WO2022170850A1 - 固态锂离子电池、基于固态锂离子电池的充电保护方法 - Google Patents

固态锂离子电池、基于固态锂离子电池的充电保护方法 Download PDF

Info

Publication number
WO2022170850A1
WO2022170850A1 PCT/CN2021/138613 CN2021138613W WO2022170850A1 WO 2022170850 A1 WO2022170850 A1 WO 2022170850A1 CN 2021138613 W CN2021138613 W CN 2021138613W WO 2022170850 A1 WO2022170850 A1 WO 2022170850A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
ion battery
lithium
state
electrode structure
Prior art date
Application number
PCT/CN2021/138613
Other languages
English (en)
French (fr)
Inventor
陈凯
李峥
何泓材
冯玉川
Original Assignee
苏州清陶新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州清陶新能源科技有限公司 filed Critical 苏州清陶新能源科技有限公司
Publication of WO2022170850A1 publication Critical patent/WO2022170850A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of new energy, in particular to a solid-state lithium-ion battery and a charging protection method based on the solid-state lithium-ion battery.
  • the present invention provides a solid-state lithium-ion battery and a charging protection method based on the solid-state lithium-ion battery, which can effectively avoid overcharging of the lithium-ion battery.
  • the present invention proposes the following first technical scheme:
  • a solid-state lithium-ion battery the solid-state lithium-ion battery includes a positive electrode structure, a negative electrode structure, and a self-protection structure disposed between the positive electrode structure and the negative electrode structure, the positive electrode structure includes a positive electrode, and the negative electrode structure includes A negative electrode, at least one of the positive electrode structure and the negative electrode structure includes a solid electrolyte layer;
  • the solid electrolyte layer has electronic conductivity
  • the self-protection structure When the solid-state lithium-ion battery is in a first state of charge, the self-protection structure is electrically insulating and capable of transporting lithium ions;
  • the self-protection structure is deformed to make the positive electrode structure and the negative electrode structure conductive;
  • the solid state lithium ion battery transitions from the first state of charge to the second state of charge when the temperature of the solid state lithium ion battery increases to a first preset temperature threshold.
  • the first preset temperature threshold is above 80°C, preferably above 100°C. Most preferably, the first preset temperature threshold is 130-140°C.
  • the self-protection structure includes a temperature sensitive layer, and the melting point of the temperature sensitive layer is not higher than the first preset temperature threshold;
  • the temperature sensitive layer When the temperature of the temperature sensitive layer reaches its melting point, the temperature sensitive layer is melted and deformed, and the positive electrode structure and the negative electrode structure are in conduction.
  • the positive electrode structure includes a first solid electrolyte layer, and the self-protection structure is provided between the first solid electrolyte layer and the negative electrode; or,
  • the negative electrode structure includes a second solid electrolyte layer, and the self-protection structure is provided between the positive electrode and the second solid electrolyte layer; or,
  • the positive electrode structure includes a first solid electrolyte layer and the negative electrode structure includes a second solid electrolyte layer, and the self-protection structure is provided between the first solid electrolyte layer and the second solid electrolyte layer.
  • the solid electrolyte layer is an independent structure, and the preparation method of the solid electrolyte layer is known.
  • the solid electrolyte layer slurry can be coated on the surface of the positive electrode or the negative electrode to obtain the solid electrolyte layer, or it can be prepared separately into a film, and then combined with the solid electrolyte layer.
  • the positive electrode, negative electrode, and self-protection structure laminations are made into finished batteries.
  • the electronic conductivity of the solid electrolyte layer is 10 -4 -10 -6 S/cm.
  • the electrical conductivity of the first solid electrolyte layer and the second solid electrolyte layer are the same or different.
  • the thickness of the solid electrolyte layer is 10-300 ⁇ m; further preferably, the thicknesses of the first solid electrolyte layer and the second solid electrolyte layer may be the same or different.
  • the temperature sensitive layer comprises a fusible polymer film formed of at least one fusible polymer, and lithium salt is added to the fusible polymer film.
  • the melting point of the meltable polymer is 100-130°C, preferably 110-120°C.
  • the meltable polymer is one of low density polyethylene LDPE, ethylene-octene copolymer, EVA, EAA, CPE, PVC, nylon, and TPU.
  • the lithium salt includes lithium perchlorate, lithium hexafluorophosphate, lithium bis-oxalate borate, lithium difluorooxalate borate, lithium trifluoromethanesulfonate, lithium bis-trifluoromethanesulfonimide or at least one of lithium bisfluorosulfonimide.
  • the self-protection structure includes a separator disposed between the positive electrode structure and the negative electrode structure, and a thermal deformation member disposed between the solid electrolyte layer and the separator;
  • the separator is electrically insulating and capable of transporting lithium ions
  • the deformation temperature of the thermal deformation member is not higher than the first preset temperature threshold, and the thermal deformation member has electrical conductivity
  • the thermal deformation member deforms and punctures the diaphragm so that the positive electrode structure and the negative electrode structure are connected.
  • the separator includes a fusible polymer film formed of at least one fusible polymer, and lithium salt is added to the fusible polymer film.
  • the melting point of the meltable polymer is 100-130°C, preferably 110-120°C.
  • the meltable polymer is one of low density polyethylene LDPE, ethylene-octene copolymer, EVA, EAA, CPE, PVC, nylon, and TPU.
  • the lithium salt includes lithium perchlorate, lithium hexafluorophosphate, lithium bis-oxalate borate, lithium difluorooxalate borate, lithium trifluoromethanesulfonate, lithium bis-trifluoromethanesulfonimide or at least one of lithium bisfluorosulfonimide.
  • the area of the side surface of the thermal deformation member opposite to the diaphragm does not exceed 0.05% of the area of the corresponding side surface of the diaphragm.
  • the thermal deformation member is opposite to the diaphragm
  • the area of the side surface is 0.001%-0.05% of the area of the corresponding side surface of the diaphragm.
  • the thermal deformation member comprises a shape memory alloy
  • the thermal deformation member is made of at least two materials, and the thermal expansion coefficients of the at least two materials are different.
  • the thermal deformation member is a nickel-titanium shape memory alloy.
  • the thermally deformable part is a composite material product in which a manganese-nickel-copper alloy is used as an outer layer and a nickel-iron alloy is used as an inner layer.
  • the solid electrolyte layer includes a mixture of at least one solid electrolyte and a conductive agent; or,
  • the solid electrolyte layer includes at least one solid electrolyte.
  • the solid electrolyte layer includes at least one of oxide solid electrolyte, sulfide solid electrolyte, and selenide solid electrolyte.
  • the oxide solid state electrolyte includes LiPON, Li 1.3 Al 0.3 Ti 0.7 (PO4) 3 , La 0.5 1Li 0.34 TiO 0.74 , Li 3 PO 4 , Li 2 SiO 2 , Li 2 SiO 4 , lithium lanthanum zirconium oxygen, At least one of lithium lanthanum titanium oxide.
  • the sulfide solid state electrolyte includes at least one of Li 2 S, P 2 S 5 , SiS 2 , B 2 S 3 , and Z m Sn ; wherein, m and n are positive numbers, and the Z is one of Ge, Zn, and Ga.
  • the sulfide solid state electrolyte further includes lithium halide, and the content of the lithium halide in the sulfide solid state electrolyte is 5%-30%, preferably 15%-25%.
  • the sulfide solid state electrolyte comprises a mixture consisting of Li 2 S and P 2 S 5 ; a mixture consisting of Li 2 S, P 2 S 5 and LiI; and a mixture consisting of Li 2 S, P 2 S 5 and Li 2 O mixture of Li 2 S, P 2 S 5 , Li 2 O, LiI; mixture of Li 2 S, SiS 2 ; mixture of Li 2 S, SiS 2 , LiI; Li 2 S, SiS 2 , A mixture of LiBr; a mixture of Li 2 S, SiS 2 , LiCl; a mixture of Li 2 S, SiS 2 , B 2 S 3 , LiI; a mixture of Li 2 S, SiS 2 , P 2 S 5 , LiI ; A mixture of Li 2 S and B 2 S 3 ; a mixture of Li 2 S and P 2 S 5 Z m Sn .
  • the conductive agent includes at least one of Surpe-P, acetylene black, KS-6, CNT, and graphene.
  • a second aspect provides a charging protection method for a solid-state lithium-ion battery, which is applied to the solid-state lithium-ion battery described in the first aspect,
  • the charging protection method includes:
  • the solid-state lithium-ion battery is charged in the first state of charge, and the self-protection structure is electrically insulating and capable of transporting lithium ions;
  • the solid-state lithium-ion battery is charged in the second state of charge, and the self-protection structure is deformed so that the positive electrode structure and the negative electrode structure are electronically connected;
  • the solid state lithium ion battery transitions from the first state of charge to the second state of charge when the battery temperature increases.
  • the solid-state lithium-ion battery transitions from a first state of charge to a second state of charge.
  • the maximum current inside the solid-state lithium-ion battery is 200 mA/cm 2 .
  • the solid-state lithium-ion battery includes a positive electrode structure, a negative electrode structure, and a self-protection structure disposed between the positive electrode structure and the negative electrode structure.
