WO2017034221A1 - 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 - Google Patents
노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 Download PDFInfo
- Publication number
- WO2017034221A1 WO2017034221A1 PCT/KR2016/009139 KR2016009139W WO2017034221A1 WO 2017034221 A1 WO2017034221 A1 WO 2017034221A1 KR 2016009139 W KR2016009139 W KR 2016009139W WO 2017034221 A1 WO2017034221 A1 WO 2017034221A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- unit
- light emitting
- exposure
- ultraviolet light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
Definitions
- the present invention relates to an exposure light source used in a photolithography process for forming a fine circuit pattern on a semiconductor wafer or display panel. More particularly, the present invention relates to a plurality of UV LED arrays and light collections.
- the lens array is concentrated to form a central light source unit and a peripheral light source unit, so that the light source module unit for intensive exposure and the light source module unit improved to be able to efficiently perform relatively large area exposure performance and to replace the light source of the existing exposure apparatus economically. It relates to an exposure apparatus provided.
- images such as semiconductor devices, printed circuit boards (PCBs), liquid crystal displays (LCDs), organic light emitting diodes (OLEDs), and plasma display panels (PDPs) that are embedded as main components of electrical and electronic devices.
- the display panel is manufactured so that a fine circuit pattern is formed by an optical microfabrication technique, collectively called photolithography, in an exposure process on its manufacturing process.
- an ultra-high pressure mercury lamp or a halogen lamp is mainly used as an exposure light source used in a conventional exposure process.
- a conventional exposure light source is an exposure process due to low efficiency and high cost due to low lifetime and high power consumption.
- various problems are exposed.
- TFT thin film transistor
- CF color filter
- UV light emitting devices have low power consumption, long life, selective use of single wavelengths, and short wavelengths.
- the trend has been spotlighted as an alternative to the conventional light source for exposure.
- UV LED ultraviolet light emitting element
- the present invention is derived under the technical background as described above, and the problems of the background art described above are retained by the applicant for the derivation of the present invention or newly acquired and secured in the derivation process of the present invention. It is not known to the public before the application of the invention.
- the present invention was made in view of the problems of the exposure light source (Hg Lamp, etc.) of the conventional exposure apparatus under the background technology as described above, the object of the present invention is to provide a plurality of ultraviolet light emitting element array and condenser lens array Is to provide a light source module unit for exposure that can be maximized the light output efficiency by the configuration concentrated to form a central light source and the peripheral light source.
- Another object of the present invention is to provide an exposure light source module unit capable of efficiently performing large-area exposure by a configuration in which a plurality of ultraviolet light emitting element arrays and a condenser lens array form a central light source unit and a peripheral light source unit.
- Still another object of the present invention is to provide a light source module unit for low power consumption type exposure light source that can effectively and dramatically improve exposure performance and exposure efficiency so that the exposure pattern can be made fine and high resolution, and an exposure apparatus including the light source module unit as a light source. It is to provide.
- Still another object of the present invention is to provide an economical and practical low-power exposure light source module unit and its unit as a light source by improving to an alternative compatible module unit that can easily replace an exposure light source (Hg Lamp, etc.) of an existing exposure apparatus. It is for providing an exposure apparatus.
- the light source module unit for exposure is installed such that a first circuit board mounted in a matrix-type array structure in which a plurality of unit ultraviolet light emitting elements form a central light source is mounted side by side in a central portion of one surface thereof.
- a light source panel mounted on at least one second circuit board around the first circuit board such that the plurality of unit UV light emitting devices are mounted in an array structure in a matrix form to form a peripheral light source unit;
- An array structure of the unit UV light emitting devices in the first support panel and the second support panel which are arranged to be arranged on the light output side of the unit UV light emitting device in parallel with the first circuit board and the second circuit board, respectively;
- an optical panel provided with a plurality of unit condensing lenses arranged in a corresponding array structure, wherein the unit condensing lens comprises a central light source of the light source panel with respect to the main optical axis of the unit ultraviolet light emitting elements correspondingly arranged. It is characterized in that it is arranged in an eccentric state to any reference center axis side passing through the center of the ultraviolet light emitting element array.
- another light source module unit for exposure includes a housing having a planar center light source formed in the shape of a concave groove, and a plurality of peripheral light source units disposed around the radial unit inclined surface.
- the optical panel is provided with a plurality of unit condensing lenses arranged in an array structure corresponding to the array structure of each unit ultraviolet light emitting element mounted on the circuit board of the light source panel,
- the unit condensing lenses are arranged so as to be eccentric to an arbitrary reference center axis side passing through the center of the ultraviolet light emitting element array that forms the central light source of the light source panel with respect to the main optical axis of the unit ultraviolet light emitting element correspondingly arranged.
- the separation distance "b” of the ultraviolet light emitting element spaced apart from the reference center axis side passing through the center O of the ultraviolet light emitting element array on the light source panel, and the facing distance of the converging lens "c" from the ultraviolet light emitting element.
- the exposure apparatus includes an exposure table for supporting a substrate for exposure to which a photosensitive agent is applied, and driving means for driving the exposure table to be movable on XY plane coordinates. And a light source module unit for exposure provided to emit illumination light to a mask for forming an exposure pattern of the substrate, an optical system provided between the substrate and the light source module unit for exposure, and driving of the driving means and the light source module unit for exposure.
- An exposure apparatus including a control means for controlling in association, wherein the exposure light source module unit is a state in which a first circuit board mounted in a matrix-type array structure in which a plurality of unit ultraviolet light emitting elements form a central light source is parallel to a central portion of one surface thereof; It is installed so as to be mounted, and inclined forward around the first circuit board A light source panel mounted on at least one second circuit board to be mounted so as to be mounted on a plurality of units, wherein a plurality of unit ultraviolet light emitting devices are mounted in an array structure in a matrix form to form a peripheral light source unit; Corresponding to the array structure of the unit UV light emitting device in the first support panel and the second support panel which are arranged to be arranged on the light output side of the unit UV light emitting device in parallel with the first circuit board and the second circuit board, respectively.
- an optical panel including a plurality of unit condensing lenses arranged in an array structure, wherein the unit condensing lenses respectively form ultraviolet rays forming a central light source of the light source panel with respect to the main optical axis of the unit ultraviolet light emitting elements arranged correspondingly.
- An ultraviolet light emitting element array arranged on the light source panel with respect to an optical distance "a” from the ultraviolet light emitting element to the light-receiving region A and arranged in an eccentricity toward an arbitrary reference center axis line passing through the center of the light emitting element array
- the distance "b” of the ultraviolet light emitting element spaced apart from the reference center axis side passing through the center O of And the facing distance "c” between the ultraviolet light emitting element and the condenser lens, the eccentric distance "x” between the central axis of each ultraviolet light emitting element and the central axis of the condensing lens, and the diameter "t" of the light receiving region A.
- the unit condensing lens is gradually spaced apart from the side of any reference central axis passing through the center of the ultraviolet light emitting element array constituting the central light source of the light source panel, and closer to the edge, the main optical axis of the corresponding unit ultraviolet light emitting element. It is provided in a matrix-like array structure in which the amount of eccentricity increases, and has a structure configured to focus diffused light emitted from each unit ultraviolet light emitting element in a light receiving region set in the optical system of the exposure apparatus.
- the ultraviolet light emitting device may have a configuration mounted as an LED light source of any one type selected from a chip or a package or a mixture of both.
- the unit condensing lens is made of a double-sided convex lens, the double-sided convex lens having a curvature surface of different optical structure according to the array arrangement position may be disposed.
- the distance "b” has a configuration in which the peripheral light source unit 110B is inclined so as to be disposed radially around the center light source unit 110A when "b / a" is formed to be 0.5 or more.
- the ultraviolet light emitted from the ultraviolet light emitting element is spaced apart from the optical center “ a " from the ultraviolet light emitting element A and the reference center axis side passing through the center O of the ultraviolet light emitting element array on the light source panel.
- the peripheral light source 110B may be selectively installed around the central light source 110A.
- the facing distance c between the ultraviolet light emitting element and the condenser lens and the diameter d of the condenser lens satisfy the condition of 1.0c ⁇ d ⁇ 2.5c.
- the light source panel and the optical panel are configured in a unit state supported by the housing and detachable from the exposure apparatus.
- the heat dissipation means is further provided around the light source panel and the optical panel.
- the light output power is maximized by a combination of a plurality of ultraviolet light emitting element (UV LED) arrays and a module in which peripheral light source portions are concentrated around a central light source portion formed by a condenser lens array.
- UV LED ultraviolet light emitting element
- the light source module unit for exposure it is possible to unitize an alternative compatible light source module that can be easily replaced with a light source of an existing exposure apparatus, thereby providing a practical and economical exposure apparatus.
- the use of the light source module unit for exposure according to the present invention can be expected to reduce the maintenance cost through the use of low power consumption, reducing the cost of replacing the light source, improving the operating time of the exposure equipment, and solving environmental problems. .
- the light source module unit for exposure according to the present invention can be freely selectively used as a high efficiency high output single wavelength and short wavelength ultraviolet light as needed, so high resolution is realized by pattern miniaturization, which is a key technology for high quality exposure performance. To make it possible.
- FIG. 1 and 2 are schematic exploded perspective and side views respectively showing a light source module unit for exposure according to the present invention.
- 3 and 4 are each a schematic diagram showing for explaining the eccentric array structure of the unit light source and the condenser lens of the light source module unit for exposure according to the present invention.
- FIG. 5 is a graph showing a measurement result of the light collecting amount according to the light collecting structure of the light source module unit for exposure according to the present invention.
- FIG. 6 is a graph showing a change in the light output of the light emitting element and the eccentric light emitting element in the center of the light source module unit for exposure according to the present invention.
- FIG. 7 is a plan view schematically showing a modified embodiment of the light source module unit for exposure according to the present invention.
- FIG. 8 is a perspective view schematically showing an exposure light source module unit according to another embodiment of the present invention.
- FIG. 9 is a perspective view schematically showing an exposure light source module unit according to another embodiment of the present invention.
- FIG. 10 shows the results of measuring CD values according to mask line widths by photographing main portions of a circuit pattern formed on a wafer by an exposure light source module unit and a conventional exposure light source, a mercury lamp (Hg Lamp) according to the present invention. Shown.
- FIG. 11 is a graph illustrating measurement results of CD values according to mask line widths of circuit patterns formed on a wafer by a light source module unit for exposure according to the present invention and a mercury lamp (Hg Lamp), which is a conventional light source for exposure.
- Hg Lamp mercury lamp
- FIG. 12 is a schematic configuration diagram schematically showing an essential part of an exposure apparatus to which an exposure light source module unit according to the present invention is applied.
- the exposure light source module unit 100 includes a light source panel 110 and an optical panel 120 that are coupled to be arranged in close proximity to each other to form a unit unit.
- the light source panel 110 is a support structure for supporting the circuit boards 111 and 112 on which the unit ultraviolet light emitting device 101 to be described later is mounted and for mounting to a light source unit of an exposure apparatus, which is not shown. It can be formed to form a flat panel by molding molding of a synthetic resin material or a metal material.
- the light source panel 110 is preferably formed as a rectangular panel as illustrated in the drawings, but such a shape structure or material does not limit the present invention, and various modified embodiments may be applied.
- the light source panel 110 has a first circuit board 111 installed to be mounted side by side in a central portion of one surface thereof, and an upper end portion thereof protrudes forward to be radially evenly disposed around the first circuit board 111 so as to be inclined upwardly.
- a plurality of second circuit boards 112 are provided.
- UV LEDs 101 are mounted on the first circuit board 111 and the second circuit board 112 in a matrix array structure.
- the plurality of unit ultraviolet light emitting devices 101 mounted in the array structure on the first circuit board 111 form the central light source unit 110A of the light source panel 110 and the second circuit board 112.
- the plurality of unit ultraviolet light emitting devices 101 mounted in an array structure are configured to form the peripheral light source unit 110B of the light source panel 110.
- a single first circuit board 111 is mounted on the center light source 110OA of the light source panel 110, and a plurality of unit ultraviolet light emitting devices 101 are mounted on the first circuit board 111. It is mounted to form an array in matrix form on the coordinates.
- a plurality of second circuit boards 112 are disposed at equal intervals in the peripheral light source unit 110B of the light source panel 110 so as to surround the outer portion of the first circuit board 111.
- a plurality of unit ultraviolet light emitting devices 101 are mounted on the substrate 112 to form an array in matrix form on xy coordinates.
- the first circuit board 111 is illustrated as a disc shaped panel in the drawing, such a shape structure is shown as an embodiment, and the light source module unit 100 for exposure according to the present invention is shown. It is not limited.
- the first circuit board 111 is modified into various shape structures such as a rectangular panel shape may be applied.
- the second circuit board 112 is preferably formed in a trapezoidal shape of an ordinary light narrowing as illustrated in the drawings, but such a configuration does not limit the present invention.
