WO2022169164A1 - 마이크로 엘이디 선택적 공기층 전사 프린트 장치 - Google Patents

마이크로 엘이디 선택적 공기층 전사 프린트 장치 Download PDF

Info

Publication number
WO2022169164A1
WO2022169164A1 PCT/KR2022/001245 KR2022001245W WO2022169164A1 WO 2022169164 A1 WO2022169164 A1 WO 2022169164A1 KR 2022001245 W KR2022001245 W KR 2022001245W WO 2022169164 A1 WO2022169164 A1 WO 2022169164A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
laser light
unit
stage
wafer
Prior art date
Application number
PCT/KR2022/001245
Other languages
English (en)
French (fr)
Inventor
민성욱
Original Assignee
(주)하드램
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)하드램 filed Critical (주)하드램
Priority to US18/273,890 priority Critical patent/US20240079516A1/en
Priority to CN202280012726.XA priority patent/CN116868322A/zh
Publication of WO2022169164A1 publication Critical patent/WO2022169164A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present invention relates to a micro LED selective air layer transfer printing apparatus, and more specifically, a micro LED having a structure in which the wafer stage and the substrate stage constituting the micro LED selective air layer transfer printing apparatus can be precisely moved according to the working conditions. It relates to a selective air layer transfer printing apparatus.
  • the demand for light emitting diodes has also increased as the use of indicator lights of electronic devices, numeric keypads of calculators, backlights of LED TVs, and various lighting devices has increased.
  • the light emitting diode injects holes and electrons by applying a voltage to the P-N junction diode in the forward direction (positive for N type, negative for P type), and emits energy from the recombination as light. Also called LED (Light Emitting Diode), It is attracting attention in the application field of next-generation lighting equipment because of its high efficiency, long lifespan, and the ability to significantly reduce power consumption and maintenance costs.
  • LED manufacturing uses III-V compound semiconductors such as gallium nitride (GaN), gallium phosphide (GaP), gallium arsenide (GaAs), and the like.
  • III-V compound semiconductors have excellent metal stability and have a direct-transition type energy band structure.
  • LED which is being studied a lot as a global issue recently, is not the existing optical device for large - area lamps at the cm2 level, but the technology to develop a micro-level LED chip with a light emitting area of 100 ⁇ m ⁇ 100 ⁇ m class is a hot topic. .
  • the most necessary technology to use the micro LED chip as a cell of the light source is the technology to transfer the micro LED chip onto a transparent glass substrate that uses it as a display material.
  • micro LED structure is grown on a wafer substrate and then the LED structure is transferred to a glass substrate using air gap print technology. skills are required
  • An object of the present invention is to provide a micro LED selective air layer transfer printing apparatus having a structure that minimizes the change in the gap between the wafer substrate and the glass substrate generated when the wafer substrate and the glass substrate are moved during the micro LED chip transfer process.
  • the present invention relates to a laser light source unit irradiating laser light, a wafer unit located under the laser light source unit to receive the laser light emitted from the laser light source unit, and a glass substrate located under the wafer unit to transfer the micro LED chip of the wafer unit.
  • a micro LED selective air layer transfer printing apparatus comprising a part, wherein the glass substrate part includes a substrate stage positioned below the wafer part, and a substrate elevation part for raising and lowering the entire substrate stage or only a part of the substrate stage.
  • the laser light source unit includes a laser light source for generating laser light, a barrel through which the laser light emitted from the laser light source passes, and a mask unit in which a non-transmissive layer is formed to partially block and selectively pass laser light passing through the barrel; , it may include a projection lens unit for enlarging the magnification of the laser light transmitted through the mask unit to fit the area of the wafer.
  • the wafer part may include a wafer stage in which a laser light transmitting part through which the laser light passes, a wafer vacuum-adsorbed to a lower portion of the wafer stage, and a micro LED chip formed on a lower surface of the wafer.
  • the glass substrate unit includes a substrate elevating support formed on the upper portion of the substrate elevating unit, a substrate left and right movement guide for guiding the substrate lifting and lowering support to move left and right, and a left and right substrate on which the substrate left and right movement guide is formed. It may further include a moving support, and a substrate forward and backward movement unit for guiding the substrate left and right movement support to move back and forth.
  • the substrate elevating unit is formed in plurality, and each of the substrate elevating units includes a first driving unit, a first driving shaft of the first driving unit, a driving inclined member that is moved back and forth as the first driving shaft is rotated, and the driving inclination It may include a driven inclined member that is in contact with the member and is raised and lowered by the driving inclined member, and an elevation guide part formed to guide the elevation of the driven inclined member.
  • the barrel unit includes an attenuator module configured to control power while passing the laser light, and a beam shape for forming a beam shape of the laser light passing through the attenuator module to reduce a difference in energy intensity generated depending on the position of the beam irradiation surface. and a field lens unit for reducing distortion of the laser light passing through the beam forming unit.
  • the wafer unit may further include an additional elevating unit formed below the circumference of the wafer center hole of the wafer stage, a wafer adsorbing unit formed below the additional elevating/lowering unit, and a distance measuring sensor installed in the wafer adsorbing unit.
  • a substrate rotating unit for rotating the substrate stage may be further formed between the lower portion of the substrate stage and the upper portion of the substrate lifting and lowering support.
  • a stage support member for supporting the lower portion of the substrate stage may be further formed on the substrate elevating support.
  • An inclined protrusion may be formed in the driving inclined member, and an inclined inlet groove into which the inclined protrusion is introduced may be formed in the driven inclined member.
  • An elevating protrusion is formed on the rear surface of the driven inclined member, and an elevating groove into which the elevating protrusion is introduced may be formed in the elevating guide part.
  • An elevation panel in contact with a lower portion of the substrate stage may be formed on an upper portion of the driven inclined member.
  • the beam forming unit may include a first homogenization array unit, a second homogenization array unit spaced apart from the first homogenization array unit and formed side by side, and a capacitor lens unit spaced apart from the second homogenization array unit and formed side by side.
  • the substrate rotating unit includes a rotation center circular pillar member formed in the center of the substrate lifting and lowering support, a rotation pillar member formed around the rotation center circular pillar member, and a substrate driven rotation member formed at one side of the substrate stage; , a substrate driving rotation member formed on an upper side of the substrate lifting and lowering support to rotate the substrate driven rotation member, and as the substrate driven rotation member moves by the substrate driving rotation member, the rotation center circular pillar member
  • the rotating column member may be rotated about the center.
  • the stage support member is formed to be movable in a direction perpendicular to a stage support cylinder portion, a first direction movement support portion formed under the stage support cylinder portion, and a first direction movement support portion below the first direction movement support portion. It may include a support for moving in the second direction.
  • a first elastic member coupled to the elevating panel may be further formed, and an auxiliary elastic member may be formed between the first elastic member and the substrate elevating support.
  • the substrate driving rotating member includes a rotation driving unit formed on an upper side of the substrate elevating support, a rotation driving shaft connected to the rotation driving unit, and a first direction moving member moving in a first direction according to the rotation of the rotation driving shaft; , a first direction guide member for guiding the movement of the first direction moving member, a second direction guide part formed on the first direction moving member, and perpendicular to the first direction along the second direction guide part It may include a second direction moving member formed to move in the formed second direction, and a cylindrical member inlet groove formed on an upper portion of the second direction moving member and into which the driven cylindrical member is introduced.
  • the present invention has the effect of providing a micro LED selective air layer transfer printing apparatus having a structure that minimizes the change in the gap between the wafer and the glass substrate generated when the wafer and the glass substrate are moved during the micro LED chip transfer process.
  • Fig. 1 (a) is a schematic side view showing an important part of the micro LED selective air layer transfer printing apparatus of the present invention
  • Fig. 1 (b) is a schematic schematic diagram of optical system beam processing of the micro LED selective air layer transfer printing apparatus of the present invention
  • Fig. Fig. 1(c) is a schematic diagram showing a beam passing through the optical system of the micro LED selective air layer transfer printing apparatus according to the present invention.
  • FIG. 2 is a schematic front view showing a wafer
  • FIG. 3 is a first conceptual diagram illustrating a process in which a micro LED chip is transferred.
  • FIG. 4 is a second conceptual diagram illustrating a process in which a micro LED chip is transferred.
  • FIG. 5 is a schematic front view showing the main part of the micro LED selective air layer transfer printing apparatus according to the present invention.
  • FIG. 6 is a schematic exploded perspective view in which the substrate stage and the substrate elevating support are separated from FIG. 5 .
  • Fig. 7(a) is a schematic perspective view illustrating a case where the substrate stage is raised/lowered by the deformation driving unit
  • Fig. 7(b) is a schematic perspective view illustrating a case where the substrate stage is inclined by the deformation driving unit.
  • Figure 8 (a) is a schematic perspective view of the wafer forward and backward movement passive member
  • Figure 8 (b) is a schematic front view of the wafer forward and backward movement passive member.
  • Fig. 1 (a) is a schematic side view showing an important part of the micro LED selective air layer transfer printing apparatus of the present invention
  • Fig. 1 (b) is a schematic schematic diagram of optical system beam processing of the micro LED selective air layer transfer printing apparatus of the present invention
  • Fig. Fig. 1 (c) is a schematic diagram showing a beam passing through the optical system of the micro LED selective air layer transfer printing apparatus according to the present invention
  • Fig. 2 is a schematic front view showing the wafer.
  • the present invention micro LED selective air layer transfer printing apparatus 100 includes a laser light source unit 120 for irradiating laser light, and a wafer unit located below the laser light source unit 120 to receive the laser light irradiated from the laser light source unit 120 . 140 and a glass substrate unit 160 positioned below the wafer unit 140 to which the micro LED chip 154 of the wafer unit 140 is transferred.
  • the laser light source unit 120 includes a laser light source 122 that generates laser light, a barrel 132 through which the laser light emitted from the laser light source 122 passes, and a portion of the laser light passing through the barrel 132 .
  • a custom mask unit 156 (Customer's mask) formed with a non-transmissive layer that blocks and selectively passes only a portion, and the laser light transmitted through the custom mask unit 156 is magnified to match the area of the wafer 152 . It includes a projection lens unit (Projection Lens) 161 to enlarge the.
  • the laser light generated from the laser light source 122 various types of lasers such as excimer laser and DPSS laser may be used according to bandgap energy.
  • the laser irradiation module may be an excimer laser having a wavelength of 157 nm to 350 nm.
  • the wavelength of the laser light output from the laser irradiation module is in the ultraviolet wavelength range.
  • An entrance window 123 (EW) formed between the laser light source 122 and the barrel 132 is further formed in the laser light source unit 120 , and the entrance window unit 123 is made of transparent glass. It transmits only ultraviolet (UV) light.
  • UV ultraviolet
  • the barrel 132 includes an attenuator module 126 formed to control power while the laser light passing through the entrance window 123 passes, and a beam shape of the laser light passing through the attenuator module 126 .
  • a beam shaping unit 133 for forming the s from a Gaussian shape to a top hat shape, and a function of minimizing the distortion of the laser light passing through the beam forming unit 133 a first field lens unit 143, a slit mask 144 blocking a part of the laser light passing through the first field lens unit 143, and the slit mask unit
  • a first mirror 146 for vertically moving the laser light passing through 144 , a second condenser lens unit 148 for collecting laser light reflected from the first mirror 146 , and the second capacitor
  • a scanner unit 150 for controlling the laser light passing through the lens unit 148, and a second field lens unit 151 for minimizing distortion of the laser light passing through the scanner unit 150 and an exit window 155 formed at an exit through which the laser light passing through the second
  • the attenuator module 126 is formed of an attenuator substrate 127 and a compensator substrate 128 .
  • the attenuator substrate 127 functions to reduce the intensity of laser light without distorting the waveform
  • the compensation substrate 128 functions to maintain the waveform of the laser light passing through the attenuator substrate 127 .
  • the beam shaping unit 133 includes a first homogenizer array unit 134 and a second homogenizer array unit spaced apart from the first homogenizer array unit 134 by a predetermined distance and formed side by side. arrays) 138 , and first condenser lenses 141 spaced apart and formed side by side adjacent to the second homogenizing array unit 138 .
  • Each of the first homogenization array unit 134 and the second homogenization array unit 138 is formed of a plurality of microlenses.
  • the focal length of the 1-1 microlens 136-1 which is one of the plurality of first microlenses 136-1, 136-2, and 136-3 forming the first homogenization array unit 134, is f1.
  • the distance between the first homogenization array unit 134 and the second homogenization array unit 138 is f2
  • the focal length of the first condenser lens unit 141 is f3
  • the 1-1 micro If the diameter of the lens 136 - 1 is d' and the diameter of the laser light formed at the focal length of the first condenser lens unit 141 is D', the following equation is established.
  • the laser light passes through the first homogenization array unit 134 , the second homogenization array unit 138 , and the first condenser lens unit 141 , and forms a top hot laser beam in Gaussian Laser Beam shape processing. (Top hat Laser Beam shape) It is formed by processing.
  • the Gaussian laser beam shape is a case in which energy intensity is different depending on the position of the beam irradiating surface, and the top hat laser beam shape is the beam irradiating surface. It is a beam shape that minimizes the difference in energy intensity that is generated depending on the location.
  • the custom mask unit 156 is formed adjacent to the exit window 155 of the barrel 132 to block a portion of the laser light passing through the exit window 155 and allow only the remainder to pass therethrough.
  • a second mirror 158 is formed adjacent to the custom mask unit 156 to vertically move the laser light passing through the custom mask unit 156, and is reflected by the second mirror 158.
  • the laser light passes through the projection lens unit 161 and is sized.
  • the wafer unit 140 includes a wafer stage 175 in which a laser light transmitting unit 152-1 through which laser light passes is formed, a wafer 152 vacuum-adsorbed to a lower portion of the wafer stage 175, and the and a micro LED chip 154 formed on the lower surface of the wafer 152 .
