WO2022166950A1 - 电动汽车换电控制系统及控制方法 - Google Patents

电动汽车换电控制系统及控制方法 Download PDF

Info

Publication number
WO2022166950A1
WO2022166950A1 PCT/CN2022/075357 CN2022075357W WO2022166950A1 WO 2022166950 A1 WO2022166950 A1 WO 2022166950A1 CN 2022075357 W CN2022075357 W CN 2022075357W WO 2022166950 A1 WO2022166950 A1 WO 2022166950A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power exchange
voltage
control module
power
Prior art date
Application number
PCT/CN2022/075357
Other languages
English (en)
French (fr)
Inventor
王微
顾家闻
曲振宁
梁士福
张立平
张长涛
弭超
慈伟程
马云天
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022166950A1 publication Critical patent/WO2022166950A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present application relates to electric vehicle battery swapping technology, for example, to an electric vehicle battery swapping control system and control method.
  • the present application provides a power exchange control system and control method for an electric vehicle, which can solve the vehicle-end control problem and the power exchange safety problem of the power exchange mode of the whole vehicle.
  • An embodiment of the present application provides a power exchange control system for an electric vehicle, including a human-computer interaction module, a vehicle control module, a safety monitoring module, a battery control module, and a power exchange control module; wherein the human-machine interaction module includes a power exchange control module.
  • an electric mode switch which is used to switch the electric vehicle's electric vehicle mode;
  • the vehicle control module is connected to the human-computer interaction module, the vehicle control module includes a vehicle controller, and the vehicle control module includes a vehicle controller.
  • the vehicle controller is set to output an effective signal of the power exchange mode when detecting that the power exchange mode switch is valid, and control the whole vehicle to enter the power exchange mode;
  • the safety monitoring module is connected to the complete vehicle control module, and the safety monitoring module is connected to the complete vehicle control module.
  • the monitoring module is configured to monitor the safety of the battery swap control system and the high-voltage system of the entire vehicle; the battery control module is connected to the safety monitoring module, and the vehicle control module is configured according to the safety detection abnormal level detected by the safety monitoring module. Control the high-voltage power-off of the vehicle, or the battery control module controls the emergency power-off of the vehicle, and stores fault information; the power-swap control module is connected to the complete-vehicle control module, and the power-swap control module is set to enable the entire vehicle to be powered off.
  • the vehicle control module exchanges information with the power exchange station to complete the replacement of the battery pack in the power exchange mode.
  • An embodiment of the present application also provides an electric vehicle battery swap control method, which is executed by any of the above electric vehicle battery swap control systems, including: the vehicle controller detects whether the battery swap mode switch is valid; if the vehicle controller It is detected that the power exchange mode switch is valid, and the safety monitoring module monitors the safety of the power exchange control system and the high-voltage system of the vehicle; when the safety monitoring module detects normal, the vehicle control module determines that the high-voltage power-off condition of the vehicle is satisfied, and controls the vehicle.
  • Power off at high voltage output a valid signal of the power exchange mode, and control the whole vehicle to enter the power exchange mode, in the case that the safety monitoring module detects that the battery control module is abnormal, power off the battery pack urgently, and store the fault information; and In the case of controlling the high-voltage power-off of the whole vehicle, the vehicle control module exchanges information with the power exchange station, so as to complete the battery pack replacement in the power exchange mode.
  • FIG. 1 is a schematic structural diagram of a power exchange control system for an electric vehicle provided by an embodiment of the application;
  • FIG. 2 is a schematic structural diagram of another electric vehicle battery swap control system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a control method of an electric vehicle battery swap control system provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of another control method of an electric vehicle battery swap control system provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electric vehicle power exchange control system provided by an embodiment of the present application.
  • the electric vehicle power exchange control system provided by this embodiment includes a human-computer interaction module 10 and a vehicle control module. 20.
  • the human-computer interaction module 10 includes a power exchange mode switch 11, and the power exchange mode switch 11 is set to switch the power exchange mode of the electric vehicle;
  • the vehicle control module 20 Connected with the human-computer interaction module 10, the vehicle control module 20 includes a vehicle controller 21, and the vehicle controller 21 is set to output a valid signal of the power exchange mode when it is detected that the power exchange mode switch is valid, and control the vehicle to enter the power exchange mode.
  • the safety monitoring module 30 is connected to the vehicle control module 20, and the safety monitoring module 30 is set to monitor the safety of the power exchange control system and the vehicle high-voltage system;
  • the battery control module 40 is connected to the safety monitoring module 30, according to the safety monitoring module If the safety detection abnormal level is detected at 30, the vehicle control module 20 controls the high-voltage power-off of the vehicle, or the battery control module 40 controls the emergency power-off of the vehicle, and stores the fault information;
  • the power exchange control module 50 is connected to the vehicle control module 20, The power exchange control module 50 is configured to enable the vehicle control module to exchange information with the power exchange station, so as to complete the replacement of the battery pack in the power exchange mode.
  • the human-computer interaction module 10 realizes information interaction between the user and the vehicle. For example, the human-computer interaction module 10 displays various parameters of the vehicle running state, and is used to control the vehicle by operating the human-computer interaction module 10 .
  • the power exchange mode switch 11 in the human-computer interaction module 10 may be a physical switch, or a virtual switch located on the screen, a switch only set to control the power exchange mode, or a switch set to control the vehicle to start or close switch.
  • a separate battery swap mode switch is a switch that is only used to activate or deactivate the battery swap mode. And there is no restriction on the operation sequence of the vehicle startup or shutdown function switch. If it is shared with the vehicle start switch, the power exchange function can be realized through different control methods according to different operations.
  • the specific implementation can be selected according to the actual situation, which is not limited in an embodiment of the present application.
  • the battery swapping mode of the electric vehicle includes turning on the battery swapping mode and turning off the battery swapping mode, and switching between multiple battery swapping modes through the battery swapping mode switch. ), you need to start the battery swap mode, and when the battery pack is replaced, you need to turn off the battery swap mode. It should be noted that the embodiment of the present application does not limit the exiting manner of the battery swapping mode. For example, after the power exchange is completed, the vehicle can be started directly, and the vehicle automatically exits the power exchange mode; or the power exchange mode switch can be operated to exit the power exchange mode.
  • the vehicle control module 20 includes a vehicle controller (Vehicle control unit, VCU) 21, which is configured to control the operation of the vehicle, and control the electrical system of the vehicle to be powered off before the power exchange mode, so as to ensure the safety of power exchange.
  • the emergency power-off can be controlled by the battery control module, or it can be controlled by the vehicle controller, and the emergency power-off is performed by the battery control module.
  • the power exchange control module 50 interacts with the power exchange station, for example, in a wireless communication manner or a wired manner, which is not limited in this embodiment of the present application. After the battery swap is completed, the vehicle control module controls the vehicle to exit the battery swap mode and enter other vehicle modes such as driving mode.
  • the safety monitoring module 30 is configured to perform safety monitoring before, during and after the power exchange.
  • the safety monitoring module 30 is also configured to perform safety monitoring on the vehicle in other operating modes, such as safety monitoring during normal driving and corresponding processing measures.
  • the power exchange mode of the electric vehicle is switched by the power exchange mode switch; when the vehicle controller detects that the power exchange mode switch is valid, it outputs a valid signal of the power exchange mode, and controls the whole vehicle to enter the power exchange mode ;