- the second circuit board 112 has a trapezoidal shape in order to fill the gap between the unit UV light emitting devices mounted on adjacent circuit boards as the upper end portion is formed when the second circuit board 112 is formed as a rectangular circuit board. Accordingly, each of the unit ultraviolet light emitting devices 101 is mounted on the second circuit board 112 in an array structure in which the entire unit ultraviolet light emitting devices 101 are arranged at equal intervals.
- the second circuit board 112 constituting the peripheral light source 110B is radially evenly circumferentially around the first circuit board 111. Since the upper end protrudes forward and is installed to be inclined upward, the ultraviolet light emitting device 101 mounted on the second circuit board 112 constituting the peripheral light source 110B has a main light emission axis having a first light source 110A. It is provided in a state inclined so as to face the main light emission axis of the ultraviolet light emitting element 101 mounted on the circuit board 111.
- the area of the light source panel 110 is inevitably increased to increase the array area by increasing the number of installations of the ultraviolet light emitting element 101.
- the optical axis of the ultraviolet light emitting element 101 disposed at the outer side is diffused to the outer side, so that the light collection efficiency decreases, so that the exposure performance is drastically reduced.
- the light source module unit 100 for exposure is the first circuit board 111 in order to efficiently control the optical axis of the ultraviolet light emitting element 101 disposed outside for large area exposure to the outside.
- the upper end of the second circuit board 112 has a configuration inclined upward so as to protrude forward.
- the optical axis of the ultraviolet light emitting device 101 mounted on the second circuit board 112 is the central axis of the central light source unit 110A. As it is arranged to face, efficient condensation is possible.
- the optical panel 120 is coupled to form a pair in parallel with the front surface of the light source panel 110 to be disposed on the light output side of the ultraviolet light emitting device 101, the light source panel 110 A first support panel 121 and a second support panel 122 are installed to correspond to the first circuit board 111 and the second circuit board 112 in parallel with each other.
- the first support panel 121 and the second support panel 122 each include an array of a plurality of unit ultraviolet light emitting devices 101 mounted on the first circuit board 111 and the second circuit board 112, respectively.
- a plurality of unit condenser lenses 102 arranged in an array structure corresponding to the structure are provided.
- the unit condensing lens 102 arranged in an array structure on the first support panel 121 is provided at the center light source 110A of the light source panel 110.
- a condenser lens group corresponding to the peripheral light source unit 110B of the light source panel 110 is formed of a lens group corresponding to each other, and the condenser lenses 102 arranged in an array structure on the second support panel 122. Will be achieved.
- the unit condensing lens 102 passes through the center of the ultraviolet light emitting element array that forms the central light source unit 110A of the light source panel 110 with respect to the main light axis of the unit ultraviolet light emitting element 101 correspondingly arranged. It has a configuration arranged in an eccentric state to the reference center axis (0) side of.
- 3 and 4 are schematic views illustrating an array structure in which the condenser lens 102 of the light source module unit 100 for exposure according to the present invention is eccentric with respect to the main light axis of the ultraviolet light emitting element 101.
- "b” indicates a separation distance of the ultraviolet light emitting device 101 disposed to be spaced apart from the reference center axis side passing through the center O of the ultraviolet light emitting device array of the light source panel 110.
- c represents the facing distance between the ultraviolet light emitting element 101 and the condenser lens 102
- x indicates the eccentricity between the central axis of the ultraviolet light emitting element 101 and the central axis of the condensing lens 102
- T represents the diameter of the light-receiving area A.
- the light source module unit 100 for exposure according to the present invention is optical from the ultraviolet light emitting element 101 to an aperture set to a light receiving region A which is a light collecting target.
- the relationship of "b” and “c”, “x” and “t” mentioned above is comprised so that it may be defined by following Formula.
- the ultraviolet light emitting device 101 is a unit ultraviolet light emitting device 101 is disposed in the center (O) of the ultraviolet light emitting device array forming the central light source 110A of the light source panel 110 or It may have an excluded structure.
- the light receiving region (refer to reference numeral “A” in FIGS. 3 and 4) is an aperture so as to form a focusing target through which a focused light passes through a reflecting mirror provided in an optical system of an exposure apparatus (not shown). It is provided in the form of an aperture).
- the light source module unit 100 for exposure is provided as a light source of the exposure apparatus, and the diffused light irradiated from each unit ultraviolet light emitting element 101 is collected and refracted by the condensing lens 102 to collect the light converging target of the light receiving region.
- the illumination light is emitted to pass through an aperture formed as a target.
- the center O of the array of the ultraviolet light emitting elements 101 on the light source panel 110 and the center of the lens array of the optical panel 120 are coaxial to each other.
- the condensing lens 102 which is disposed close to the edge and gradually spaced apart from any reference central axis side passing through the center O thereof, has the reference center described above with respect to the main optical axis of the ultraviolet light emitting element 101 corresponding thereto.
- the distance eccentrically toward the axis side is arranged to increase gradually.
- the exposure light source module unit 100 is disposed at the center O of the ultraviolet light emitting element 101 array of the light source panel 110 and at the center of the condenser lens 102 array of the optical panel 120.
- Each unit condensing lens 102 except for the unit condensing lens is arranged to be eccentric with respect to the main light axis of the ultraviolet light emitting element 101 to perform the role and function of a strabismus lens. It is configured to maximize the light condensing efficiency of the diffused light emitted from the light emitting element (101).
- the condensing lens 102 is made of a double-sided convex lens in order to maximize the condensing efficiency of the diffused light emitted from the ultraviolet light emitting element 101
- a double-sided convex lens having curvature surfaces of different optical structures according to the array position is provided.
- FIG. 5 is a graph illustrating a measurement result of a light collection amount according to a light converging structure of an exposure light source module unit 100 according to the present invention, where “c” is a face separation between the ultraviolet light emitting element 101 and the light condenser lens 102. “D” represents the diameter of the condensing lens 102.
- the exposure light source module unit 100 has a diameter “d” of the condensing lens 102 with respect to the facing distance “c” of the ultraviolet light emitting element 101 and the condensing lens 102.
- the ratio value d / c is 1 or more, it rapidly increases, while when the value of d / c is 2 or more, a constant amount of light is maintained.
- the facing distance c between the ultraviolet light emitting element 101 and the condenser lens 102 and the diameter d of the condenser lens are 1.0c ⁇ d ⁇ 2.5c. It is preferable to be configured to satisfy the condition of.
- FIG. 6 is a graph showing a change in light output of the light emitting device and the eccentric light emitting device in the center of the light source module unit for exposure according to the present invention.
- “a” represents the optical distance from the ultraviolet light emitting element 101 to an aperture set to the light receiving area A, which is a light collecting target
- “b” represents the light source panel 110.
- the exposure light source module unit 100 needs to increase the exposure area, such as a large-area glass substrate, when the "b / a" is formed to be 0.5 or more, the center light source unit as described above Installation of the peripheral light source portion 110B disposed obliquely with respect to 110A is essentially required.
- the peripheral light source part 110B which is disposed inclined with respect to the said center light source part 110A can be selectively installed.
- the exposure area of the central light source 110A increases the number of installations of the ultraviolet light emitting elements 101 to increase the array area. It can respond by increasing. At this time, the optical distance "a" from the ultraviolet light emitting element 101 to an aperture set to the light receiving region A, which is a light collecting target, and the ultraviolet light emitting element array of the light source panel 110.
- the light source module unit 100 for exposure may be mounted to be supported by a housing (not shown) to have a unitized configuration.
- the light source module unit 100 for exposure unit united to be mounted in a housing (not shown) can be detachably used as a light source of an exposure apparatus (not shown), so that a light source of an existing exposure apparatus such as mercury or a halogen lamp can be used. It is very economical and easy to replace.
- the light source module unit 100 for exposure is supported by a structure such as a bracket or a flange provided in the exposure apparatus in a state in which the light source panel 110 and the optical panel 120 are combined to form a set. It may be installed as a light source.
- the light source module unit 100 for exposure preferably further includes heat dissipation means provided in the housing (not shown) to be provided around the light source panel 110 and the optical panel 120.
- the heat dissipation means may be provided with a heat sink embedded in the housing so that the light source panel 110 and the optical panel 120 are mounted, for example, a water cooling type connected to a chiller to circulate the coolant. Heat dissipation means may be installed.
- FIG. 7 is a plan view schematically showing a modified embodiment of the light source module unit for exposure according to the present invention, which shows a state in which the light source panel 110 and the optical panel 120 overlap, and among reference numerals of the drawings.
- the same reference numerals as the reference numerals of the above-described drawings indicate the same components.
- the exposure light source module unit 100 includes a plurality of second circuit boards forming the peripheral light source unit 110B in the configuration of the light source panel 110 of FIGS. 1 and 2.
- a plurality of third circuit boards 113 are further provided on the outer side of the outer side of the 112 so that the upper side protrudes forward, and the upper end also protrudes forward on the outer side of the second supporting panel 122 of the optical panel 120.
- a plurality of third support panel 123 is installed to be inclined upwardly to further have a configuration.
- the second circuit board 112 and the third circuit board 113 with respect to the first circuit board 111 are respectively installed in such a state that the inclination angles are sequentially further increased, and at the same time, the first support panel 121 is mounted on the first support panel 121.
- the second support panel 122 and the third support panel 123 are installed in such a state that the inclination angles are further increased sequentially.
- each of the plurality of unit ultraviolet light emitting devices 101 and the condenser lens 102 may be mounted on the third circuit board 113 and the third support panel 123 to form an array in a matrix form on x-y coordinates.
- the main light emission axis of the unit ultraviolet light emitting device 101 mounted on the third circuit board 113 is directed toward the light emission axis of the ultraviolet light emitting device 101 mounted on the first circuit board 111 forming the central light source unit 110A. It is prepared in an inclined state.
- the ultraviolet light emitting element 101 mounted on the third circuit board 113 is expanded to form a second peripheral light source unit provided at the outer side of the peripheral light source unit 110B.
- the light source module unit 100 for exposure further includes a plurality of peripheral light source units arranged to be arranged concentrically around the center light source unit 110A to increase the exposure area, thereby providing a large area for exposure. Efficient condensing action is possible.
- FIG. 8 is a perspective view schematically illustrating an exposure light source module unit according to another embodiment of the present invention, wherein the same reference numerals as the reference numerals of the drawings shown in the drawings represent the same components.
- the light source panel 210 is radially equally disposed on the main body portion 210a and its outer circumference of the center and spaced apart from each other, and the upper end portion is moved forward. It has a configuration having a plurality of wings 210b protruded and integrally installed upwardly inclined.
- the ultraviolet light emitting device 101 is mounted in the matrix structure of the matrix light emitting device 101 on the main body portion 210a and the wing portion 210b of the light source panel 210 to form a central light source and a peripheral light source.
- the optical panel 220 also has a plurality of wing parts 220b integrally disposed so as to be inclined upwardly with the upper end protruding forward in a state in which the optical panel 220 is radially equally disposed on the main body portion 220a and the outer circumference thereof.
- the unit condenser lens 102 is mounted on the main body portion 210a and the wing portion 210b in an array structure in a matrix form to form a central light source and a peripheral light source.
- the light source module units 100 and 200 for exposure according to the present invention may be provided with the light source panels 110 and 210 and the optical panel 120 and 220 according to the structure or configuration of the light source unit of the exposure apparatus to be installed. It is possible to apply to the embodiment of the various modified forms.
- FIG. 9 is a perspective view schematically showing an exposure light source module unit according to another embodiment of the present invention.
- the light source module unit 300 for exposure of the present invention includes a planar center light source unit 311 formed in a concave groove shape and a plurality of peripheries disposed in a radial unit inclined plane around the central light source unit 311.
- a unit light source panel having a light source unit 312 and a unit light source panel coupled to each other in a unit facing each other and mounted on the center light source unit 311 and the peripheral light source unit 312 of the housing panel 310. 321 and unit optical panel 332.
- UV LEDs unit ultraviolet light emitting devices
- the optical panel 332 includes a plurality of unit condensing lenses arranged in an array structure corresponding to an array structure of each unit ultraviolet light emitting element 323 mounted on a circuit board 322 of the light source panel 321 ( 331 is installed.
- the exposure light source module unit 300 is a single unit in a state in which the unit light source panel 321 and the unit optical panel 332 are coupled to each other so as to face each other. It has a configuration provided to be mounted on the central light source 311 and the peripheral light source 312 of the housing panel 310 forming a support structure, respectively.
- the ultraviolet light emitting element 323 constituting the peripheral light source 312 is provided in an inclined state to face the main light emission axis of the ultraviolet light emitting element 323 of the central light source 311.
- This configuration has a configuration substantially the same as the configuration of the other embodiments described above, a detailed description thereof will be omitted.
- Figure 10 is a view showing a photographed result of comparing the results of testing the exposure performance of the light source module unit for exposure and the mercury lamp (Hg Lamp) which is a conventional exposure light source according to the present invention having the configuration as described above.