  • micro LED chips 154 are arranged in units of blocks 155, and one block 155 is composed of a horizontal number ⁇ a vertical number of micro LED chips 154. have.
  • the wafer 152 may include an R-wafer, a G-wafer, and a B-wafer, and in the present invention, an R-wafer is illustrated through FIG. 2 .
  • an R-wafer is illustrated through FIG. 2 .
  • a plurality of micro Red-LED chips are formed
  • a plurality of micro Green-LED chips are formed
  • a plurality of micro Blue-LED chips are formed.
  • the glass substrate unit 160 includes a glass substrate 162 formed to be spaced apart from a lower portion of the micro LED chip 154 , and a substrate stage 164 on which the glass substrate 162 is vacuum-adsorbed.
  • the distance a between the lower surface of the wafer stage 175 and the upper surface of the substrate stage 164 is 100 micrometers or less, and is spaced apart by a very narrow distance.
  • the laser light source unit 120 is in a fixed state, and the laser passing through the projection lens unit 161 is irradiated to only a part of the entire plurality of micro LED chips 154 formed on the lower surface of the wafer 152 .
  • FIG. 3 is a first conceptual diagram illustrating a process in which a micro LED chip is transferred
  • FIG. 4 is a second conceptual diagram illustrating a process in which a micro LED chip is transferred.
  • the arrows indicated in FIG. 3 are indicated according to the order in which the laser light is irradiated.
  • the laser light is irradiated to an area at the same position in a fixed state, and the wafer stage 175 and the substrate stage 164 are irradiated in the direction opposite to the direction of the arrow. As it moves, the battle proceeds.
  • the transfer of the micro LED chip 154 formed on the wafer 152 proceeds in the first area 1 of the wafer 152 as shown in FIG. 3 , and the laser light is applied to the position of the first area 1 .
  • the second region 2 is moved to the position of the first region 1, and thereafter, transfer is performed, and the wafer stage 175 is again moved.
  • the third region 3 is moved to the position of the existing first region 1 where laser light is irradiated, and the transfer proceeds. The same goes for the zones (5) and the sixth zone (6).
  • the entire micro LED chip 154 formed on the wafer 152 is any one of three types of chips, red, green, and blue, the chips in one area are all transferred to the glass substrate 162 at once. Instead, only chips positioned at regular intervals among chips in one area are transferred by the action of the custom mask unit 156 .
  • FIG. 4 similarly to the transfer process described with reference to FIG. 3 , the wafer stage 175 and the substrate stage 164 are simultaneously moved while the seventh region 7 is moved to the position of the existing first region 1 . Transfer is carried out through laser light, and then, as the wafer stage 175 and the substrate stage 164 are simultaneously moved, the eighth area 8 is moved to the existing first area 1 position, so that the transfer is performed through the laser light.
  • This process proceeds through the ninth zone (9), the tenth zone (10), the eleventh zone (11) and the twelfth zone (12).
  • the micro LED chip positioned under the wafer stage 175 ( The gap between 154) and the upper surface of the glass substrate 162 is narrower, and through the process of moving while maintaining such a narrow gap, the micro LED chip 154 and the glass substrate 162 come into contact with each other and a defect occurs. should be prevented
  • FIG. 5 is a schematic front view showing the main part of the micro LED selective air layer transfer printing apparatus according to the present invention
  • FIG. 6 is a schematic exploded perspective view in which the substrate stage and the substrate elevating support are separated in FIG. 5 .
  • the present invention micro LED selective air layer transfer printing apparatus 100 includes a laser light source unit 120 , a wafer unit 140 , and a base 166 having a glass substrate unit 160 formed thereon.
  • a custom mask unit 156 and a projection lens unit 161 are connected to the barrel 132 , and the projection lens unit 161 is positioned above the base 166 to be spaced apart.
  • the glass substrate 160 includes a substrate elevating unit 176 for elevating the substrate stage 164 , a substrate elevating support 178 having the substrate elevating unit 176 formed thereon, and the substrate elevating unit 176 .
  • the two substrate forward and backward moving parts 188 - 1 and 188 - 2 are located above the base 166 .
  • a substrate rotating unit 442 for rotating the substrate stage 164 is formed adjacent to the substrate lifting unit 176 between the lower portion of the substrate stage 164 and the upper portion of the substrate lifting and lowering support 178 .
  • the substrate rotation unit 442 includes a rotation center circular pillar member 444 formed in the center of the substrate elevating support 178 , and a rotation pillar member 446 formed around the rotation center circular pillar member 444 , and , a substrate driven rotation member 448 formed on one side of the substrate stage 164, and a substrate driving rotation member formed on an upper side of the substrate elevating support 178 to rotate the substrate driven rotation member 448 ( 450).
  • the rotational pillar member 446 may be connected to the rotational center circular pillar member 444 by a bearing and the like to rotate around the rotational center circular pillar member 444 , and an upper portion of the rotational pillar member 446 is a substrate stage. It is coupled to the substrate stage 164 while being in contact with the circular groove 452 formed in the center of the lower surface of the 164 .
  • the substrate driven rotating member 448 includes a driven bracket portion 453 formed on one side of the substrate stage 164 and a driven cylindrical member 454 connected to the driven bracket portion 453 .
  • the substrate driving rotation member 450 includes a rotation driving unit 455 formed by a motor or the like on an upper side of the substrate elevating support 178 , a rotation driving shaft 456 connected to the rotation driving unit 455 , and the rotation A first direction moving member 458 that is connected to the driving shaft 456 by helical coupling, etc. and is moved in the first direction according to the rotation of the rotational driving shaft 456, and the first direction moving member 458 to guide the movement
  • the first direction guide member 460 , the second direction guide part 462 formed on the upper portion of the first direction moving member 458 , and the second direction guide part 462 are perpendicular to the first direction A second direction moving member 464 formed to move in the second direction formed as (466).
  • the rotation drive shaft 456 is rotated, the first direction moving member 458 and the second direction moving member 464 are moved, and the driven cylindrical member 454 is rotated at the same time.
  • the substrate stage 164 is simultaneously rotated while the rotational pillar member 446 is rotated about the rotational center circular pillar member 444 .
  • a plurality of substrate elevating units 176 formed in the same shape at three points of the substrate elevating support 178 include a first driving unit 468: 468-1, 468-2, 468-3, and the first As the first driving shaft 470 of the driving unit 468: 468-1, 468-2, 468-3 is coupled to the first driving shaft 470 by helical coupling or the like, the first driving shaft 470 is rotated.
  • the first driving inclined member 472 moved forward and backward, and the first driven inclined member 474: 474-1, 474 raised and lowered by the first driving inclined member 472 in contact with the first driving inclined member 472 -2 and 474-3), and a first elevating guide portion 476: 476-1 formed to guide the elevating and lowering of the first driven inclined member 474: 474-1, 474-2, 474-3. , 476-2, 476-3).
  • An inclined protrusion 478 is formed on the first driving inclined member 472, and the inclined protrusion 478 is introduced into the first driven inclined member 474: 474-1, 474-2, 474-3.
  • the inclined inlet groove 480 is formed so that the inclined protrusion 478 is moved along the inclined inlet groove 480 so that the first driven inclined member 474 (474-1, 474-2, 474-3) is raised and lowered.
  • An elevating protrusion 482 is formed on the rear surface of the first driven inclined member 474: 474-1, 474-2, 474-3, and the first elevating guide part 476: 476-1, 476- 2 and 476-3), an elevating groove 484 into which the elevating protrusion 482 is introduced is formed, and the elevating protrusion 482 enters the elevating groove 484, and the first driven inclination
  • the member (474: 474-1, 474-2, 474-3) is connected to the first elevating guide part (476: 476-1, 476-2, 476-3) is stably elevating.
  • the first elevating panel 486 (486-1, 486-2, 486) in contact with the lower portion of the substrate stage 164 is disposed on the first driven inclined member (474: 474-1, 474-2, 474-3). -3) is formed.
  • a first elastic member 488 formed of a single leaf spring or the like commonly coupled to the three first elevating panels 486: 486-1, 486-2, 486-3 is formed, and the A plurality of auxiliary elastic members 490 formed in a bent elastic form are formed between the first elastic member 488 and the upper surface of the substrate elevating support 178 .
  • the three first driven inclined members 474: 474-1, 474-2, 474-3 rises to raise the substrate stage 164 , and the first elastic member 488 also rises.
  • the three first driven inclined members 474: 474-1, 474-2, 474-3 descends to lower the substrate stage 164 , and the first elastic member 488 also descends.
  • the three first driven inclined members 474: 474 -1, 474-2, and 474-3 When only the 1-1 driving unit 468-1 of the three first driving units 468: 468-1, 468-2, and 468-3 is operated in one direction, the three first driven inclined members 474: 474 -1, 474-2, and 474-3), only the 1-1 driven inclined member 474-1 is raised while the substrate stage 164 is also raised only on one side where the 1-1 driven inclined member 474-1 is positioned.
  • the first elastic member 488 is also elastically deformed on only one side on which the 1-1 driven inclined member 474-1 is positioned, and as a result, only a portion of the substrate stage 164 is increased in height to be finely adjusted.
  • the three first driven inclined members 474 Among 474-1, 474-2, and 474-3), only the 1-1 driven inclination member 474-1 is lowered, and the substrate stage 164 is also positioned in which the 1-1 driven inclined member 474-1 is positioned. Only one side descends, the first elastic member 488 also has a restoring elastic force applied to only one side on which the 1-1 driven inclined member 474-1 is located, and the auxiliary elastic member 490 is the first elastic member 488 ) by reinforcing the restoring elastic force and acting to move it to the original position quickly.
  • a stage support member 492 for supporting the lower portion of the substrate stage 164 is formed at four points among the upper surfaces of the substrate elevating support 178 .
  • the stage support member 492 includes a stage support cylinder part 500 , a first direction movement support part 494 formed under the stage support cylinder part 500 , and a first direction movement support part 494 .
  • a second direction movement support portion 496 formed to be movable in a direction perpendicular to the first direction movement support portion 494 is included in the lower portion.
  • a first cylindrical rotating member 494-1 is formed between the lower part of the stage support cylinder part 500 and the upper part of the first direction movement support part 494, so that the stage support cylinder part 500 moves in the first direction. 494) is acted so as to move microscopically in the first direction.
  • a second cylindrical rotating member 496-1 is formed between the lower portion of the first direction movement support part 494 and the upper portion of the second direction movement support part 496, so that the first direction movement support part 494 moves in the second direction.
  • the upper portion of the support portion 496 acts to move finely in the second direction.
  • the stage supporting member 492 When the substrate stage 164 is rotated by the substrate rotating unit 442 in a state where the stage supporting member 492 supports the lower portion of the substrate stage 164 , the stage supporting member 492 is also rotated in the first direction or It serves to support the substrate stage 164 without interfering with the rotation of the substrate stage 164 while being minutely moved in the second direction.
  • stage support member 492 is installed on the periphery of the stage support cylinder part 500 and is formed by a stage support sensor part 498 formed by ultrasonic waves for measuring a distance and the stage support cylinder part 500 by the stage support cylinder part 500 . It further includes a stage support elevating unit 502 that is elevating.
  • the stage support member 492 The stage support sensor unit 498 senses a distance spaced apart from the substrate stage 164 , the stage support cylinder unit 500 is operated, and the stage support elevation unit 502 is in close contact with the lower portion of the substrate stage 164 . rise until it becomes
  • a tilting structure for elevating, rotating, and partially elevating and lowering the substrate stage 164 is formed, thereby enabling precise control of the substrate stage 164 .
  • Fig. 7(a) is a schematic perspective view illustrating a case where the substrate stage is raised/lowered by the deformation driving unit
  • Fig. 7(b) is a schematic perspective view illustrating a case where the substrate stage is inclined by the deformation driving unit.
  • the structure in which the entire substrate stage 164 is raised or lowered above the substrate elevating support 178 or only one side is raised can be implemented by the deformation driving units 530 , 540 , and 550 .
  • the deformation driving units 530 , 540 , and 550 may be formed at three points between the lower portion of the deformable substrate stage 164 - 3 and the upper portion of the deformable substrate elevating support 164 - 2 .
  • the deformation driving units 530 , 540 , and 550 include a ball housing part 536 having an empty spherical space on the lower surface of the deformable substrate stage 164 - 3 , and a ball 534 introduced into the ball housing part 536 .
  • -1) includes a cylinder portion 534 formed therein, and a hinge member 532 formed under the cylinder portion 534 .
  • the cylinder part 534 is stretchable. And the ball 534 - 1 is rotatable inside the ball housing part 536 .
  • the hinge member 532 is fixed to the upper surface of the deformable substrate elevating support 164-2.
  • the deformation driving units 530 , 540 , and 550 are formed at three points, and when the three deformation driving units 530 , 540 , and 550 are all raised and lowered to have the same size, the deformable substrate stage 164 . -3) is raised and lowered in height based on the deformable substrate elevating support 164-2.
  • Figure 8 (a) is a schematic perspective view of the wafer forward and backward movement passive member
  • Figure 8 (b) is a schematic front view of the wafer forward and backward movement passive member.
  • the wafer unit 140 includes an additional elevating unit 376 formed under the circumference of the wafer center hole 820 of the wafer stage 175, a wafer adsorption unit 810 formed under the additional elevating unit 376, and , installed on the lower surface of the wafer adsorption unit 810 and includes a first distance measuring sensor 527 and a second distance measuring sensor 528 using ultrasonic waves.
  • a wafer 152 is pressed onto the wafer adsorption unit 810 , and a micro LED chip 154 is formed on a lower surface of the wafer 152 .
  • the additional elevating unit 376 is formed at three points between the wafer stage 175 and the wafer suction unit 810 , and has a shape similar to that of the deformation driving units 530 , 540 , and 550 , so a detailed description thereof will be omitted.
  • the first distance measuring sensor 527 and the second distance measuring sensor 528 emit ultrasonic waves toward the glass substrate 162 positioned below while being spaced apart from each other to face each other around the wafer 152, and reflect By measuring the arrival time of the ultrasonic wave, it is measured whether the distance between the wafer adsorption unit 810 and the glass substrate 162 is uniform.
  • the present invention can determine whether the distance between the wafer adsorption unit 810 and the glass substrate 162 is maintained uniformly through the first distance measuring sensor 527 and the second distance measuring sensor 528, so that the micro LED chip transfer.
  • the effect of providing the micro LED selective air layer transfer printing apparatus 100 having a structure that minimizes the change in the gap between the wafer 152 and the glass substrate 162 generated during the movement of the wafer 152 and the glass substrate 162 in the process is generated
  • micro LED selective air layer transfer printing device 120 laser light source unit
  • laser light source 132 barrel part
  • custom mask unit 160 glass substrate unit
  • substrate elevating unit 442 substrate rotating unit
  • first direction moving member 464 second direction moving member
  • first drive shaft 472 first drive inclined member