  • the safety monitoring module monitors the safety of the power exchange control system and the high-voltage system of the vehicle; according to the abnormal level of safety detection detected by the safety monitoring module, the vehicle control module controls the high-voltage power-off of the vehicle, or the battery control module controls the emergency power-off of the vehicle , and store the fault information; the vehicle control module exchanges information with the swap station to complete the battery pack replacement in the battery swap mode, so that the vehicle battery swap mode has on-board control and a high degree of automation, thus reducing the tedious operation of the user . And due to the monitoring and control of the safety monitoring module, the vehicle can be made safer in the process of battery swapping.
  • FIG. 2 shows a schematic structural diagram of another electric vehicle battery swap control system provided by an embodiment of the present application.
  • the human-computer interaction module 10 further includes a display unit 12, which is set to
  • the whole vehicle control module 20 also includes a high-voltage assembly controller 22, and the vehicle controller 21 is set to control the high-voltage system of the whole vehicle to power off when a valid signal of the power-changing mode is detected, and the high-voltage
  • the assembly controller 22 stops working after receiving the power-off command of the high-voltage system, and each high-voltage assembly controller 22 stops detecting the nodes of the battery management system.
  • the safety monitoring module 30 is configured to perform real-time high-voltage system insulation monitoring, high-voltage interlock monitoring, post-collision high-voltage system processing, and high-voltage relay status monitoring before the vehicle high-voltage system is powered off. The information is transmitted to the display unit 12 and troubleshooting.
  • the safety monitoring module 30 is a module that performs the safety detection of the whole vehicle, which may include, but is not limited to, high-voltage system insulation monitoring, high-voltage interlock monitoring, post-collision high-voltage system processing, high-voltage relay status monitoring, and other electrical safety detection functions. one or more of. The specific implementation may be selected according to the actual situation, which is not limited in this embodiment of the present application.
  • the safety monitoring module not only detects during the battery replacement process, but also performs high-voltage system processing after a collision.
  • the display unit 12 may be any kind of display device, for example, displaying information through characters, indicator lights, display screens, and the like. And when parking in the battery swap mode, the Electronic Park Brake (EPB) does not automatically step up when parking.
  • EPB Electronic Park Brake
  • the vehicle with the automatic parking function can no longer park automatically, the vehicle with automatic return to the P gear needs to return to N gear, and the EPB is not automatically tightened, and the manual start of the EPB is not restricted according to regulations.
  • the reason for this setting is that there is a small displacement during the battery replacement process of the vehicle, which will not affect the smooth replacement of the battery pack, and can also protect the locking mechanism of the entire vehicle. If parking is required, electronic parking can be activated manually.
  • the high-voltage system insulation monitoring includes monitoring the insulation state of the battery pack in the high-voltage system of the vehicle before the high-voltage power-off of the vehicle according to the different parts of the vehicle state monitoring;
  • the monitoring of high-voltage interlock includes the monitoring of all high-voltage connection points of the whole vehicle, and the interlock between the battery pack and the high-voltage connection of the whole vehicle.
  • High-voltage relay state monitoring includes monitoring the state of the high-voltage relay coil and the state of the high-voltage relay contacts. If it is detected that the drive command of the high-voltage relay is inconsistent, the high-voltage relay is determined to be faulty, and the battery control system records the fault and provides it to the power exchange station. output to the display unit 12 to prompt the user.
  • the high-voltage interlock monitoring can be realized by the sensor at the high-voltage connection point. For example, it can detect whether the voltage across the contact is the same. If the voltage across the contact is the same, the contact is connected. If the voltage across the contacts is different, it is in the open state.
  • the interlock monitoring method may also be that a low-voltage connector is used inside the high-voltage connector, and the length is greater than the length of the high-voltage terminal of the connector.
  • the high-voltage interlock function is activated. On this basis, when the interlock between the battery pack and the high-voltage connection of the vehicle is activated, the vehicle starts the emergency power-off mode.
  • the interlock monitoring at the connection between the battery pack and the high voltage of the vehicle can be monitored by controllers such as VCU and Battery Management System (BMS).
  • BMS Battery Management System
  • the technical solution of the embodiment of the present application by monitoring the insulation state of the battery pack, includes monitoring of all high-voltage connection points of the whole vehicle, the interlocking state of the battery pack and the high-voltage connection of the whole vehicle, and monitoring the state of the high-voltage relay coil and the high-voltage relay contact.
  • the state of the high-voltage system By detecting the state of the high-voltage system, the abnormal state of the high-voltage system can be detected in time, and the safety of the vehicle during battery replacement can be improved.
  • the safety monitoring module 30 is further configured to detect the battery pack lock signal in real time, and when the battery pack lock signal is unlocked or invalid, the vehicle is prohibited from starting; the safety monitoring module 30 is also configured to detect the battery pack lock in real time
  • the power-changing prompt signal is used to prompt the user to enter the power-changing mode through the display unit 12 when the user enters the power-changing mode and does not perform the power-changing mode operation, so as to prevent the battery pack from being replaced with electricity;
  • the safety monitoring module 30 is also set to After the battery pack is replaced by the whole vehicle, the battery pack insulation monitoring, high-voltage relay state monitoring, and battery pack fault monitoring are performed before the high-voltage power-on of the vehicle, and a signal indicating that the fault state is normal or abnormal is sent to the vehicle control module 20, and the vehicle The control module 20 is configured to decide whether to power on the high voltage according to the fault state.
  • the lock signal can be completed by the sensor detecting the lock between the battery pack and the vehicle body, and the battery pack lock signal and the battery replacement prompt signal can be detected by the VCU or other controllers in the vehicle control system.
  • the vehicle can only be started when the lock signal is valid. Therefore, unnecessary losses caused by falling off of the battery pack during driving can be avoided.
  • the process of judging the fault state to decide whether to power on the high voltage can be: when there is no fault state, the high voltage power on of the whole vehicle is allowed; when the fault state is abnormal, the high voltage power on of the whole vehicle is prohibited.
  • the device also has a fault handling mechanism.
  • the whole vehicle When the whole vehicle is running at high speed and the battery pack lock signal is unlocked or invalid, the whole vehicle will run with limited power, and the user will be prompted through the human-computer interaction module to stop and repair;
  • the vehicle speed can be defined as required, the vehicle will automatically turn off, and the user will be prompted for maintenance through the human-computer interaction module.
  • the battery replacement prompt signal is valid.
  • the whole vehicle is running at high speed
  • the user is prompted to stop and repair by the human-computer interaction module; when the whole vehicle is running at a low speed, the vehicle speed can be defined according to the requirements, the vehicle will automatically turn off, and the user will be prompted through the interaction of the human-computer module. repair.
  • the battery control module 40 when the battery control module 40 receives the valid signal of the battery swap mode, it enters the battery swap mode, and stores basic information and fault information; if the received battery pack lock signal is unlocked or invalid, it does not receive The high-voltage relay is disconnected, and the emergency power-off mode is entered; the battery control module 40 is also set to automatically monitor the insulation condition of the battery pack, the status of the high-voltage relay and the fault of the battery pack after the battery swap of the whole vehicle is completed and the low-voltage power on Vehicle control module 20 .
  • the high-voltage connector is protected through the above-mentioned control strategy, and the life of the high-voltage connector is prolonged.
  • the power exchange control module 50 is further configured to notify the power exchange station to prepare for power exchange when receiving a valid signal of the power exchange mode, and the vehicle control module 20 sends a high-voltage power-off signal to The power exchange control module 50, the power exchange control module 50 notifies the power exchange station to start the power exchange; when the whole vehicle enters the power exchange mode, if the whole vehicle high voltage system is not powered off within the first preset time, the whole vehicle control module 20 detects The power-consuming equipment is fed back to the power-changing station through the power-changing control module, prompting the user to turn off the high-voltage power-consuming equipment; if the communication between the power-changing control module and the power-changing power station fails, the vehicle will enter the power-changing mode, and it will be reset within the second time.