- Hg Lamp mercury lamp
- the test results shown in FIG. 10 were applied to a 3.5-inch wafer with a 1.5-um thick photoresist (PR name: DTFR-JC800), and the mask line widths were spaced at intervals of 0.2 (or 0.3 um) from 1.0 to 3.5 um, respectively. After setting and exposing, it is developed with tetramethylammonium hydroxide (TMAH) 2.38 wt% developer, and the critical line width (CD) of the fine circuit pattern formed through photolithography used in a typical LCD manufacturing process. was measured by taking a picture.
- TMAH tetramethylammonium hydroxide
- CD critical line width
- the limit of the critical line width (CD) of the fine circuit pattern which can be realized by using a mercury lamp, which is a conventional light source for exposure is about 2.0 ⁇ m, while using the light source module unit for exposure according to the present invention. It can be seen that the critical line width (CD) of the fine circuit pattern that can be realized can be around 1.4um.
- FIG. 11 is a graph showing the critical line width fine dimension CD measured by the photographing in FIG. 10 in order to be compared with the ideal critical line width fine dimension CD.
- the critical line width fine dimension (CD) of the fine circuit pattern that can be implemented using the light source module unit for exposure according to the present invention is a threshold of the fine circuit pattern that can be implemented using a mercury lamp that is a conventional exposure light source. It can be seen that it is formed in a pattern closer to the ideal critical line width CD than the line width CD.
- the line width of the fine circuit pattern formed using the light source module unit for exposure according to the present invention may be formed finer and more precisely than the line width of the circuit pattern formed using a mercury lamp (Hg Lamp) which is a conventional light source for exposure. can confirm. Accordingly, the light source module unit for exposure according to the present invention enables a breakthrough high resolution in the exposure process.
- Hg Lamp mercury lamp
- FIG. 12 is a schematic structural diagram schematically showing an essential part of an exposure apparatus to which an exposure light source module unit according to the present invention is applied.
- the same reference numerals as the reference numerals of the drawings shown above represent the same components.
- the exposure apparatus 400 moves the exposure table 450 for supporting the exposure glass substrate 10 to which the photosensitive agent is applied, and the exposure table 450 on the XY plane coordinates.
- a driving means (not shown) for driving in a possible state, an exposure light source module unit (100) (200, 300) provided to emit exposure illumination light to the substrate (10), and the substrate (10);
- Optical systems 410 to 430 provided between the light source module units 100 and 200 and 300 for exposure, and control means for controlling the driving means and driving of the light source unit 100 and 200 and 300 for exposure (Fig. Unsigned).
- reference numeral 440 denotes an exposure mask on which an exposure pattern is formed.
- reference numerals 200 and 300 denote light source module units for exposure according to another embodiment of the present invention described with reference to FIGS. 7 and 8, respectively, and the exposure apparatus 400 according to the present invention. It is shown by way of example that it can be employed as a light source.
- the glass substrate 10 is coated with a photosensitive agent on a surface on which the illumination light irradiated from the light source module unit 100 for exposure is applied, and an air layer includes a mask 440 having the same pattern as the photosensitive pattern formed on the photosensitive surface. It is provided so as to be supported by the exposure table 450 with the gap therebetween. Accordingly, the illumination light emitted from the light source module unit 100 for exposure is focused on the photosensitive surface of the glass substrate 10 by passing through the mask 440 while being condensed through the optical systems 410 ⁇ 430, thereby forming the mask 440. An exposure process is performed in which the exposure pattern is transferred to the photosensitive surface of the glass substrate 10.
- the exposure table 450 is moved on the XY plane coordinates by the driving means according to the relative sizes of the glass substrate 10 and the mask 440 while the positions of the glass substrate 10 and the mask 440 are aligned. The exposure process is performed.
- the glass substrate 10 and the mask 440 are illustrated to be spaced apart from each other, but such a configuration does not limit the present invention.
- the mask 440 may be provided in close contact with the photosensitive surface of the glass substrate 10. In such a configuration, the photosensitive surface of the glass substrate 10 is closely exposed and the pattern of the mask 440 is transferred to the photosensitive surface.
- the gap formed between the glass substrate 10 and the mask 440 is widened to form a pattern formed on the mask 440 by a configuration in which a reduction projection lens is interposed between the glass substrate 10 and the mask 440.
- the reduced projection exposure can be performed on the photosensitive surface of the glass substrate 10.
- the optical systems 410 to 430 are provided to efficiently collect the illumination light on the mask 440, and the illumination light emitted from the exposure light source module unit 100 is set to the light receiving area.
- Ply for refracting the reflector 410 for reflecting through (A) and the reflector 430 for condensing the illumination light passing through the aperture (A) to the mask 440 A fly eye lens 431, a condense lens 422, and a plate lens 423,424.
- the configuration of the optical systems 410 to 430 does not limit the exposure apparatus 400 according to the present invention, and various modified configurations may be applied according to the exposure target and the standard of the mask.
- the light source module unit 100 for exposure is a component characterizing the exposure apparatus 400 according to the present invention, and the light source module unit 100 for exposure described in FIG. 1 to 11 is applied as it is.
- the light source module unit 100 for exposure includes a light source panel 110 and an optical panel 120 coupled to form a unit unit in close proximity to each other.
- the light source panel 110 is configured to have a central light source 110A and a peripheral light source 110B installed to be inclined radially around the center light source 110A. 1 to 11, since a detailed description of the detailed technical configuration and the effect of the exposure light source module unit 100 will be omitted herein.
- the exposure light source module unit 100 is an exposure light source module unit 200 and 300 according to another embodiment of the present invention described with reference to FIGS. 8 to 9. It may have a configuration replaced with.
- the exposure apparatus 400 has a configuration in which the light source module units 100, 200, 300 for exposure according to the present invention having the configuration as described above with respect to the existing conventional exposure apparatus are replaced.
- the light source module units 100, 200, 300 for exposure according to the present invention having the configuration as described above with respect to the existing conventional exposure apparatus are replaced.
- UV LED ultraviolet light emitting device
- first circuit board 112 second circuit board
- third circuit board 120 optical panel
- first support panel 122 second support panel
- the present invention can be used in a photolithography process to form a fine circuit pattern on a semiconductor wafer or display panel.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
본 발명은 다수의 단위 자외선 발광 소자(UV LED)가 회로 기판 상에 매트릭스 형태의 어레이 구조로 실장되어 이루어진 광원 패널과, 그 광원 패널과 대면하도록 상기 발광 소자의 광출사측에 배치되는 광학 패널에 다수의 단위 집광 렌즈가 상기 발광 소자에 각각 대응되는 위치에서 주광축에 대해 상기 광원 패널 상에 있는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측으로 편심된 상태의 매트릭스 형태의 어레이 구조로 구성되어 이루어진 광학 패널로 구성된 중심 광원부와 상기 중심 광원부의 단위 자외선 발광 소자의 주광출사축을 향하도록 경사진 상태로 방사상으로 균등하게 배치된 복수의 주변 광원부로 이루어진 모듈의 조합에 의해 광 출력 파워의 극대화를 통한 저소비전력과 특히, 고효율, 고출력의 단일파장, 단파장의 자외선광을 구현함으로서 노광패턴의 미세화와 해상도를 획기적으로 향상시킬 수 있는 노광 성능을 확보할 수 있는 동시에 기존 노광장치의 광원을 경제적으로 대체할 수 있도록 개량한 집약형 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치를 제공한다.
Description
본 발명은 반도체 웨이퍼나 디스플레이 패널 등에 미세 회로 패턴을 형성하기 위하여 포토리소그래피(Photolithography) 공정에 사용되는 노광용 광원에 관한 것으로서, 보다 상세하게는 다수의 자외선 발광소자(UV LED) 어레이(array)와 집광 렌즈 어레이가 중심 광원부와 주변 광원부를 이루도록 집약되어 비교적 대면적 노광 성능을 효율적으로 수행할 수 있는 동시에 기존 노광장치의 광원을 경제적으로 대체할 수 있도록 개량한 집약형 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치에 관한 것이다.
예를 들어, 전기전자기기의 주요 부품으로 내장되는 반도체 소자나 회로기판(PCB) 및 LCD(Liquid Crystal Display)와 유기발광다이오드(OLED : Organic Light Emitting Diode), PDP(Plasma Display Panel)와 같은 화상 디스플레이 패널은 그 제조 프로세스상의 노광 공정에서 포토리소그래피(Photolithography)라고 통칭되는 광 미세 가공기술에 의해 미세 회로 패턴이 형성되도록 제조된다.
통상적으로, 기존의 노광 공정에 이용되는 노광용 광원은 초고압 수은 램프나 할로겐 램프가 주로 사용되고 있으나, 이와 같은 종래의 노광용 광원은 주지된 바와 같이 낮은 수명과 고소비 전력에 따른 저효율 및 고비용으로 인한 노광 공정의 효율 문제뿐만 아니라 환경적인 측면에서도 여러 문제점이 노출되고 있는 실정이다.
특히, 최근의 액정표시소자(LCD)나 유기발광다이오드(OLED) 등과 같은 디스플레이 분야의 박막트랜지스터(TFT; Thin Film Transistor) 제조나 칼라필터(CF; Color Filter) 제조시 노광 패턴의 미세화 기술을 이용한 초고해상도 실현에 대한 시장의 요구가 절실하다.
그러나, 그럼에도 불구하고 기존의 노광 광원(Hg Lamp)을 이용한 노광 패턴의 미세화 공정에 대한 기술적 한계로 인하여 안타깝게도 노광 패턴의 미세화와 디스플레이 산업의 핵심기술인 초고해상도 실현이 불가능한 현실이다.
또한, 최근의 반도체 소자에 대한 소형화와 대용량화 및 고집적화와 고밀도화의 추세로 인해 노광 패턴의 미세화와 고정밀도화에 대한 요구가 증대됨에 따라 기존의 노광용 광원으로는 현재의 미세화 패턴에 대한 요구를 실현하는데 한계를 가지는 문제점이 있다.
따라서, 최근에 들어 예를 들면 액침 노광이나 극자외선 노광 등과 같은 새로운 노광 기술의 개발이 활발히 진행 중에 있으며, 특히 자외선 발광 소자(UV LED)는 저소비전력과 장수명, 단일파장의 선택적 사용과 단파장 사용 가능 및 환경친화적인 노광용 광원으로서 기존 노광용 광원의 대체품으로 각광받고 있는 추세이다.
그러나, 자외선 발광 소자(UV LED)를 광원으로 이용하는 노광장치의 경우 광 손실을 저감시킬 수 있는 광 경로의 구성이나 조도 분포도 및 광 출력의 파워 향상 및 노광 패턴의 미세화를 통한 초고해상도 실현과 소형화, 대용량화 및 고밀도화 등을 위한 고효율의 새로운 자외선 발광다이오드(UV LED) 광원 개발과 함께 광학부품, 모듈, 유닛 등의 개발에 대한 요구가 절실한 단계에 있다.
본 발명은 상술한 바와 같은 기술적 배경하에서 도출된 것으로서, 상술한 배경 기술의 문제점은 본 출원인이 본 발명의 도출을 위해 보유하고 있었거나 본 발명의 도출 과정에서 새로이 습득하고 확보한 내용으로서, 반드시 본 발명의 출원 전에 일반 공중에게 공지된 내용이라 할 수는 없다.
본 발명은 상술한 바와 같은 배경 기술 하에서 종래 노광장치의 노광용 광원(Hg Lamp 등)이 지니는 문제점을 감안하여 이를 개선하기 위해 창출된 것으로서, 본 발명의 목적은 다수의 자외선 발광소자 어레이와 집광 렌즈 어레이가 중심 광원부와 주변 광원부를 이루도록 집약된 구성에 의해 광 출력 효율의 극대화를 도모할 수 있는 노광용 광원모듈 유닛을 제공하기 위한 것이다.
본 발명의 다른 목적은 다수의 자외선 발광소자 어레이와 집광 렌즈 어레이가 중심 광원부와 주변 광원부를 이루도록 집약된 구성에 의해 대면적 노광을 효율적으로 수행할 수 있는 노광용 광원모듈 유닛을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 노광 패턴의 미세화와 고해상도 구현이 가능하도록 노광 성능과 노광 효율을 효과적이고 획기적으로 향상시킬 수 있는 저소비전력형 노광용 광원모듈 유닛 및 그 광원모듈 유닛을 광원으로 구비한 노광장치를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 기존 노광장치의 노광용 광원(Hg Lamp 등)을 용이하게 대체할 수 있는 대체 호환적인 모듈 유닛으로 개량하여 경제적이고 실용적인 저소비전력형 노광용 광원모듈 유닛 및 그 유닛을 광원으로 구비한 노광장치를 제공하기 위한 것이다.