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

본 발명은 레이저 광을 조사하는 레이저 광원부와, 상기 레이저 광원부에서 조사되는 레이저 광을 받도록 레이저 광원부의 하부에 위치되는 웨이퍼부와, 상기 웨이퍼부의 하부에 위치되어 웨이퍼부의 마이크로 엘이디칩이 전사되는 글라스 기판부를 포함하며, 상기 글라스 기판부는 상기 웨이퍼부의 하부에 위치되는 기판 스테이지와, 상기 기판 스테이지 전체를 승하강시키거나 일부분만 승하강시키는 기판 승하강부를 포함하는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치에 관한 것이다.

Description

마이크로 엘이디 선택적 공기층 전사 프린트 장치
본 발명은 마이크로 엘이디 선택적 공기층 전사 프린트 장치에 관한 것으로, 좀 더 자세히 설명하면 마이크로 엘이디 선택적 공기층 전사 프린트 장치를 구성하는 웨이퍼 스테이지와 기판 스테이지가 작업 상태에 따라서 정밀하게 이동될 수 있는 구조가 형성된 마이크로 엘이디 선택적 공기층 전사 프린트 장치에 관한 것이다.
전자기기의 표시등, 계산기의 숫자판, LED TV의 배면광, 그리고 각종 조명기구 등의 사용이 증가함에 따라 발광 다이오드의 수요 또한 증가하게 되었다.
발광 다이오드는 P-N 접합 다이오드에 순방향(N형을 양, P형을 음)으로 전압을 인가함으로써 정공과 전자를 주입하고 그 재결합으로 생기는 에너지를 빛으로 방출시키는 것으로 LED(Light Emitting Diode)라고도 불리며, 효율이 높고 수명이 길며 전력소모와 유지보수 비용을 크게 절감할 수 있는 장점이 있어서 차세대 조명기기 응용 분야에서 주목을 받고 있다.
일반적으로 LED 제작은 질화갈륨(GaN), 인화갈륨(GaP), 비소화 갈륨(GaAs) 등과 같은 Ⅲ-Ⅴ족 화합물 반도체를 사용한다. Ⅲ-Ⅴ족 화합물 반도체는 금속안정성이 우수하고 직접천이형의 에너지 밴드(Band)의 구조를 갖고 있어 최근 가시광선 및 자외선 영역의 발광소자용 물질로 많은 각광을 받고 있다.
최근 전세계적인 이슈로 많은 연구가 되고 있는 LED는 기존의 cm2 수준의 대면적 램프용 광소자가 아닌, 발광면적을 100㎛×100㎛급 이내의 마이크로급 LED칩을 개발하는 기술이 화두로 되고 있다.
그러나, 너무 작은 크기의 마이크로 LED칩 개발로 인하여 개발되는 마이크로 LED칩을 직접 사용하기 위해서는 이를 응용단계의 기판 위에 바로 소자를 그대로 옮길 수 있는 전사기술이 중요시되고 있다.
마이크로 LED칩을 광원의 셀(Cell)로 활용하기 위해서 가장 필요한 기술이 마이크로 LED칩을 디스플레이 소재로 활용하는 투명 글라스 기판 상에 전사하는 기술이다.
현재 신뢰성이 높으면서도 신속하게 마이크로 LED칩을 투명 글라스 기판 상에 전사하기 위하여, 웨이퍼 기판상에 마이크로 LED 구조를 성장시킨 뒤 LED 구조를 에어 갭 프린트(Air gap print) 기술을 이용해 글라스 기판으로 전사하는 기술이 요구된다.
이러한 전사 기술은 웨이퍼 기판과 글라스 기판 사이의 간격을 100마이크로미터 이하로 유지하면서 진행되어야 하기 때문에 미세한 오차에 의해 서로 접촉되는 등의 원인으로 불량이 발생하는 문제가 있다.
본 발명은 마이크로 LED칩 전사과정에서 웨이퍼 기판과 글라스 기판의 이동시 발생되는 웨이퍼 기판과 글라스 기판 사이의 간격 변화를 최소화하는 구조가 형성된 마이크로 엘이디 선택적 공기층 전사 프린트 장치를 제공하는 것이다.
본 발명은 레이저 광을 조사하는 레이저 광원부와, 상기 레이저 광원부에서 조사되는 레이저 광을 받도록 레이저 광원부의 하부에 위치되는 웨이퍼부와, 상기 웨이퍼부의 하부에 위치되어 웨이퍼부의 마이크로 엘이디칩이 전사되는 글라스 기판부를 포함하며, 상기 글라스 기판부는 상기 웨이퍼부의 하부에 위치되는 기판 스테이지와, 상기 기판 스테이지 전체를 승하강시키거나 일부분만 승하강시키는 기판 승하강부를 포함하는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치를 제공한다.
상기 레이저 광원부는 레이저 광을 발생시키는 레이저 광원과, 상기 레이저 광원에서 발사된 레이저 광이 통과되는 경통부와, 상기 경통부를 지난 레이저 광을 일부 차단하고 일부만 선별적으로 통과시키는 비투과층 막이 형성된 마스크부 및, 상기 마스크부를 통과하여 전달되는 레이저 광을 웨이퍼의 면적에 맞게 배율을 확대하는 프로젝션 렌즈부를 포함할 수 있다.
상기 웨이퍼부는 상기 레이저 광이 통과되는 레이저 광투과부가 형성된 웨이퍼 스테이지와, 상기 웨이퍼 스테이지의 하부에 진공 흡착되는 웨이퍼 및, 상기 웨이퍼의 하면에 형성되는 마이크로 엘이디칩을 포함할 수 있다.
상기 글라스 기판부는 상기 기판 승하강부가 상부에 형성되는 기판 승하강 지지대와, 상기 기판 승하강 지지대가 좌우로 이동되도록 가이드하는 기판 좌우 이동 가이드부와, 상기 기판 좌우 이동 가이드부가 상부에 형성되는 기판 좌우 이동 지지대와, 상기 기판 좌우 이동 지지대가 전후 이동되도록 가이드하는 기판 전후 이동부를 더 포함할 수 있다.
상기 기판 승하강부는 복수개로 형성되며, 상기 기판 승하강부 각각은 제1 구동부와, 상기 제1 구동부의 제1 구동축과, 상기 제1 구동축이 회전됨에 따라서 전후로 이동되는 구동 경사 부재와, 상기 구동 경사 부재에 접하여 구동 경사 부재에 의해 승하강되는 피동 경사 부재와, 상기 피동 경사 부재의 승하강을 가이드하도록 형성되는 승하강 가이드부를 포함할 수 있다.
상기 경통부는 상기 레이저 광이 통과되면서 파워가 조절되도록 형성된 감쇠기 모듈과, 상기 감쇠기 모듈을 통과한 레이저 광의 빔 형태를 빔 조사면의 위치에 따라 발생되는 에너지 강도의 차이를 감소시키도록 형성하는 빔 형성부 및, 상기 빔 형성부를 통과한 레이저 광의 왜곡을 감소시키는 필드 렌즈 유닛을 포함할 수 있다.
상기 웨이퍼부는 상기 웨이퍼 스테이지의 웨이퍼 중앙 구멍 둘레 하부에 형성되는 추가 승하강부와, 상기 추가 승하강부 하부에 형성되는 웨이퍼 흡착부 및, 상기 웨이퍼 흡착부에 설치되는 거리측정센서를 더 포함할 수 있다.
본 발명은 상기 기판 스테이지의 하부와 기판 승하강 지지대의 상부 사이에는 기판 스테이지를 회전시키는 기판 회전부가 더 형성될 수 있다.
본 발명은 상기 기판 승하강 지지대에 기판 스테이지의 하부를 지지하는 스테이지 지지부재가 더 형성될 수 있다.
상기 구동 경사 부재에는 경사 돌기가 형성되고, 상기 피동 경사 부재에는 상기 경사 돌기가 인입되는 경사 인입홈이 형성될 수 있다.
*상기 피동 경사 부재의 후면에는 승하강 돌기가 형성되고, 상기 승하강 가이드부에는 상기 승하강 돌기가 인입되는 승하강 홈이 형성될 수 있다.
상기 피동 경사 부재의 상부에는 기판 스테이지의 하부와 접하는 승하강 패널이 형성될 수 있다.
상기 빔 형성부는 제1 균질화 어레이부와, 상기 제1 균질화 어레이부에 이격되어 나란히 형성되는 제2 균질화 어레이부 및, 상기 제2 균질화 어레이부에 이격되어 나란히 형성되는 컨덴서 렌즈부를 포함할 수 있다.
상기 기판 회전부는 상기 기판 승하강 지지대의 중앙에 형성되는 회전 중심 원형 기둥 부재와, 상기 회전 중심 원형 기둥 부재의 둘레에 형성되는 회전 기둥 부재와, 상기 기판 스테이지의 일측에 형성되는 기판 피동 회전부재와, 상기 기판 피동 회전부재를 회전시키도록 기판 승하강 지지대의 상부 일측에 형성되는 기판 구동 회전부재를 포함하며, 상기 기판 구동 회전부재에 의해 기판 피동 회전부재가 이동함에 따라서 상기 회전 중심 원형 기둥 부재를 중심으로 회전 기둥 부재가 회전될 수 있다.
상기 스테이지 지지부재는 스테이지 지지 실린더부와, 상기 스테이지 지지 실린더부의 하부에 형성되는 제1 방향 이동 지지부 및, 상기 제1 방향 이동 지지부의 하부에 제1 방향 이동 지지부와 수직인 방향으로 이동가능하게 형성되는 제2 방향 이동 지지부를 포함할 수 있다.
본 발명은 상기 승하강 패널에 결합되는 제1 탄성 부재가 더 형성되고, 상기 제1 탄성 부재와 상기 기판 승하강 지지대 사이에는 보조 탄성 부재가 형성될 수 있다.
상기 기판 구동 회전부재는 상기 기판 승하강 지지대의 상부 일측에 형성되는 회전 구동부와, 상기 회전 구동부에 연결되는 회전 구동축과, 상기 회전 구동축의 회전에 따라서 제1 방향으로 이동되는 제1 방향 이동부재와, 상기 제1 방향 이동부재의 이동을 가이드하는 제1 방향 가이드 부재와, 상기 제1 방향 이동부재의 상부에 형성되는 제2 방향 가이드부와, 상기 제2 방향 가이드부를 따라서 제1 방향과 수직으로 형성된 제2 방향으로 이동되도록 형성되는 제2 방향 이동부재 및, 상기 제2 방향 이동부재의 상부에 형성되며 내측에 상기 피동 원통부재가 인입되는 원통부재 인입홈을 포함할 수 있다.
본 발명은 마이크로 LED칩 전사과정에서 웨이퍼와 글라스 기판의 이동시 발생되는 웨이퍼와 글라스 기판 사이의 간격 변화를 최소화하는 구조가 형성된 마이크로 엘이디 선택적 공기층 전사 프린트 장치를 제공하는 효과가 발생된다.
도 1의 (a)는 본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치의 중요부분을 나타내는 개략 측면도이고, 도 1의 (b)는 본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치의 광학계 빔 가공 개략 모형도이며, 도 1의 (c)는 본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치의 광학계를 통과하는 빔을 나타내는 개략 모형도이다.