  • the vehicle control module 20 will automatically turn off the high-voltage electrical equipment and force the vehicle to power off at high voltage; after the power exchange is completed, the power exchange station interacts with the power exchange control module, and sends the power exchange completion signal to the entire vehicle.
  • the vehicle control module 20, the whole vehicle control module 20 prompts the user through the human-computer interaction module 10; the battery replacement control module 50 is also set to interact with the battery control module 40, and sends the status information of the battery pack to the replacement station for cost calculation and After-sale quality assurance; the power exchange control module 50 is also configured to send the information of the power exchange station to the vehicle control module 20 after the power exchange is completed. Control the vehicle to exit the battery swap mode.
  • the power exchange control module 50 interacts with the power exchange station, the battery control module 40 enters the power exchange mode, and informs the power exchange station to prepare for power exchange. Module 50, the power exchange control module 50 notifies the power exchange station to start power exchange.
  • the whole vehicle enters the battery swap mode, there is still no power outage of the high-voltage system within the specified time.
  • the vehicle control system detects the electrical equipment and feeds it back to the battery swap station through the battery swap control module, prompting the user to turn off the high-voltage electrical equipment.
  • the power exchange control module 50 fails to communicate with the power exchange station, after the vehicle enters the power exchange mode, and the high-voltage system is not powered off within a specified time, the vehicle control system automatically turns off the high-voltage electrical equipment and forces the vehicle to perform high-voltage
  • the power exchange station interacts with the power exchange control module 50, and sends a power exchange completion signal to the vehicle control system, and the vehicle control system prompts the user through the human-computer interaction module 10.
  • the user or the power exchange station is prompted for maintenance. Whether the communication between the power exchange station and the power exchange control module fails can also be detected by the power exchange control module.
  • the power exchange control module 50 may be a separate power exchange controller, or a vehicle T-box (ie, wireless gateway) controller, or other control units that exchange information with the background through network signals. Actual selection.
  • the emergency power-off mode is that the battery control module directly controls the high-voltage relay to disconnect, preventing the high-voltage connector of the battery pack from being plugged and unplugged under power. Avoid potential safety hazards such as electric shock for operators during operation.
  • the high voltage activation signal initiated by the user is not responded to.
  • the user initiates the high-voltage start signal when the power exchange is not completed, which may be caused by the user's false triggering, and the high-voltage system is activated during the power exchange process, which threatens the safety of the power exchange. Therefore, it does not respond to the high-voltage start signal, which can avoid Starting the high-voltage system during the battery replacement process brings unnecessary losses.
  • the high-voltage start signal which can avoid Starting the high-voltage system during the battery replacement process brings unnecessary losses.
  • the battery swap process of the whole vehicle if the user misoperation, the conditions for triggering the high voltage start are valid, and the vehicle enters the battery swap mode and does not respond to any high voltage start trigger conditions.
  • the failure modes include: the alarm that the whole vehicle cannot be started at high voltage, the failure of detecting the loss of the node of the battery management system after each controller of the high-voltage system exits the battery replacement mode, the battery management system If the battery pack status is not detected in time, the high-voltage startup process is entered.
  • the vehicle control module 20 is further configured to control the vehicle to exit the power exchange mode when it is detected that the power exchange mode switch signal is valid again.
  • the way of exiting the battery swapping mode may be a prompt from the battery swapping station, a user operating the battery swapping mode switch, or an active detection by the vehicle control module, which is not limited in this embodiment of the present application.
  • the vehicle control module can actively control the exit of the power exchange mode by obtaining the safety detection results and the prompt information of the power exchange station, and can also prompt the user to operate to exit the power exchange mode.
  • the safety monitoring module further includes a post-collision high-voltage system processing function, and when a collision of the vehicle is detected, one or more states in the above-mentioned embodiments are detected, and the user is prompted through the human-computer interaction module.
  • the processing method may be that when the vehicle detects that the collision signal is valid, the battery control module enters the emergency power-off mode.
  • FIG. 3 is a schematic flowchart of a control method of an electric vehicle power exchange control system provided by an embodiment of the application. Referring to FIG. 3 , the control method is implemented by the electric vehicle power exchange control system provided by any of the above embodiments, including:
  • the vehicle controller detects whether the power exchange mode switch is valid.
  • the safety monitoring module monitors the safety of the battery swap control system and the high-voltage system of the vehicle.
  • the vehicle control module determines that the high voltage power-off condition of the vehicle is satisfied, it controls the high-voltage power-off of the vehicle, outputs a valid signal of the power-swap mode, and controls the vehicle to enter the power-swap mode.
  • the vehicle control module controls the high-voltage power-off of the vehicle, or the battery control module controls the emergency power-off of the vehicle, and stores fault information.
  • the power exchange mode switch is valid when it is triggered.
  • the power exchange mode switch can be a physical switch, or a virtual switch located on the screen, a switch only used to control the power exchange mode, or a switch used to control the entire power exchange mode.
  • the switch for turning on or off the vehicle may be selected according to the actual situation during the specific implementation, which is not limited in the embodiment of the present application. If the power exchange mode switch is invalid, the whole vehicle does not enter the power exchange mode, and returns to S110.
  • the vehicle control module exchanges information with the swap station to complete the battery pack replacement in the battery swap mode.
  • a fault handling method is also included.
  • the battery pack lock signal is unlocked or invalid and the whole vehicle is running at a high speed, the whole vehicle is driven with limited power, and the user is prompted to stop and repair through human-computer interaction;
  • the battery pack lock signal is unlocked or invalid and the vehicle is running at low speed, the vehicle will automatically turn off, and the user will be reminded for maintenance through human-computer interaction.
  • the specific values of high speed and low speed can be determined according to actual needs.
  • control method of the electric vehicle battery swap control system may also be: when the battery swap signal is valid, each controller does not detect the battery control module; controls the vehicle gear to neutral; and controls the high-voltage system and The low-voltage system is powered off; then the vehicle is controlled to interact with the swap station; the battery pack is replaced after the interaction is completed; then the vehicle after the battery pack is controlled to interact with the swap station; the vehicle performs power-on safety detection, and after confirming that the safety detection is normal, exit the replacement power mode.
  • FIG. 4 is a schematic flowchart of another control method of an electric vehicle battery swap control system provided by an embodiment of the present application, see FIG. 4 .
  • the vehicle controller determines that the condition is met and controls the vehicle to enter the power-changing mode; in one embodiment, if the power-changing switch is not triggered, When the vehicle detects that the signal from the battery swap sensor is valid, the vehicle controller determines the vehicle speed at this time. If the vehicle speed is high at this time, it is determined as a fault state, and the user is prompted to stop and repair.
  • the vehicle controller determines that the condition is met and controls the vehicle to enter the battery swap mode; in one embodiment, if the battery pack lock signal is unlocked or invalid, the vehicle controller determines the vehicle speed at this time. If it is high, it is determined as a fault state, and the user is prompted to stop and repair. If the vehicle speed is low or in a stationary state at this time, the vehicle controller determines that the high-voltage system power-off conditions are met and controls the vehicle high-voltage system to power off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车换电控制系统及控制方法,其中控制系统包括人机交互模块(10)、整车控制模块(20)、安全监测模块(30)、电池控制模块(40)和换电控制模块(50);其中,人机交互模块(10)包括换电模式开关(11);整车控制模块(20)包括整车控制器(21),所述整车控制器(21)设置为在检测到换电模式开关(11)有效时,输出换电模式有效信号并进入换电模式;安全监测模块(30)设置为监测换电控制系统和整车高压系统的安全性;根据安全监测模块(30)检测的安全检测异常等级,整车控制模块(20)控制整车高压下电,或电池控制模块(40)控制整车紧急下电,并存储故障信息;换电控制模块(50)与整车控制模块(20)连接,设置为使整车控制模块(20)与换电站进行信息交互。