상기한 목적들을 달성하기 위하여 본 발명에 의한 노광용 광원모듈 유닛은, 다수의 단위 자외선 발광 소자가 중심 광원부를 이루도록 매트릭스 형태의 어레이 구조로 실장되는 제 1 회로 기판이 일면 중앙부에 나란한 상태로 탑재되도록 설치되며, 상기 제 1 회로 기판의 주위에는 전방으로 경사지게 탑재되도록 설치되는 적어도 하나 이상의 제 2 회로 기판에 다수의 단위 자외선 발광 소자가 매트릭스 형태의 어레이 구조로 실장되어 주변 광원부를 이루도록 구비되는 광원 패널과; 상기 제 1 회로 기판과 제 2 회로 기판에 각각 대응하여 나란한 상태로 상기 단위 자외선 발광 소자의 광 출사 측에 배치되도록 구비되는 제 1 지지 패널과 제 2 지지 패널에 상기 단위 자외선 발광 소자의 어레이 구조와 각각 대응하는 어레이 구조로 배열되는 다수의 단위 집광 렌즈가 설치되어 이루어진 광학 패널;을 포함하며, 상기 단위 집광 렌즈는 각각 대응되게 배열되는 단위 자외선 발광 소자의 주광축에 대해 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측으로 편심된 상태로 배열되는 것을 특징으로 한다.
그리고, 상기한 목적들을 달성하기 위하여 본 발명에 의한 다른 노광용 광원모듈 유닛은, 중심부가 오목한 요홈 형태로 형성된 평면상의 중심 광원부와, 그 주위에 방사상의 단위 경사면으로 배치되는 복수의 주변 광원부를 가지는 하우징 패널과; 서로 대면한 상태의 유닛으로 결합되어 상기 하우징 패널의 중심 광원부와 주변 광원부에 각각 탑재되도록 설치되는 단위 광원 패널 및 단위 광학 패널을 포함하며, 상기 광원 패널은 복수의 단위 자외선 발광 소자가 회로기판에 x-y 좌표 상의 매트릭스 형태의 어레이 구조로 실장되고, 상기 광학 패널은 상기 광원 패널의 회로 기판에 실장된 각각의 단위 자외선 발광 소자의 어레이 구조와 대응하는 어레이 구조로 배열되는 다수의 단위 집광 렌즈가 설치되며, 상기 단위 집광 렌즈는 각각 대응되게 배열되는 단위 자외선 발광 소자의 주광축에 대해 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측으로 편심된 상태로 배열되고, 상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"에 대하여, 상기 광원 패널 상에 있는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"와, 상기 자외선 발광 소자와 집광 렌즈의 대면 이격 거리 "c"와, 상기 각각의 자외선 발광 소자의 중심축과 집광 렌즈의 중심축 사이의 편심 거리 "x" 및 수광 영역(A)의 직경 "t"의 관계는, 집광 렌즈의 편심 거리 "x"의 기준이 "x=b*c/a"를 만족하도록 설정되며, 상기 "x"의 범위는 "bc(2b-t)/2ab<x< bc(2b+t)/2ab"를 만족하도록 설정되는 것을 특징으로 한다.
또한, 상기한 목적들을 달성하기 위하여 본 발명에 의한 노광장치는, 감광제가 도포된 노광용 기판을 지지하기 위한 노광 테이블과, 그 노광 테이블을 X-Y 평면 좌표 상에 이동 가능한 상태로 구동시켜 주기 위한 구동 수단과, 상기 기판의 노광 패턴 형성을 위한 마스크에 조명 광을 출사하도록 구비되는 노광용 광원모듈 유닛과, 상기 기판과 노광용 광원모듈 유닛의 사이에 마련되는 광학계 및 상기 구동수단과 노광용 광원모듈 유닛의 구동을 연계하여 제어하는 제어 수단을 포함하는 노광장치에 있어서, 상기 노광용 광원모듈 유닛은, 다수의 단위 자외선 발광 소자가 중심 광원부를 이루도록 매트릭스 형태의 어레이 구조로 실장되는 제 1 회로 기판이 일면 중앙부에 나란한 상태로 탑재되도록 설치되며, 상기 제 1 회로 기판의 주위에는 전방으로 경사지게 탑재되도록 설치되는 적어도 하나 이상의 제 2 회로 기판에 다수의 단위 자외선 발광 소자가 매트릭스 형태의 어레이 구조로 실장되어 주변 광원부를 이루도록 구비되는 광원 패널과; 상기 제 1 회로 기판과 제 2 회로 기판에 각각 나란한 상태로 상기 단위 자외선 발광 소자의 광 출사 측에 배치되도록 구비되는 제 1 지지 패널과 제 2 지지 패널에 상기 단위 자외선 발광 소자의 어레이 구조와 각각 대응하는 어레이 구조로 배열되는 다수의 단위 집광 렌즈가 설치되어 이루어진 광학 패널;을 포함하며, 상기 단위 집광 렌즈는 각각 대응되게 배열되는 단위 자외선 발광 소자의 주광축에 대해 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측으로 편심된 상태로 배열되고, 상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"에 대하여, 상기 광원 패널 상에 있는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"와, 상기 자외선 발광 소자와 집광 렌즈의 대면 이격 거리 "c"와, 상기 각각의 자외선 발광 소자의 중심축과 집광 렌즈의 중심축 사이의 편심 거리 "x" 및 수광 영역(A)의 직경 "t"의 관계는, 집광 렌즈의 편심 거리 "x"의 기준이 "x=b*c/a"를 만족하도록 설정되며, 상기 "x"의 범위는 "bc(2b-t)/2ab<x< bc(2b+t)/2ab"를 만족하도록 설정되는 것을 특징으로 한다.
본 발명에 따르면, 상기 단위 집광 렌즈는 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측에서 점차 이격되어 가장자리에 가까이 배치될수록 대응되는 단위 자외선 발광소자의 주광축에 대한 편심량이 늘어나는 매트릭스 형태의 어레이 구조로 마련되어 각각의 단위 자외선 발광 소자로부터 조사되는 확산 광을 노광장치의 광학계에 설정된 수광 영역에 집광시켜 주도록 이루어진 구성을 가진다.
본 발명의 일 측면에 따르면, 상기 자외선 발광 소자는 칩이나 패키지 중에서 선택된 어느 하나의 형태나 양자가 혼합된 형태의 LED 광원으로 실장된 구성을 가질 수 있다.
본 발명에 있어서, 상기 단위 집광 렌즈는 양면 볼록 렌즈로 이루어지며, 어레이 배열 위치에 따라 서로 다른 광학구조의 곡률면을 가지는 양면 볼록 렌즈가 배치될 수 있다.
그리고, 상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"와, 상기 광원 패널 상에 있는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"는, "b/a"가 0.5 이상으로 형성될 때 상기 중심 광원부(110A)의 주위에 상기 주변 광원부(110B)가 방사상으로 배치되도록 경사지게 설치되는 구성을 가진다.
다른 한편으로는, 상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"와, 상기 광원 패널 상에 있는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"는, "b/a"가 0.1 내지 0.5 이내의 범위로 형성될 때 상기 중심 광원부(110A)의 주위에 상기 주변 광원부(110B)가 선택적으로 설치될 수 있다.
또한, 상기 자외선 발광소자와 집광 렌즈의 대면 이격 거리(c)와 상기 집광 렌즈의 직경(d)은 1.0c < d < 2.5c의 조건을 만족하도록 구성되는 것이 바람직하다.
상기 광원 패널과 상기 광학 패널은 하우징에 의해 지지되어 노광장치에 탈착 가능한 유닛 상태로 구성되는 것이 바람직하다.
또한, 상기 광원 패널과 상기 광학 패널의 주위에는 방열수단이 더 구비되는 구성을 가지는 것이 바람직하다.
본 발명에 의한 노광용 광원모듈 유닛에 따르면, 다수의 자외선 발광소자(UV LED) 어레이(array)와 집광 렌즈 어레이가 이루는 중심 광원부의 주위에 주변 광원부가 집약된 모듈의 조합에 의해 광 출력 파워의 극대화를 통한 저소비전력과 고출력 및 고효율 노광 공정의 구현이 가능하다. 이에 따라 비교적 대면적에 대한 노광 성능과 노광 효율의 효과적인 향상에 의해 노광 패턴의 미세화와 획기적인 고해상도 구현이 가능하다.
그리고, 본 발명에 의한 노광용 광원모듈 유닛에 따르면, 기존 노광장치의 광원으로 용이하게 대체할 수 있는 대체 호환적인 광원 모듈의 유닛화가 가능하여 실용적이고 경제적인 노광장치의 제공이 가능하다.
또한, 본 발명에 의한 노광용 광원모듈 유닛을 사용하게 됨에 따라 저소비전력의 사용, 광원 교체비용의 절감, 노광장비 가동시간의 향상 및 환경문제의 해결 등을 통하여 획기적인 유지비용의 절감 효과를 기대할 수 있다.
뿐만 아니라, 본 발명에 의한 노광용 광원모듈 유닛은 특히 고효율 고출력의 단일파장 및 단파장의 자외선광을 필요에 따라 자유롭게 선택적 사용의 구현이 가능하므로, 고품질의 노광성능 구현의 핵심기술인 패턴 미세화에 의해 고해상도 구현을 가능하게 해준다.
도 1 및 도 2는 각각 본 발명에 따른 노광용 광원모듈 유닛을 도시해 보인 개략적 분리 사시도와 측면도.
도 3 및 도 4는 각각 본 발명에 따른 노광용 광원모듈 유닛의 단위 광원과 집광 렌즈의 편심된 어레이 구조를 설명하기 위해 나타내 보인 모식도.
도 5는 본 발명에 따른 노광용 광원모듈 유닛의 집광구조에 따른 집광량의 측정 결과를 나타내 보인 그래프.
도 6은 본 발명에 따른 노광용 광원모듈 유닛의 중앙의 발광 소자와 편심된 발광 소자의 광출력 변화를 나타내 보인 그래프.
도 7은 본 발명에 따른 노광용 광원모듈 유닛의 변형된 실시예를 모식적으로 나타내 보인 평면도.
도 8은 본 발명의 다른 실시예에 따른 노광용 광원모듈 유닛을 개략적으로 도시해 보인 사시도.
도 9는 본 발명의 또 다른 실시예에 따른 노광용 광원모듈 유닛을 개략적으로 도시해 보인 사시도.
도 10은 본 발명에 따른 노광용 광원모듈 유닛과 기존 노광용 광원인 수은 램프(Hg Lamp)에 의해 각각 웨이퍼에 형성한 회로 패턴의 요부를 촬영하여 마스크 선폭에 따른 CD값을 측정한 결과를 서로 대비해 나타내 보인 도면.
도 11은 본 발명에 따른 노광용 광원모듈 유닛과 기존 노광용 광원인 수은 램프(Hg Lamp)에 의해 각각 웨이퍼에 형성한 회로 패턴의 마스크 선폭에 따른 CD값 측정 결과를 서로 대비하여 그래프로 나타내 보인 도면.
도 12는 본 발명에 의한 노광용 광원모듈 유닛이 적용된 노광장치의 요부를 발췌하여 모식적으로 도시해 보인 개략적 구성도.
이하, 첨부된 도면을 참조하여 본 발명에 의한 노광용 광원모듈 유닛을 상세하게 설명한다. 이하의 설명 내용과 첨부된 도면은 본 발명의 바람직한 실시예를 위주로 하여 설명한 것에 불과한 것으로서, 청구범위에 기재된 본 발명의 노광용 광원모듈 유닛을 한정하는 것은 아니다.
도 1 및 도 2를 참조하면, 본 발명에 따른 노광용 광원모듈 유닛(100)은 서로 나란한 상태로 근접 배치되도록 결합되어 단위 유닛을 이루는 광원 패널(110)과 광학 패널(120)을 포함하여 이루어진다.
상기 광원 패널(110)은 후술하는 단위 자외선 발광 소자(101)가 실장되는 회로기판(111)(112)을 지지하는 동시에 도시되어 있지 않은 노광장치의 광원부에 장착하기 위한 지지구조체로서, 예를 들어 합성수지재나 금속재 등의 몰딩 성형에 의해 평판형 패널을 이루도록 형성할 수 있다.
상기 광원 패널(110)은 도면에 예시적으로 나타내 보인 바와 같이 사각 패널로 형성하는 것이 바람직하나, 그러한 형상 구조나 재질 등이 본 발명을 한정하는 것은 아니며, 다양한 변형된 실시예의 적용이 가능하다.
상기 광원 패널(110)은 일면 중심부에 나란한 상태로 탑재되도록 설치된 제 1 회로 기판(111)과, 그 제 1 회로 기판(111)의 주위에 방사상으로 균등하게 배치되도록 상단부가 전방으로 돌출되어 상향 경사지게 설치된 복수의 제 2 회로 기판(112)을 구비한다.
그리고, 상기 제 1 회로 기판(111)과 제 2 회로 기판(112)에는 각각 다수의 단위 자외선 발광 소자(UV LED)(101)가 매트릭스 형태의 어레이 구조로 실장된다.
따라서, 상기 제 1 회로 기판(111)에 어레이 구조로 실장된 다수의 단위 자외선 발광 소자(101)는 상기 광원 패널(110)의 중심 광원부(110A)를 이루게 되는 동시에, 상기 제 2 회로 기판(112)에 어레이 구조로 실장된 다수의 단위 자외선 발광 소자(101)는 상기 광원 패널(110)의 주변 광원부(110B)를 이루도록 구성된다.