  • the positive electrode structure includes A positive electrode
  • the negative electrode structure includes a negative electrode
  • at least one of the positive electrode structure and the negative electrode structure includes a solid electrolyte layer
  • the solid electrolyte layer has electronic conductivity;
  • the self-protection structure When the solid-state lithium-ion battery is in the first state of charge, the self-protection structure insulates electrons and can transport lithium ions; when the solid-state lithium-ion battery is in the second state of charge, the self-protection structure deforms so that the positive electrode structure and the negative electrode structure are electronically connected ;
  • the solid-state lithium-ion battery is provided with a self-protection structure inside to realize the internal self-short circuit of the solid-state lithium-ion battery when the preset state conditions are met, so as to avoid the increase of the internal pressure of the battery, the deformation of the battery, and the leakage of the battery caused by the overcharge of the battery. liquid or even fire occurs, thereby improving the safety of battery use and prolonging battery life;
  • the self-protection structure includes a temperature-sensitive layer, and the melting point of the temperature-sensitive layer is not higher than the first preset temperature threshold.
  • the self-protection structure by setting the self-protection structure as a temperature-sensitive layer with a certain melting point, when When the solid-state lithium-ion battery is overcharged and heated to make the temperature-sensitive layer reach its melting point, the temperature-sensitive layer is melted and deformed, the positive electrode structure is connected to the negative electrode structure, and the solid-state lithium-ion battery is internally self-short-circuited.
  • This method can effectively avoid solid state Lithium-ion battery is overcharged, and the self-repair of the battery is realized by melting at high temperature and crystallization at low temperature;
  • the self-protection structure includes a diaphragm arranged between the positive electrode structure and the negative electrode structure, and a thermal deformation member arranged between the solid electrolyte layer and the diaphragm.
  • the diaphragm is electrically insulating and can transport lithium ions; the deformation temperature of the thermal deformation member is not high.
  • the thermal deformation member has conductivity; when the solid-state lithium ion battery reaches the first preset temperature threshold, the thermal deformation member deforms and punctures the diaphragm to make the positive electrode structure and the negative electrode structure conduct; this method is achieved by The way that the thermal deformation member has a mechanical effect on the diaphragm after being deformed by heat, and finally connects the positive electrode structure and the negative electrode structure through the thermal deformation member and conducts electron transmission to realize the self-short circuit of the solid-state lithium-ion battery, effectively avoiding the occurrence of overcharge;
  • first and second are only used for descriptive purposes, and should not be understood as indicating or implying relative importance or implying the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 is a cross-sectional view of a solid-state lithium-ion battery in an embodiment
  • FIG. 2 is a cross-sectional view of yet another solid-state lithium-ion battery in an embodiment
  • FIG. 3 is a cross-sectional view of yet another solid-state lithium-ion battery in an embodiment
  • FIG. 4 is a cross-sectional view of yet another solid-state lithium-ion battery in an embodiment
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • this embodiment provides a solid-state lithium-ion battery and a charging protection method based on a solid-state lithium-ion battery, which can effectively avoid solid-state lithium-ion batteries. Occurrence of overcharge during charging of ion batteries.
  • this embodiment provides a solid-state lithium-ion battery 100 .
  • the solid-state lithium-ion battery 100 includes a positive electrode structure 10 , a negative electrode structure 20 , and a self-protection structure disposed between the positive electrode structure 10 and the negative electrode structure 20 .
  • the positive electrode structure 10 includes a positive electrode 11
  • the negative electrode structure 20 includes a negative electrode 21 .
  • At least one of the positive electrode structure 10 and the negative electrode structure 20 includes a solid electrolyte layer (not shown in the figure), and the solid electrolyte has electronic conductivity.
  • the solid-state lithium-ion battery 100 includes a first charging state and a second charging state during the charging process, specifically:
  • the self-protection structure When the solid-state lithium-ion battery 100 is in the first state of charge, the self-protection structure insulates electrons and is capable of transporting lithium ions.
  • the first state is a normal charging state when the solid-state lithium-ion battery is not fully charged.
  • the temperature of the solid-state lithium-ion battery in the first charging state is 30-50°C.
  • the self-protection structure deforms to make the positive electrode structure 10 and the negative electrode structure 20 conduct to form a conductive path, and the solid-state lithium-ion battery 100 is self-shorted internally.
  • the temperature of the solid-state lithium-ion battery 100 rises and reaches the first preset temperature threshold
  • the solid-state lithium-ion battery 100 transitions from the first charging state to the second charging state.
  • the second charging state is an overcharged state in which the solid-state lithium-ion battery 100 continues to charge after being fully charged.
  • the first preset temperature threshold is above 80°C, preferably above 100°C. Most preferably, the first preset temperature threshold is 130-140°C.
  • the solid-state lithium ion battery 100 is provided with a self-protection structure inside, the self-protection structure is electrically insulating and capable of transporting lithium ions, and the solid-state electrolyte layer has conductivity, so that the solid-state electrolyte layer and the self-protection structure can normally transmit lithium during use.
  • the function of ions is to realize the function of the battery, that is, during the normal discharge process, lithium ions escape from the negative electrode and enter the positive electrode; during charging, lithium ions are deintercalated from the positive electrode and embedded in the negative electrode. Meanwhile, when the solid-state lithium-ion battery 100 is in normal operation, the self-protection structure insulates electrons, so that electrons cannot pass through the self-protection structure.
  • a self-protection structure that insulates electrons and can transport lithium ions is provided inside the solid-state lithium-ion battery 100 , so that the battery can be charged and discharged when the temperature exceeds the first preset temperature threshold.
  • Internal self-short circuit avoids the occurrence of battery internal pressure increase, battery deformation, liquid leakage and even fire caused by battery overcharge, thereby improving battery safety and prolonging battery life.
  • the positive electrode structure 10 and the negative electrode structure 20 includes a solid electrolyte layer, which specifically refers to any one of the following structures: the positive electrode structure 10 includes a first solid electrolyte layer 12, and the self-protection structure is provided at Between the first solid electrolyte layer 12 and the negative electrode 21, as shown in FIG. 2; or, the negative electrode structure 20 includes a second solid electrolyte layer 22, and the self-protection structure is arranged between the positive electrode 11 and the second solid electrolyte layer 22, as shown in FIG.
  • the positive electrode structure 10 includes a first solid electrolyte layer 12 and the negative electrode structure includes a second solid electrolyte layer 22, and the self-protection structure is provided between the first solid electrolyte layer 12 and the second solid electrolyte layer 13, as shown in FIG. 1 shown.
  • the solid-state lithium-ion battery structure in this embodiment is applicable to any of the above-mentioned battery structures, and the implementation of the solution in this embodiment is not limited by the above-mentioned structure.
  • the following corresponding parts will be described by taking the specific structure that the positive electrode structure 10 includes the first solid electrolyte layer 12 and the negative electrode structure 20 includes the second solid electrolyte layer 22 as an example.
  • first solid electrolyte layer 12 and the second solid electrolyte layer 22 have electronic conductivity, and the conductivity is 10 -4 -10 -6 S/cm.
  • electrical conductivity of the first solid electrolyte layer 12 and the second solid electrolyte layer 22 are the same or different, which is not specifically limited in this embodiment.
  • the thickness of the first solid electrolyte layer 12 and the second solid electrolyte layer 22 is 10-300 ⁇ m, for example, 10 ⁇ m, 20 ⁇ m, 40 ⁇ m, 50 ⁇ m, 100 ⁇ m, 200 ⁇ m or 300 ⁇ m.
  • the thicknesses of the first solid electrolyte layer 12 and the second solid electrolyte layer 22 may be the same or different.
  • the solid electrolyte layer includes a mixture of a solid electrolyte and a conductive agent; or, the solid electrolyte layer includes a solid electrolyte.
  • the conductivity of the solid electrolyte is lower than the battery conductivity requirement, the conductivity of the solid electrolyte layer can be improved by appropriately adding a conductive agent.
  • the conductive agent includes a mixture of one or more of Surpe-P, acetylene black, KS-6, CNT, and graphene.
  • the solid electrolyte layer includes at least one of oxide solid electrolyte, sulfide solid electrolyte, selenide solid electrolyte, or even Li 2 Ti(PO4) 3 -AlPO 4 (Ohara glass) etc.
  • the oxide solid state electrolyte includes LiPON, Li 1.3 Al 0.3 Ti 0.7 (PO4) 3 , La 0.5 1Li 0.34 TiO 0.74 , Li 3 PO 4 , Li 2 SiO 2 , Li 2 SiO 4 , lithium lanthanum zirconium oxygen, lithium lanthanum At least one of titanium oxide.
  • the sulfide solid state electrolyte includes at least one of Li 2 S, P 2 S 5 , SiS 2 , B 2 S 3 , Z m Sn (m, n are positive numbers, Z is one of Ge, Zn, Ga) one or more mixtures.
  • the lithium halide may be LiF, LiCl, LiBr and LiI, preferably LiCl, LiBr and LiI.