도 2는 웨이퍼를 나타내는 개략 정면도이다.
도 3은 마이크로 엘이디칩이 전사되는 과정을 나타내는 제1개념도이다.
도 4는 마이크로 엘이디칩이 전사되는 과정을 나타내는 제2개념도이다.
도 5는 본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치의 주요부를 나타내는 개략 정면도이다.
도 6은 도 5에서 기판 스테이지와 기판 승하강 지지대를 분리한 개략 분해 사시도이다.
도 7의 (a)는 변형 구동부에 의해 기판 스테이지가 승하강하는 경우를 나타내는 개략 사시도이고, 도 7의 (b)는 변형 구동부에 의해 기판 스테이지가 기울어지는 경우를 나타내는 개략 사시도이다.
도 8의 (a)는 웨이퍼 전후이동 수동부재의 개략 사시도이고, 도 8의 (b)는 웨이퍼 전후이동 수동부재의 개략 정면도이다.
이하, 본 발명의 장점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은, 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것으로, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.
도 1의 (a)는 본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치의 중요부분을 나타내는 개략 측면도이고, 도 1의 (b)는 본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치의 광학계 빔 가공 개략 모형도이며, 도 1의 (c)는 본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치의 광학계를 통과하는 빔을 나타내는 개략 모형도이고, 도 2는 웨이퍼를 나타내는 개략 정면도이다.
본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치(100)는 레이저 광을 조사하는 레이저 광원부(120)와, 상기 레이저 광원부(120)에서 조사되는 레이저 광을 받도록 레이저 광원부(120)의 하부에 위치되는 웨이퍼부(140)와, 상기 웨이퍼부(140)의 하부에 위치되어 웨이퍼부(140)의 마이크로 엘이디칩(154)이 전사되는 글라스 기판부(160)를 포함한다.
상기 레이저 광원부(120)는 레이저 광을 발생시키는 레이저 광원(122)과, 상기 레이저 광원(122)에서 발사된 레이저 광이 통과되는 경통부(132)와, 상기 경통부(132)를 지난 레이저 광을 일부 차단하고 일부만 선별적으로 통과시키는 비투과층 막이 형성된 커스터머스 마스크부(156)(Customer's mask) 및, 상기 커스터머스 마스크부(156)를 통과하여 전달되는 레이저 광을 웨이퍼(152)의 면적에 맞게 배율을 확대하는 프로젝션 렌즈부(Projection Lens)(161)를 포함한다.
상기 레이저 광원(122)에서 발생되는 레이저 광은 밴드갭 에너지에 따라 엑시머 레이저, DPSS 레이저 등 다양한 종류의 레이저가 사용될 수 있다. 본 실시예의 경우, 레이저 조사모듈은 157nm 내지 350nm 파장을 갖는 엑시머 레이저가 사용될 수 있다. 또한, 레이저 조사모듈로부터 출력되는 레이저 광의 파장은 자외선 파장 영역인 것이 바람직하다.
상기 레이저 광원부(120)에는 레이저 광원(122)과 경통부(132) 사이에 형성되는 입구창문부(123)(EW: Entrance window)가 더 형성되며, 상기 입구창문부(123)는 투과성 유리로 형성되어 자외선(UV: Ultraviolet)만 투과한다.
상기 경통부(132)는 상기 입구창문부(123)를 통과한 레이저 광이 통과되면서 파워가 조절되도록 형성된 감쇠기 모듈(Attenuator module)(126)과, 상기 감쇠기 모듈(126)을 통과한 레이저 광의 빔 형태를 가우시안 형태(Gaussian shape)에서 톱 핫 형태(Top hat shape)로 형성시키는 빔 형성부(Beam shaping)(133)와, 상기 빔 형성부(133)를 통과한 레이저 광의 왜곡을 최소화하는 기능을 수행하는 제1 필드 렌즈 유닛(Field lens unit)(143)과, 상기 제1 필드 렌즈 유닛(143)을 통과한 레이저 광의 일부를 차단하는 슬릿 마스크부(Slit mask)(144)와, 상기 슬릿 마스크부(144)를 통과한 레이저 광을 수직 상방으로 이동시키는 제1 거울(146)과, 상기 제1 거울(146)에서 반사되는 레이저 광을 모으는 제2 컨덴서 렌즈부(148)와, 상기 제2 컨덴서 렌즈부(148)를 통과한 레이저 광을 조절하는 스캐너부(Scanner)(150)와, 상기 스캐너부(150)를 통과한 레이저 광의 왜곡을 최소화하는 기능을 수행하는 제2 필드 렌즈 유닛(151) 및, 상기 제2 필드 렌즈 유닛(151)을 통과한 레이저 광이 경통부(132)의 외부로 나가는 출구에 형성되는 출구 창문부(Exit window)(155)를 포함한다.
상기 감쇠기 모듈(126)은 감쇠기 기판(Attenuator substrate)(127)과 보상 기판(Compensator substrate)(128)으로 형성된다.
상기 감쇠기 기판(127)은 파형을 왜곡시키지 않고 레이저 광의 세기를 줄여주는 기능을 하고, 상기 보상 기판(128)은 감쇠기 기판(127)을 통과한 레이저 광의 파형을 유지시켜 주는 기능을 한다.
상기 빔 형성부(Beam shaping)(133)는 제1 균질화 어레이부(Homogenizer arrays)(134)와, 상기 제1 균질화 어레이부(134)에 일정거리 이격되어 나란히 형성되는 제2 균질화 어레이부(Homogenizer arrays)(138) 및, 상기 제2 균질화 어레이부(138)에 인접하게 이격되어 나란히 형성되는 제1 컨덴서 렌즈부(Condenser lenses)(141)를 포함한다.
상기 제1 균질화 어레이부(134)와 상기 제2 균질화 어레이부(138)는 각각 복수개의 마이크로렌즈로 형성된다.
상기 제1 균질화 어레이부(134)를 형성하는 복수개의 제1 마이크로렌즈(136-1, 136-2, 136-3) 중 하나인 제1-1 마이크로렌즈(136-1)의 초점 거리를 f1이라 하고, 제1 균질화 어레이부(134)와 제2 균질화 어레이부(138) 사이의 거리를 f2라 하며, 상기 제1 컨덴서 렌즈부(141)의 초점 거리를 f3라고 하고, 제1-1 마이크로렌즈(136-1)의 직경을 d'이라 하며, 상기 제1 컨덴서 렌즈부(141)의 초점 거리에서 형성되는 레이저 광의 직경을 D'이라 하면 다음과 같은 수학식이 성립한다.
D'=d'*(f3/f2)---(수학식)
상기 레이저 광은 제1 균질화 어레이부(134)와 제2 균질화 어레이부(138) 및 제1 컨덴서 렌즈부(141)를 통과하면서 가우시안 레이저 빔 형태(Gaussian Laser Beam shape) 가공에서 톱 핫 레이저 빔 형태(Top hat Laser Beam shape) 가공으로 형성된다.
상기 가우시안 레이저 빔 형태(Gaussian Laser Beam shape)는 빔 조사면의 위치에 따라서 에너지 강도(Energy Intensity)의 차이가 나는 경우이며, 상기 톱 핫 레이저 빔 형태(Top hat Laser Beam shape)는 빔 조사면의 위치에 따라 발생되는 에너지 강도(Energy Intensity)의 차이를 최소화시키는 빔 형태이다.
상기 커스터머스 마스크부(156)는 경통부(132)의 출구 창문부(155)에 인접하게 형성되어 상기 출구 창문부(155)를 통과한 레이저 광의 일부를 차단시키고 나머지만 통과되도록 한다.
상기 커스터머스 마스크부(156)에 인접하여 제2 거울(158)이 형성되어 상기 커스터머스 마스크부(156)를 통과한 레이저 광을 수직 하방으로 이동시키고, 상기 제2 거울(158)에서 반사된 레이저 광은 상기 프로젝션 렌즈부(Projecton lens)(161)를 통과하여 크기가 조정된다.
상기 웨이퍼부(140)는 중앙에 레이저 광이 통과되는 레이저 광투과부(152-1)가 형성된 웨이퍼 스테이지(175)와, 상기 웨이퍼 스테이지(175)의 하부에 진공 흡착되는 웨이퍼(152)와, 상기 웨이퍼(152)의 하면에 형성되는 마이크로 엘이디칩(154)을 포함한다.
상기 웨이퍼(152)는 마이크로 엘이디칩(154)이 블록(block)(155) 단위로 배치되어 있으며 1개의 블록(155)은 가로 개수 × 세로 개수의 마이크로 엘이디(LED)칩(154)으로 구성되어 있다.
또한, 상기 웨이퍼(152)는 R-웨이퍼, G-웨이퍼, B-웨이퍼가 있을 수 있고, 본 발명에서는 도 2를 통하여 R-웨이퍼가 도시되어 있다. R-웨이퍼의 경우 마이크로 Red-LED칩이 복수개 형성되어 있고, G-웨이퍼의 경우 마이크로 Green-LED칩이 복수개 형성되어 있으며, B-웨이퍼의 경우 마이크로 Blue-LED칩이 복수개 형성되어 있다.
상기 글라스 기판부(160)는 상기 마이크로 엘이디칩(154) 하부에 이격되도록 형성되는 글라스 기판(162)과, 상기 글라스 기판(162)이 상부에 진공 흡착되는 기판 스테이지(164)를 포함한다.
상기 웨이퍼 스테이지(175)의 하면과 기판 스테이지(164) 상면 사이의 간격(a)은 100마이크로미터 이하로 매우 좁은 간격만큼 이격된 상태이다.
상기 레이저 광원(122)에서 발사된 레이저가 웨이퍼(152)에 형성된 마이크로 엘이디칩(154)을 상기 글라스 기판(162)에 낙하시키는 것을 전사(Lift-Off)라고 한다.
