することを特徴とする、1)~8)のいずれかに記載のマイクロストリップアンテナ。
10)前記アンテナ導体層の前記第1ポリイミド層側の表面粗さ(Ra)が、0.05μm~0.5μmであることを特徴とする、1)~9)のいずれかに記載のマイクロストリップアンテナ。
11)マイクロストリップアンテナの製造方法であって、前記マイクロストリップアンテナは、少なくとも、アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記第1ポリイミド層として、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であるポリイミドフィルムを用いることを特徴とするマイクロストリップアンテナの製造方法。
12)前記マイクロストリップアンテナは、更に第2ポリイミド層/接着剤層を有し、少なくとも、第2ポリイミド層/接着剤層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記第2ポリイミド層として、ポリイミドフィルムを用いることを特徴とする、11)に記載のマイクロストリップアンテナの製造方法。
13)前記マイクロストリップアンテナは、共振周波数の反射損失が-10dB以下であることを特徴とする、11)または12)に記載のマイクロストリップアンテナの製造方法。
14)前記第1ポリイミド層が熱可塑ポリイミド層と非熱可塑ポリイミド層とを有することを特徴とする、11)~13)のいずれかに記載のマイクロストリップアンテナの製造方法。
15)前記第1ポリイミド層は、熱可塑性ポリイミドフィルムと非熱可塑ポリイミドフィルムとを貼り合わせて積層してなることを特徴とする11)~14)のいずれかに記載のマイクロストリップアンテナの製造方法。
16)前記第1ポリイミド層が、非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有することを特徴とする、11)~15)のいずれかに記載のマイクロストリップアンテナの製造方法。
17)前記第1ポリイミド層が、前記3層構造を有する厚み75μm未満のポリイミドフィルムを少なくとも2枚以上積層したものであることを特徴とする、16)に記載のマイクロストリップアンテナの製造方法。
18)前記アンテナ導体層は、銅層であり、
 前記マイクロストリップアンテナは、前記銅層と前記第1ポリイミド層との間に接着剤層を更に有することを特徴とする、11)~17)のいずれかに記載のマイクロストリップアンテナの製造方法。
19)前記マイクロストリップアンテナは、前記アンテナ導体層を2つ以上有することを特徴とする、11)~18)のいずれかに記載のマイクロストリップアンテナの製造方法。
20)前記アンテナ導体層の前記第1ポリイミド層側の表面粗さ(Ra)が、0.05μm~0.5μmであることを特徴とする、11)~19)のいずれかに記載のマイクロストリップアンテナの製造方法。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。なお、合成例、実施例及び比較例におけるポリイミドフィルムの誘電率および誘電正接の測定、フレキシブル金属張積層板(FCCL)の製造、マイクロストリップアンテナの設計および作製、反射損失測定、放射特性測定、ピール強度の測定、フィルムの厚み、銅箔の表面粗さ(Ra)の評価方法は次の通りである。
 (誘電率および誘電正接の測定)
 測定装置として、空洞共振器摂動法複素誘電率評価装置((株)関東電子応用開発製)を用い、多層ポリイミドフィルムの誘電率および誘電正接を下記周波数で測定した。
測定周波数:10GHz
測定条件:温度22℃~24℃、湿度45%~55%
測定試料:前記測定条件下で、24時間放置した試料を使用した。
 (フレキシブル金属張積層板(FCCL)の製造)
 以下の条件で、ポリイミド積層体(ポリイミド接着シート)と銅箔とを積層し、両面FCCLを得た。
用いる銅箔:厚さ12μm、ポリイミドフィルムと接着する面の粗さが0.45μm以下。