즉, 상기 광원 패널(110)의 중심 광원부(11OA)에는 단일의 제 1 회로 기판(111)이 탑재되도록 설치되고, 그 제 1 회로 기판(111)에 복수의 단위 자외선 발광 소자(101)가 x-y 좌표 상의 매트릭스 형태의 어레이를 이루도록 실장된다.
그리고, 상기 광원 패널(110)의 주변 광원부(110B)에는 복수의 제 2 회로 기판(112)이 제 1 회로 기판(111)의 외곽부를 에워싸도록 균등한 간격으로 설치되고, 각각의 제 2 회로 기판(112)에 다수의 단위 자외선 발광 소자(101)가 x-y 좌표 상의 매트릭스 형태의 어레이를 이루도록 실장된다.
한편, 본 발명에 있어서, 상기 제 1 회로 기판(111)은 도면에 원판형 패널로 예시하였으나, 이와 같은 형상 구조는 일 실시예로 나타내 보인 것으로서, 본 발명에 따른 노광용 광원모듈 유닛(100)을 한정하는 것은 아니다.
따라서, 상기 제 1 회로 기판(111)은 사각 패널 형태와 같이 다양한 형상 구조로 변형된 실시예가 적용될 수 있다.
그리고, 상기 제 2 회로 기판(112)은 도면에 예시한 바와 같이 상광하협의 사다리꼴 형태로 형성되는 것이 바람직하나, 이러한 구성이 본 발명을 한정하는 것은 아니다.
상기 제 2 회로 기판(112)이 사다리꼴 형상으로 이루어지는 구성은 사각형의 회로 기판으로 형성되는 경우에 상단부로 갈수록 인접하는 회로 기판에 실장된 단위 자외선 발광 소자와의 배열 간격이 벌어지는 것을 메워 주기 위한 것이다. 이에 따라 상기 제 2 회로 기판(112)에는 각각 단위 자외선 발광 소자(101)가 전체적으로 균등 간격으로 배열되는 어레이 구조로 실장된다.
상술한 바와 같이 중심 광원부(110A)와 주변 광원부(110B)를 가지는 구성에 따르면, 주변 광원부(110B)를 이루는 제 2 회로 기판(112)이 제 1 회로 기판(111)의 주위에 방사상으로 균등하게 배치되도록 상단부가 전방으로 돌출되어 상향 경사지게 설치되므로, 주변 광원부(110B)를 이루는 제 2 회로 기판(112)에 실장된 자외선 발광 소자(101)는 주광출사축이 중심 광원부(110A)를 이루는 제 1 회로 기판(111)에 실장된 자외선 발광 소자(101)의 주광출사축을 향하도록 경사진 상태로 마련된다.
한편, 대면적의 유리 기판 등과 같이 노광 면적의 증대가 필요할 경우, 자외선 발광 소자(101)의 설치 수량을 늘려 어레이 면적을 증대시키기 위해 광원 패널(110)의 면적 증대가 불가피하게 된다. 이와 같이 광원 패널(110)의 면적을 증대시키는 경우 외곽에 배치되는 자외선 발광 소자(101)의 광축이 외곽으로 확산되어 집광효율이 떨어짐에 따라 노광 성능이 급격히 저하된다.
따라서, 본 발명에 따른 노광용 광원모듈 유닛(100)은 대면적 노광을 위해 외곽에 배치되는 자외선 발광 소자(101)의 광축이 외곽으로 확산되는 것을 효율적으로 제어하기 위하여, 제 1 회로 기판(111)에 대해 제 2 회로 기판(112)의 상단부가 전방으로 돌출되도록 상향 경사지게 설치한 구성을 가진다. 이로써, 상기 광원 패널(110)과 자외선 발광 소자(101)의 어레이 면적을 증대시키더라도 제 2 회로 기판(112)에 실장된 자외선 발광 소자(101)의 광축이 중심 광원부(110A)의 중심축선을 향하도록 배치됨에 따라 효율적인 집광이 가능하게 된다.
한편, 상기 광학 패널(120)은 상기 자외선 발광 소자(101)의 광 출사 측에 배치되도록 상기 광원 패널(110)의 전면에 나란한 상태로 결합되어 한조를 이루게 되는 것으로서, 상기 광원 패널(110)의 제 1 회로 기판(111) 및 제 2 회로 기판(112)과 각각 나란한 상태로 대응되게 설치되는 제 1 지지 패널(121)과 제 2 지지 패널(122)을 구비한다.
그리고, 상기 제 1 지지 패널(121)과 제 2 지지 패널(122)에는 각각 상기 제 1 회로 기판(111) 및 제 2 회로 기판(112)에 실장된 다수의 단위 자외선 발광 소자(101)의 어레이 구조와 각각 대응하는 어레이 구조로 배열되는 다수의 단위 집광 렌즈(102)가 설치된다.
즉, 본 발명에 따른 노광용 광원모듈 유닛(100)에 따르면, 상기 제 1 지지 패널(121)에 어레이 구조로 배열되는 단위 집광 렌즈(102)는 상기 광원 패널(110)의 중심 광원부(110A)에 대응하여 작용하는 렌즈군을 이루게 되며, 상기 제 2 지지 패널(122)에 각각 어레이 구조로 배열되는 집광 렌즈(102)는 상기 광원 패널(110)의 주변 광원부(110B)에 대응하여 작용하는 렌즈군을 이루게 된다.
그리고, 상기 단위 집광 렌즈(102)는 각각 대응되게 배열되는 단위 자외선 발광 소자(101)의 주광축에 대해 상기 광원 패널(110)의 중심 광원부(110A)를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선(0)측으로 편심된 상태로 배열되는 구성을 가진다.
도 3 및 도 4는 각각 본 발명에 따른 노광용 광원모듈 유닛(100)의 집광 렌즈(102)가 자외선 발광 소자(101)의 주광축에 대해 편심되는 어레이 구조를 설명하기 위해 나타내 보인 모식도이다.
도 3 및 도 4에서 "a"는 자외선 발광 소자(101)로부터 집광 타겟(target)인 수광 영역(A)으로 설정되는 어파쳐(aperture)까지의 광학거리를 나타낸다.
그리고, "b"는 상기 광원 패널(110)의 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되도록 배치되는 자외선 발광 소자(101)의 이격 거리를 나타낸다.
또한, "c"는 자외선 발광 소자(101)와 집광 렌즈(102)의 대면 이격 거리를 나타내며, "x"는 자외선 발광 소자(101)의 중심축과 집광 렌즈(102)의 중심축 사이의 편심 거리를 나타내고, "t"는 수광 영역(A)의 직경을 나타낸다.
도 3 및 도 4를 참조하면, 본 발명에 따른 노광용 광원모듈 유닛(100)은 자외선 발광 소자(101)로부터 집광 타겟(target)인 수광 영역(A)으로 설정되는 어파쳐(aperture)까지의 광학거리 "a"에 대하여, 상기한 "b"와 "c", "x" 및 "t"의 관계가 다음 식에 의해 정의되도록 구성되는 것이 바람직하다.
상기 집광 렌즈(102)의 편심 거리 "x"의 기준은 "x=b*c/a"를 만족하도록 설정되며, 상기 "x"의 범위는 "bc(2b-t)/2ab<x< bc(2b+t)/2ab"를 만족하도록 설정된다.
본 발명의 일 측면에 따르면, 상기 자외선 발광 소자(101)는 상기 광원 패널(110)의 중심 광원부(110A)를 이루는 자외선 발광소자 어레이의 중심(O)에 단위 자외선 발광 소자(101)가 배치되거나 배제된 구조를 가질 수 있다.
즉, 상기 광원 패널(110)의 중심 광원부(110A)를 이루는 자외선 발광소자 어레이의 중심(O)은 각각의 단위 자외선 발광소자로부터 조사되는 확산 광이 집광 렌즈(102)에 의해 집광되는 수광 영역(도 3 및 도 4의 도면 부호 "A" 참조)의 중심과 동축 상에 배치되는 것으로서, 각 단위 집광 렌즈(102)의 편심량(도 4의 "x")을 결정하는 기준이 된다.
한편, 상기 수광 영역(도 3 및 도 4의 도면 부호 "A" 참조)은 도시되어 있지 않은 노광장치의 광학계에 구비된 반사경을 거쳐 집속광이 통과하는 집광 타겟(target)을 형성하도록 어파쳐(aperture) 형태로 마련된다.
따라서, 본 발명에 따른 노광용 광원모듈 유닛(100)은 노광장치의 광원으로 마련되어 각각의 단위 자외선 발광 소자(101)로부터 조사되는 확산 광이 집광 렌즈(102)에 의해 집광 굴절되어 수광 영역의 집광 타겟(target)으로 형성되는 어파쳐(aperture)를 통과하도록 조명광을 출사하게 된다.
즉, 본 발명에 따른 노광용 광원모듈 유닛(100)은 상기 광원 패널(110) 상에 있는 자외선 발광소자(101) 어레이의 중심(O)과 광학 패널(120)의 렌즈 어레이의 중심은 동축 상에 배치되며, 그 중심(O)을 지나는 임의의 기준 중심축선 측에서 점차 이격되어 가장자리에 가까이 배치되는 집광 렌즈(102)는 그와 대응되는 자외선 발광 소자(101)의 주광축에 대해 상기한 기준 중심축선 측으로 편심되는 거리가 점차 늘어나도록 배치된다.
요컨대, 본 발명에 따른 노광용 광원모듈 유닛(100)은 광원 패널(110)의 자외선 발광소자(101) 어레이의 중심(O)과 광학 패널(120)의 집광 렌즈(102) 어레이의 중심에 배치되는 단위 집광 렌즈를 제외한 각각의 단위 집광 렌즈(102)가 자외선 발광 소자(101)의 주광축에 대해 편심되도록 배치되어 비유하자면 사시(斜視; strabismus) 렌즈의 역할과 기능을 수행함으로써, 각각의 단위 자외선 발광 소자(101)로부터 조사되는 확산 광의 집광효율을 극대화시켜 주도록 구성된다.
한편, 상술한 바와 같은 구성을 가지는 본 발명에 따른 노광용 광원모듈 유닛(100)은 자외선 발광 소자(101)로부터 조사되는 확산 광의 집광효율을 극대화시켜 주기 위하여 집광 렌즈(102)가 양면 볼록 렌즈로 이루어진 것이 바람직하며, 어레이 위치에 따라 서로 다른 광학구조의 곡률면을 가지는 양면 볼록 렌즈가 구비되는 것이 바람직하다.
도 5는 본 발명에 따른 노광용 광원모듈 유닛(100)의 집광구조에 따른 집광량의 측정 결과를 그래프로 나타내 보인 것으로서, "c"는 자외선 발광 소자(101)와 집광 렌즈(102)의 대면 이격 거리를 나타내고, "d"는 집광 렌즈(102)의 직경을 나타낸다.
도 5를 참조하면, 본 발명에 따른 노광용 광원모듈 유닛(100)은 자외선 발광 소자(101)와 집광 렌즈(102)의 대면 이격 거리"c"에 대한 집광 렌즈(102)의 직경 "d"의 비율 값(d/c)이 1 이상일 경우에 급격히 증가하는 반면에 d/c의 값이 2이상이 될 경우에는 일정한 광량이 유지된다.
따라서, 본 발명에 따른 노광용 광원모듈 유닛(100)은 자외선 발광소자(101)와 집광 렌즈(102)의 대면 이격 거리(c)와 상기 집광 렌즈의 직경(d)은 1.0c < d < 2.5c의 조건을 만족하도록 구성되는 것이 바람직하다.
도 6은 본 발명에 따른 노광용 광원모듈 유닛의 중앙의 발광 소자와 편심된 발광 소자의 광출력 변화를 나타내 보인 그래프이다. 여기서, "a"는 상기 자외선 발광 소자(101)로부터 집광 타겟(target)인 수광 영역(A)으로 설정되는 어파쳐(aperture)까지의 광학거리를나타내며, "b"는 상기 광원 패널(110)의 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되도록 배치되는 자외선 발광 소자(101)의 이격 거리를 나타낸다.
도 6을 참조하면, 상기한 "b/a"가 0.15 이상에서부터는 중앙의 발광 소자와 편심된 발광 소자의 광출력에 차이가 발생하기 시작하며, "b/a"가 0.5 이상에서부터는 양자의 광출력 차이가 크게 벌어지게 됨을 알 수 있다.
따라서, 본 발명에 따른 노광용 광원모듈 유닛(100)은 대면적의 유리 기판 등과 같이 노광 면적의 증대가 필요할 경우, "b/a"가 0.5 이상으로 형성되는 경우에 있어서, 상술한 바와 같이 중심 광원부(110A)에 대해 경사지게 배치되는 주변 광원부(110B)의 설치가 필수적으로 요구된다.
다른 한편으로는, 상기한 "b/a"가 0.15 내지 0.5 이하의 범위로 형성되는 경우에 있어서는, 상기 중심 광원부(110A)에 대해 경사지게 배치되는 주변 광원부(110B)를 선택적으로 설치할 수 있다.