  • the sulfide solid state electrolyte comprises a mixture composed of Li 2 S and P 2 S 5 ; a composition of Li 2 S, P 2 S 5 and LiI; a composition of Li 2 S, P 2 S 5 and Li 2 O; Li 2S, P2S5, Li2O , LiI composition; Li2S , SiS2 composition; Li2S , SiS2 , LiI composition ; Li2S , SiS2 , LiBr composition ; Li2S , SiS 2 , LiCl composition; Li 2 S, SiS 2 , B 2 S 3 , LiI composition; Li 2 S, SiS 2 , P 2 S 5 , LiI composition; Li 2 S, B 2 S 3 composition ; one of Li 2 S, P 2 S 5 Z m Sn compositions.
  • the present invention does not specifically limit the type of selenide solid state electrolyte. Any known selenide solid state electrolyte can be used in the present invention without departing from the innovative concept of the present invention.
  • the chemical structural formula is Li 2x Sn y Bi 2z Se (x+y+3z) , where 0 ⁇ x ⁇ 10, 0 ⁇ y ⁇ 10, 0 ⁇ z ⁇ 10, when y is 0, the selenide solid electrolyte does not contain Sn, but only Contains Li, Bi and Se elements; when y is not 0, it means that the selenide electrolyte of the present invention contains Li, Bi, Sn and Se elements.
  • the self-protection structure includes a temperature sensitive layer 31, and the melting point of the temperature sensitive layer 31 is not higher than a first preset temperature threshold.
  • the first The preset temperature threshold is above 80°C, preferably above 100°C.
  • the temperature sensitive layer 31 includes a fusible polymer film formed of at least one fusible polymer, and a lithium salt is added to the fusible polymer film.
  • the melting point of the meltable polymer is 80-130°C, preferably 100-130°C, more preferably 110-120°C.
  • the meltable polymer is low density polyethylene LDPE, ethylene-octene copolymer, EVA, EAA, CPE, PVC, nylon or TPU.
  • the lithium salt includes lithium perchlorate, lithium hexafluorophosphate, lithium bis-oxalate borate, lithium difluorooxalate borate, lithium trifluoromethanesulfonate, lithium bistrifluoromethanesulfonimide, or lithium bis(trifluoromethanesulfonimide) At least one of lithium fluorosulfonimide.
  • the temperature sensitive layer 31 realizes the transmission of lithium ions between the positive electrode and the negative electrode during the use of the solid-state lithium-ion battery by adding lithium salt in the fusible polymer film 31, and the solid-state lithium-ion battery is normally In use, the fusible polymer will not affect the transmission of lithium ions, and only plays the role of insulating and inhibiting the transmission of electrons between the positive and negative electrodes through the electronic insulating properties of the polymer, so as to avoid internal short circuits and ensure solid state. Battery performance of Li-ion batteries.
  • the internal temperature of the battery increases sharply; when the battery temperature reaches the first preset temperature threshold, the fusible polymer begins to melt, and as the temperature sensitive to act as an electronic insulating layer
  • the melting of the fusible polymer in the layer 31 causes an electronic conduction path between the positive and negative electrodes of the solid-state lithium-ion battery, that is, a self-short-circuit phenomenon, which alleviates the overcharge phenomenon of the solid-state lithium-ion battery and avoids the occurrence of safety accidents.
  • the self-protection structure includes a separator 32 arranged between the positive electrode structure 10 and the negative electrode structure 20 , and a thermal deformation member arranged between the solid electrolyte layer and the separator 32 . 33; wherein, the diaphragm 32 is electrically insulating and can transport lithium ions; the deformation temperature of the thermal deformation member 33 is not higher than the first preset temperature threshold, and the thermal deformation member 33 has conductivity.
  • the thermal deformation member 33 deforms and punctures the diaphragm 32 , so that the positive electrode structure 10 and the negative electrode structure 20 are electrically connected.
  • the separator 32 can also be a fusible polymer film formed of at least one fusible polymer, and lithium salt is added to the fusible polymer film. And as a preference, the melting point of the fusible polymer is higher than the deformation temperature of the thermal deformation member 33 .
  • the fusible polymer is one of low density polyethylene LDPE, ethylene-octene copolymer, EVA, EAA, CPE, PVC, nylon, and TPU.
  • the lithium salt includes at least one of lithium perchlorate, lithium hexafluorophosphate, lithium bis-oxalate borate, lithium difluorooxalate borate, lithium trifluoromethanesulfonate, lithium bistrifluoromethanesulfonimide or lithium bisfluorosulfonimide. kind.
  • the specific structure of the thermal deformation member 33 is not limited, and may be any regular or irregular structure.
  • the thermal deformation member 33 has at least one side surface opposite to the diaphragm 32, and the area of the side surface does not exceed 0.05% of the area of the corresponding side surface of the diaphragm.
  • the area of the side surface of the thermal deformation member 33 opposite to the diaphragm 32 is 0.001%-0.05% of the area of the corresponding side surface of the diaphragm 32 .
  • the thermal deformation member 33 does not interact with the diaphragm 32, which has no effect on the normal charging and discharging process of the battery.
  • the thermal deformation When overcharged or heated to the thermal deformation temperature of the thermal deformation member 33, the thermal deformation The piece 33 deforms and acts on the diaphragm 32 and pierces the diaphragm 32 .
  • the area of the side surface of the thermal deformation member 33 opposite to the diaphragm 32 is relatively small, usually not exceeding 0.05% of the corresponding surface area of the diaphragm, preferably 0.001%-0.05%.
  • the thermal deformation member 33 includes a shape memory alloy having a shape memory effect; or, the thermal deformation member 33 is made of a composite of at least two materials, and the thermal expansion coefficients of the at least two materials are different.
  • the thermal deformation member 33 includes a shape memory alloy
  • the shape memory alloy is deformed by heat and acts on the diaphragm 32 , and the thermal deformation member 33 deforms and punctures the diaphragm 32 to conduct the positive electrode structure 10 and the negative electrode structure 20 .
  • the shape memory effect refers to the phenomenon that a solid material with a certain shape, after a certain plastic deformation under certain conditions, when heated to a certain temperature, the material returns to the original shape before the transformation, that is, it can remember the shape of the parent phase. Therefore, the shape memory effect is actually a thermally induced phase transition process.
  • the thermal deformation member is a nickel-titanium shape memory alloy, which has a shape memory effect and has two-way memory.
  • the nickel-titanium shape memory alloy is a special material that combines sensing and driving.
  • NiTi shape memory alloys also have superelasticity, damping and electrical resistance properties.
  • the expansion ratio of NiTi shape memory alloy is more than 20%, the fatigue life is up to 10 ⁇ 7 times, the damping characteristic is 10 times higher than that of ordinary springs, and the corrosion resistance is better than that of the best medical stainless steel at present.
  • the thermal deformation member 33 can be performed according to its relative position with the diaphragm 32 , the deformation trend or direction, the deformation temperature, the time required for the deformation to act on the diaphragm 32 , the way the thermal deformation member 33 acts on the diaphragm 32 , etc. Customize settings.
  • the nickel-titanium memory alloy undergoes thermal deformation and pierces the diaphragm, so that an electronic conduction circuit is formed inside the solid-state lithium-ion battery 100 .
  • the temperature of the solid-state lithium-ion battery 100 drops, the nickel-titanium memory alloy returns to its original shape, and the electronic conduction circuit inside the solid-state lithium-ion battery 100 is cut off again.
  • the thermal deformation member 33 is made of at least two materials and the thermal expansion coefficients of the at least two materials are different, after the thermal deformation member 33 is heated, the two materials generate different expansion deformations at the same temperature, so that the The thermal deformation member 33 is deformed to a certain extent as a whole, and finally the thermal deformation member 33 acts on the diaphragm 32 and punctures the diaphragm 32 .
  • the thermal deformation member 33 is a composite material product in which a manganese-nickel-copper alloy is used as an outer layer and a nickel-iron alloy is used as an inner layer.
  • the thermal deformation member 33 is the above-mentioned composite material product, it is deformed by heat and the action process of the diaphragm is similar to the action process of the nickel-titanium shape memory alloy, which is not repeated here.
  • This embodiment also provides a charging protection method for a solid-state lithium-ion battery.
  • the charging and protection method is implemented based on the above-mentioned solid-state lithium-ion battery.
  • the solid-state lithium-ion battery includes a positive electrode structure, a negative electrode structure, and is disposed between the positive electrode structure and the negative electrode structure.
  • the self-protection structure, the positive electrode structure includes a positive electrode, the negative electrode structure includes a negative electrode, and at least one of the positive electrode structure and the negative electrode structure includes a solid electrolyte layer, and the solid electrolyte layer has electronic conductivity.
  • the specific structure and material of the solid-state lithium-ion battery, especially the description of the self-protection structure please refer to the specifics of the above-mentioned solid-state lithium-ion battery, which will not be repeated here.
  • the charging protection method includes:
  • the solid-state lithium ion battery is charged in the first charging state, and the self-protection structure insulates electrons and can transport lithium ions.
  • the self-protection structure includes a temperature sensitive layer 31, and the melting point of the temperature sensitive layer 31 is not higher than the first preset temperature threshold.
  • the temperature sensitive layer 31 reaches its melting point, the temperature sensitive layer 31 is melted and deformed, and the positive electrode structure 10 and the negative electrode structure 20 are connected and conducted to realize a self-short circuit inside the battery.