ポリイミドと銅箔との積層条件:ラミネート温度360℃、ラミネート圧力0.8トン、ラミネート速度1m/min。
 (マイクロストリップアンテナの設計および作製)
 マイクロストリップラインアンテナの設計は、電磁界シミュレーションソフト(キーサイトテクノロジー社ADS、Momentumn)を用い、方形パッチアンテナの寸法及び給電点の位置を決定した。
 前記設計に基づき、両面FCCLの片面をパッチ導電部(すなわち、アンテナ導体層)が約3mm×3mmになるようにエッチングし、対抗するグラウンド部(すなわち、グランド導体層)が10mm×10mmになるよう切断加工した。給電点はφ0.3mmのドリル加工を行い、パッチアンテナFPCを作製した。このパッチアンテナFPCを30mm×30mm×1.5mm厚みの表面を金メッキしたステンレス板に銀ペーストを介して接着させ、150℃-30分加熱することにより固定した。信号線入力のため、アンリツ社製コネクターK103F-RとガラスビーズK100を介し同軸ケーブル接続端子を取り付けた。ガラスビーズK100の端子とパッチ導電部との導通は、銀ペーストを介して接着させ、150℃-30分加熱することにより固定した。
 (マイクロストリップアンテナの反射損失測定)
 得られたマイクロストリップアンテナに対して、以下の処理を行った。すなわち23℃、55%RHに調整された試験室内で48時間以上調湿した。その後、ネットワークアナライザE5221B(Keysight Technologies)を用いて反射損失(S11)の測定を行い、共振周波数及び、共振周波数での反射損失量(dB)を計測した。
 (マイクロストリップアンテナの放射特性測定)
 測定は6面に電波吸収体を有する電波暗室内にターンテーブル、ポジショナーを有した環境で行った。360°回転するターンテーブルの中央にマイクロストリップアンテナを設置し、アンテナ直上を180°回転するポジショナーに電波を受信するレシーバーを設置した。
 ネットワークアナライザE5227B(Keysight Technologies)を用いて28GHzの信号を入射した際にマイクロストリップアンテナより放射される電
波をターンテーブル、ポジショナーを電波暗室外より自動コントロールすることにより測定した。得られた各方向の利得データは、無指向性アンテナを基準とした相対利得表示とした。測定データとして指向性利得、アンテナ利得を記載した。
 なお、ミリ波とは厳密には30GHzを超える周波数を指すが、5G通信の周波数帯である28GHzもミリ波と呼ばれている。本明細書においても、28GHzはミリ波帯に含まれる趣旨である。
 (ピール強度の測定方法)
 フレキシブル金属張積層板(FCCL)をJIS C6471の「6.5 引きはがし強さ」に従って解析した。具体的には、1mm幅の金属箔部分を、90度の剥離角度、100mm/分の条件で剥離し、その荷重を測定した。ピール強度は、12N/cm以上の場合を「○」(良好)、12N/cm未満を「×」(不良)と評価した。
 (フィルムの厚み)
 接触式厚み計Mitsutoyo社製LASER HOLOGAGEを使用してフィルムの厚みを測定した。
 (銅箔の表面粗さRa)
 光波干渉式表面粗さ計(ZYGO社製NewView5030システム)を用いて下記の条件での算術平均粗さを測定した。
 (測定条件)
対物レンズ:50倍ズーム
FDA Res:Normal
解析条件:
Remove:Cylinder
Filter:High Pass
Filter Low Waven:0.002mm
 (合成例1)
 反応系内を20℃に保った状態で、N,N-ジメチルホルムアミド(以下、DMFともいう)328.79kgに、1,3-ビス(4-アミノフェノキシ)ベンゼン(以下TPE-Rともいう)11.64kg、4,4'-ジアミノ-2,2'-ジメチルビフェニル(以下、m-TBともいう)11.28kgを添加し、窒素雰囲気下で撹拌した。TPE-