즉, 본 발명에 따른 노광용 광원모듈 유닛(100)은 대면적의 유리 기판 등과 같이 노광 면적의 증대가 필요할 경우, 상기 중심 광원부(110A)의 자외선 발광 소자(101)의 설치 수량을 늘려 어레이 면적을 증대시킴으로써 대응할 수 있다. 이때, 상기 자외선 발광 소자(101)로부터 집광 타겟(target)인 수광 영역(A)으로 설정되는 어파쳐(aperture)까지의 광학거리 "a"와, 상기 광원 패널(110)의 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되도록 배치되는 자외선 발광 소자(101)의 이격 거리 "b"의 관계 "b/a"가 0.5 이상으로 형성되는 경우에 있어서, 상술한 바와 같이 중심 광원부(110A)에 대해 경사지게 배치되는 주변 광원부(110B)의 설치가 필수적으로 요구된다.
한편, 본 발명에 따른 노광용 광원모듈 유닛(100)은 도시되어 있지 않은 하우징에 의해 지지되도록 장착되어 유닛화된 구성을 가질 수 있다. 이와 같이 하우징(미도시)에 장착되도록 유닛화된 노광용 광원모듈 유닛(100)은 노광장치(미도시)의 광원으로 착탈 가능하게 이용할 수 있게 되므로, 수은이나 할로겐 램프 등과 같은 기존 노광장치의 광원을 매우 경제적이고 용이하게 대체할 수 있게 된다.
다른 한편으로, 본 발명에 따른 노광용 광원모듈 유닛(100)은 상기 광원 패널(110)과 광학 패널(120)이 한조를 이루도록 결합된 상태에서 노광장치에 구비된 브래킷이나 플랜지 등의 구조물에 의해 지지되는 광원으로 설치될 수도 있다.
그리고, 본 발명에 따른 노광용 광원모듈 유닛(100)은 광원 패널(110)과 광학 패널(120)의 주위에 마련되도록 하우징(미도시)에 구비되는 방열수단을 더 포함하여 구성되는 것이 바람직하다.
상기 방열수단은 예를 들어 상기 광원 패널(110)과 광학 패널(120)이 탑재되도록 하우징에 내장되는 히트 싱크가 설치될 수 있으며, 예를 들어 냉각수가 순환하도록 냉각장치(chiller)와 연결되는 수냉식 방열수단이 설치될 수도 있다.
도 7은 본 발명에 따른 노광용 광원모듈 유닛의 변형된 실시예를 모식적으로 나타내 보인 평면도로서, 광원 패널(110)과 광학 패널(120)이 오버랩된 상태를 나타내 보인 것이며, 도면의 참조 부호 중 앞에서 도시된 도면의 참조 부호와 동일한 참조 부호는 동일한 구성 요소를 나타낸다.
도 7을 참조하면, 이 실시예에 의한 본 발명의 노광용 광원모듈 유닛(100)은 도 1 및 도 2의 광원 패널(110)의 구성에 있어서 주변 광원부(110B)를 이루는 복수의 제 2 회로 기판(112)의 외곽에 상단부가 전방으로 돌출되도록 상향 경사지게 설치된 복수의 제 3 회로 기판(113)이 더 구비되는 동시에 광학 패널(120)의 제 2 지지 패널(122)의 외곽에도 상단부가 전방으로 돌출되도록 상향 경사지게 설치된 복수의 제 3 지지 패널(123)이 더 구비되는 구성을 가진다.
따라서, 상기 제 1 회로 기판(111)에 대해 제 2 회로 기판(112)과 제 3 회로 기판(113)은 각각 경사 각도가 순차적으로 더 증가한 상태로 설치되는 동시에 상기 제 1 지지 패널(121)에 대해 제 2 지지 패널(122)과 제 3 지지 패널(123)은 각각 경사 각도가 순차적으로 더 증가한 상태로 설치된다.
그리고, 상기 제 3 회로 기판(113)과 제 3 지지 패널(123)에도 각각 다수의 단위 자외선 발광 소자(101)와 집광 렌즈(102)가 x-y 좌표 상의 매트릭스 형태의 어레이를 이루도록 실장된다.
상기 제 3 회로 기판(113)에 실장된 단위 자외선 발광 소자(101)의 주광출사축은 중심 광원부(110A)를 이루는 제 1 회로 기판(111)에 실장된 자외선 발광 소자(101)의 광출사축을 향하도록 경사진 상태로 마련된다.
즉, 상기 제 3 회로 기판(113)에 실장된 자외선 발광 소자(101)는 주변 광원부(110B)의 외곽에 구비되는 제 2의 주변 광원부를 이루도록 증설된다.
요컨대, 본 발명에 의한 노광용 광원모듈 유닛(100)은 노광 면적의 증대를 위해 중심 광원부(110A)의 주위에 동심원상으로 배치되도록 증설되는 복수의 주변 광원부를 더 구비함으로써, 대면적의 노광을 위한 효율적인 집광 작용이 가능하다.
도 8은 본 발명의 다른 실시예에 따른 노광용 광원모듈 유닛을 개략적으로 도시해 보인 사시도로서, 앞서 도시된 도면의 참조 부호와 동일한 참조 부호는 동일 구성 요소를 나타낸다.
도 8을 참조하면, 본 발명에 의한 노광용 광원모듈 유닛(200)은 광원 패널(210)이 중앙의 본체부(210a) 및 그 외주에 방사상으로 균등하게 배치되어 서로 이격된 상태로 상단부가 전방으로 돌출되어 상향 경사지게 일체적으로 설치된 복수의 날개부(210b)를 구비한 구성을 가진다.
따라서, 상기 광원 패널(210)의 본체부(210a)와 날개부(210b)에 각각 자외선 발광 소자(101)가 매트릭스 형태의 어레이 구조로 실장되어 중심 광원부와 주변 광원부를 이루도록 구성된다.
그리고, 광학 패널(220)도 중앙의 본체부(220a) 및 그 외주에 방사상으로 균등하게 배치되어 서로 이격된 상태로 상단부가 전방으로 돌출되어 상향 경사지게 일체적으로 설치된 복수의 날개부(220b)를 구비한 구성을 가지며, 본체부(210a)와 날개부(210b)에 각각 단위 집광 렌즈(102)가 매트릭스 형태의 어레이 구조로 실장되어 중심 광원부와 주변 광원부를 이루도록 구성된다.
상술한 바와 같이 본 발명에 의한 노광용 광원모듈 유닛(100)(200)은 설치되는 노광장치의 광원부에 대한 구조나 구성 등에 따라 상기 광원 패널(110)(210)과 광학 패널(120)(220)을 다양하게 변형된 형태의 실시예로 적용이 가능하다.
도 9는 본 발명의 또 다른 실시예에 따른 노광용 광원모듈 유닛을 개략적으로 도시해 보인 사시도이다.
도 9를 참조하면, 이 실시예에 따른 본 발명의 노광용 광원모듈 유닛(300)은 중심부가 오목한 요홈 형태로 형성된 평면상의 중심 광원부(311)와 그 주위에 방사상의 단위 경사면으로 배치되는 복수의 주변 광원부(312)를 가지는 하우징 패널(310)과, 서로 대면한 상태의 유닛으로 결합되어 상기 하우징 패널(310)의 중심 광원부(311)와 주변 광원부(312)에 각각 탑재되도록 설치되는 단위 광원 패널(321) 및 단위 광학 패널(332)을 포함한다.
그리고, 상기 광원 패널(321)은 복수의 단위 자외선 발광 소자(UV LED)(323)가 회로기판(322)에 x-y 좌표 상의 매트릭스 형태의 어레이 구조로 실장된다.
또한, 상기 광학 패널(332)은 상기 광원 패널(321)의 회로 기판(322)에 실장된 각각의 단위 자외선 발광 소자(323)의 어레이 구조와 대응하는 어레이 구조로 배열되는 다수의 단위 집광 렌즈(331)가 설치된다.
즉, 도 9에 예시된 실시예에 따르면, 본 발명에 의한 노광용 광원모듈 유닛(300)은 상기 단위 광원 패널(321)과 단위 광학 패널(332)이 서로 대면하도록 유닛으로 결합된 상태에서 단일의 지지구조체를 이루고 있는 하우징 패널(310)의 중심 광원부(311)와 주변 광원부(312)에 각각 탑재되도록 구비되는 구성을 가진다.
상술한 바와 같은 구성에 있어서, 주변 광원부(312)를 이루는 자외선 발광 소자(323)는 중심 광원부(311)의 자외선 발광 소자(323)의 주광출사축을 향하도록 경사진 상태로 마련된다. 이러한 구성은 앞에서 설명된 다른 실시예의 구성과 실질적으로 동일한 구성을 가지는 것으로서, 그에 대한 상세한 설명은 생략한다.
한편, 도 10은 상술한 바와 같은 구성을 가지는 본 발명에 따른 노광용 광원모듈 유닛과 기존 노광용 광원인 수은 램프(Hg Lamp)의 노광 성능을 테스트하여 비교한 결과를 사진으로 촬영하여 나타내 보인 도면이다.
도 10에 나타내 보인 테스트 결과는, 3.5인치 웨이퍼에 1.5um 두께의 포토레지스트(PR명 : DTFR-JC800)를 도포하고, 마스크 선폭을 1.0 내지 3.5um 범위에서 각각 0.2(또는 0.3um)의 간격으로 설정하여 노광한 다음, 수산화테트라메틸암모늄하이드록사이트(TMAH) 2.38 wt% 현상액으로 현상하여 통상적인 LCD 제조공정에서 이용되는 포토리소그래피를 통해 형성된 미세 회로 패턴의 임계선폭미세치수(CD; Critical Dimension)를 사진 촬영으로 측정한 것이다.
도 10을 참조하면, 기존의 노광용 광원인 수은 램프를 이용하여 구현할 수 있는 미세 회로 패턴의 임계선폭미세치수(CD)의 한계는 2.0um 전후인데 반하여, 본 발명에 따른 노광용 광원모듈 유닛을 이용하여 구현할 수 있는 미세 회로 패턴의 임계선폭미세치수(CD)는 1.4um 전후까지 가능하다는 사실을 확인할 수 있다.
그리고, 도 11은 도 10에서 사진 촬영으로 측정한 임계선폭미세치수(CD)를 이상적인 임계선폭미세치수(CD)와 비교할 수 있도록 그래프로 정리하여 나타내 보인 것이다.
도 11을 참조하면, 본 발명에 따른 노광용 광원모듈 유닛을 이용하여 구현할 수 있는 미세 회로 패턴의 임계선폭미세치수(CD)는 기존의 노광용 광원인 수은 램프를 이용하여 구현할 수 있는 미세 회로 패턴의 임계선폭미세치수(CD)에 비하여 이상적인 임계선폭미세치수(CD)에 보다 근접된 패턴으로 형성된다는 사실을 확인할 수 있다.
따라서, 본 발명에 따른 노광용 광원모듈 유닛을 이용하여 형성한 미세 회로 패턴의 선폭은 기존 노광용 광원인 수은 램프(Hg Lamp)를 이용하여 형성한 회로 패턴의 선폭 보다 더 미세하고 정밀하게 형성될 수 있음을 확인할 수 있다. 이에 따라 본 발명에 따른 노광용 광원 모듈 유닛은 노광 공정에서 획기적인 고해상도 구현을 가능하게 해 준다.
도 12는 본 발명에 의한 노광용 광원모듈 유닛이 적용된 노광장치의 요부를 발췌하여 모식적으로 도시해 보인 개략적 구성도이다. 여기서, 앞서 도시된 도면의 참조부호와 동일한 참조부호는 동일 구성요소를 나타낸다.
도 12를 참조하면, 본 발명에 따른 노광 장치(400)는 감광제가 도포된 노광용 유리 기판(10)을 지지하기 위한 노광 테이블(450)과, 그 노광 테이블(450)을 X-Y 평면 좌표 상에 이동 가능한 상태로 구동시켜 주기 위한 구동수단(도면부호 없음)과, 상기 기판(10)에 노광용 조명 광을 출사하도록 구비되는 노광용 광원모듈 유닛(100)(200, 300)과, 상기 기판(10)과 노광용 광원모듈 유닛(100)(200, 300)의 사이에 마련되는 광학계(410 ~ 430) 및 상기 구동수단과 노광용 광원 유닛(100)(200, 300)의 구동을 연계하여 제어하는 제어 수단(도면부호 없음)을 포함하여 구성된다. 여기서, 미설명 도면 부호 440은 노광 패턴이 형성된 노광용 마스크를 나타낸 것이다.
그리고, 도면 부호 200 및 300은 각각 도 7 및 도 8에 의해 설명된 본 발명의 다른 실시예에 따른 노광용 광원모듈 유닛이 상기 노광용 광원모듈 유닛(100)과 대체되어 본 발명에 따른 노광 장치(400)의 광원으로 채용될 수 있음을 예시적으로 나타내 보인 것이다.