Description

电动汽车换电控制系统及控制方法
本申请要求申请日为2021年2月7日、申请号为202110179727.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车换电技术,例如涉及一种电动汽车换电控制系统及控制方法。
背景技术
随着人们低碳环保出行意识越来越强,电动汽车越来越受到欢迎。但相关技术中,电动汽车的使用过程中存在着一些不便。例如充电时间较长的问题,即使是直流充电也需要至少半个小时的时间,对于运营车辆尤其不便。
换电技术的到来解决了续驶里程需求长与充电时间长的矛盾问题,仅需要短短几分钟就可以完成电池包的更换,节约了时间,换电电动汽车存有很大的发展前景。
但相关技术中的换电设备由于没有统一换电设备标准,也没有换电安全方面的标准法规,因此整车换电模式的车端控制问题及安全保障问题亟需解决。
发明内容
本申请提供了一种电动汽车换电控制系统及控制方法,能够解决整车换电模式的车端控制问题及换电安全问题。
本申请一实施例提供了一种电动汽车换电控制系统,包括人机交互模块、整车控制模块、安全监测模块、电池控制模块和换电控制模块;其中,所述人机交互模块包括换电模式开关,所述换电模式开关用于切换电动汽车的换电模式;所述整车控制模块与所述人机交互模块连接,所述整车控制模块包括整车控制器,所述整车控制器设置为在检测到所述换电模式开关有效时,输出换电模式有效信号,并控制整车进入换电模式;所述安全监测模块与所述整车控制模块连接,所述安全监测模块设置为监测换电控制系统和整车高压系统的安全性;所述电池控制模块与所述安全监测模块连接,根据所述安全监测模块检测的安全检测异常等级,所述整车控制模块控制整车高压下电,或所述电池控制 模块控制整车紧急下电,并存储故障信息;所述换电控制模块与所述整车控制模块连接,所述换电控制模块设置为使整车控制模块与换电站进行信息交互,以在所述换电模式下完成电池包更换。
本申请一实施例还提供了一种电动汽车换电控制方法,采用上述任一电动汽车换电控制系统执行,包括:整车控制器检测换电模式开关是否有效;若所述整车控制器检测换电模式开关有效,安全监测模块监测换电控制系统和整车高压系统的安全性;所述安全监测模块检测正常时,整车控制模块判断满足整车高压下电条件时则控制整车高压下电,输出换电模式有效信号,并控制整车进入换电模式,在所述安全监测模块检测到电池控制模块异常的情况下,使电池包紧急下电,并存储故障信息;及在控制整车高压下电的情况下,整车控制模块与换电站进行信息交互,以在所述换电模式下完成电池包更换。
附图说明
图1为本申请一实施例提供的一种电动汽车换电控制系统的结构示意图;
图2是本申请一实施例提供的另一种电动汽车换电控制系统的结构示意图;
图3为本申请一实施例提供的一种电动汽车换电控制系统的控制方法的流程示意图;
图4为本申请一实施例提供的另一种电动汽车换电控制系统的控制方法的流程示意图。
具体实施方式
图1所示为本申请一实施例提供的一种电动汽车换电控制系统的结构示意图,参考图1,本实施例提供的电动汽车换电控制系统包括人机交互模块10、整车控制模块20、安全监测模块30、电池控制模块40和换电控制模块50;人机交互模块10包括换电模式开关11,换电模式开关11设置为切换电动汽车的换电模式;整车控制模块20与人机交互模块10连接,整车控制模块20包括整车控制器21,整车控制器21设置为在检测到换电模式开关有效时,输出换电模式有效信号,并控制整车进入换电模式;安全监测模块30与整车控制模块20连接,安全监测模块30设置为监测换电控制系统和整车高压系统的安全性;电池控制模块40与安全监测模块30连接,根据安全监测模块30检测的安全检测异常等级,整车控制模块20控制整车高压下电,或电池控制模块40控制整车紧急下电,并存 储故障信息;换电控制模块50与整车控制模块20连接,换电控制模块50设置为使整车控制模块与换电站进行信息交互,以在换电模式下完成电池包更换。
其中,人机交互模块10实现用户与车辆之间的信息交互,例如人机交互模块10显示车辆运行状态的多种参数,用于通过操作人机交互模块10控制车辆。人机交互模块10中的换电模式开关11可以是实体开关,也可以是位于屏幕上的虚拟开关,可以是仅设置为控制换电模式的开关,也可以是设置为控制整车启动或关闭的开关。单独的换电模式开关是仅作为换电模式启动或关闭用途的开关。且与整车启动或关闭功能开关的操作顺序上不做限制。如与整车启动开关共用,可以根据不同的操作通过不同的控制方法来实现换电功能。具体实施时可以根据实际情况选择,本申请一实施例对此不作限定。电动汽车的换电模式包括开启换电模式和关闭换电模式,通过换电模式开关,在多种换电模式间进行切换,示例性的,当电池包的电量小于预设阈值(例如20%)时,需要启动换电模式,当电池包更换后,需要关闭换电模式。应当注意的是,本申请实施例不对换电模式的退出方式做出限制。例如在换电结束后,可以是直接启动车辆,车辆自动退出换电模式;也可以操作换电模式开关退出换电模式。整车控制模块20包括整车控制器(Vehicle control unit,VCU)21,设置为控制车辆的运行,在换电模式前控制车辆电气系统下电,保证换电安全。可以是由电池控制模块控制紧急下电,也可以是整车控制器进行控制,由电池控制模块执行紧急下电。换电控制模块50与换电站进行交互,例如可以通过无线通信的方式,也可以通过有线的方式,本申请实施例对此不作限定。换电结束后整车控制模块控制整车退出换电模式,进入行驶模式等其他整车模式。安全监测模块30设置为进行换电前、换电过程中以及换电后的安全监测,例如换电前检测出故障,则停止进入换电模式,执行相应的处理或维修措施,换电后检测出故障也会执行响应的措施。此外,安全监测模块30还设置为对在其他运行模式时的车辆进行安全监测,例如正常行驶过程的安全监测及相应处理措施。