R、m-TBが溶解したことを目視で確認した後、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(以下、BPDAともいう)14.66kg、ピロメリット酸無水物(以下、PMDAともいう)7.39kgを添加し、30分撹拌を行った。続いて、パラフェニレンジアミン(以下、PDAともいう)4.31kg、PMDA9.85kgを添加し、30分撹拌した。
 最後に、0.9kgのPMDAを固形分濃度7%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら前記反応溶液に徐々に添加し、粘度が3000ポイズに達した時点で重合を終了した。
 このポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.7/4.0)からなるイミド化促進剤をポリアミド酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌し、Tダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後、エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×17秒、350℃×17秒、400℃×120秒で乾燥・イミド化させ、厚み17μmのポリイミドフィルムを得た。
 (合成例2)
 反応系内を20℃に保った状態で、DMF328.94kgに、4,4’-ジアミノジフェニルエーテル(以下、ODAともいう)15.76kgを添加し、窒素雰囲気下で撹拌した。ODAが溶解したことを目視で確認した後、BPDA17.37kg、PMDA2.57kgを添加し、30分撹拌を行った。続いて、m-TB11.14kg、PMDA12.30kg添加し、30分撹拌した。
 最後に、0.9kgのPMDAを固形分濃度7%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら前記反応溶液に徐々に添加し、粘度が3000ポイズに達した時点で重合を終了した。
 このポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.7/4.0)からなるイミド化促進剤をポリアミド酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌し、Tダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後、エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×17秒、350℃×17秒、400℃×120秒で乾燥・イミド化させ、厚み17μmのポリイミドフィルムを得た。
 (合成例3)
 反応系内を20℃に保った状態で、DMF657.82kgに、ODA10.53kg、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)32.39kgを添加し、窒素雰囲気下で撹拌した。ODA、BAPPが溶解したことを目視で確認した後、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAともいう)16.95kg、PMDA14.34kgを添加し、30分撹拌を行った。続いて、PDA14.22kg、PMDA29.83kgを添加し、30分撹拌した。
 最後に、1.7kgのPDAを固形分濃度10%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら前記反応溶液に徐々に添加し、粘度が3000ポイズに達した時点で重合を終了した。
 このポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.7/4.0)からなるイミド化促進剤をポリアミド酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌し、Tダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後、エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×17秒、350℃×17秒、400℃×120秒で乾燥・イミド化させ、厚み17μmのポリイミドフィルムを得た。