상기 유리 기판(10)은 상기 노광용 광원모듈 유닛(100)으로부터 조사되는 조명 광이 입사되는 면에 감광제가 도포되며, 그 감광면에 형성된 감광 패턴과 동일한 패턴이 형성되어 있는 마스크(440)가 공기층을 사이에 두고 노광 테이블(450)에 지지되도록 마련된다. 이에 따라 노광용 광원모듈 유닛(100)에서 출사되는 조명 광이 광학계(410 ~ 430)를 통해 집광되면서 마스크(440)를 통과하여 유리 기판(10)의 감광면에 조사됨으로써, 마스크(440)에 형성된 노광 패턴이 유리 기판(10)의 감광면에 전사되는 노광공정을 수행하게 된다.
상기 노광 테이블(450)은 유리 기판(10)과 마스크(440)의 상대적인 사이즈에 따라 구동수단에 의해 X-Y 평면 좌표 상으로 이동하면서 유리 기판(10)과 마스크(440)의 위치를 정렬시킨 상태에서 노광공정을 수행하게 된다.
한편, 본 발명에 의한 노광장치(400)에 있어서, 상기 유리 기판(10)과 마스크(440)는 서로 이격되도록 구비되는 구성을 예시하였으나, 그러한 구성이 본 발명을 한정하는 것은 아니다.
다른 한편으로는, 유리 기판(10)의 감광면에 마스크(440)가 밀착되도록 구비되는 구성을 가질 수 있다. 이러한 구성의 경우, 유리 기판(10)의 감광면이 밀착 노광되어서 마스크(440)의 패턴이 감광면에 전사된다.
또한, 유리 기판(10)과 마스크(440) 사이의 갭(gap)을 넓혀서 유리 기판(10)과 마스크(440)의 사이에 축소 투영 렌즈를 개재시킨 구성에 의해 마스크(440)에 형성된 패턴을 유리 기판(10)의 감광면에 축소 투영 노광할 수 있다.
그리고, 상기 광학계(410 ~ 430)는 마스크(440)에 조명 광을 효율적으로 집광시켜 주기 위해 마련되는 것으로서, 노광용 광원모듈 유닛(100)으로부터 조사되는 조명 광이 수광 영역으로 설정된 어파쳐(aperture)(A)를 통과하도록 반사시켜 주기 위한 반사경(410)과, 상기 어파쳐(aperture)(A)를 통과하는 조명 광을 마스크(440)에 집광시켜 주기 위한 반사경(430)으로 굴절시켜 주기 위한 플라이 아이 렌즈(fly eye lens)(431)와 콘덴서 렌즈(condense lens)(422) 및 플레이트 렌즈(plate lens)(423)(424)를 포함한다. 이와 같은 광학계(410 ~ 430)의 구성은 본 발명에 의한 노광장치(400)을 한정하는 것은 아니며, 노광 대상과 마스크의 규격 등에 따라 다양한 형태의 변형된 구성이 적용될 수도 있다.
상기 노광용 광원모듈 유닛(100)은 본 발명에 의한 노광장치(400)를 특징지우는 구성요소로서, 도 1 내지 도 11에 의해 설명된 본 발명의 노광용 광원모듈 유닛(100)이 그대로 적용된 것이다.
즉, 상기 노광용 광원모듈 유닛(100)은 서로 나란한 상태로 근접 배치되도록 결합되어 단위 유닛을 이루는 광원 패널(110)과 광학 패널(120)을 포함한다.
그리고, 상기 광원 패널(110)은 도 1에 도시된 바와 같이 중심 광원부(110A) 및 그 주위에 방사상으로 배치되도록 경사지게 설치되는 주변 광원부(110B)를 가지도록 이루어진 것으로서, 그 구체적인 기술 구성과 작용 효과는 도 1 내지 도 11에 의해 상세하게 설명된 바 있으므로, 여기서는 상기 노광용 광원모듈 유닛(100)의 구체적인 기술 구성과 작용 효과에 대한 설명은 생략하기로 한다.
또한, 본 발명에 의한 노광장치(400)에 있어서, 상기 노광용 광원모듈 유닛(100)은 도 8 내지 도 9에 의해 설명된 본 발명의 다른 실시예에 따른 노광용 광원모듈 유닛(200)(300)으로 대체된 구성을 가질 수 있다.
요컨대, 본 발명에 의한 노광장치(400)는 기존의 통상적인 노광장치에 대해 상술한 바와 같은 구성을 가지는 본 발명에 의한 노광용 광원모듈 유닛(100)(200)(300)이 대체되도록 설치된 구성을 가짐으로써, 저소비전력의 사용, 광원 교체비용의 절감, 노광장치의 가동시간의 향상 및 환경문제의 해결 등을 통하여 획기적인 유지비용의 절감 효과를 기대할 수 있을 뿐만 아니라 특히 자외선의 단일파장과 단파장으로 고출력 및 고효율 구현이 가능하게 됨에 따라 노광 성능과 노광 효율의 효과적인 향상에 의해 노광 패턴의 미세화와 획기적인 고해상도 구현이 가능한 장점을 가진다.
이상에서 설명한 바와 같은 본 발명은 상술한 특정의 바람직한 실시예에 의해 한정되지 않으며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자라면 누구든지 다양한 변형 실시예가 가능한 것은 물론이고, 그와 같은 변경은 기재된 청구범위 내에 있게 된다.
(부호의 설명)
100, 200, 300 : 노광용 광원모듈 유닛
101 : 자외선 발광 소자(UV LED)
102 : 집광 렌즈 110 : 광원 패널
111 : 제 1 회로 기판 112 : 제 2 회로 기판
113 : 제 3 회로 기판 120 : 광학 패널
121 : 제 1 지지 패널 122 : 제 2 지지 패널
123 : 제 3 지지 패널 400 : 노광장치
410 : 반사경 440 : 마스크
A : 수광영역/어파쳐(aperture)
본 발명은 반도체 웨이퍼나 디스플레이 패널 등에 미세 회로 패턴을 형성하기 위하여 포토리소그래피(Photolithography) 공정에 이용할 수 있다.
Claims (16)
- 다수의 단위 자외선 발광 소자가 중심 광원부를 이루도록 매트릭스 형태의 어레이 구조로 실장되는 제 1 회로 기판이 일면 중앙부에 나란한 상태로 탑재되도록 설치되며, 상기 제 1 회로 기판의 주위에는 상단부가 점차 전방으로 돌출되어 경사지게 탑재되도록 설치되는 적어도 하나 이상의 제 2 회로 기판에 다수의 단위 자외선 발광 소자가 매트릭스 형태의 어레이 구조로 실장되어 주변 광원부를 이루도록 구비되는 광원 패널과;상기 제 1 회로 기판과 제 2 회로 기판에 각각 대응하여 나란한 상태로 상기 단위 자외선 발광 소자의 광 출사 측에 배치되도록 구비되는 제 1 지지 패널과 제 2 지지 패널에 상기 단위 자외선 발광 소자의 어레이 구조와 각각 대응하는 어레이 구조로 배열되는 다수의 단위 집광 렌즈가 설치되어 이루어진 광학 패널;을 포함하며,상기 단위 집광 렌즈는 각각 대응되게 배열되는 단위 자외선 발광 소자의 주광축에 대해 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측으로 편심된 상태로 배열되고,상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"에 대하여, 상기 광원 패널 상에 있는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"와, 상기 자외선 발광 소자와 집광 렌즈의 대면 이격 거리 "c"와, 상기 각각의 자외선 발광 소자의 중심축과 집광 렌즈의 중심축 사이의 편심 거리 "x" 및 수광 영역(A)의 직경 "t"의 관계는, 집광 렌즈의 편심 거리 "x"의 기준이 "x=b*c/a"를 만족하도록 설정되며, 상기 "x"의 범위는 "bc(2b-t)/2ab<x< bc(2b+t)/2ab"를 만족하도록 설정되는 것을 특징으로 하는 노광용 광원모듈 유닛.
- 중심부가 오목한 요홈 형태로 형성된 평면상의 중심 광원부와, 그 주위에 방사상의 단위 경사면으로 배치되는 복수의 주변 광원부를 가지는 하우징 패널과;서로 대면한 상태의 유닛으로 결합되어 상기 하우징 패널의 중심 광원부와 주변 광원부에 각각 탑재되도록 설치되는 단위 광원 패널 및 단위 광학 패널을 포함하며,상기 광원 패널은 복수의 단위 자외선 발광 소자가 회로기판에 x-y 좌표 상의 매트릭스 형태의 어레이 구조로 실장되고, 상기 광학 패널은 상기 광원 패널의 회로 기판에 실장된 각각의 단위 자외선 발광 소자의 어레이 구조와 대응하는 어레이 구조로 배열되는 다수의 단위 집광 렌즈가 설치되며,상기 단위 집광 렌즈는 각각 대응되게 배열되는 단위 자외선 발광 소자의 주광축에 대해 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측으로 편심된 상태로 배열되고,상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"에 대하여, 상기 광원 패널 상에 있는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"와, 상기 자외선 발광 소자와 집광 렌즈의 대면 이격 거리 "c"와, 상기 각각의 자외선 발광 소자의 중심축과 집광 렌즈의 중심축 사이의 편심 거리 "x" 및 수광 영역(A)의 직경 "t"의 관계는, 집광 렌즈의 편심 거리 "x"의 기준이 "x=b*c/a"를 만족하도록 설정되며, 상기 "x"의 범위는 "bc(2b-t)/2ab<x< bc(2b+t)/2ab"를 만족하도록 설정되는 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 1항 또는 제 2 항에 있어서,상기 단위 집광 렌즈는 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측에서 점차 이격되어 가장자리에 가까이 배치될수록 대응되는 단위 자외선 발광소자의 주광축에 대한 편심량이 늘어나는 매트릭스 형태의 어레이 구조로 마련되어 각각의 단위 자외선 발광 소자로부터 조사되는 확산 광을 노광장치의 광학계에 설정된 수광 영역에 집광시켜 주도록 이루어진 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 1항 또는 제 2 항에 있어서,상기 주변 광원부는 중심 광원부의 단위 자외선 발광소자의 주광출사축을 향하도록 경사진 상태로 제 3 회로 기판을 제 1의 주변 광원부의 외곽에 각각 경사 각도가 순차적으로 더 증가한 동심원상으로 배치되도록 복수의 주변 광원부를 더 이루도록 증설되어 효율적인 집광 작용이 가능한 것을 특징으로 하는 노광용 광원 모듈 유닛.
- 제 1항 또는 제 2 항에 있어서,상기 자외선 발광 소자는 칩이나 패키지 중에서 선택된 어느 하나의 형태나 양자가 혼합된 형태의 LED 광원으로 실장되는 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 1 항 또는 제 2 항에 있어서,상기 단위 집광 렌즈는 양면 볼록 렌즈로 형성된 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 1 항 또는 제 2 항에 있어서,상기 단위 집광 렌즈는 어레이되는 배열 위치에 따라 서로 다른 광학구조의 곡률면을 가지는 양면 볼록 렌즈로 형성된 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 1 항 또는 제 2 항에 있어서,상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"와, 상기 광원 패널 상에 있는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"는, "b/a"가 0.5 이상으로 형성될 때 상기 중심 광원부(110A)의 주위에 상기 주변 광원부(110B)가 방사상으로 배치되도록 경사지게 설치되는 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 1 항 또는 제 2 항에 있어서,상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"와, 상기 광원 패널 상에 있는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"는, "b/a"가 0.1 내지 0.5 이내의 범위로 형성될 때 상기 중심 광원부(110A)의 주위에 상기 주변 광원부(110B)가 선택적으로 설치되는 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 1 항 또는 제 2 항에 있어서,서로 대응하는 상기 단위 자외선 발광소자와 단위 집광 렌즈의 대면 이격 거리(c)와 상기 집광 렌즈의 직경(d)은 1.0c < d < 2.5c의 조건을 만족하는 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 1 항 또는 제 2 항에 있어서,상기 광원 패널과 상기 광학 패널은 노광장치에 착탈 가능한 상태로 유닛화되도록 구비되는 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 2 항에 있어서,상기 하우징 패널은 노광장치에 착탈 가능한 상태로 유닛화되도록 구비되는 것을 특징으로 하는 노광용 광원모듈 유닛.
- 제 1 항 또는 제 2 항에 있어서,상기 광원 패널과 상기 광학 패널의 주위에는 방열수단이 더 구비되는 것을 특징으로 하는 노광용 광원모듈 유닛.