本申请实施例的技术方案,通过换电模式开关切换电动汽车的换电模式;整车控制器在检测到换电模式开关有效时,输出换电模式有效信号,并控制整车进入换电模式;安全监测模块监测换电控制系统和整车高压系统的安全性;根据安全监测模块检测的安全检测异常等级,整车控制模块控制整车高压下电,或电池控制模块控制整车紧急下电,并存储故障信息;整车控制模块与换电站进行信息交互,以在换电模式下完成电池包更换,使得整车换电模式具有车端 控制,自动化程度高,因此减少了用户繁琐的操作。并且由于安全监测模块的监测与控制,可使车辆在换电过程中更为安全。
在上述实施例的基础上,图2所示为本申请一实施例提供的另一种电动汽车换电控制系统的结构示意图,参考图2,人机交互模块10还包括显示单元12,设置为于显示换电提示信号以及故障提示信息;整车控制模块20还包括高压总成控制器22,整车控制器21设置为在检测到换电模式有效信号时控制整车高压系统下电,高压总成控制器22收到高压系统下电指令后停止工作,每一高压总成控制器22停止检测电池管理系统的节点。安全监测模块30设置为在整车高压系统下电前进行实时的高压系统绝缘监测、高压互锁监测、碰撞后高压系统处理、高压继电器状态监测,当检测到整车高压系统故障时,将故障信息传输到显示单元12并进行故障处理。
其中,安全监测模块30是执行整车用电安全检测的模块,其中可以包括但不限于高压系统绝缘监测、高压互锁监测、碰撞后高压系统处理、高压继电器状态监测等用电安全检测功能中的一种或多种。具体实施时可以根据实际情况选择,本申请实施例对此不作限定。安全监测模块不仅在进行换电的过程中进行检测,还会在碰撞后进行高压系统处理。显示单元12可以是任意一种显示设备,例如通过文字、指示灯、显示画面等显示信息。并且在换电模式下停车,停车时电子驻车(Electrical Park Brake,EPB)不自动加紧,如果具有自动驻车功能的车辆可以不再自动驻车,有自动回P挡的车辆,需要回到N挡,且EPB不自动加紧,手动启动EPB按法规要求不受限制。这样设置是由于在车辆换电过程中有小的位移既不影响电池包的顺利换装,还可以保护整车的锁止机构。如果需要驻车,可以通过手动启动电子驻车。
在一实施例中,高压系统绝缘监测包括根据整车状态监测的部位不同,整车高压下电前监测车高压系统中电池包的绝缘状态;当整车完成高压下电,低压下电前监测电池包的绝缘状态;高压互锁监测包括整车所有的高压连接点的监测、电池包与整车高压连接处的互锁,当监测到高压互锁断开,则整车启动紧急下电模式;高压继电器状态监测包括监测高压继电器线圈的状态及高压继电器触点的状态,若检测到与高压继电器的驱动指令不一致,则判定高压继电器故障,由电池控制系统记录故障,并提供给换电站且输出到显示单元12,以提示用户。
其中,高压互锁监测可以通过高压连接点处的传感器实现,例如可以检测 触点两端电压是否相同,如果触点两端电压相同则触点为连接状态。如果触点两端电压不同则为断开状态。互锁监测方法还可以是,高压连接器内部采用低压接插件,长度大于连接器高压端子长度,当监测到内部互锁端子断开时,高压互锁功能激活。在此基础上,当电池包与整车高压连接处互锁激活,则整车启动紧急下电模式。电池包与整车高压连接处的互锁监测可以由VCU、电池控制系统(Battery Management System,BMS)等控制器实现监测。
本申请实施例的技术方案,通过监测电池包的绝缘状态监测包括整车所有的高压连接点的监测、电池包与整车高压连接处的互锁状态以及监测高压继电器线圈的状态及高压继电器触点的状态,对高压系统的状态进行检测,能够及时发现高压系统的异常状态,提高了车辆在更换电池过程中的安全性。
在一实施例中,安全监测模块30还设置为实时检测电池包落锁信号,当电池包落锁信号为未锁止或无效时,整车禁止启动;安全监测模块30还设置为实时检测换电提示信号,换电提示信号用于用户在进入换电模式前且未进行换电模式操作时,通过显示单元12提示用户进入换电模式,防止电池包带电更换;安全监测模块30还设置为在整车更换电池包后,整车高压上电前电池包绝缘监测、高压继电器状态监测、电池包故障监测,并将故障状态正常或者异常的信号发送给所述整车控制模块20,整车控制模块20设置为根据故障状态决定是否高压上电。
其中,落锁信号可以通过传感器检测电池包与车体间的锁来完成,电池包落锁信号及换电提示信号可以由VCU进行检测或整车控制系统中的其他控制器进行检测。通过检测落锁信号的有效性以确认电池包与车体的连接是否牢固,当落锁信号有效时,整车才可以启动。因此能够避免行车过程中电池包脱落造成不必要的损失。判断故障状态以决定是否高压上电的过程可以是,在无故障状态时,允许整车高压上电;在故障状态为异常状态时,禁止整车高压上电。
本装置还具有故障处理机制,当整车在高速行驶且电池包落锁信号为未锁止或无效时,整车限功率行驶,并通过人机交互模块提示用户靠边停车并维修;当整车低速行驶且电池包落锁信号未未锁止或无效时,可以根据需求定义车速,整车自动熄火,并通过人机交互模块提示用户维修。换电提示信号有效,当整车高速行驶时,通过人机交互模块提示用户靠边停车并维修;当整车低速行驶,可以根据需求定义车速,整车自动熄火,并通过人机模块交互提示用户维修。
在一实施例中,电池控制模块40收到换电模式有效信号时,进入换电模式, 存储基本信息及故障信息;若接收到电池包落锁信号为未锁止或无效时,未收到高压继电器断开指令,则进入紧急下电模式;电池控制模块40还设置为在整车换电完成且低压上电后,自动监测电池包绝缘情况、高压继电器状态及电池包故障,并反馈给整车控制模块20。通过上述控制策略保护了高压连接器,延长了高压连接器寿命。
在一实施例中,换电控制模块50还设置为收到换电模式有效信号时,通知换电站做好换电准备,整车控制模块20控制整车熄火后,将高压下电信号发给换电控制模块50,换电控制模块50通知换电站启动换电;当整车进入换电模式后,若第一预设时间内仍没有执行整车高压系统断电,整车控制模块20检测出用电设备,通过换电控制模块反馈给换电站,提示用户关闭高压用电设备;若换电控制模块与换电站通讯失败时,则整车进入换电模式后,在第二时间内整车高压系统未断电,则整车控制模块20自动关闭高压用电设备,强制整车进行高压下电;换电完成后,换电站与换电控制模块交互,将换电完成信号发送给整车控制模块20,整车控制模块20通过人机交互模块10提示用户;换电控制模块50还设置为与电池控制模块40交互,将电池包的状态信息发送给换电站,用于费用计算及售后质保;换电控制模块50还设置为在换电完成后,将换电站信息发送给整车控制模块20,整车控制模块20在安全监测模块30通过安全检测及换电站提示换电完成后控制整车退出换电模式。