 (合成例4)
 反応系内を20℃に保った状態で、DMF850.0kgに、TPE-R11.2kg、1,4-ジアミノベンゼン(PDAともいう)33.0kgを添加し、窒素雰囲気下で撹拌した。PDAが溶解したことを目視で確認した後、BPDA63.2kg、4,4'-オキシジフタル酸二無水物(ODPAともいう)38.0kgを添加し、30分撹拌を行った。この溶液にPMDA2.2kgを添加し、30分撹拌した。
 最後に、0.9kgのPMDAを固形分濃度7%となるようにDMFに溶解した溶液を調製し、この溶液を粘度上昇に気を付けながら前記反応溶液に徐々に添加し、粘度が3000ポイズに達した時点で重合を終了した。
 このポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.7/4.0)からなるイミド化促進剤をポリアミド酸溶液に対して重量比50%で添加し、連続的にミキサーで撹拌し、Tダイから押出してステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後、エンドレスベルトから自己支持性のゲル膜を引き剥がしてテンタークリップに固定し、250℃×17秒、350℃×17秒、400℃×120秒で乾燥・イミド化させ、厚み17μmのポリイミドフィルムを得た。
 (熱可塑性ポリイミド前駆体(ポリアミック酸)の合成)
 10℃に冷却したDMF249gにBAPP29.8gを溶解した。ここにBPDA21.4gを添加して溶解させた後、30分攪拌しプレポリマーを形成した。さらにこの溶液に、別途調製してあったBAPPのDMF溶液(BAPP1.57g/DMF31.4g)を注意深く添加し、粘度が1000ポイズ程度に達したところで添加を止めた。1時間撹拌を行って、固形分濃度約17重量%、23℃での回転粘度が1000ポイズのポリアミック酸溶液を得た。
 <アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有するマイクロストリップアンテナ>
 (実施例1)
 熱可塑性ポリアミド酸溶液を固形分濃度が10重量%になるまでDMFで希釈した後、合成例1で得たフィルムの片面に、最終片面厚みが4μmとなるようにポリアミド酸をコンマコーターで塗布し、140℃に設定した乾燥炉内を1分間通して加熱を行った。もう片面も、同様に最終厚みが4μmとなるようにポリアミド酸を塗布した後、140℃に設定した乾燥炉内を1分間通して加熱を行った。続いて、雰囲気温度360℃の遠赤外線ヒーター炉の中で20秒間加熱処理を行って、総厚み25.0μmのポリイミド積層体を得た。さらに、銅箔/この総厚み25.0μmのポリイミド積層体3枚/銅箔の順に重ね、熱ロールラミネート機を用いて、ラミネート温度360℃、ラミネート圧力0.8トン、ラミネート速度1.0m/分の条件で熱ラミネートし、両面銅張り板(両面FCCL)を作製した(銅箔:CF-T49A-HD2、Ra=0.15μm、ポリイミド層の厚み:75μm)。前記ポリイミド積層体3枚が、前記「第1ポリイミド層」に該当する。
 予め行った電磁界シミュレーションによる設計に基づき、両面FCCLの片面をパッチ導電部が約3mm×3mmになるようにエッチングし、対抗するグラウンド部が10mm×10mmになるよう切断加工した。給電点のドリル加工を行い、パッチアンテナFPCを作製した。このパッチアンテナFPCをステンレス板に固定、コネクターを介し同軸ケーブル接続端子を取り付け、マイクロストリップアンテナを作製した。
 (実施例2)
 実施例1で得られた総厚み25.0μmのポリイミド積層体を4枚重ねた他は、実施例1と同様にして、フレキシブル金属張積層板のマイクロストリップアンテナを作製した。前記ポリイミド積層体4枚が、前記「第1ポリイミド層」に該当する。
 (実施例3)
 実施例1で得られた総厚み25.0μmのポリイミド積層体を6枚重ねた他は、実施例1と同様にして、フレキシブル金属張積層板のマイクロストリップアンテナを作製した。前記ポリイミド積層体6枚が、前記「第1ポリイミド層」に該当する。