상기 레이저 광원부(120)는 고정된 상태이고, 프로젝션 렌즈부(161)를 통과한 레이저는 상기 웨이퍼(152)의 하면에 형성된 복수개의 마이크로 엘이디칩(154) 전체 중 일부 영역에만 조사된다.
따라서, 웨이퍼(152)의 하면에 형성된 복수개의 마이크로 엘이디칩(154) 전체가 전사되기 위해서는 일부를 전사시키고 웨이퍼 스테이지(175)와 기판 스테이지(164)가 동시에 다음 전사 영역만큼 이동된 후 레이저가 조사되어 전사가 진행되는 과정이 복수개의 마이크로 엘이디칩(154) 전체가 전사될 때까지 반복된다.
아래에서 전사 과정이 좀 더 자세히 설명된다.
도 3은 마이크로 엘이디칩이 전사되는 과정을 나타내는 제1개념도이고, 도 4는 마이크로 엘이디칩이 전사되는 과정을 나타내는 제2개념도이다.
도 3에 표기된 화살표는 레이저 광이 조사되는 순서에 따라서 표기된 것이며, 실제로 레이저 광은 고정된 상태에서 동일한 위치의 영역에 조사되고 화살표의 방향과 반대 방향으로 웨이퍼 스테이지(175)와 기판 스테이지(164)가 이동되면서 전사가 진행된다.
즉, 웨이퍼(152)에 형성되어 있는 마이크로 엘이디칩(154)의 전사는 도 3과 같이 웨이퍼(152)의 제1구역(1)에서 진행되고, 레이저 광은 제1구역(1)의 위치에 고정된 상태에서 웨이퍼 스테이지(175)와 기판 스테이지(164)가 동시에 이동되면서 제2구역(2)이 제1구역(1) 위치로 이동되고, 이후에 전사가 진행되며, 다시 웨이퍼 스테이지(175)와 기판 스테이지(164)가 동시에 이동되면서 제3구역(3)이 레이저 광이 조사되는 기존 제1구역(1) 위치로 이동되어 전사가 진행되고, 이러한 과정은 제4구역(4), 제5구역(5) 및 제6구역(6)에서도 동일하게 진행된다.
이때, 상기 웨이퍼(152)에 형성된 마이크로 엘이디칩(154) 전체는 3종류의 칩인 레드, 그린, 블루 중 어느 하나이기 때문에 하나의 영역에 있는 칩이 모두 한 번에 글라스 기판(162)에 전사되는 것이 아니고, 커스터머스 마스크부(156)의 작용에 의하여 하나의 영역에 있는 칩들 중 일정 간격으로 위치된 칩만 전사된다.
제6구역(6)까지 전사가 완료되면, 기판 스테이지(164)는 고정된 상태에서 웨이퍼 스테이지(175)만 도 3의 위치에서 도 4의 위치로 이동된다.
이후, 도 4에서는 도 3을 통하여 설명된 전사 과정과 유사하게 웨이퍼 스테이지(175)와 기판 스테이지(164)가 동시에 이동되면서 제7구역(7)이 기존 제1구역(1)의 위치로 이동되어 레이저 광을 통하여 전사가 진행되고, 그 후 웨이퍼 스테이지(175)와 기판 스테이지(164)가 동시에 이동되면서 제8구역(8)이 기존 제1구역(1) 위치로 이동되어 레이저 광을 통하여 전사가 진행되며, 이러한 과정이 제9구역(9), 제10구역(10), 제11구역(11) 및 제12구역(12)을 통하여 진행된다.
상기 전사 과정 중에서 상기 웨이퍼 스테이지(175)의 하면과 기판 스테이지(164) 상면 사이의 간격은 100마이크로미터 이하로 매우 좁은 간격만큼 이격된 상태이므로, 웨이퍼 스테이지(175) 하부에 위치된 마이크로 엘이디칩(154)과 글라스 기판(162)의 상면 사이의 간격은 더욱 좁으며, 이러한 좁은 간격을 유지하면서 이동되는 과정을 통하여 마이크로 엘이디칩(154)과 글라스 기판(162)이 서로 접촉되어 불량이 발생되는 것이 방지되어야 한다.
도 5는 본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치의 주요부를 나타내는 개략 정면도이고, 도 6은 도 5에서 기판 스테이지와 기판 승하강 지지대를 분리한 개략 분해 사시도이다.
본 발명인 마이크로 엘이디 선택적 공기층 전사 프린트 장치(100)는 레이저 광원부(120)와 웨이퍼부(140) 및 글라스 기판부(160)가 상부에 형성되는 기대(166)를 포함한다.
상기 경통부(132)에는 커스터머스 마스크부(156)와 프로젝션 렌즈부(161)가 연결되며, 상기 프로젝션 렌즈부(161)는 상기 기대(166)의 상방에 이격되어 위치된다.
상기 글라스 기판부(160)는 상기 기판 스테이지(164)를 승하강시키는 기판 승하강부(176)와, 상기 기판 승하강부(176)가 상부에 형성되는 기판 승하강 지지대(178)와, 상기 기판 승하강 지지대(178)가 좌우로 이동되도록 가이드하는 기판 좌우 이동 가이드부(182)와, 상기 기판 좌우 이동 가이드부(182)가 상부에 형성되는 기판 좌우 이동 지지대(184)와, 상기 기판 좌우 이동 지지대(184)가 전후 이동되도록 가이드하는 2개의 기판 전후 이동부(188-1, 188-2)를 포함한다.
상기 2개의 기판 전후 이동부(188-1, 188-2)는 기대(166)의 상부에 위치된다.
본 발명에서 상기 기판 스테이지(164)의 하부와 기판 승하강 지지대(178)의 상부 사이에는 기판 스테이지(164)를 회전시키는 기판 회전부(442)가 기판 승하강부(176)에 인접하게 형성된다.
상기 기판 회전부(442)는 기판 승하강 지지대(178)의 중앙에 형성되는 회전 중심 원형 기둥 부재(444)와, 상기 회전 중심 원형 기둥 부재(444)의 둘레에 형성되는 회전 기둥 부재(446)와, 기판 스테이지(164)의 일측에 형성되는 기판 피동 회전부재(448)와, 상기 기판 피동 회전부재(448)를 회전시키도록 기판 승하강 지지대(178)의 상부 일측에 형성되는 기판 구동 회전부재(450)를 포함한다.
상기 회전 기둥 부재(446)는 회전 중심 원형 기둥 부재(444)와 베이링 등으로 연결되어 회전 중심 원형 기둥 부재(444)를 중심으로 회전될 수 있으며, 회전 기둥 부재(446)의 상부는 기판 스테이지(164)의 하면 중앙에 형성된 원형 홈(452)에 접하면서 기판 스테이지(164)에 결합된다.
상기 기판 피동 회전부재(448)는 기판 스테이지(164)의 일측에 형성되는 피동 브래킷부(453)와, 상기 피동 브래킷부(453)에 연결되는 피동 원통부재(454)를 포함한다.
상기 기판 구동 회전부재(450)는 기판 승하강 지지대(178)의 상부 일측에 모터 등으로 형성되는 회전 구동부(455)와, 상기 회전 구동부(455)에 연결되는 회전 구동축(456)과, 상기 회전 구동축(456)에 나선결합 등으로 연결되어 회전 구동축(456)의 회전에 따라서 제1 방향으로 이동되는 제1 방향 이동부재(458)와, 상기 제1 방향 이동부재(458)의 이동을 가이드하는 제1 방향 가이드 부재(460)와, 상기 제1 방향 이동부재(458)의 상부에 형성되는 제2 방향 가이드부(462)와, 상기 제2 방향 가이드부(462)를 따라서 제1 방향과 수직으로 형성된 제2 방향으로 이동되도록 형성되는 제2 방향 이동부재(464)와, 상기 제2 방향 이동부재(464)의 상부에 형성되며 내측에 상기 피동 원통부재(454)가 인입되는 원통부재 인입홈(466)을 포함한다.
상기 기판 구동 회전부재(450)가 작동되면 회전 구동축(456)이 회전되면서 제1 방향 이동부재(458)와 제2 방향 이동부재(464)가 이동됨과 동시에 상기 피동 원통부재(454)를 회전시키고, 결과적으로 상기 회전 기둥 부재(446)가 회전 중심 원형 기둥 부재(444)를 중심으로 회전되면서 상기 기판 스테이지(164)도 동시에 회전된다.
레이저 빔을 이용한 전사과정에서 일반적으로 기판 스테이지(164)가 회전되는 각도는 미미하기 때문에 실질적으로 회전 구동부(455)가 작동되는 범위는 크지 않으나 정밀한 전사를 위해서 필요한 임의의 범위 내에서 작동된다.
상기 기판 승하강 지지대(178)의 3개 지점에 동일한 형태로 형성되는 복수개의 기판 승하강부(176)는 제1 구동부(468: 468-1, 468-2, 468-3)와, 상기 제1 구동부(468: 468-1, 468-2, 468-3)의 제1 구동축(470)과, 상기 제1 구동축(470)과 나선결합 등으로 결합되어 상기 제1 구동축(470)이 회전됨에 따라서 전후로 이동되는 제1 구동 경사 부재(472)와, 상기 제1 구동 경사 부재(472)에 접하여 제1 구동 경사 부재(472)에 의해 승하강되는 제1 피동 경사 부재(474: 474-1, 474-2, 474-3)와, 상기 제1 피동 경사 부재(474: 474-1, 474-2, 474-3)의 승하강을 가이드하도록 형성되는 제1 승하강 가이드부(476: 476-1, 476-2, 476-3)를 포함한다.
상기 제1 구동 경사 부재(472)에는 경사 돌기(478)가 형성되고, 상기 제1 피동 경사 부재(474: 474-1, 474-2, 474-3)에는 상기 경사 돌기(478)가 인입되는 경사 인입홈(480)이 형성되어 경사 돌기(478)가 경사 인입홈(480)을 따라서 이동되어 제1 피동 경사 부재(474: 474-1, 474-2, 474-3)가 승하강한다.
상기 제1 피동 경사 부재(474: 474-1, 474-2, 474-3)의 후면에는 승하강 돌기(482)가 형성되고, 상기 제1 승하강 가이드부(476: 476-1, 476-2, 476-3)에는 상기 승하강 돌기(482)가 인입되는 승하강 홈(484)이 형성되어, 상기 승하강 돌기(482)가 승하강 홈(484)에 인입된 상태에서 제1 피동 경사 부재(474: 474-1, 474-2, 474-3)가 제1 승하강 가이드부(476: 476-1, 476-2, 476-3)에 연결되어 안정적으로 승하강된다.
상기 제1 피동 경사 부재(474: 474-1, 474-2, 474-3)의 상부에는 기판 스테이지(164)의 하부와 접하는 제1 승하강 패널(486: 486-1, 486-2, 486-3)이 형성된다.