其中,换电控制模块50与换电站交互,电池控制模块40进入换电模式,通知换电站做好换电准备,整车控制系统控制整车熄火后,将高压下电信号发给换电控制模块50,换电控制模块50通知换电站启动换电。当整车进入换电模式后,规定时间内仍没有高压系统断电,整车控制系统检测出用电设备,通过换电控制模块反馈给换电站,提示用户关闭高压用电设备。若换电控制模块50与换电站通讯失败时,则整车进入换电模式后,在规定时间内高压系统未断电,则整车控制系统自动关闭高压用电设备,强制整车进行高压下电;换电完成后,换电站与换电控制模块50交互,将换电完成信号发送给整车控制系统,整车控制系统通过人机交互模块10提示用户。换电站识别与换电控制模块50通讯失效后提示用户或换电站进行维修。换电站与换电控制模块通讯是否失效也可由换电控制模块进行检测。换电控制模块50可以是单独的换电控制器,也可以是整车T-box(即,无线网关)控制器,或其他通过网络信号与后台进行信息交互的控制单元,具体实施时可以根据实际情况选择。
在一实施例中,紧急下电模式为电池控制模块直接控制高压继电器断开,防止电池包高压连接器带电插拔。避免了操作过程中操作人员触电等安全隐患。
在一实施例中,在换电模式下,不响应用户发起的高压启动信号。
其中,在换电未完成时用户发起高压启动信号,很可能是用户误触发导致的,并且在换电过程中启动高压系统,对换电安全存在威胁,因此不响应高压启动信号,能够避免在换电过程中启动高压系统带来不必要的损失。整车换电过程中,若用户误操作,导致触发高压启动的条件有效,此时整车进入换电模式不响应任何高压启动触发条件。防止具有IG-ON(即,汽车点火挡)整车高压启动的车辆在换电过程中启动高压系统,整车退出换电模式并且进入故障模式。其中故障模式包括:整车无法高压启动的报警、高压系统每个控制器退出换电模式后检测电池管理系统节点丢失的故障、电池包低压接插件带电插拔及换电完成后,电池管理系统没有及时检测电池包状态就进入高压启动流程。
在一实施例中,换电完成后,整车控制模块20还设置为再次检测到换电模式开关信号有效时,则控制整车退出换电模式。退出换电模式的方式可以是换电站发出提示,用户操作换电模式开关,也可以是整车控制模块主动检测等方式,本申请实施例对此不作限定。
其中整车控制模块可以通过获得安全检测结果及获得换电站提示信息主动控制退出换电模式,也可以提示用户操作退出换电模式。
由于再次检测到换电模式开关信号有效时,可以退出换电模式。因此用户能够根据实际情况手动退出换电模式,提高了用户的使用灵活性。在另一些实施例中,安全监测模块还包括碰撞后高压系统处理功能,当检测到车辆发生碰撞时,检测上述实施例中的一项或以上状态,并通过人机交互模块提示用户。
通过碰撞后高压系统处理功能,能够在车辆发生碰撞时,使用户及时了解车辆状态,根据车辆状态做出对应的处理。处理的方式可以是,整车检测到碰撞信号有效时,电池控制模块进入紧急下电模式。
图3为本申请实施例提供的一种电动汽车换电控制系统的控制方法的流程示意图,参见图3,本控制方法采用上述任一实施例提供的电动汽车换电控制系统执行,其中包括:
S110中,整车控制器检测换电模式开关是否有效。
S120中,安全监测模块监测换电控制系统和整车高压系统的安全性。
S130中,进行故障处理并存储。
S140中,整车控制模块判断满足整车高压下电条件时则控制整车高压下电,输出换电模式有效信号,并控制整车进入换电模式。
S150中,整车控制模块控制整车高压下电,或电池控制模块控制整车紧急下电,并存储故障信息。
其中,换电模式开关被触发时为有效,换电模式开关可以是实体开关,也可以是位于屏幕上的虚拟开关,可以是仅用于控制换电模式的开关,也可以是用于控制整车启动或关闭的开关,具体实施时可以根据实际情况选择,本申请实施例对此不作限定。若换电模式开关无效,则整车不进入换电模式,并返回S110。
若换电模式开关有效,进入S120;根据安全检测结果,进行不同的处理,例如存在导致整车高压下电的故障时,进入S130;存在严重故障时,进入S150;当安全监测模块检测正常时,进入S140;其中,若S130故障发生后,进入S140。
S160中,整车控制模块与换电站进行信息交互,以在换电模式下完成电池包更换。
在另一些实施例中,还包括故障处理方法,电池包落锁信号为未锁止或无效且整车在高速行驶时,整车限功率行驶,并通过人机交互提示用户靠边停车并维修;电池包落锁信号为未锁止或无效且整车在低速行驶时,整车自动熄火,并通过人机交互提示用户维修。其中高速和低速的具体值可以根据实际需要确定。
在另一些实施例中,电动汽车换电控制系统的控制方法还可以是,当换电信号有效时,每一控制器不对电池控制模块进行检测;控制车辆挡位至空挡;并控制高压系统和低压系统下电;而后控制车辆与换电站进行交互;交互完成后进行电池包更换;然后控制换电池包后的车辆与换电站交互;车辆进行上电安全检测,确认安全检测正常后,退出换电模式。
在一实施例中,提供了另一种电动汽车换电控制系统的控制方法。图4为本申请一实施例提供的另一种电动汽车换电控制系统的控制方法的流程示意图,参见图4。当接收到换电提示,或接收到换电开关的激活换电模式信息时,整车控制器判断满足条件则控制整车进入换电模式;在一实施例中,若换电开关未触发,而整车检测到换电传感器的信号有效时,此时整车控制器判断车速,若此时车速高,则判定为故障状态,提示用户停车并检修,若此时车速低或处于静止状态,则整车控制器判断满足条件则控制整车进入换电模式;在一实施例 中,若电池包落锁信号为未锁止或无效时,此时整车控制器判断车速,若此时车速高,则判定为故障状态,提示用户停车并检修,若此时车速低或处于静止状态,则整车控制器判断满足高压系统下电条件则控制整车高压系统下电。进入换电模式时,使每一控制器屏蔽BMS节点丢失,挡位自动回N挡,EPB不自动加紧,整车低压下电,并与换电站交互信息,更换电池包后与换电站再次交互信息,进行安全检测并退出换电模式。