 (実施例4)
 実施例1で得られた総厚み25.0μmのポリイミド積層体を8枚重ねた他は、実施例1と同様にして、フレキシブル金属張積層板のマイクロストリップアンテナを作製した。前記ポリイミド積層体8枚が、前記「第1ポリイミド層」に該当する。
 実施例1~4より、ポリイミド積層体の厚みが厚くなるに従い、アンテナの利得が大きくなることが確認された。
 (実施例5)
 実施例1と同様の方法で、合成例2で得たフィルムに熱可塑性ポリアミド酸溶液を塗工・乾燥・加熱処理し、ポリイミド積層体を得た。さらに、実施例1と同じ貼り合わせ条件、実施例1と同じ銅箔を用い、フレキシブル金属張積層板のマイクロストリップアンテナを作製した。
 (実施例6)
 実施例1と同様の方法で、合成例4で得たフィルムに熱可塑性ポリアミド酸溶液を塗工・乾燥・加熱処理し、ポリイミド積層体を得た。さらに、実施例1と同じ貼り合わせ条件、実施例1と同じ銅箔を用い、フレキシブル金属張積層板のマイクロストリップアンテナを作製した。
 実施例1、5、6より、ポリイミド積層体の誘電正接が小さくなるに従い、アンテナの利得が増大することが確認された。
 (比較例1)
 実施例1で得られた総厚み25.0μmのポリイミド積層体を1枚のみで用い、ポリイミド積層体の厚みを25μmとした他は、実施例と同様にしてフレキシブル金属張積層板のマイクロストリップアンテナを作製した。前記ポリイミド積層体1枚が、前記「第1ポリイミド層」に該当する。
 (比較例2)
 実施例1で得られた総厚み25.0μmのポリイミド積層体を2枚重ね、ポリイミド積層体の厚みを50μmとした他は、実施例1と同様にして、フレキシブル金属張積層板のマイクロストリップアンテナを作製した。前記ポリイミド積層体2枚が、前記「第1ポリイミド層」に該当する。
 実施例1と比較例1、2より、ポリイミド積層体の厚みが薄くなるに従い、アンテナの利得が低減しており、フレキシブル金属張積層板の挿入損失が悪化する(絶対値が大きくなる)ことが確認された。
 (比較例3)
 合成例3で得られたフィルムを用いた他は実施例2と同様にして、総厚み25.0μmのポリイミド積層体を4枚重ね、フレキシブル金属張積層板のマイクロストリップアンテナを作製した。
 実施例2と比較例3より、誘電正接が大きいポリイミド積層体を使用すると、フレキシブル金属張積層板のアンテナの利得が小さくなることが確認された。また、実施例1と比較例3より、誘電正接が大きいポリイミド積層体を使用すると、積層体の厚みが厚くても、フレキシブル金属張積層板のアンテナの利得が小さくなることが分かる。以上の結果より、良好なアンテナの利得を取得するためには、誘電正接が小さいポリイミド積層体を使用し、かつ厚く積層させることが不可欠であることが分かる。
 実施例1~5、比較例1~3について、各「第1ポリイミド層」の誘電率、誘電正接、および厚み、各両面FCCLのピール強度、ならびに、各マイクロストリップアンテナの反射損失、指向性利得、およびアンテナ利得を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <第2ポリイミド層/接着剤層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有するマイクロストリップアンテナ>
 (実施例7)
 熱可塑性ポリアミド酸溶液を固形分濃度が10重量%になるまでDMFで希釈した後、合成例1で得たフィルムの片面に、最終片面厚みが4μmとなるようにポリアミド酸をコンマコーターで塗布し、140℃に設定した乾燥炉内を1分間通して加熱を行った。もう片面も、同様に最終厚みが4μmとなるようにポリアミド酸を塗布した後、140℃に設定した乾燥炉内を1分間通して加熱を行った。続いて、雰囲気温度360℃の遠赤外線ヒーター炉の中で20秒間加熱処理を行って、総厚み25.0μmのポリイミド積層体を得た。さらに、銅箔/この総厚み25.0μmのポリイミド積層体3枚/銅箔の順に重ね、熱ロールラミネート機を用いて、ラミネート温度360℃、ラミネート圧力0.6トン、ラミネート速度1.0m/分の条件で熱ラミネートし、両面銅張り板(両面FCCL)を作製した(銅箔:CF-T49A-HD2、Ra=0.15μm、ポリイミド積層体の厚み:75μm)。前記ポリイミド積層体3枚が、前記「第1ポリイミド層」に該当する。