본 발명은 상기 3개의 제1 승하강 패널(486: 486-1, 486-2, 486-3)에 공통으로 결합되는 하나의 판스프링 등으로 형성된 제1 탄성 부재(488)가 형성되고, 상기 제1 탄성 부재(488)와 상기 기판 승하강 지지대(178)의 상면 사이에는 절곡된 탄성 형태로 형성된 복수개의 보조 탄성 부재(490)가 형성된다.
상기 3개의 제1 구동부(468: 468-1, 468-2, 468-3)가 일측 방향으로 모두 작동되면 상기 3개의 제1 피동 경사 부재(474: 474-1, 474-2, 474-3)가 상승하면서 기판 스테이지(164)를 상승시키고, 제1 탄성 부재(488)도 상승한다.
상기 3개의 제1 구동부(468: 468-1, 468-2, 468-3)가 타측 방향으로 모두 작동되면 상기 3개의 제1 피동 경사 부재(474: 474-1, 474-2, 474-3)가 하강하면서 기판 스테이지(164)를 하강시키고, 제1 탄성 부재(488)도 하강한다.
상기 3개의 제1 구동부(468: 468-1, 468-2, 468-3) 중 제1-1 구동부(468-1)만 일측 방향으로 작동되면 상기 3개의 제1 피동 경사 부재(474: 474-1, 474-2, 474-3) 중 제1-1 피동 경사 부재(474-1)만 상승하면서 기판 스테이지(164)도 제1-1 피동 경사 부재(474-1)가 위치된 일측만 상승하고, 제1 탄성 부재(488)도 제1-1 피동 경사 부재(474-1)가 위치된 일측만 탄성 변형되며, 결과적으로 기판 스테이지(164)의 일부만 높이가 높아져서 미세조절된다.
이 상태에서 3개의 제1 구동부(468: 468-1, 468-2, 468-3) 중 제1-1 구동부(468-1)만 타측 방향으로 작동하면 상기 3개의 제1 피동 경사 부재(474: 474-1, 474-2, 474-3) 중 제1-1 피동 경사 부재(474-1)만 하강하면서 기판 스테이지(164)도 제1-1 피동 경사 부재(474-1)가 위치된 일측만 하강하고, 제1 탄성 부재(488)도 제1-1 피동 경사 부재(474-1)가 위치된 일측만 복원 탄성력이 작용되며, 상기 보조 탄성 부재(490)가 제1 탄성 부재(488)의 복원 탄성력을 보강하여 신속하게 원위치로 이동되도록 작용한다.
본 발명은 상기 기판 승하강 지지대(178)의 상면 중 4개 지점에 기판 스테이지(164)의 하부를 지지하는 스테이지 지지부재(492)가 형성된다.
상기 스테이지 지지부재(492)는 스테이지 지지 실린더부(500)와, 상기 스테이지 지지 실린더부(500)의 하부에 형성되는 제1 방향 이동 지지부(494)와, 상기 제1 방향 이동 지지부(494)의 하부에 제1 방향 이동 지지부(494)와 수직인 방향으로 이동가능하게 형성되는 제2 방향 이동 지지부(496)가 포함된다.
상기 스테이지 지지 실린더부(500)의 하부와 제1 방향 이동 지지부(494)의 상부 사이에는 제1 원통 회전부재(494-1)가 형성되어 스테이지 지지 실린더부(500)가 제1 방향 이동 지지부(494)의 상부에서 제1 방향으로 미세 이동되도록 작용된다.
상기 제1 방향 이동 지지부(494)의 하부와 제2 방향 이동 지지부(496)의 상부 사이에는 제2 원통 회전부재(496-1)가 형성되어 제1 방향 이동 지지부(494)가 제2 방향 이동 지지부(496)의 상부에서 제2 방향으로 미세 이동되도록 작용된다.
상기 스테이지 지지부재(492)가 기판 스테이지(164)의 하부를 지지하고 있는 상태에서 기판 스테이지(164)가 상기 기판 회전부(442)에 의해 회전되는 경우에 스테이지 지지부재(492)도 제1 방향 또는 제2 방향으로 미세하게 이동되면서 기판 스테이지(164)의 회전을 방해하지 않으면서 기판 스테이지(164)를 지지하는 작용을 한다.
또한, 상기 스테이지 지지부재(492)는 스테이지 지지 실린더부(500)의 둘레에 설치되며 거리를 측정하는 초음파 등으로 형성되는 스테이지 지지 센서부(498)와, 상기 스테이지 지지 실린더부(500)에 의해 승하강되는 스테이지 지지 승하강부(502)를 더 포함한다.
상기 기판 승하강부(176)가 작동되어 3개의 제1 구동부(468: 468-1, 468-2, 468-3)가 작동되어 기판 스테이지(164)가 전체적으로 상승하는 경우에 스테이지 지지부재(492)는 상기 스테이지 지지 센서부(498)에서 기판 스테이지(164)와 이격된 거리를 감지하여 스테이지 지지 실린더부(500)가 작동되고, 스테이지 지지 승하강부(502)가 기판 스테이지(164)의 하부에 밀착될 때까지 상승한다.
3개의 제1 구동부(468: 468-1, 468-2, 468-3) 중 하나만 작동되는 경우에는 스테이지 지지 승하강부(502) 중 기판 스테이지(164)와 이격되는 일부만 작동된다.
본 발명은 상기와 같이 기판 스테이지(164)의 승하강과, 회전 및 일부만 승하강시키는 틸팅 구조가 형성되어 기판 스테이지(164)의 정밀한 제어가 가능한 효과가 발생된다.
도 7의 (a)는 변형 구동부에 의해 기판 스테이지가 승하강하는 경우를 나타내는 개략 사시도이고, 도 7의 (b)는 변형 구동부에 의해 기판 스테이지가 기울어지는 경우를 나타내는 개략 사시도이다.
상기 기판 스테이지(164)가 기판 승하강 지지대(178)의 상방에서 전체가 승하강되거나 일측만 승하강되는 구조는 변형 구동부(530, 540, 550)에 의해서도 구현 가능하다.
즉, 도 7과 같이 변형 기판 스테이지(164-3)의 하부와 변형 기판 승하강 지지대(164-2)의 상부 사이에는 3지점에 변형 구동부(530, 540, 550)가 형성될 수 있다.
상기 변형 구동부(530, 540, 550)는 변형 기판 스테이지(164-3)의 하면에 내부가 빈 구형 공간으로 형성된 볼하우징부(536)와, 상기 볼하우징부(536)에 인입되는 볼(534-1)이 형성되는 실린더부(534)와, 상기 실린더부(534)의 하부에 형성된 힌지 부재(532)를 포함한다.
상기 실린더부(534)는 신축가능하다. 그리고 상기 볼(534-1)은 볼하우징부(536)의 내부에서 회전 가능하다.
상기 힌지 부재(532)는 상기 변형 기판 승하강 지지대(164-2)의 상면에 고정된다.
도 7의 (a)와 같이 상기 변형 구동부(530, 540, 550)는 3지점에 형성되어 3개의 변형 구동부(530, 540, 550)가 모두 동일한 크기로 승하강되는 경우에는 변형 기판 스테이지(164-3)가 변형 기판 승하강 지지대(164-2)을 기준으로 높이가 승하강된다.
그리고 도 7의 (b)와 같이 변형 구동부(530, 540, 550) 중 제1 변형 구동부(530)만 하강하면 변형 기판 스테이지(164-3)는 제1 변형 구동부(530)가 위치된 부분에서 아래로 기울어진다.
상기와 같은 구성을 통하여 본 발명에서는 변형 기판 스테이지(164-3)의 승하강과 틸팅이 가능하다.
도 8의 (a)는 웨이퍼 전후이동 수동부재의 개략 사시도이고, 도 8의 (b)는 웨이퍼 전후이동 수동부재의 개략 정면도이다.
상기 웨이퍼부(140)는 웨이퍼 스테이지(175)의 웨이퍼 중앙 구멍(820) 둘레 하부에 형성되는 추가 승하강부(376)와, 상기 추가 승하강부(376) 하부에 형성되는 웨이퍼 흡착부(810) 및, 상기 웨이퍼 흡착부(810)의 하면에 설치되며 초음파를 이용하는 제1거리측정센서(527)와 제2거리측정센서(528)를 포함한다.
상기 웨이퍼 흡착부(810)에는 웨이퍼(152)가 압착되고, 상기 웨이퍼(152)의 하면에는 마이크로 엘이디칩(154)이 형성된다.
상기 추가 승하강부(376)는 웨이퍼 스테이지(175)와 웨이퍼 흡착부(810) 사이의 3지점에 형성되며, 형상은 변형 구동부(530, 540, 550)와 유사하여 자세한 설명은 생략한다.
상기 제1거리측정센서(527)와 제2거리측정센서(528)는 웨이퍼(152)를 중심으로 서로 대향되게 이격된 상태로 하방에 위치된 글라스 기판(162)을 향해 초음파를 발사하고, 반사되는 초음파의 도달 시간을 측정하여 웨이퍼 흡착부(810)와 글라스 기판(162) 사이의 간격이 균일한지 측정한다.
본 발명은 상기 제1거리측정센서(527)와 제2거리측정센서(528)를 통하여 웨이퍼 흡착부(810)와 글라스 기판(162) 사이의 간격을 균일하게 유지하는지 파악할 수 있어 마이크로 LED칩 전사과정에서 웨이퍼(152)와 글라스 기판(162)의 이동시 발생되는 웨이퍼(152)와 글라스 기판(162) 사이의 간격 변화를 최소화하는 구조가 형성된 마이크로 엘이디 선택적 공기층 전사 프린트 장치(100)를 제공하는 효과가 발생된다.
상술한 본 발명의 설명에서의 실시예는 여러가지 실시가능한 예 중에서 당업자의 이해를 돕기 위하여 가장 바람직한 예를 선정하여 제시한 것으로, 이 발명의 기술적 사상이 반드시 이 실시예만 의해서 한정되거나 제한되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 다양한 변화와 변경 및 균등한 타의 실시예가 가능한 것이다.
** 도면 부호의 설명 **
100: 마이크로 엘이디 선택적 공기층 전사 프린트 장치 120: 레이저 광원부
122: 레이저 광원 132: 경통부
140: 웨이퍼부 154: 마이크로 엘이디칩
156: 커스터머스 마스크부 160: 글라스 기판부
164: 기판 스테이지 175: 웨이퍼 스테이지
176: 기판 승하강부 442: 기판 회전부
444: 회전 중심 원형 기둥 부재 446: 회전 기둥 부재
450: 기판 구동 회전부재 454: 피동 원통부재
458: 제1 방향 이동부재 464: 제2 방향 이동부재
470: 제1 구동축 472: 제1 구동 경사 부재

