WO2022166044A1 - 一种金属氧化物透明导电薄膜及其应用 - Google Patents
一种金属氧化物透明导电薄膜及其应用 Download PDFInfo
- Publication number
- WO2022166044A1 WO2022166044A1 PCT/CN2021/096785 CN2021096785W WO2022166044A1 WO 2022166044 A1 WO2022166044 A1 WO 2022166044A1 CN 2021096785 W CN2021096785 W CN 2021096785W WO 2022166044 A1 WO2022166044 A1 WO 2022166044A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent conductive
- metal oxide
- conductive film
- oxide
- rare earth
- Prior art date
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 59
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 59
- 239000010409 thin film Substances 0.000 title abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 21
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 17
- 229910052738 indium Inorganic materials 0.000 claims abstract description 11
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000004020 conductor Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 11
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 claims description 11
- 229910003454 ytterbium oxide Inorganic materials 0.000 claims description 11
- 229940075624 ytterbium oxide Drugs 0.000 claims description 9
- 229910003451 terbium oxide Inorganic materials 0.000 claims description 8
- SCRZPWWVSXWCMC-UHFFFAOYSA-N terbium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tb+3].[Tb+3] SCRZPWWVSXWCMC-UHFFFAOYSA-N 0.000 claims description 8
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 7
- 229910001940 europium oxide Inorganic materials 0.000 claims description 7
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 claims description 7
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 7
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 claims description 6
- 229910003447 praseodymium oxide Inorganic materials 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- 238000000231 atomic layer deposition Methods 0.000 claims description 3
- 238000005137 deposition process Methods 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 238000005240 physical vapour deposition Methods 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 abstract description 20
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 abstract description 17
- 239000001301 oxygen Substances 0.000 abstract description 17
- -1 rare earth ions Chemical class 0.000 abstract description 17
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 11
- 150000002500 ions Chemical class 0.000 abstract description 7
- 229910001449 indium ion Inorganic materials 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 61
- 229910003437 indium oxide Inorganic materials 0.000 description 13
- 239000013077 target material Substances 0.000 description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- BDVZHDCXCXJPSO-UHFFFAOYSA-N indium(3+) oxygen(2-) titanium(4+) Chemical compound [O-2].[Ti+4].[In+3] BDVZHDCXCXJPSO-UHFFFAOYSA-N 0.000 description 3
- HJZPJSFRSAHQNT-UHFFFAOYSA-N indium(3+) oxygen(2-) zirconium(4+) Chemical compound [O-2].[Zr+4].[In+3] HJZPJSFRSAHQNT-UHFFFAOYSA-N 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000000411 transmission spectrum Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- TYHJXGDMRRJCRY-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) tin(4+) Chemical compound [O-2].[Zn+2].[Sn+4].[In+3] TYHJXGDMRRJCRY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
Definitions
- the invention relates to the technical field of coating technology, in particular to the manufacture of metal oxide transparent conductive films (TCO) in flat panel displays and solar cells, in particular to a metal oxide transparent conductive film and applications thereof.
- TCO metal oxide transparent conductive films
- the indium ion (In 3+ ) has a relatively large ionic radius, which makes the In-In bond orbital overlap larger. , making its 5s orbital an efficient carrier transport channel.
- one of the objectives of the present invention is to provide a metal oxide transparent conductive film, which uses rare earth ions in rare earth oxides with lower electronegativity and forms ionic bonds with oxygen ions.
- Ln - O has a higher bond breaking energy, so it can effectively control the oxygen vacancy concentration in the In2O3 film.
- rare earth metal ions and indium ions have comparable ionic radii, and it is easier to maintain the crystal structure of indium oxide during doping, ensuring that the 5s orbital of indium is fully overlapped, which can reduce the defect scattering caused by structural mismatch. It can maintain its good high mobility characteristics.
- the second purpose of the present invention is to provide the application of the metal oxide transparent conductive film.
- the rare earth oxide ReO is one or a combination of any two or more materials selected from ytterbium oxide, europium oxide, cerium oxide, praseodymium oxide, and terbium oxide.
- M is Sn (tin), Bi (bismuth), Ti (titanium), Zr (zirconium), Hf (hafnium), Ta (tantalum), W (tungsten), Nb (niobium), Mo ( Molybdenum) one or any combination of two or more materials.
- the metal oxide transparent conductive film provided by the present invention is a composite conductive film based on indium oxide, and a higher mobility is obtained by introducing rare earth oxide, and its carrier concentration is controlled. Because rare earth ions in rare earth oxides have lower electronegativity, and the ionic bond Ln-O formed with oxygen ions has higher bond breaking energy. Therefore, the oxygen vacancy concentration in the In 2 O 3 film can be effectively controlled.
- the optional material of the rare earth oxide ReO is one or a combination of any two or more materials selected from ytterbium oxide, europium oxide, cerium oxide, praseodymium oxide, and terbium oxide, as a carrier concentration control agent.
- ytterbium oxide europium oxide
- cerium oxide cerium oxide
- praseodymium oxide praseodymium oxide
- terbium oxide a carrier concentration control agent.