 また、前記「第1ポリイミド層」の作製に用いた、前記総厚み25.0μmのポリイミド積層体を、「第2ポリイミド層」として使用した。
 第1ポリイミド層を含む両面FCCLの片面をエッチングし、パッチアンテナ導体層作製した。このパッチアンテナ導体層を、第2ポリイミド積層体と、ニッカン工業社製ボンディングシートSAFYを介して、150℃で30分間、1~2MPaの条件で、減圧加熱して貼り合わせ、図4に示すマイクロストリップアンテナを得た。
 (実施例8)
 実施例7で得られた総厚み25.0μmのポリイミド積層体を4枚重ねた他は、実施例7と同様にして、マイクロストリップアンテナを作製した。前記ポリイミド積層体4枚が、前記「第1ポリイミド層」に該当する。
 (実施例9)
 実施例7で得られた総厚み25.0μmのポリイミド積層体を6枚重ねた他は、実施例7と同様にして、マイクロストリップアンテナを作製した。前記ポリイミド積層体6枚が、前記「第1ポリイミド層」に該当する。
 (実施例10)
 実施例7で得られた総厚み25.0μmのポリイミド積層体を8枚重ねた他は、実施例7と同様にして、マイクロストリップアンテナを作製した。前記ポリイミド積層体8枚が、前記「第1ポリイミド層」に該当する。
 実施例7~10より、ポリイミド積層体の厚みが厚くなるに従い、アンテナの利得が大きくなることが確認された。
 (実施例11)
 実施例7と同様の方法で、合成例2で得たフィルムに熱可塑性ポリアミド酸溶液を塗工・乾燥・加熱処理し、ポリイミド積層体を得た。さらに、実施例7と同じ貼り合わせ条件、実施例7と同じ銅箔を用い、マイクロストリップアンテナを作製した。
 (比較例4)
 実施例7で得られた総厚み25.0μmのポリイミド積層体を1枚のみで用い、第1および第2ポリイミド層の厚みをそれぞれ25μmとした他は、実施例7と同様にして、マイクロストリップアンテナを作製した。
 (比較例5)
 実施例7で得られた総厚み25.0μmのポリイミド積層体を2枚重ね、第1ポリイミド層の厚みを50μmとした他は、実施例7と同様にして、マイクロストリップアンテナを作製した。
 実施例7と比較例4、5より、ポリイミド積層体の厚みが薄くなるに従い、アンテナ利得が小さくなることが確認された。
 (比較例6)
 合成例3で得られたフィルムを用いて総厚み25.0μmのポリイミド積層体を作製し、当該総厚み25.0μmポリイミド積層体を4枚重ねた他は実施例7と同様にして、フレキシブル金属張積層板のマイクロストリップアンテナを作製した。前記ポリイミド積層体4枚が、前記「第1ポリイミド層」に該当する。
 実施例8と比較例6より、誘電正接が大きいポリイミド積層体を使用すると、アンテナ利得が小さくなることが確認された。また、実施例7と比較例6より、誘電正接が大きいポリイミド積層体を使用すると、積層体の厚みが厚くても、アンテナ利得が小さくなることが分かる。以上の結果より、良好なアンテナ利得を取得するためには、誘電正接が小さいポリイミド積層体を使用し、かつ厚く積層させることが不可欠であることが分かる。
 実施例7~11、比較例4~6について、用いた第一ポリイミド層、第二ポリイミド層、および接着剤層の誘電率、誘電正接および各層の厚み、各両面FCCLのピール強度、ならびに、各マイクロストリップアンテナの反射損失、指向性利得およびアンテナ利得を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 1.グランド導体層
 2.第1ポリイミド層
 3.アンテナ導体層
 4.第2ポリイミド層
 5.接着剤層1
 6.接着剤層2
 8.接着剤層(ボンディングシート)
 10.非熱可塑ポリイミド
 11.熱可塑ポリイミド
 12.ソルダーレジスト(絶縁層)