Claims (10)

  1. 一种电动汽车换电控制系统,包括人机交互模块、整车控制模块、安全监测模块、电池控制模块和换电控制模块;
    其中,所述人机交互模块包括换电模式开关,所述换电模式开关设置为切换电动汽车的换电模式;
    所述整车控制模块与所述人机交互模块连接,所述整车控制模块包括整车控制器,所述整车控制器设置为在检测到所述换电模式开关有效时,输出换电模式有效信号,并控制整车进入换电模式;
    所述安全监测模块与所述整车控制模块连接,所述安全监测模块设置为监测换电控制系统和整车高压系统的安全性;
    所述电池控制模块与所述安全监测模块连接,根据所述安全监测模块检测的安全检测异常等级,所述整车控制模块控制整车高压下电,或所述电池控制模块控制整车紧急下电,并存储故障信息;
    所述换电控制模块与所述整车控制模块连接,所述换电控制模块设置为使整车控制模块与换电站进行信息交互,以在所述换电模式下完成电池包更换。
  2. 根据权利要求1所述的电动汽车换电控制系统,其中,所述人机交互模块还包括显示单元,所述显示单元设置为显示换电提示信号以及故障提示信息;
    所述整车控制模块还包括高压总成控制器,所述整车控制器设置为在检测到所述换电模式有效信号时控制所述整车高压系统下电,所述高压总成控制器设置为收到所述高压系统下电指令后停止工作,并停止检测电池管理系统的节点;
    所述安全监测模块设置为在所述整车高压系统下电前进行实时的高压系统绝缘监测、高压互锁监测、碰撞后高压系统处理、高压继电器状态监测,还设置为当检测到所述整车高压系统故障时,将故障信息传输到所述显示单元并进行故障处理。
  3. 根据权利要求2所述的电动汽车换电控制系统,其中,所述高压系统绝缘监测包括根据整车状态监测的部位不同,整车高压下电前监测整车高压系统中电池包的绝缘状态;及当整车完成高压下电,低压下电前监测电池包的绝缘状态;
    所述高压互锁监测包括整车所有的高压连接点的监测、电池包与整车高压连接处的互锁,当监测到高压互锁断开,则整车启动紧急下电模式;
    所述高压继电器状态监测包括监测高压继电器线圈的状态及高压继电器触 点的状态,若检测到与高压继电器的驱动指令不一致,则判定高压继电器故障,并将高压继电器故障存储并输出到所述显示单元以及所述换电站。
  4. 根据权利要求2所述的电动汽车换电控制系统,其中,所述安全监测模块还设置为实时检测电池包落锁信号,当所述电池包落锁信号为未锁止或无效时,整车禁止启动;
    所述安全监测模块还设置为实时检测所述换电提示信号,所述换电提示信号设置为当用户在进入换电模式前且未进行换电模式操作时,通过所述显示单元提示用户进入换电模式,防止电池包带电更换;
    所述安全监测模块还设置为整车更换电池包后,整车高压上电前电池包绝缘监测、高压继电器状态监测、电池包故障监测,并将故障状态正常或者异常的信号发送给所述整车控制模块,所述整车控制模块设置为根据故障状态决定是否高压上电。
  5. 根据权利要求1所述的电动汽车换电控制系统,其中,所述电池控制模块设置为当收到所述换电模式有效信号时,进入换电模式,存储基本信息及故障信息;若接收到所述电池包落锁信号为未锁止或无效时,未收到高压继电器断开指令,则进入紧急下电模式;
    所述电池控制模块还设置为在整车换电完成且低压上电后,自动监测电池包绝缘情况、高压继电器状态及电池包故障,并反馈给所述整车控制模块。
  6. 根据权利要求5所述的电动汽车换电控制系统,其中,所述换电控制模块还设置为在收到所述换电模式有效信号时,通知所述换电站做好换电准备,所述整车控制模块还设置为当控制整车熄火后,将高压下电信号发给所述换电控制模块,所述换电控制模块通知所述换电站启动换电;
    当整车进入换电模式后,若第一预设时间内仍没有执行整车高压系统断电,所述整车控制模块检测出用电设备,通过所述换电控制模块反馈给换电站,提示用户关闭高压用电设备;
    若所述换电控制模块与所述换电站通讯失败时,则整车进入换电模式后,在第二时间内整车高压系统未断电,则所述整车控制模块自动关闭高压用电设备,强制整车进行高压下电;
    换电完成后,换电站与所述换电控制模块交互,将换电完成信号发送给所述整车控制模块,整车控制模块通过所述人机交互模块提示用户;
    所述换电控制模块还与所述电池控制模块交互,并设置为将电池包的状态 信息发送给换电站用于费用计算及售后质保;
    所述换电控制模块还设置为在换电完成后,将换电站信息发送给所述整车控制模块,所述整车控制模块在所述安全监测模块通过安全检测及换电站提示换电完成后控制整车退出换电模式。
  7. 根据权利要求3或5所述的电动汽车换电控制系统,其中,所述紧急下电模式为所述电池控制模块直接控制高压继电器断开,防止电池包高压连接器带电插拔。
  8. 根据权利要求1所述的电动汽车换电控制系统,其中,在所述换电模式下,不响应用户发起的高压启动信号。
  9. 根据权利要求1所述的电动汽车换电控制系统,其中,换电完成后,所述整车控制模块还设置为再次检测到所述换电模式开关信号有效时,则控制整车退出换电模式。
  10. 一种电动汽车换电控制方法,采用权利要求1-9任一所述的电动汽车换电控制系统执行,包括:
    整车控制器检测换电模式开关是否有效;
    若所述整车控制器检测换电模式开关有效,安全监测模块监测换电控制系统和整车高压系统的安全性;
    在所述安全监测模块检测正常的情况下,整车控制模块判断满足整车高压下电条件时,则控制整车高压下电,输出换电模式有效信号,并控制整车进入换电模式,在所述安全监测模块检测到电池控制模块异常的情况下,使电池包紧急下电,并存储故障信息;及
    在控制整车高压下电的情况下,整车控制模块与换电站进行信息交互,以在所述换电模式下完成电池包更换。
PCT/CN2022/075357 2021-02-07 2022-02-07 电动汽车换电控制系统及控制方法 WO2022166950A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110179727.0A CN112918257A (zh) 2021-02-07 2021-02-07 一种电动汽车换电控制系统及控制方法
CN202110179727.0 2021-02-07

Publications (1)

Publication Number Publication Date
WO2022166950A1 true WO2022166950A1 (zh) 2022-08-11

Family

ID=76171411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075357 WO2022166950A1 (zh) 2021-02-07 2022-02-07 电动汽车换电控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN112918257A (zh)
WO (1) WO2022166950A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116080405A (zh) * 2023-03-24 2023-05-09 成都赛力斯科技有限公司 车辆上下电系统、实现方法和计算机设备
CN116362626A (zh) * 2023-05-29 2023-06-30 宁波小遛共享信息科技有限公司 共享车辆的换电有效性的评估方法和服务器
WO2024066371A1 (zh) * 2022-09-26 2024-04-04 中国第一汽车股份有限公司 一种换电型新能源汽车动力电池数据存储方法、装置
CN118219910A (zh) * 2024-05-22 2024-06-21 浙江祥晋汽车零部件股份有限公司 一种换电站及换电站换电方法
CN118560285A (zh) * 2024-08-02 2024-08-30 宁德时代新能源科技股份有限公司 一种车辆的上电方法及系统、产品
WO2024198709A1 (zh) * 2023-03-30 2024-10-03 湖南行必达网联科技有限公司 一种换电锁紧机构的自动控制方法及车辆