Claims (9)

  1. 레이저 광을 조사하는 레이저 광원부와,
    상기 레이저 광원부에서 조사되는 레이저 광을 받도록 레이저 광원부의 하부에 위치되는 웨이퍼부와,
    상기 웨이퍼부의 하부에 위치되어 웨이퍼부의 마이크로 엘이디칩이 전사되는 글라스 기판부를 포함하며,
    상기 글라스 기판부는
    상기 웨이퍼부의 하부에 위치되는 기판 스테이지와,
    상기 기판 스테이지 전체를 승하강시키거나 일부분만 승하강시키는 기판 승하강부를 포함하는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치.
  2. 청구항 1에 있어서,
    상기 레이저 광원부는
    레이저 광을 발생시키는 레이저 광원과,
    상기 레이저 광원에서 발사된 레이저 광이 통과되는 경통부와,
    상기 경통부를 지난 레이저 광을 일부 차단하고 일부만 선별적으로 통과시키는 비투과층 막이 형성된 마스크부 및,
    상기 마스크부를 통과하여 전달되는 레이저 광을 웨이퍼의 면적에 맞게 배율을 확대하는 프로젝션 렌즈부를 포함하는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치.
  3. 청구항 1에 있어서,
    상기 글라스 기판부는
    상기 기판 승하강부가 상부에 형성되는 기판 승하강 지지대와,
    상기 기판 승하강 지지대가 좌우로 이동되도록 가이드하는 기판 좌우 이동 가이드부와,
    상기 기판 좌우 이동 가이드부가 상부에 형성되는 기판 좌우 이동 지지대와,
    상기 기판 좌우 이동 지지대가 전후 이동되도록 가이드하는 기판 전후 이동부를 더 포함하는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치.
  4. 청구항 1에 있어서,
    상기 기판 승하강부는 복수개로 형성되며,
    상기 기판 승하강부 각각은
    제1 구동부와,
    상기 제1 구동부의 제1 구동축과,
    상기 제1 구동축이 회전됨에 따라서 전후로 이동되는 구동 경사 부재와,
    상기 구동 경사 부재에 접하여 구동 경사 부재에 의해 승하강되는 피동 경사 부재와,
    상기 피동 경사 부재의 승하강을 가이드하도록 형성되는 승하강 가이드부를 포함하는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치.
  5. 청구항 2에 있어서,
    상기 경통부는
    상기 레이저 광이 통과되면서 파워가 조절되도록 형성된 감쇠기 모듈과,
    상기 감쇠기 모듈을 통과한 레이저 광의 빔 형태를 빔 조사면의 위치에 따라 발생되는 에너지 강도의 차이를 감소시키도록 형성하는 빔 형성부 및,
    상기 빔 형성부를 통과한 레이저 광의 왜곡을 감소시키는 필드 렌즈 유닛을 포함하는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치.
  6. 청구항 3에 있어서,
    상기 기판 스테이지의 하부와 기판 승하강 지지대의 상부 사이에는 기판 스테이지를 회전시키는 기판 회전부가 더 형성되는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치.
  7. 청구항 3에 있어서,
    상기 기판 승하강 지지대에 기판 스테이지의 하부를 지지하는 스테이지 지지부재가 더 형성되는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치.
  8. 청구항 6에 있어서,
    상기 기판 회전부는
    상기 기판 승하강 지지대의 중앙에 형성되는 회전 중심 원형 기둥 부재와,
    상기 회전 중심 원형 기둥 부재의 둘레에 형성되는 회전 기둥 부재와,
    상기 기판 스테이지의 일측에 형성되는 기판 피동 회전부재와,
    상기 기판 피동 회전부재를 회전시키도록 기판 승하강 지지대의 상부 일측에 형성되는 기판 구동 회전부재를 포함하며,
    상기 기판 구동 회전부재에 의해 기판 피동 회전부재가 이동함에 따라서 상기 회전 중심 원형 기둥 부재를 중심으로 회전 기둥 부재가 회전되는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치.
  9. 청구항 7에 있어서,
    상기 스테이지 지지부재는
    스테이지 지지 실린더부와,
    상기 스테이지 지지 실린더부의 하부에 형성되는 제1 방향 이동 지지부 및,
    상기 제1 방향 이동 지지부의 하부에 제1 방향 이동 지지부와 수직인 방향으로 이동가능하게 형성되는 제2 방향 이동 지지부를 포함하는 것을 특징으로 하는 마이크로 엘이디 선택적 공기층 전사 프린트 장치.
PCT/KR2022/001245 2021-02-04 2022-01-24 마이크로 엘이디 선택적 공기층 전사 프린트 장치 WO2022169164A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/273,890 US20240079516A1 (en) 2021-02-04 2022-01-24 Micro led selective air layer transfer printing device
CN202280012726.XA CN116868322A (zh) 2021-02-04 2022-01-24 微型led选择性空气层转印装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0016333 2021-02-04
KR1020210016333A KR102486319B1 (ko) 2021-02-04 2021-02-04 마이크로 엘이디 선택적 공기층 전사 프린트 장치