 

Claims (20)

  1.  少なくとも、アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記第1ポリイミド層は、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であることを特徴とするマイクロストリップアンテナ。
  2.  更に第2ポリイミド層/接着剤層を有し、少なくとも、第2ポリイミド層/接着剤層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有していることを特徴とする、請求項1に記載のマイクロストリップアンテナ。
  3. 更に絶縁層を有し、少なくとも、絶縁層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、
     前記絶縁層がソルダーレジストであることを特徴とする、請求項1に記載のマイクロストリップアンテナ。
  4.  共振周波数の反射損失が-10dB以下であることを特徴とする、請求項1~3のいずれか1項に記載のマイクロストリップアンテナ。
  5.  前記第1ポリイミド層が、熱可塑ポリイミド層と非熱可塑ポリイミド層とを有することを特徴とする、請求項1~4のいずれか1項に記載のマイクロストリップアンテナ。
  6.  前記第1ポリイミド層が、非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有することを特徴とする、請求項1~5のいずれか1項に記載のマイクロストリップアンテナ。
  7.  前記第1ポリイミド層が、前記3層構造を有する厚み75μm未満のポリイミドフィルムの2枚以上の積層物であることを特徴とする、請求項6に記載のマイクロストリップアンテナ。
  8.  前記アンテナ導体層は、銅層であり、
     前記銅層と前記第1ポリイミド層との間に接着剤層を更に有することを特徴とする、請求項1~7のいずれか1項に記載のマイクロストリップアンテナ。
  9.  前記アンテナ導体層を2つ以上有することを特徴とする、請求項1~8のいずれか1項に記載のマイクロストリップアンテナ。
  10.  前記アンテナ導体層の前記第1ポリイミド層側の表面粗さ(Ra)が、0.05μm~0.5μmであることを特徴とする、請求項1~9のいずれか1項に記載のマイクロストリップアンテナ。
  11.  マイクロストリップアンテナの製造方法であって、
     前記マイクロストリップアンテナは、少なくとも、アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、前記第1ポリイミド層として、厚みが75~200μmであり、かつ、10GHzでの誘電正接が0.008以下であるポリイミドフィルムを用いることを特徴とするマイクロストリップアンテナの製造方法。
  12.  前記マイクロストリップアンテナは、更に第2ポリイミド層/接着剤層を有し、少なくとも、第2ポリイミド層/接着剤層/アンテナ導体層/第1ポリイミド層/グランド導体層をこの順に有しており、
     前記第2ポリイミド層として、ポリイミドフィルムを用いることを特徴とする、請求項11に記載のマイクロストリップアンテナの製造方法。
  13.  前記マイクロストリップアンテナは、共振周波数の反射損失が-10dB以下であることを特徴とする、請求項11または12に記載のマイクロストリップアンテナの製造方法。
  14.  前記第1ポリイミド層が熱可塑ポリイミド層と非熱可塑ポリイミド層とを有することを特徴とする、請求項11~13のいずれか1項に記載のマイクロストリップアンテナの製造方法。
  15.  前記第1ポリイミド層は、熱可塑性ポリイミドフィルムと非熱可塑ポリイミドフィルムとを貼り合わせて積層してなることを特徴とする請求項11~14のいずれか1項に記載のマイクロストリップアンテナの製造方法。
  16.  前記第1ポリイミド層が、非熱可塑ポリイミド層の両面に熱可塑性ポリイミド層を持った3層構造を有することを特徴とする、請求項11~15のいずれか1項に記載のマイクロストリップアンテナの製造方法。
  17.  前記第1ポリイミド層が、前記3層構造を有する厚み75μm未満のポリイミドフィルムを少なくとも2枚以上積層したものであることを特徴とする、請求項16に記載のマイクロストリップアンテナの製造方法。
  18.  前記アンテナ導体層は、銅層であり、
     前記マイクロストリップアンテナは、前記銅層と前記第1ポリイミド層との間に接着剤層を更に有することを特徴とする、請求項11~17のいずれか1項に記載のマイクロストリップアンテナの製造方法。
  19.  前記マイクロストリップアンテナは、前記アンテナ導体層を2つ以上有することを特徴とする、請求項11~18のいずれか1項に記載のマイクロストリップアンテナの製造方法。
  20.  前記アンテナ導体層の前記第1ポリイミド層側の表面粗さ(Ra)が、0.05μm~0.5μmであることを特徴とする、請求項11~19のいずれか1項に記載のマイクロストリップアンテナの製造方法。
PCT/JP2022/004445 2021-02-10 2022-02-04 マイクロストリップアンテナおよびその製造方法 WO2022172872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280013901.7A CN116830385A (zh) 2021-02-10 2022-02-04 微带天线及其制造方法
KR1020237028415A KR20230145082A (ko) 2021-02-10 2022-02-04 마이크로스트립 안테나 및 그 제조 방법
JP2022580606A JPWO2022172872A1 (ja) 2021-02-10 2022-02-04