  • the self-protection structure includes a separator 32 arranged between the positive electrode structure 10 and the negative electrode structure 20, and a thermal deformation member 33 arranged between the solid electrolyte layer and the separator 32; wherein, the separator 32 is electrically insulating and can transport lithium ions; The deformation temperature of the thermal deformation member 33 is not higher than the first preset temperature threshold, and the thermal deformation member 33 has electrical conductivity.
  • the solid-state lithium-ion battery is charged in the second charging state, and the self-protection structure is deformed so that the positive electrode structure and the negative electrode structure are connected, so as to realize the internal self-short circuit of the solid-state lithium-ion battery to prevent overcharging.
  • the solid state lithium ion battery transitions from the first state of charge to the second state of charge when the temperature of the solid state lithium ion battery reaches a first preset temperature threshold.
  • the maximum current inside the solid-state lithium-ion battery is 200 mA/cm 2 .
  • the first preset temperature threshold is above 80°C, preferably above 100°C. Most preferably, the first preset temperature threshold is 130-140°C.
  • the solid-state lithium-ion battery is provided with a self-protection structure inside, so as to realize the internal self-short circuit of the solid-state lithium-ion battery when the temperature exceeds the first preset temperature threshold, so as to avoid the voltage rise in the battery caused by the overcharge of the battery. High battery deformation, liquid leakage and even fire occur, thereby improving the safety of battery use and prolonging battery life.
  • solid-state lithium-ion battery and the charging protection method based on the solid-state lithium-ion battery will be further illustrated below with reference to specific embodiments.
  • This embodiment provides a solid-state lithium ion battery, as shown in FIG. 1 , which includes a positive electrode structure 10 , a negative electrode structure 20 , and a self-protection structure disposed between the positive electrode structure 10 and the negative electrode structure 20 .
  • the positive electrode structure 10 includes a positive electrode 11 and a first solid electrolyte layer 12
  • the negative electrode structure 20 includes a negative electrode 21 and a second solid electrolyte layer 22
  • the self-protection structure is provided between the first solid electrolyte layer 12 and the second solid electrolyte layer 13 .
  • the self-protection structure insulates electrons and can transport lithium ions, and the first solid-state electrolyte layer 12 and the second solid-state electrolyte layer 22 have electronic conductivity, so that the first solid-state electrolyte layer 12 and the second solid-state electrolyte layer 22 can be self-conducting during use.
  • the protection structure normally transmits lithium ions to realize the battery function, that is, during normal discharge, lithium ions escape from the negative electrode 21 and enter the positive electrode 11; Meanwhile, when the solid-state lithium-ion battery 100 is in normal operation, the self-protection structure insulates electrons, so that electrons cannot pass through the self-protection structure.
  • the self-protecting structure includes a temperature sensitive layer 31 , and the temperature sensitive layer 31 is provided between the first solid electrolyte layer 12 and the second solid electrolyte layer 13 .
  • the temperature sensitive layer 31 includes a fusible polymer film formed of at least one fusible polymer, and a lithium salt is added to the fusible polymer film, wherein the lithium salt includes lithium perchlorate, lithium hexafluorophosphate, and the fusible
  • the polymer specifically includes EVA, EAA.
  • the melting point of the temperature sensitive layer 31 is: 110°C.
  • the solid-state lithium-ion battery is charged in the first charging state, and the self-protection structure insulates electrons and can transport lithium ions.
  • the solid-state lithium-ion battery is charged in the second charging state, and when the temperature of the solid-state lithium-ion battery reaches the first preset temperature threshold, the self-protection structure deforms so that the positive electrode structure and the negative electrode structure are connected.
  • the first preset temperature threshold is 130-140° C., and the maximum value of the measured internal short-circuit current is 200 mA/cm 2 .
  • the solid-state lithium-ion battery provided in this embodiment differs from the solid-state lithium-ion battery in Embodiment 1 only in that the lithium salts include lithium difluorooxalate borate, lithium trifluoromethanesulfonate, and lithium bistrifluoromethanesulfonimide.
  • the fusible polymer is specifically CPE, PVC, nylon.
  • the melting point of the temperature sensitive layer 31 is: 100°C