- 감광제가 도포된 노광용 기판을 지지하기 위한 노광 테이블과, 그 노광 테이블을 X-Y 평면 좌표 상에 이동 가능한 상태로 구동시켜 주기 위한 구동 수단과, 상기 기판의 노광 패턴 형성을 위한 마스크에 조명 광을 출사하도록 구비되는 노광용 광원모듈 유닛과, 상기 기판과 노광용 광원모듈 유닛의 사이에 마련되는 광학계 및 상기 구동수단과 노광용 광원모듈 유닛의 구동을 연계하여 제어하는 제어 수단을 포함하는 노광장치에 있어서,상기 노광용 광원모듈 유닛은,다수의 단위 자외선 발광 소자가 중심 광원부를 이루도록 매트릭스 형태의 어레이 구조로 실장되는 제 1 회로 기판이 일면 중앙부에 나란한 상태로 탑재되도록 설치되며, 상기 제 1 회로 기판의 주위에는 상단부가 점차 전방으로 돌출되어 경사지게 탑재되도록 설치되는 적어도 하나 이상의 제 2 회로 기판에 다수의 단위 자외선 발광 소자가 매트릭스 형태의 어레이 구조로 실장되어 주변 광원부를 이루도록 구비되는 광원 패널과;상기 제 1 회로 기판과 제 2 회로 기판에 각각 나란한 상태로 상기 단위 자외선 발광 소자의 광 출사 측에 배치되도록 구비되는 제 1 지지 패널과 제 2 지지 패널에 상기 단위 자외선 발광 소자의 어레이 구조와 각각 대응하는 어레이 구조로 배열되는 다수의 단위 집광 렌즈가 설치되어 이루어진 광학 패널;을 포함하며,상기 단위 집광 렌즈는 각각 대응되게 배열되는 단위 자외선 발광 소자의 주광축에 대해 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측으로 편심된 상태로 배열되고,상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"에 대하여, 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"와, 상기 자외선 발광 소자와 집광 렌즈의 대면 이격 거리 "c"와, 상기 각각의 자외선 발광 소자의 중심축과 집광 렌즈의 중심축 사이의 편심 거리 "x" 및 수광 영역(A)의 직경 "t"의 관계는, 집광 렌즈의 편심 거리 "x"의 기준이 "x=b*c/a"를 만족하도록 설정되며, 상기 "x"의 범위는 "bc(2b-t)/2ab<x< bc(2b+t)/2ab"를 만족하도록 설정되는 것을 특징으로 하는 노광장치.
- 감광제가 도포된 노광용 기판을 지지하기 위한 노광 테이블과, 그 노광 테이블을 X-Y 평면 좌표 상에 이동 가능한 상태로 구동시켜 주기 위한 구동 수단과, 상기 기판의 노광 패턴 형성을 위한 마스크에 조명 광을 출사하도록 구비되는 노광용 광원모듈 유닛과, 상기 기판과 노광용 광원모듈 유닛의 사이에 마련되는 광학계 및 상기 구동수단과 노광용 광원모듈 유닛의 구동을 연계하여 제어하는 제어 수단을 포함하는 노광장치에 있어서,상기 노광용 광원모듈 유닛은,중심부가 오목한 요홈 형태로 형성된 평면상의 중심 광원부와, 그 주위에 방사상의 단위 경사면으로 배치되는 복수의 주변 광원부를 가지는 하우징 패널과;서로 대면한 상태의 유닛으로 결합되어 상기 하우징 패널의 중심 광원부와 주변 광원부에 각각 탑재되도록 설치되는 단위 광원 패널 및 단위 광학 패널을 포함하며,상기 광원 패널은 복수의 단위 자외선 발광 소자가 회로기판에 x-y 좌표 상의 매트릭스 형태의 어레이 구조로 실장되고, 상기 광학 패널은 상기 광원 패널의 회로 기판에 실장된 각각의 단위 자외선 발광 소자의 어레이 구조와 대응하는 어레이 구조로 배열되는 다수의 단위 집광 렌즈가 설치되며,상기 단위 집광 렌즈는 각각 대응되게 배열되는 단위 자외선 발광 소자의 주광축에 대해 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측으로 편심된 상태로 배열되고,상기 자외선 발광 소자로부터 수광 영역(A)까지의 광학거리 "a"에 대하여, 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심(O)을 지나는 기준 중심축선 측에서 이격되는 자외선 발광 소자의 이격 거리 "b"와, 상기 자외선 발광 소자와 집광 렌즈의 대면 이격 거리 "c"와, 상기 각각의 자외선 발광 소자의 중심축과 집광 렌즈의 중심축 사이의 편심 거리 "x" 및 수광 영역(A)의 직경 "t"의 관계는, 집광 렌즈의 편심 거리 "x"의 기준이 "x=b*c/a"를 만족하도록 설정되며, 상기 "x"의 범위는 "bc(2b-t)/2ab<x< bc(2b+t)/2ab"를 만족하도록 설정되는 것을 특징으로 하는 노광장치.
- 제 14 항 또는 제 15 항 있어서,상기 단위 집광 렌즈는 상기 광원 패널의 중심 광원부를 이루는 자외선 발광소자 어레이의 중심을 지나는 임의의 기준 중심축선 측에서 점차 이격되어 가장자리에 가까이 배치될수록 대응되는 단위 자외선 발광소자의 주광축에 대한 편심량이 늘어나는 매트릭스 형태의 어레이 구조로 마련되어 각각의 단위 자외선 발광 소자로부터 조사되는 확산 광을 노광장치의 광학계에 설정된 수광 영역에 집광시켜 주도록 이루어진 것을 특징으로 하는 노광장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680047935.2A CN107924134B (zh) | 2015-08-21 | 2016-08-19 | 曝光用光源模块单元以及设置有所述光源模块单元的曝光装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0118085 | 2015-08-21 | ||
KR1020150118085A KR101649129B1 (ko) | 2015-08-21 | 2015-08-21 | 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017034221A1 true WO2017034221A1 (ko) | 2017-03-02 |
Family
ID=56874602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/009139 WO2017034221A1 (ko) | 2015-08-21 | 2016-08-19 | 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101649129B1 (ko) |
CN (1) | CN107924134B (ko) |
TW (1) | TWI608309B (ko) |
WO (1) | WO2017034221A1 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101848072B1 (ko) | 2016-09-27 | 2018-04-11 | (주)블루코어 | 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 |
CN110196517B (zh) * | 2019-05-16 | 2021-09-03 | Tcl华星光电技术有限公司 | 一种紫外线照射机 |
CN111426694B (zh) * | 2020-05-06 | 2024-09-17 | 宁波九纵智能科技有限公司 | 一种针对运动物体的一体化视觉检测模组 |
CN113126456A (zh) * | 2021-05-06 | 2021-07-16 | 艾斯尔光电(南通)有限公司 | 一种光罩曝光显影工艺 |
KR20240002721A (ko) | 2022-06-29 | 2024-01-05 | 엘지전자 주식회사 | 광원 모듈 및 이를 구비한 노광 장치 |
CN115674894B (zh) * | 2022-11-10 | 2024-01-30 | 广东科视光学技术股份有限公司 | 聚光透镜、胶印光源、及印刷机 |
CN115877674B (zh) * | 2023-02-22 | 2023-05-16 | 广东科视光学技术股份有限公司 | 一种di光刻机的led光学系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007108504A1 (ja) * | 2006-03-23 | 2007-09-27 | Matsushita Electric Industrial Co., Ltd. | 投写型ディスプレイ装置及び光源装置 |
KR20110004276A (ko) * | 2009-07-07 | 2011-01-13 | 가부시키가이샤 히다치 하이테크놀로지즈 | 프록시미티 노광 장치, 프록시미티 노광장치의 노광광 형성 방법 및 표시용 패널 기판의 제조 방법 |
JP2011134932A (ja) * | 2009-12-25 | 2011-07-07 | Hitachi High-Technologies Corp | 光源ユニット、露光光照射装置、露光装置及び表示パネル基板の製造方法並びに半導体発光素子部の検査装置及び検査方法 |
KR20140055605A (ko) * | 2012-10-31 | 2014-05-09 | 엘지디스플레이 주식회사 | 노광용 조명장치 및 이를 이용한 노광장치 |
KR20150049563A (ko) * | 2013-10-30 | 2015-05-08 | 주식회사 인피테크 | 노광용 led 광원 장치 및 노광용 led 광원장치 관리시스템 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004253750A (ja) * | 2002-12-27 | 2004-09-09 | Nikon Corp | 照明光源、露光装置及び露光方法 |
KR20120095520A (ko) | 2011-02-21 | 2012-08-29 | 최영락 | 엘이디 어레이를 이용한 노광장치 |
KR101401238B1 (ko) | 2012-09-28 | 2014-05-29 | 주식회사 인피테크 | 디스플레이 패널 노광용 led 광원장치 |
CN104166312B (zh) * | 2013-05-17 | 2016-08-24 | 上海微电子装备有限公司 | 一种多光源大视场拼接照明系统 |
KR101440874B1 (ko) | 2013-07-26 | 2014-09-17 | (주)프로옵틱스 | 엘이디 광원을 이용한 시준 기능을 갖는 노광용 광학모듈 |
CN104516210B (zh) * | 2013-10-08 | 2016-09-28 | 上海微电子装备有限公司 | 用于光刻机镜头的远心测量方法 |
-
2015
- 2015-08-21 KR KR1020150118085A patent/KR101649129B1/ko active IP Right Grant
-
2016
- 2016-08-19 WO PCT/KR2016/009139 patent/WO2017034221A1/ko active Application Filing
- 2016-08-19 CN CN201680047935.2A patent/CN107924134B/zh not_active Expired - Fee Related
- 2016-08-19 TW TW105126674A patent/TWI608309B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007108504A1 (ja) * | 2006-03-23 | 2007-09-27 | Matsushita Electric Industrial Co., Ltd. | 投写型ディスプレイ装置及び光源装置 |
KR20110004276A (ko) * | 2009-07-07 | 2011-01-13 | 가부시키가이샤 히다치 하이테크놀로지즈 | 프록시미티 노광 장치, 프록시미티 노광장치의 노광광 형성 방법 및 표시용 패널 기판의 제조 방법 |
JP2011134932A (ja) * | 2009-12-25 | 2011-07-07 | Hitachi High-Technologies Corp | 光源ユニット、露光光照射装置、露光装置及び表示パネル基板の製造方法並びに半導体発光素子部の検査装置及び検査方法 |
KR20140055605A (ko) * | 2012-10-31 | 2014-05-09 | 엘지디스플레이 주식회사 | 노광용 조명장치 및 이를 이용한 노광장치 |
KR20150049563A (ko) * | 2013-10-30 | 2015-05-08 | 주식회사 인피테크 | 노광용 led 광원 장치 및 노광용 led 광원장치 관리시스템 |
Also Published As
Publication number | Publication date |
---|---|
CN107924134A (zh) | 2018-04-17 |
TW201710805A (zh) | 2017-03-16 |
CN107924134B (zh) | 2019-10-01 |
TWI608309B (zh) | 2017-12-11 |
KR101649129B1 (ko) | 2016-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017034221A1 (ko) | 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 | |
JP4678493B2 (ja) | 光源ユニット、照明光学装置、露光装置、および露光方法 | |
JP5345443B2 (ja) | 露光装置、露光光照射方法、及び表示用パネル基板の製造方法 | |
WO2017135683A1 (ko) | 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 | |
WO2018062861A1 (ko) | 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 | |
KR20170022877A (ko) | 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 | |
WO2012050388A2 (ko) | 위상 시프터 패턴이 형성된 공간 필터를 구비하는 마스크리스 노광장치 및 노광방법 | |
KR20160070002A (ko) | 냉각 장치, 조명 광학계, 노광 장치, 및 물품의 제조 방법 | |
WO2009142440A2 (ko) | 마스크 리스 노광장치용 광학부품 | |
CN103257530A (zh) | 接近式曝光装置、曝光光形成方法、面板基板的制造方法 | |
CN1707156A (zh) | 灯保护罩,含灯和保护罩的装置,光刻器械中安装光源的方法 | |
TWI579658B (zh) | 曝光用光源模組單元及具備該光源模組單元的曝光裝置 | |
KR101037466B1 (ko) | 간이 노광기 | |
WO2011040745A2 (ko) | 영상 처리 기반 리소그래피 시스템 및 표적물 코팅 방법 | |
WO2017061704A1 (ko) | 조명 장치 | |
JP2011017770A (ja) | プロキシミティ露光装置、プロキシミティ露光装置の露光光形成方法、及び表示用パネル基板の製造方法 | |
TW201928532A (zh) | 放電燈之更換方法及點亮方法、放電燈以及其製造方法 | |
KR20170015075A (ko) | 노광용 광원모듈 유닛 및 그 광원모듈 유닛이 구비된 노광장치 | |
WO2018074820A1 (ko) | 곡면형 반도체 생산 장치 및 곡면형 반도체를 이용한 이미지 센서 | |
JP2023073019A (ja) | 光源装置、露光装置、及び物品の製造方法 | |
JP5394320B2 (ja) | 光源ユニット、光源ユニットの光軸調整方法、プロキシミティ露光装置、プロキシミティ露光装置の露光光照射方法、及び表示用パネル基板の製造方法 | |
WO2022169164A1 (ko) | 마이크로 엘이디 선택적 공기층 전사 프린트 장치 | |
WO2018043994A1 (ko) | 프로젝터 및 프로젝터용 발광 모듈 | |
WO2024177255A1 (ko) | 디스플레이 장치 | |
KR20080064400A (ko) | 조명장치, 노광 장치 및 표시 패널 상부의 막을 노광하는방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16839510 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16839510 Country of ref document: EP Kind code of ref document: A1 |