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021019547 2021-02-10
JP2021-019547 2021-02-10
JP2021-128648 2021-08-05
JP2021128648 2021-08-05

Publications (1)

Publication Number Publication Date
WO2022172872A1 true WO2022172872A1 (ja) 2022-08-18

Family

ID=82837572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004445 WO2022172872A1 (ja) 2021-02-10 2022-02-04 マイクロストリップアンテナおよびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2022172872A1 (ja)
KR (1) KR20230145082A (ja)
WO (1) WO2022172872A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120804A (ja) * 1990-09-11 1992-04-21 Omron Corp 平面アンテナ
JP2017165909A (ja) * 2016-03-17 2017-09-21 新日鉄住金化学株式会社 ポリイミド、樹脂フィルム及び金属張積層板
WO2021166572A1 (ja) * 2020-02-18 2021-08-26 株式会社カネカ マイクロストリップライン構造を有するフレキシブル金属張積層板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267839A (ja) 2000-03-22 2001-09-28 Furukawa Electric Co Ltd:The 平面パッチアレーアンテナおよび前記平面パッチアレーアンテナを用いた放送システム
EP2325943A4 (en) 2008-07-18 2013-07-03 Emw Co Ltd ANTENNA USING A COMPLEX STRUCTURE ALTERNING IN GRID A DIELECTRIC SUBSTANCE AND A MAGNETIC SUBSTANCE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120804A (ja) * 1990-09-11 1992-04-21 Omron Corp 平面アンテナ
JP2017165909A (ja) * 2016-03-17 2017-09-21 新日鉄住金化学株式会社 ポリイミド、樹脂フィルム及び金属張積層板
WO2021166572A1 (ja) * 2020-02-18 2021-08-26 株式会社カネカ マイクロストリップライン構造を有するフレキシブル金属張積層板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Antenna Engineering Handbook (2nd Edition)", 25 July 2008, INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS., JP, ISBN: 978-4-274-20544-6, article INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS: "5-9-1 Low Q by Relative Permittivity and Thickness of Substrate", pages: 265 - 266, XP009539054 *

Also Published As

Publication number Publication date
JPWO2022172872A1 (ja) 2022-08-18
KR20230145082A (ko) 2023-10-17

Similar Documents

Publication Publication Date Title
JP2011173423A (ja) 銅張り積層基板
JP2017144730A (ja) 多層ポリイミドフィルム、およびフレキシブル金属張積層板
WO2006114902A1 (ja) 接着シート、金属積層シート及びプリント配線板
JPWO2009019968A1 (ja) 多層ポリイミドフィルム、積層板および金属張積層板
KR20080002827A (ko) 신규한 폴리이미드 필름 및 그의 이용
WO2022085619A1 (ja) 非熱可塑性ポリイミドフィルム、複層ポリイミドフィルム、及び金属張積層板
JP2018145303A (ja) 多層ポリイミドフィルム
WO2021166572A1 (ja) マイクロストリップライン構造を有するフレキシブル金属張積層板
JP2009113475A (ja) フレキシブル片面ポリイミド銅張積層板の製造方法
KR102432657B1 (ko) 폴리이미드 필름
TWI804658B (zh) 覆金屬積層板和電路基板
JP2008081577A (ja) 接着シート、金属積層シート及びプリント配線板
WO2022172872A1 (ja) マイクロストリップアンテナおよびその製造方法
CN116390971B (zh) 聚酰亚胺树脂前体、聚酰亚胺树脂、覆金属层叠板、层叠体及柔性印刷布线板
KR101195719B1 (ko) 접착 필름 및 이것으로부터 얻어지는 치수 안정성을 향상시킨 연성 금속장 적층판, 및 그의 제조 방법
JP2020015237A (ja) 金属張積層板の製造方法及び回路基板の製造方法
CN111484616B (zh) 聚酰亚胺组合物、聚酰亚胺、挠性覆铜板及其制作方法
CN116830385A (zh) 微带天线及其制造方法
JP6776087B2 (ja) 金属張積層板の製造方法及び回路基板の製造方法
KR101546393B1 (ko) 플렉시블 금속장 적층판 및 그 제조 방법
WO2023157789A1 (ja) ポリアミド酸、ポリイミド、非熱可塑性ポリイミドフィルム、複層ポリイミドフィルム及び金属張積層板
WO2023162745A1 (ja) ポリアミド酸、ポリイミド、非熱可塑性ポリイミドフィルム、複層ポリイミドフィルム及び金属張積層板
JP7438790B2 (ja) 接着剤付きポリイミドフィルムおよびフラットケーブル
JP7311328B2 (ja) ポリイミドフィルム
JP2023121512A (ja) 非熱可塑性ポリイミドフィルム、複層ポリイミドフィルム、及び金属張積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580606

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280013901.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237028415

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752696

Country of ref document: EP

Kind code of ref document: A1