Publications (1)

Publication Number Publication Date
WO2022169164A1 true WO2022169164A1 (ko) 2022-08-11

Family

ID=82741311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001245 WO2022169164A1 (ko) 2021-02-04 2022-01-24 마이크로 엘이디 선택적 공기층 전사 프린트 장치

Country Status (4)

Country Link
US (1) US20240079516A1 (ko)
KR (1) KR102486319B1 (ko)
CN (1) CN116868322A (ko)
WO (1) WO2022169164A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232648A (ja) * 2006-03-02 2007-09-13 Sumitomo Heavy Ind Ltd ステージ装置
KR20120069302A (ko) * 2010-12-20 2012-06-28 디앤에이 주식회사 레이저 리프트 오프 장치
KR20180115584A (ko) * 2017-04-13 2018-10-23 엘지전자 주식회사 엘이디칩 전사헤드 및 이를 포함하는 엘이디칩 전사장비
KR20200094498A (ko) * 2019-01-30 2020-08-07 삼성전자주식회사 마스크를 포함하는 마이크로 엘이디 전사 장치 및 이를 이용한 마이크로 엘이디 전사 방법
KR20200107559A (ko) * 2019-03-08 2020-09-16 한국광기술원 Led 구조체 전사 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202031A (ja) * 1989-01-31 1990-08-10 Nippon Seiko Kk 回動テーブル装置
KR101160158B1 (ko) 2010-05-28 2012-06-27 주식회사 엘티에스 레이저 리프트 오프 공정의 기판 분리장치
KR101605317B1 (ko) * 2014-11-20 2016-03-23 한국기계연구원 광학식 선택적 전사 장치 및 방법
JP2018060993A (ja) * 2016-09-29 2018-04-12 東レエンジニアリング株式会社 転写方法、実装方法、転写装置、及び実装装置
KR20190000058A (ko) * 2017-06-22 2019-01-02 광주과학기술원 마이크로 소자의 이송 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232648A (ja) * 2006-03-02 2007-09-13 Sumitomo Heavy Ind Ltd ステージ装置
KR20120069302A (ko) * 2010-12-20 2012-06-28 디앤에이 주식회사 레이저 리프트 오프 장치
KR20180115584A (ko) * 2017-04-13 2018-10-23 엘지전자 주식회사 엘이디칩 전사헤드 및 이를 포함하는 엘이디칩 전사장비
KR20200094498A (ko) * 2019-01-30 2020-08-07 삼성전자주식회사 마스크를 포함하는 마이크로 엘이디 전사 장치 및 이를 이용한 마이크로 엘이디 전사 방법
KR20200107559A (ko) * 2019-03-08 2020-09-16 한국광기술원 Led 구조체 전사 장치

Also Published As

Publication number Publication date
KR20220112601A (ko) 2022-08-11
KR102486319B1 (ko) 2023-01-10
US20240079516A1 (en) 2024-03-07
CN116868322A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
JP2019530201A (ja) マイクロデバイスのマスクレス並列ピックアンドプレース移載
US20100195078A1 (en) Projection exposure apparatus and projection exposure method
WO2017034221A1 (ko) 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치
NL2010176A (en) Device, lithographic apparatus, method for guiding radiation and device manufacturing method.
WO2020197095A1 (ko) 마이크로 발광다이오드 칩 제거 장치와 방법 및 이를 이용한 마이크로 발광다이오드 모듈 리페어 시스템과 방법
WO2013015518A1 (ko) 엘시디 마스크를 이용한 가시광선 스캔형 저비용 쾌속조형장치
WO2021246579A1 (ko) Vcsel를 이용한 기판열처리장치
WO2022169164A1 (ko) 마이크로 엘이디 선택적 공기층 전사 프린트 장치
WO2018062861A1 (ko) 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치
CN113284989A (zh) 一种Micro LED芯片剥离装置、剥离机及剥离机使用方法
WO2018110926A1 (ko) 디스플레이 모듈 및 그 제조 방법
CN101943867B (zh) 邻近曝光装置、其曝光光束形成方法及面板基板制造方法
JP2000343257A (ja) 戻り光除去方法と装置
TW201804874A (zh) 照明工具及具有其之照明工具系統
JP4336119B2 (ja) アクティブマトリクス型led表示装置およびその要素
WO2017135683A1 (ko) 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치
WO2021241909A1 (ko) 마이크로 led 전사 장치 및 이를 이용한 마이크로 led 전사 방법
CN113782650A (zh) 晶圆激光剥离装置及方法
CN216288360U (zh) 发光二极管芯片转移用设备
WO2022071613A1 (ko) 반도체 발광소자의 자가조립 장치 및 방법
WO2022050436A1 (ko) 레이저 가공 장치
US6356341B1 (en) Exposure device, beam shape setting device and illuminating area setting device
WO2021215640A1 (ko) 마이크로 엘이디 제조 장치
WO2021187856A1 (ko) 디스플레이 모듈 및 디스플레이 모듈의 리페어 방법
CN215008252U (zh) 一种Micro LED芯片剥离装置及剥离机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273890

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280012726.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749918

Country of ref document: EP

Kind code of ref document: A1