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918257A (zh) * 2021-02-07 2021-06-08 中国第一汽车股份有限公司 一种电动汽车换电控制系统及控制方法
CN113650523A (zh) * 2021-08-10 2021-11-16 东风柳州汽车有限公司 换电控制方法、装置、设备及存储介质
CN113733970B (zh) * 2021-09-14 2023-04-18 合众新能源汽车股份有限公司 一种车辆更换电池包的控制方法和系统
WO2023050959A1 (zh) * 2021-09-30 2023-04-06 比亚迪股份有限公司 车辆换电控制方法、系统及车辆
CN114103723B (zh) * 2021-12-29 2022-08-02 徐工集团工程机械股份有限公司科技分公司 电动装载机换电设备锁止控制系统
CN114212066A (zh) * 2021-12-30 2022-03-22 重庆长安新能源汽车科技有限公司 适用于电动汽车换电的电子驻车控制系统及方法
CN114475531A (zh) * 2022-01-25 2022-05-13 三一重机有限公司 换电解锁方法和装置、换电锁止方法和装置及作业机械
CN114906008A (zh) * 2022-05-23 2022-08-16 中国第一汽车股份有限公司 车辆换电控制方法、装置、存储介质及电子装置
CN115139850B (zh) * 2022-07-29 2024-06-14 中国第一汽车股份有限公司 车辆换电方法、装置、电子设备及存储介质
CN116080457B (zh) * 2023-03-06 2023-09-12 蔚来汽车科技(安徽)有限公司 启停控制设备、启停控制方法、换电站和储存介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042517A1 (en) * 2008-10-07 2010-04-15 Boston-Power, Inc. Li-ion battery array for vehicle and other large capacity applications
JP2012060865A (ja) * 2010-09-13 2012-03-22 Tokai Rika Co Ltd 車両用通信システム
US20150352967A1 (en) * 2014-06-09 2015-12-10 GM Global Technology Operations LLC Method and aparatus for controller wakeup
CN105150869A (zh) * 2015-08-26 2015-12-16 北京新能源汽车股份有限公司 电动汽车的电池更换控制系统及方法
CN111791746A (zh) * 2020-06-30 2020-10-20 中国第一汽车股份有限公司 车辆的柔性换电系统、换电方法、电子设备及存储介质
CN112918257A (zh) * 2021-02-07 2021-06-08 中国第一汽车股份有限公司 一种电动汽车换电控制系统及控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101570181A (zh) * 2009-06-03 2009-11-04 奇瑞汽车股份有限公司 混合动力汽车电池故障管理系统及其管理方法
EP2679456B1 (en) * 2012-06-27 2019-03-06 Kookmin University Industry Academy Cooperation Foundation Battery exchanging-type charging station system for electric vehicle
CN107662499B (zh) * 2016-07-28 2020-06-09 长城汽车股份有限公司 纯电动汽车整车故障下电控制方法及系统
JP7092032B2 (ja) * 2016-09-30 2022-06-28 日本電気株式会社 充電システム、充電コントローラ、充電器、情報装置、充電方法および記録媒体
CN109552106A (zh) * 2017-12-15 2019-04-02 蔚来汽车有限公司 用于车辆电池换电的电力控制方法与系统
CN114714963A (zh) * 2018-12-27 2022-07-08 奥动新能源汽车科技有限公司 车辆换电控制系统、电池箱系统及数据交互方法
CN210323298U (zh) * 2019-03-06 2020-04-14 浙江吉智新能源汽车科技有限公司 一种汽车换电检测系统及汽车
US20210031645A1 (en) * 2019-07-30 2021-02-04 Goodwyn George Reeves Vehicle Battery Pack and Battery Exchange System
CN111703330B (zh) * 2020-06-12 2022-04-19 北京新能源汽车股份有限公司 一种换电控制系统、电动汽车及换电控制方法
CN112009251B (zh) * 2020-06-24 2021-09-14 南京奥联新能源有限公司 电动车换电系统诊断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042517A1 (en) * 2008-10-07 2010-04-15 Boston-Power, Inc. Li-ion battery array for vehicle and other large capacity applications
JP2012060865A (ja) * 2010-09-13 2012-03-22 Tokai Rika Co Ltd 車両用通信システム
US20150352967A1 (en) * 2014-06-09 2015-12-10 GM Global Technology Operations LLC Method and aparatus for controller wakeup
CN105150869A (zh) * 2015-08-26 2015-12-16 北京新能源汽车股份有限公司 电动汽车的电池更换控制系统及方法
CN111791746A (zh) * 2020-06-30 2020-10-20 中国第一汽车股份有限公司 车辆的柔性换电系统、换电方法、电子设备及存储介质
CN112918257A (zh) * 2021-02-07 2021-06-08 中国第一汽车股份有限公司 一种电动汽车换电控制系统及控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066371A1 (zh) * 2022-09-26 2024-04-04 中国第一汽车股份有限公司 一种换电型新能源汽车动力电池数据存储方法、装置
CN116080405A (zh) * 2023-03-24 2023-05-09 成都赛力斯科技有限公司 车辆上下电系统、实现方法和计算机设备
CN116080405B (zh) * 2023-03-24 2023-06-27 成都赛力斯科技有限公司 车辆上下电系统、实现方法和计算机设备
WO2024198709A1 (zh) * 2023-03-30 2024-10-03 湖南行必达网联科技有限公司 一种换电锁紧机构的自动控制方法及车辆
CN116362626A (zh) * 2023-05-29 2023-06-30 宁波小遛共享信息科技有限公司 共享车辆的换电有效性的评估方法和服务器
CN116362626B (zh) * 2023-05-29 2023-11-07 浙江小遛信息科技有限公司 共享车辆的换电有效性的评估方法和服务器
CN118219910A (zh) * 2024-05-22 2024-06-21 浙江祥晋汽车零部件股份有限公司 一种换电站及换电站换电方法
CN118560285A (zh) * 2024-08-02 2024-08-30 宁德时代新能源科技股份有限公司 一种车辆的上电方法及系统、产品

Also Published As

Publication number Publication date
CN112918257A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2022166950A1 (zh) 电动汽车换电控制系统及控制方法
CN210852338U (zh) 一种蓄电池防亏电控制系统及车辆
CN108407618B (zh) 基于行驶意图的智能高压断电控制装置及控制方法
CN105391103B (zh) 用于高电压电池充电的非车载充电器
CN110641284B (zh) 一种电动汽车动力电池安全监控的低压电源管理系统
US10608447B2 (en) System and method for avoiding depleted battery in a parked vehicle
CN113183898B (zh) 防止暗电流过大造成亏电的装置、方法及车辆
CN108819937A (zh) 新能源汽车跛行模式控制方法及系统
CN113767507A (zh) 充放电装置、充放电控制方法及计算机程序
CN110112826B (zh) 发电车接入装置及应急配电的监测系统
CN112389354B (zh) 一种防止车辆馈电的电源管理系统及方法
CN105313719A (zh) 一种整车控制器及其唤醒过程监控方法
CN114132178A (zh) 一种电动车下电方法、装置、设备及计算机可读存储介质
CN113085654A (zh) 一种电动汽车低压电池防亏电自动控制方法及系统
KR101919208B1 (ko) 통신 채널에 연결된 장치를 모니터링하는 방법
CN114148217A (zh) 基于大数据的静态电源管理系统
CN114248626B (zh) 车辆高压放电控制方法、装置及车辆
CN211000942U (zh) 一种电动汽车动力电池安全监控的低压电源管理系统
CN111917146B (zh) 一种车载低压蓄电池远程充电方法及系统
CN110843564A (zh) 一种电动车智能充换电系统
CN109204341B (zh) 一种主从控制系统、方法及蓄电池工程车制动机重联系统
CN105774590A (zh) 电池管理系统和电动车
WO2022120811A1 (zh) 一种车辆紧急制动控制电路及车辆
CN115991097A (zh) 一种车辆的监控配电方法、设备及存储介质
CN108859861A (zh) 一种电动车辆的控制系统、控制方法及电动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749229

Country of ref document: EP

Kind code of ref document: A1