  • the solid-state lithium-ion battery provided in this embodiment is different from the solid-state lithium-ion battery in Embodiment 1 only in that the lithium salt includes lithium bis-oxalate borate and lithium bis-fluorosulfonimide, and the fusible polymer is specifically a low-density polymer Ethylene LDPE, ethylene-octene copolymer, TPU.
  • the melting point of the temperature sensitive layer 31 is: 130° C.
  • the solid-state lithium-ion battery provided in this embodiment differs from the solid-state lithium-ion battery in Embodiment 1 only in that, as shown in FIG. a thermal deformation member 33 between the solid electrolyte layer and the diaphragm 32; wherein the diaphragm 32 is electrically insulating and capable of transporting lithium ions; the deformation temperature of the thermal deformation member 33 is any one of the first preset temperature thresholds, and The thermal deformation member 33 has electronic conductivity.
  • the separator has the same composition and arrangement as the temperature sensitive layer 31 in Example 1, and the melting point is 120°C.
  • the thermal deformation member 33 has electronic conductivity, and the thermal deformation member 33 is specifically a nickel-titanium shape memory alloy, and the memory temperature is 102° C.
  • the thermal deformation member 33 is a composite material product composed of a manganese-nickel-copper alloy as an outer layer and a nickel-iron alloy as an inner layer, and the thermal deformation temperature is 104 °C.
  • This comparative example provides a solid-state lithium-ion battery, which does not include the self-protection structure described in Embodiment 1.
  • the solid-state lithium-ion battery is charged at 2C, and the surface of the solid-state lithium-ion battery is heated at 130° C. by an external heating device for 5 minutes.
  • Example 1 Numbering battery status battery final temperature Example 1 intact 35°C Example 2 intact 41°C Example 3 intact 39°C Example 4 intact 43°C Example 5 intact 45°C Comparative Example 1 catch fire /
  • the solid-state lithium-ion batteries prepared in Examples 1-5 compared with the solution without the self-protection structure in Comparative Example 1, are provided with a self-protection structure inside, so that when the temperature exceeds the first
  • the temperature threshold is preset, the solid-state lithium-ion battery is internally self-short-circuited, avoiding the occurrence of battery internal pressure rise, battery deformation, liquid leakage and even fire caused by battery overcharge, thereby improving battery safety and prolonging battery life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种固态锂离子电池、基于固态锂离子电池的充电保护方法,该固态锂离子电池包括正极结构、负极结构、设于正极结构与负极结构之间的自保护结构,正极结构包括正极,负极结构包括负极,正极结构、负极结构中的至少一个结构中包括固态电解质层;当固态锂离子电池处于第一充电状态时,自保护结构对电子绝缘且能输送锂离子;当固态锂离子电池处于第二充电状态时,固态锂离子电池温度达到第一预设温度阈值,自保护结构变形以使正极结构与负极结构导通;该固态锂离子电池通过在其内部设置自保护结构,实现当温度超过第一预设温度阈值时固态锂离子电池内部自短路,从而提高电池使用安全性并延长电池使用寿命。

Description

固态锂离子电池、基于固态锂离子电池的充电保护方法 技术领域
本发明涉及新能源技术领域,特别涉及一种固态锂离子电池、基于固态锂离子电池的充电保护方法。
背景技术
自上世纪90年代以来,固态锂离子电池得到了长足的发展,但电池安全依然是制约锂离子电池进一步发展的因素之一。
如,固态锂离子电池在充电时,在达到充满状态后还会继续充电造成过充。过充可能导致电池内压升高、电池变形、漏液甚至起火等情况发生,电池的性能也会显著降低或损坏。现有技术依然无法实现锂离子电池在电量充满的瞬间或预设时间段内切断电源以避免过充现象的发生。
因此,如何克服和避免电池过充现象是锂离子电池亟须解决的问题之一。
发明内容
为了解决现有技术的问题,本发明提供了一种固态锂离子电池、基于固态锂离子电池的充电保护方法,能有效避免锂离子电池的过充。
为解决上述技术问题,本发明提出如下第一技术方案:
一种固态锂离子电池,所述固态锂离子电池包括正极结构、负极结构、设于所述正极结构与所述负极结构之间的自保护结构,所述正极结构包括正极,所述负极结构包括负极,所述正极结构、所述负极结构中的至少一个结构中包括固态电解质层;
所述固态电解质层具有电子电导性;
当所述固态锂离子电池处于第一充电状态时,所述自保护结构对电子绝缘 且能输送锂离子;
当所述固态锂离子电池处于第二充电状态时,所述自保护结构变形以使所述正极结构与所述负极结构导通;
当所述固态锂离子电池的温度升高达到第一预设温度阈值时,所述固态锂离子电池从所述第一充电状态转变为所述第二充电状态。
优选地,所述第一预设温度阈值为80℃以上,优选地,为100℃以上。最优选地,所述第一预设温度阈值为130-140℃。
在一种较佳的实施方式中,所述自保护结构包括温度敏感层,所述温度敏感层的熔点不高于所述第一预设温度阈值;
当所述温度敏感层的温度达到其熔点时,所述温度敏感层熔化变形,所述正极结构与所述负极结构导通。
优选地,所述正极结构包括第一固态电解质层,所述自保护结构设于所述第一固态电解质层与所述负极之间;或,
所述负极结构包括第二固态电解质层,所述自保护结构设于所述正极与所述第二固态电解质层之间;或,
所述正极结构包括第一固态电解质层且所述负极结构包括第二固态电解质层,所述自保护结构设于所述第一固态电解质层与所述第二固态电解质层之间。
所述固态电解质层是独立的结构,固态电解质层的制备方法是已知的,可以在正极或负极表面涂布固态电解质层浆料以获得固态电解质层,也可以单独制备成膜,然后再与正极、负极、自保护结构叠片制成成品电池。
优选地,所述固态电解质层的电子电导率为10 -4-10 -6S/cm。
优选地,所述第一固态电解质层与所述第二固态电解质层的电导率相同或不同。
优选地,所述固态电解质层的厚度为10-300μm;进一步优选地,所述第一固态电解质层和所述第二固态电解质层的厚度可以相同或不同。
在一种较佳的实施方式中,所述温度敏感层包括至少一种可熔性聚合物形 成的可熔性聚合物膜,且所述可熔性聚合物膜中添加有锂盐。
在一种较佳的实施方式中,所述可熔性聚合物的熔点为100-130℃,优选为110-120℃。
在一种较佳的实施方式中,所述可熔性聚合物为低密度聚乙烯LDPE、乙烯-辛烯共聚物、EVA、EAA、CPE、PVC、尼龙、TPU中的一种。
在一种较佳的实施方式中,所述锂盐包括高氯酸锂、六氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、三氟甲磺酸锂、双三氟甲基磺酰亚胺锂或双氟磺酰亚胺锂中的至少一种。
在一种较佳的实施方式中,所述自保护结构包括设于所述正极结构与所述负极结构之间的隔膜、设于所述固态电解质层与所述隔膜之间的热变形件;
所述隔膜对电子绝缘且能输送锂离子;
所述热变形件的变形温度不高于所述第一预设温度阈值,且所述热变形件具有导电性;
当所述固态锂离子电池达到第一预设温度阈值时,所述热变形件变形且戳破所述隔膜使得所述正极结构与所述负极结构导通。
在一种较佳的实施方式中,所述隔膜包括至少一种可熔性聚合物形成的可熔性聚合物膜,且所述可熔性聚合物膜中添加有锂盐。
在一种较佳的实施方式中,所述可熔性聚合物的熔点为100-130℃,优选为110-120℃。
在一种较佳的实施方式中,所述可熔性聚合物为低密度聚乙烯LDPE、乙烯-辛烯共聚物、EVA、EAA、CPE、PVC、尼龙、TPU中的一种。
在一种较佳的实施方式中,所述锂盐包括高氯酸锂、六氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、三氟甲磺酸锂、双三氟甲基磺酰亚胺锂或双氟磺酰亚胺锂中的至少一种。
在一种较佳的实施方式中,所述热变形件与所述隔膜相对的侧面的面积不超过所述隔膜相应侧面的面积的0.05%,优选地,所述热变形件与所述隔膜相对 的侧面的面积为所述隔膜相应侧面的面积的0.001%-0.05%。
在一种较佳的实施方式中,所述热变形件包括形状记忆合金;或,
所述热变形件由至少两种材料复合制成,且所述至少两种材料的热膨胀系数不同。
优选地,所述热变形件为镍钛形状记忆合金。
优选地,所述热变形件为锰镍铜合金作为外层、镍铁合金作为内层复合而成的复合材料制品。
在一种较佳的实施方式中,所述固态电解质层包括至少一种固态电解质及导电剂组成的混合物;或,
所述固态电解质层包括至少一种固态电解质。
在一种较佳的实施方式中,所述固态电解质层包括氧化物固态电解质、硫化物固态电解质、硒化物固态电解质中的至少一种。
优选地,所述氧化物固态电解质包括LiPON、Li 1.3Al 0.3Ti 0.7(PO4) 3、La 0.51Li 0.34TiO 0.74、Li 3PO 4、Li 2SiO 2、Li 2SiO 4、锂镧锆氧、锂镧钛氧中的至少一种。
优选地,所述硫化物固态电解质包括Li 2S、P 2S 5、SiS 2、B 2S 3、Z mS n中的至少一种;其中,所述m、n为正数,所述Z为Ge、Zn、Ga中的一种。
进一步优选地,所述硫化物固态电解质还包括卤化锂,所述卤化锂的所述硫化物固态电解质中的物质的量的占比为5%-30%,优选为15%-25%。
进一步优选地,所述硫化物固态电解质包括Li 2S、P 2S 5组成的混合物;Li 2S、P 2S 5、LiI组成的混合物;Li 2S、P 2S 5、Li 2O组成的混合物;Li 2S、P 2S 5、Li 2O、LiI组成的混合物;Li 2S、SiS 2组成的混合物;Li 2S、SiS 2、LiI组成的混合物;Li 2S、SiS 2、LiBr组成的混合物;Li 2S、SiS 2、LiCl组成的混合物;Li 2S、SiS 2、B 2S 3、LiI组成的混合物;Li 2S、SiS 2、P 2S 5、LiI组成的混合物;Li 2S、B 2S 3组成的混合物;Li 2S、P 2S 5Z mS n组成的混合物中的一种混合物。
进一步优选地,所述导电剂包括Surpe-P、乙炔黑、KS-6、CNT、石墨烯中 的至少一种。
第二方面,提供一种固态锂离子电池的充电保护方法,应用于第一方面所述的固态锂离子电池中,
所述充电保护方法包括:
所述固态锂离子电池在所述第一充电状态下充电,所述自保护结构对电子绝缘且能输送锂离子;
所述固态锂离子电池在所述第二充电状态下充电,所述自保护结构变形以使所述正极结构与所述负极结构电子导通;
当所述电池温度升高时,所述固态锂离子电池从第一充电状态转变为所述第二充电状态。
在一种较佳的实施方式中,当所述固态锂离子电池温度达到第一预设温度阈值时,所述固态锂离子电池从第一充电状态转变成第二充电状态。
在一种较佳的实施方式中,所述固态锂离子电池处于第二充电状态时,所述固态锂离子电池内部的电流最大值为200mA/cm 2
本发明实施例提供的技术方案带来的有益效果是:
本实施例提供一种固态锂离子电池、基于固态锂离子电池的充电保护方法,该固态锂离子电池包括正极结构、负极结构、设于正极结构与负极结构之间的自保护结构,正极结构包括正极,负极结构包括负极,正极结构、负极结构中的至少一个结构中包括固态电解质层;所述固态电解质层具有电子电导性;
当固态锂离子电池处于第一充电状态时,自保护结构对电子绝缘且能输送锂离子;当固态锂离子电池处于第二充电状态时,自保护结构变形以使正极结构与负极结构电子导通;该固态锂离子电池通过在其内部设置自保护结构,以实现当符合预设状态条件时固态锂离子电池内部自短路,避免发生电池过充而导致的电池内压升高、电池变形、漏液甚至起火等情况发生,从而提高电池使用安全性并延长电池使用寿命;
所述自保护结构包括温度敏感层,所述温度敏感层的熔点不高于所述第一预设温度阈值,本实施例通过将自保护结构设置为具有一定熔点的温度敏感层的方式,当该固态锂离子电池过充升温使温度敏感层达到其熔点时,温度敏感层熔化变形,所述正极结构与所述负极结构导通,该固态锂离子电池内部自短路,该方式能有效避免固态锂离子电池过充现象,且通过高温熔化低温结晶的方式实现电池的自我修复;
所述自保护结构包括设于正极结构与负极结构之间的隔膜、设于固态电解质层与隔膜之间的热变形件,隔膜对电子绝缘且能输送锂离子;热变形件的变形温度不高于第一预设温度阈值,且热变形件具有导电性;当固态锂离子电池达到第一预设温度阈值时,热变形件变形且戳破隔膜使得正极结构与负极结构导通;该方式通过热变形件在受热变形后对隔膜产生机械作用的方式,最终通过热变形件连接正极结构与负极结构并进行电子传输以实现固态锂离子电池的自短路,有效避免过充现象的发生;
需要说明的是,本发明只需实现上述至少一种技术效果即可。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“垂直”“平行”“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二” 仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
附图说明
图1为实施例中的一种固态锂离子电池的剖视图;
图2为实施例中的又一种固态锂离子电池的剖视图;
图3为实施例中的又一种固态锂离子电池的剖视图;
图4为实施例中的又一种固态锂离子电池的剖视图;
图中标记:100-固态锂离子电池,10-正极结构,11-正极,12-第一固态电解质层,20-负极结构,21-负极,22-第二固态电解质层,31-温度敏感层,32-隔膜,33-热变形件。
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“垂直”“平行”“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或 位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
鉴于当前固态锂离子电池充电过程中容易出现过充而损坏电池以及发生起火、爆炸等现象,本实施例提供一种固态锂离子电池、基于固态锂离子电池的充电保护方法,能有效避免固态锂离子电池充电过程中过充的发生。
下面参考附图1-4来详细描述本发明所保护的一种固态锂离子电池、基于固态锂离子电池的充电保护方法。
如图1、2所示,本实施例提供一种固态锂离子电池100,该固态锂离子电池100包括正极结构10、负极结构20、设于正极结构10与负极结构20之间的自保护结构。正极结构10包括正极11,负极结构20包括负极21。正极结构10、负极结构20中的至少一个结构中包括固态电解质层(图未示),固态电解质具有电子电导性。
具体地,该固态锂离子电池100在充电过程中,包括第一充电状态及第二充电状态,具体为:
当固态锂离子电池100处于第一充电状态时,自保护结构对电子绝缘且能输送锂离子。第一状态为固态锂离子电池未充满电量时的正常充电状态,通常, 第一充电状态下的固态锂离子电池温度为30-50℃。
当固态锂离子电池100处于第二充电状态时,自保护结构变形以使正极结构10与负极结构20导通形成导电通路,固态锂离子电池100内部自短路。具体的,固态锂离子电池100温度升高达到第一预设温度阈值时,固态锂离子电池100从第一充电状态转变为第二充电状态。本实施例中,第二充电状态为固态锂离子电池100充满电量后继续充电的过充状态,通常,第一预设温度阈值为80℃以上,优选地,为100℃以上。最优选地,所述第一预设温度阈值为130-140℃。
该固态锂离子电池100在其内部设置自保护结构,该自保护结构对电子绝缘且能输送锂离子,且固态电解质层具有导电性,从而实现使用过程中固态电解质层和自保护结构正常传输锂离子的功能以实现电池功能,即在正常放电过程中锂离子从负极逸出,进入正极;充电时锂离子从正极脱嵌,嵌入负极。同时,固态锂离子电池100在正常工作时,自保护结构对电子绝缘,使得电子不能从自保护结构中穿过。
因此,本实施例通过在固态锂离子电池100内部设置对电子绝缘且能输送锂离子的自保护结构,在不影响电池充放电功能的前提下,实现当温度超过第一预设温度阈值时发生内部自短路,避免发生电池过充而导致的电池内压升高、电池变形、漏液甚至起火等情况发生,从而提高电池使用安全性并延长电池使用寿命。
需要说明的是,正极结构10、负极结构20中的至少一个结构中包括固态电解质层,具体指下述结构中的任意一种:正极结构10包括第一固态电解质层12,自保护结构设于第一固态电解质层12与负极21之间,如图2所示;或,负极结构20包括第二固态电解质层22,自保护结构设于正极11与第二固态电解质层22之间,如图3所示;或,正极结构10包括第一固态电解质层12且负极结构包括第二固态电解质层22,自保护结构设于第一固态电解质层12与第二固态电解质层13之间,如图1所示。
本实施例中的固态锂离子电池结构均适用于上述任意一种电池结构,且本实施例中方案的实施不以上述结构为限制。为了便于描述,下述相应部分以正极结构10包括第一固态电解质层12且负极结构20包括第二固态电解质层22这一具体结构为例进行描述。
进一步,第一固态电解质层12及第二固态电解质层22具有电子电导性,电导率为10 -4-10 -6S/cm。并且,第一固态电解质层12与第二固态电解质层22的电导率相同或不同,本实施例对此不作具体限制。
以及,第一固态电解质层12及第二固态电解质层22的厚度为10-300μm,例如10μm、20μm、40μm、50μm、100μm、200μm或300μm等。优选地,第一固态电解质层12和第二固态电解质层22的厚度可以相同或不同。
更进一步地,固态电解质层包括固态电解质及导电剂组成的混合物;或,固态电解质层包括固态电解质。具体地,当固态电解质的电导率低于电池电导率要求时,可通过适当添加导电剂的方式提高固态电解质层的电导率。优选地,导电剂包括Surpe-P、乙炔黑、KS-6、CNT、石墨烯中的一种或多种的混合物。
本实施例对于固态电解质层所包括的具体固态电解质类型及数量并不加以限制,优选的,固态电解质层包括氧化物固态电解质、硫化物固态电解质、硒化物固态电解质中的至少一种,甚至是Li 2Ti(PO4) 3-AlPO 4(Ohara玻璃)等。
具体地,氧化物固态电解质包括LiPON、Li 1.3Al 0.3Ti 0.7(PO4) 3、La 0.51Li 0.34TiO 0.74、Li 3PO 4、Li 2SiO 2、Li 2SiO 4、锂镧锆氧、锂镧钛氧中的至少一种。
硫化物固态电解质包括Li 2S、P 2S 5、SiS 2、B 2S 3、Z mS n(m、n为正数,Z为Ge、Zn、Ga中的一种)中的至少一种或多种的混合物。优选的,硫化物固态电解质中还包括卤化锂LiX(X=F、I、Cl、Br),卤化锂在硫化物固态电解质中的物质的量的占比为5%-30%,优选为15%-25%。具体地,卤化锂可以为LiF、LiCl、LiBr和LiI,优选为LiCl、LiBr和LiI。
进一步优选地,硫化物固态电解质包括Li 2S、P 2S 5组成的混合物;Li 2S、P 2S 5、 LiI组合物;Li 2S、P 2S 5、Li 2O组合物;Li 2S、P 2S 5、Li 2O、LiI组合物;Li 2S、SiS 2组合物;Li 2S、SiS 2、LiI组合物;Li 2S、SiS 2、LiBr组合物;Li 2S、SiS 2、LiCl组合物;Li 2S、SiS 2、B 2S 3、LiI组合物;Li 2S、SiS 2、P 2S 5、LiI组合物;Li 2S、B 2S 3组合物;Li 2S、P 2S 5Z mS n组合物中的一种组合物。
本发明对硒化物固态电解质的种类没有特别限定,在不违背本发明创新构思的基础上,任何已知的硒化物固态电解质均能用于本发明中,作为一种示例,化学结构式为Li 2xSn yBi 2zSe (x+y+3z),其中,0<x<10,0≤y<10,0<z<10,当y为0时,硒化物固态电解质中不含Sn,而仅含有Li、Bi和Se元素;当y不为0时,代表本发明的硒化物电解质中含有Li、Bi、Sn和Se元素。
进一步参照图1所示,在第一种具体的实施方式中,自保护结构包括温度敏感层31,温度敏感层31的熔点不高于第一预设温度阈值,在具体应用中,该第一预设温度阈值为80℃以上,优选地为100℃以上。当温度敏感层31的温度达到其熔点时,温度敏感层熔化变形,电池内部正极结构10与负极结构20之间连通有电子通路导致内部自短路。
具体地,温度敏感层31包括至少一种可熔性聚合物形成的可熔性聚合物膜,且可熔性聚合物膜中添加有锂盐。优选的,可熔性聚合物的熔点为80-130℃,优选为100-130℃,更优选为110-120℃。
在一种较佳的实施方式中,可熔性聚合物为低密度聚乙烯LDPE、乙烯-辛烯共聚物、EVA、EAA、CPE、PVC、尼龙或TPU。
在一种较佳的实施方式中,锂盐包括高氯酸锂、六氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、三氟甲磺酸锂、双三氟甲基磺酰亚胺锂或双氟磺酰亚胺锂中的至少一种。
该实施方式中,温度敏感层31通过在可熔性聚合物膜31中添加锂盐以实现固态锂离子电池使用过程中锂离子在正、负极之间的传输,且在该固态锂离子电池正常使用中,可熔性聚合物不会对锂离子的传输造成影响,仅通过聚合物的电子绝缘特性起到绝缘及抑制电子在正、负极之间传输的作用,以避免造 成内短路,保证固态锂离子电池的电池性能。
在充电过程中,当固态锂离子电池发生过充,电池内部温度急剧升高;当电池温度达到第一预设温度阈值时,可熔性聚合物开始熔化,随着充当电子绝缘层的温度敏感层31中可熔性聚合物的熔化,固态锂离子电池正、负极之间出现电子导电通路即自短路现象,使得固态锂离子电池的过充现象得到缓解,避免了安全事故的发生。
进一步参照图4所示,在第二种具体的实施方式中,自保护结构包括设于正极结构10与负极结构20之间的隔膜32、设于固态电解质层与隔膜32之间的热变形件33;其中,隔膜32对电子绝缘且能输送锂离子;热变形件33的变形温度不高于第一预设温度阈值,且热变形件33具有导电性。
该结构下,当固态锂离子电池100受热达到第一预设温度阈值时,热变形件33变形且戳破隔膜32,使得正极结构10与负极结构20导通。
其中,隔膜32同样可以为至少一种可熔性聚合物形成的可熔性聚合物膜,且所述可熔性聚合物膜中添加有锂盐。且作为一种优选,可熔性聚合物的熔点高于热变形件33的变形温度。
可熔性聚合物为低密度聚乙烯LDPE、乙烯-辛烯共聚物、EVA、EAA、CPE、PVC、尼龙、TPU中的一种。锂盐包括高氯酸锂、六氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、三氟甲磺酸锂、双三氟甲基磺酰亚胺锂或双氟磺酰亚胺锂中的至少一种。
本实施例对于热变形件33的具体结构并不限制,可以为任意规则及不规则结构。热变形件33具有至少一个与隔膜32相对的侧面,且该侧面的面积不超过隔膜相应侧面的面积的0.05%。优选地,热变形件33与隔膜32相对的侧面的面积为隔膜32相应侧面的面积的0.001%-0.05%。在正常使用及充电过程中,热变形件33与隔膜32不产生相互作用,对于电池的正常充电及放电过程没有影响,当过充或加热至热变形件33达到其热变形温度时,热变形件33变形并作用于隔膜32且戳穿隔膜32。
具体地,热变形件33与隔膜32相对的侧面面积较小,通常面积不超过隔膜相应面面积的0.05%,优选为0.001%-0.05%。
为实现热变形件33的形变特性,热变形件33包括具有形状记忆效应的形状记忆合金;或,热变形件33由至少两种材料复合制成,且至少两种材料的热膨胀系数不同。
当热变形件33包括形状记忆合金时,形状记忆合金受热变形并作用于隔膜32,热变形件33变形且戳破隔膜32起到导通正极结构10与负极结构20的作用。
形状记忆效应是指具有一定形状的固体材料,在某种条件下经过一定的塑性变形后,加热到一定温度时,材料又回复在变相前原来形状的现象,即它能记忆母相的形状。故实际上形状记忆效应是一个由热诱发的相变过程。
具体地,该热变形件为镍钛形状记忆合金,具有形状记忆效应,且为双向记忆,镍钛形状记忆合金是一种感知与驱动相结合的特殊材料。此外,镍钛形状记忆合金还具有超弹性、阻尼性及电阻性等特性。镍钛形状记忆合金伸缩率在20%以上,疲劳寿命达10^7次,阻尼特性比普通的弹簧高10倍,耐腐蚀性优于目前最好的医用不锈钢。
当然,热变形件33可根据其与隔膜32的相对位置、变形趋势或方向、变形温度、变形开始到作用于隔膜32所需的时间、热变形件33作用于隔膜32的作用方式等目标进行自定义设置。
当固态锂离子电池100过充,其内部温度达到第一预设温度阈值时,镍钛记忆合金发生热变形,戳穿隔膜,使得固态锂离子电池100内部形成电子导通电路。当充电结束,固态锂离子电池100温度下降,镍钛记忆合金恢复原来形状,固态锂离子电池100内部的电子导通电路被重新切断。
当热变形件33由至少两种材料复合制成且该至少两种材料的热膨胀系数不同的方案时,热变形件33受热后,两种材料在相同的温度下产生不同的膨胀形变,从而使热变形件33整体产生一定形变,最终热变形件33作用于隔膜32并 戳破隔膜32。
具体地,热变形件33为锰镍铜合金作为外层、镍铁合金作为内层复合而成的复合材料制品。当热变形件33为上述复合材料制品,受热变形且与隔膜作用过程与镍钛形状记忆合金作用过程类似,此处不作赘述。
本实施例还提供一种固态锂离子电池的充电保护方法,该充电保护方法基于上述的固态锂离子电池实现,该固态锂离子电池包括正极结构、负极结构、设于正极结构与负极结构之间的自保护结构,正极结构包括正极,负极结构包括负极,正极结构、负极结构中的至少一个结构中包括固态电解质层,固态电解质层具有电子电导性。该固态锂离子电池的具体结构及材质,特别是自保护结构的描述请参照上述固态锂离子电池中的具体,此处不作赘述。
该充电保护方法包括:
S1、固态锂离子电池在第一充电状态下充电,自保护结构对电子绝缘且能输送锂离子。
具体地,自保护结构包括温度敏感层31,温度敏感层31的熔点不高于第一预设温度阈值。当温度敏感层31的温度达到其熔点时,温度敏感层31熔化变形,正极结构10与负极结构20连接并导通实现电池内部自短路。
或,自保护结构包括设于正极结构10与负极结构20之间的隔膜32、设于固态电解质层与隔膜32之间的热变形件33;其中,隔膜32对电子绝缘且能输送锂离子;热变形件33的变形温度不高于第一预设温度阈值,且热变形件33具有导电性。
S2、固态锂离子电池在第二充电状态下充电,自保护结构变形以使正极结构与负极结构导通,实现固态锂离子电池内部自短路以防止过充。
优选地,当固态锂离子电池温度达到第一预设温度阈值时,固态锂离子电池从第一充电状态转变成第二充电状态。固态锂离子电池处于第二充电状态时,该固态锂离子电池内部的电流最大值为200mA/cm 2
优选地,所述第一预设温度阈值为80℃以上,优选地,为100℃以上。最 优选地,所述第一预设温度阈值为130-140℃。
由此可见,该固态锂离子电池通过在其内部设置自保护结构,以实现当温度超过第一预设温度阈值时固态锂离子电池内部自短路,避免发生电池过充而导致的电池内压升高、电池变形、漏液甚至起火等情况发生,从而提高电池使用安全性并延长电池使用寿命。
下面将结合具体的实施方式对该固态锂离子电池、基于固态锂离子电池的充电保护方法作进一步的举例说明。
实施例1
本实施例提供一种固态锂离子电池,如图1所示,其包括正极结构10、负极结构20、设于正极结构10与负极结构20之间的自保护结构。正极结构10包括正极11、第一固态电解质层12,负极结构20包括负极21、第二固态电解质层22,自保护结构设于第一固态电解质层12与第二固态电解质层13之间。
自保护结构对电子绝缘且能输送锂离子,第一固态电解质层12、第二固态电解质层22具有电子电导性,以实现使用过程中第一固态电解质层12、第二固态电解质层22和自保护结构正常传输锂离子的功能以实现电池功能,即在正常放电过程中锂离子从负极21逸出,进入正极11;充电时锂离子从正极11脱嵌,嵌入负极21。同时,固态锂离子电池100在正常工作时,自保护结构对电子绝缘,使得电子不能从自保护结构中穿过。
自保护结构包括温度敏感层31,温度敏感层31设于第一固态电解质层12与第二固态电解质层13之间。
温度敏感层31包括至少一种可熔性聚合物形成的可熔性聚合物膜,且可熔性聚合物膜中添加有锂盐,其中的锂盐包括高氯酸锂、六氟磷酸锂,可熔性聚合物具体包括EVA、EAA。温度敏感层31的熔点为:110℃。
本实施例中的固态锂离子电池在充电过程中的充电保护方法包括如下步骤:
S1、固态锂离子电池在第一充电状态下充电,自保护结构对电子绝缘且能 输送锂离子。
S2、固态锂离子电池在第二充电状态下充电,当固态锂离子电池温度达到第一预设温度阈值时,自保护结构变形以使正极结构与负极结构导通。
该第一预设温度阈值为130-140℃,且测得内短路的电流最大值为200mA/cm 2
实施例2:
本实施例提供的固态锂离子电池,与实施例1中的固态锂离子电池区别仅在于:锂盐包括二氟草酸硼酸锂、三氟甲磺酸锂、双三氟甲基磺酰亚胺锂,可熔性聚合物具体为CPE、PVC、尼龙。温度敏感层31的熔点为:100℃
实施例3:
本实施例提供的固态锂离子电池,与实施例1中的固态锂离子电池区别仅在于:锂盐包括双草酸硼酸锂、双氟磺酰亚胺锂,可熔性聚合物具体为低密度聚乙烯LDPE、乙烯-辛烯共聚物、TPU。温度敏感层31的熔点为:130℃
实施例4:
本实施例提供的固态锂离子电池,与实施例1中的固态锂离子电池区别仅在于:如图4所示,自保护结构包括设于正极结构10与负极结构20之间的隔膜32、设于固态电解质层与隔膜32之间的热变形件33;其中,隔膜32对电子绝缘且能输送锂离子;热变形件33的变形温度为第一预设温度阈值中的任一温度值,且热变形件33具有电子导电性。
其中,隔膜与实施例1中的温度敏感层31的组分及设置方式相同,熔点为120℃。热变形件33具有电子导电性,且热变形件33具体为镍钛形状记忆合金,记忆温度为102℃
实施例5
本实施例提供的固态锂离子电池,与实施例4的区别在于:热变形件33具体为锰镍铜合金作为外层、镍铁合金作为内层复合而成的复合材料制品,热变形温度为104℃。
对比例1
本对比例提供一种固态锂离子电池,其不包括实施例1所述的自保护结构。
将上述实施例1-5及对比例1制备获得的固态锂离子电池进行如下充电测试并获得如表1所示相应的测试结果。
充电测试方法:
S10、以2C对固态锂离子电池进行充电,并通过外部加热装置对该固态锂离子电池表面在130℃下进行加热并加热维持5min。
S20、加热5min后对固态锂离子电池继续充电,以使固态锂离子电池在30min内充电30min。
S30、在达到30min充电时间后,记录固态锂离子电池测试结束时的电池温度及电池形态,具体如下表1所示。
表1
编号 电池状态度 电池最终温度
实施例1 完好 35℃
实施例2 完好 41℃
实施例3 完好 39℃
实施例4 完好 43℃
实施例5 完好 45℃
对比例1 起火 /
基于上述表1可知,实施例1-5中制备的的固态锂离子电池相较于对比例1中未设置自保护结构的方案,通过在其内部设置自保护结构,以实现当温度超过第一预设温度阈值时固态锂离子电池内部自短路,避免发生电池过充而导致的电池内压升高、电池变形、漏液甚至起火等情况发生,从而提高电池使用安全性并延长电池使用寿命。
上述所有可选技术方案,可以采用任意结合形成本发明的可选实施例,即可将任意多个实施例进行组合,从而获得应对不同应用场景的需求,均在本申 请的保护范围内,在此不再一一赘述。
需要说明的是,以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种固态锂离子电池,其特征在于,所述固态锂离子电池包括正极结构、负极结构、设于所述正极结构与所述负极结构之间的自保护结构,所述正极结构包括正极,所述负极结构包括负极,所述正极结构、所述负极结构中的至少一个结构中包括固态电解质层;
    所述固态电解质层具有电子电导性;
    当所述固态锂离子电池处于第一充电状态时,所述自保护结构对电子绝缘且能输送锂离子;
    当所述固态锂离子电池处于第二充电状态时,所述自保护结构变形以使所述正极结构与所述负极结构电子导通。
  2. 根据权利要求1所述的固态锂离子电池,其特征在于,所述自保护结构包括温度敏感层,所述温度敏感层的熔点不高于第一预设温度阈值;
    当所述温度敏感层的温度达到其熔点时,所述温度敏感层熔化变形,所述正极结构与所述负极结构导通;
    优选地,所述温度敏感层包括至少一种可熔性聚合物形成的可熔性聚合物膜,且所述可熔性聚合物膜中添加有锂盐。
  3. 根据权利要求2所述的固态锂离子电池,其特征在于,所述可熔性聚合物的熔点为100-130℃;
    优选地,所述可熔性聚合物为低密度聚乙烯LDPE、乙烯-辛烯共聚物、EVA、EAA、CPE、PVC、尼龙、TPU中的一种。
    优选地,所述锂盐包括高氯酸锂、六氟磷酸锂、双草酸硼酸锂、二氟草酸硼酸锂、三氟甲磺酸锂、双三氟甲基磺酰亚胺锂或双氟磺酰亚胺锂中的至少一种。
  4. 根据权利要求2所述的固态锂离子电池,其特征在于,所述自保护结构包括设于所述正极结构与所述负极结构之间的隔膜、设于所述固态电解质层与 所述隔膜之间的热变形件;
    所述隔膜对电子绝缘且能输送锂离子;
    所述热变形件的变形温度不高于所述第一预设温度阈值,且所述热变形件具有导电性;
    当所述固态锂离子电池达到第一预设温度阈值时,所述热变形件变形且戳破所述隔膜使得所述正极结构与所述负极结构导通。
  5. 根据权利要求4所述的固态锂离子电池,其特征在于,所述热变形件与所述隔膜相对的侧面的面积不超过所述隔膜相应侧面的面积的0.05%。
  6. 根据权利要求4所述的固态锂离子电池,其特征在于,所述热变形件包括形状记忆合金;或,
    所述热变形件由至少两种材料复合制成,且所述至少两种材料的热膨胀系数不同。
  7. 根据权利要求1-6任意一项所述的固态锂离子电池,其特征在于,所述固态电解质层包括固态电解质及导电剂组成的混合物;或,
    所述固态电解质层包括固态电解质。
  8. 根据权利要求7所述的固态锂离子电池,其特征在于,所述固态电解质层包括氧化物固态电解质层、硫化物固态电解质层、硒化物固态电解质层的一种或多种的混合物。
  9. 一种固态锂离子电池的充电保护方法,应用于如权利要求1-8任一项所述的固态锂离子电池中,其特征在于,所述充电保护方法包括:
    所述固态锂离子电池在所述第一充电状态下充电,所述自保护结构对电子绝缘且能输送锂离子;
    所述固态锂离子电池在所述第二充电状态下充电,所述自保护结构变形以使所述正极结构与所述负极结构电子导通;
    当所述电池温度升高时,所述固态锂离子电池从第一充电状态转变为所述第二充电状态。
  10. 如权利要求9所述的固态锂离子电池的充电保护方法,其特征在于,所述固态锂离子电池处于第二充电状态时,所述锂离子电池内部的电流最大值为200mA/cm 2
PCT/CN2021/138613 2021-02-09 2021-12-16 固态锂离子电池、基于固态锂离子电池的充电保护方法 WO2022170850A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110181059.5 2021-02-09
CN202110181059.5A CN112820934B (zh) 2021-02-09 2021-02-09 固态锂离子电池、基于固态锂离子电池的充电保护方法

Publications (1)

Publication Number Publication Date
WO2022170850A1 true WO2022170850A1 (zh) 2022-08-18

Family

ID=75864930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138613 WO2022170850A1 (zh) 2021-02-09 2021-12-16 固态锂离子电池、基于固态锂离子电池的充电保护方法

Country Status (2)

Country Link
CN (1) CN112820934B (zh)
WO (1) WO2022170850A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820934B (zh) * 2021-02-09 2022-11-04 苏州清陶新能源科技有限公司 固态锂离子电池、基于固态锂离子电池的充电保护方法
CN116073090B (zh) * 2023-04-06 2023-06-20 宁德新能源科技有限公司 电化学装置及电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078717A (zh) * 2014-06-24 2014-10-01 清华大学 电池内短路的测试装置及触发方法
CN109346661A (zh) * 2018-10-16 2019-02-15 清华大学 内短路触发电池与电池内短路触发方法
CN109478607A (zh) * 2017-02-23 2019-03-15 丰田自动车欧洲公司 固态电池
CN111293317A (zh) * 2020-02-29 2020-06-16 天津国安盟固利新材料科技股份有限公司 一种可充放固体电池用多功能复合负极片、制备方法及二次电池
US20200373565A1 (en) * 2018-03-28 2020-11-26 Fujifilm Corporation All-solid state secondary battery and method of manufacturing the same
CN112820934A (zh) * 2021-02-09 2021-05-18 苏州清陶新能源科技有限公司 固态锂离子电池、基于固态锂离子电池的充电保护方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205488409U (zh) * 2016-01-27 2016-08-17 清华大学 电池内短路测试装置
CN106229447A (zh) * 2016-08-10 2016-12-14 东莞永蓝电子科技有限公司 一种锂离子电池
JP6547768B2 (ja) * 2017-01-17 2019-07-24 トヨタ自動車株式会社 全固体リチウムイオン電池の製造方法
CN110581314B (zh) * 2018-06-08 2021-12-14 郑州宇通集团有限公司 一种多层结构复合固态电解质膜及其制备方法、固态电池
CN110247112A (zh) * 2019-06-25 2019-09-17 哈尔滨工业大学 一种“三明治”结构的高润湿性硫化物基复合电解质及其制备方法与应用
CN112242560A (zh) * 2019-07-19 2021-01-19 中国科学院物理研究所 一种固态锂电池及其电极-隔膜层界面改善方法和应用
CN110867608A (zh) * 2019-11-28 2020-03-06 成都新柯力化工科技有限公司 一种抑制固态锂电池自放电的电解质制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078717A (zh) * 2014-06-24 2014-10-01 清华大学 电池内短路的测试装置及触发方法
CN109478607A (zh) * 2017-02-23 2019-03-15 丰田自动车欧洲公司 固态电池
US20200373565A1 (en) * 2018-03-28 2020-11-26 Fujifilm Corporation All-solid state secondary battery and method of manufacturing the same
CN109346661A (zh) * 2018-10-16 2019-02-15 清华大学 内短路触发电池与电池内短路触发方法
CN111293317A (zh) * 2020-02-29 2020-06-16 天津国安盟固利新材料科技股份有限公司 一种可充放固体电池用多功能复合负极片、制备方法及二次电池
CN112820934A (zh) * 2021-02-09 2021-05-18 苏州清陶新能源科技有限公司 固态锂离子电池、基于固态锂离子电池的充电保护方法

Also Published As

Publication number Publication date
CN112820934B (zh) 2022-11-04
CN112820934A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN109755463B (zh) 一种电极极片、电化学装置及安全涂层
CN109755467B (zh) 一种电极极片、电化学装置及安全涂层
TWI624979B (zh) 鋰離子二次電池用正極及使用其之鋰離子二次電池
US20190140281A1 (en) Positive electrode plate, electrochemical device and safety coating
WO2022170850A1 (zh) 固态锂离子电池、基于固态锂离子电池的充电保护方法
US10439260B2 (en) Battery
US20080241684A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP5656521B2 (ja) 非水電解液電池
JP2002526897A (ja) Ptcポリマーを含む複合電極
WO2007072833A1 (ja) リチウムイオン二次電池
JPH10199574A (ja) 非水電解液電池
JPWO2009144919A1 (ja) 円筒形非水電解液二次電池
JP2011210450A (ja) 電池用電極板および電池
US20130004827A1 (en) Nonaqueous electrolyte secondary battery
JP2012059404A5 (zh)
JP2011029079A (ja) 非水電解質二次電池
JP5904383B2 (ja) リチウム二次電池
JP2015002168A (ja) 二次電池
JP2007194203A (ja) リチウムイオン二次電池
JP2010257811A (ja) 二次電池
US20140370360A1 (en) Secondary battery
JP2015002169A (ja) 二次電池及び二次電池用の電極
WO1999067837A1 (en) Electrode, method of producing electrode, and cell comprising the electrode
CN214280149U (zh) 一种极耳及电池
KR20140024600A (ko) 상변화 물질을 포함하는 리튬이온 이차전지 셀 및 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925496

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2024)