- Yb 2+ ions and Eu 2+ ions in ytterbium oxide and europium oxide have fully and half filled 4f electron orbitals, respectively. Therefore, its divalent ions have lower energy in oxides than trivalent ions.
- the bond breaking enthalpy changes ( ⁇ Hf298) of Yb-O and Eu-O are 715.1 kJ/mol and 557.0 kJ/mol, respectively, which are much larger than the bond breaking energies of In-O, which can effectively control the oxygen vacancy concentration.
- the oxygen ions in cerium oxide, praseodymium oxide and terbium oxide may have valences of +3 and +4.
- the carrier concentration can be significantly reduced .
- the bond breaking energies of Ce-O, Pr-O and Tb-O bonds are higher than 759kJ/mol. Therefore, cerium oxide, praseodymium oxide and terbium oxide have stronger ability to control the carrier concentration.
- the introduction of ReO can effectively control the oxygen vacancies of oxide semiconductor thin films under high In system.
- indium oxide is prone to lattice distortion during the preparation process, and the doping of rare earth oxides can be effectively suppressed; moreover, rare earth metal ions and indium ions have comparable ionic radii, and it is easier to maintain the indium oxide during doping.
- the crystal structure ensures that the 5s orbital of indium is fully overlapped, which can reduce the defect scattering caused by structural mismatch, so it can also maintain its better high mobility characteristics.
- the introduction of ReO rare earth oxides can act as photogenerated charge conversion centers.
- the material selection is based on the electronic structure characteristics of the 4f orbital in the rare earth ion, which can form an efficient charge conversion center with the 5s orbital of the indium ion.
- the rare earth ions are in a stable low-energy state. Due to the modulation of the Fermi level, the film has a high carrier concentration, which can effectively shield the carrier scattering effect caused by the conversion center.
- the electrical properties of the device were not significantly affected.
- Under negative bias the electron orbital of rare earth element 4f and the 5s orbital of indium are coupled, and the rare earth ion is in an unstable activation state.
- the photogenerated charge carriers are brought back to the "ground state" in the form of non-radiative transitions through their coupled orbitals; at the same time the activation center is reactivated. Therefore, the conversion center can provide a fast recombination channel for photogenerated carriers, avoiding its influence on the film stability.
- the metal oxide transparent conductive film has a bixbyite crystal structure.
- the carrier mobility of the metal oxide transparent conductive film is 50 ⁇ 200 cm 2 /Vs, and the carrier concentration is 1 ⁇ 10 19 ⁇ 5 ⁇ 10 21 cm ⁇ 3 .
- the carrier mobility of the metal oxide transparent conductive film is 120 ⁇ 200 cm 2 /Vs, and the carrier concentration is 1 ⁇ 10 19 ⁇ 6 ⁇ 10 20 cm ⁇ 3 .
- the metal oxide transparent conductive film is prepared by adopting any one of a physical vapor deposition process, a chemical vapor deposition process, an atomic layer deposition process, a laser deposition process, a reactive plasma deposition process, and a solution method. film.
- the second purpose of the present invention adopts the following technical scheme to realize:
- rare earth ions and indium ions have comparable ionic radii, which can reduce the scattering of defects caused by structural mismatches, so they can maintain their better high mobility characteristics.
- the present invention forms a high-performance transparent conductive film by introducing doped rare earth oxide into the indium-containing metal oxide. Since the rare earth oxide has extremely high oxygen bond breaking energy, the current carrying in the oxide semiconductor can be effectively controlled. Sub-concentration, improve the transmittance of infrared band, making it more suitable for application in solar cells, display panels or detectors.
- Fig. 1 is the transmittance spectrum of TCO1 of transparent conductive film in Example 6;
- FIG. 2 is the transmittance spectrum of TCO2 of the transparent conductive film in Example 6.
- Example 1 Ceria Doped Indium Tin Oxide Transparent Conductive Film
- a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: doping cerium oxide in indium tin oxide (ITO) as a charge conversion center to form cerium oxide doped indium tin zinc oxide (Ce:ITO) ) of transparent conductive materials.
- the group of metal oxide transparent conductive films is prepared by a solution method.
- MO is SnO 2
- ReO oxide is CeO 2
- the carrier mobility of the metal oxide transparent conductive film is 123 cm 2 /Vs, and the carrier concentration is 9.1 ⁇ 10 19 cm -3 .
- Example 2 Ytterbium oxide doped indium titanium oxide transparent conductive film
- a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: indium titanium oxide (ITiO) is doped with ytterbium oxide as a charge conversion center to form ytterbium oxide doped indium titanium oxide (Yb: ITiO) of transparent conductive materials.
- the group of metal oxide transparent conductive films is prepared by a magnetron sputtering method.
- MO is TiO 2
- ReO oxide is Yb 2 O 3
- the carrier mobility of the metal oxide transparent conductive film is 186 cm 2 /Vs, and the carrier concentration is 3.6 ⁇ 10 20 cm -3 .
- Example 3 Europium oxide doped indium zirconium oxide transparent conductive film
- a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: doping europium oxide in indium zirconium oxide (IZrO) as a charge conversion center to form europium oxide doped indium zirconium oxide (Eu:IZrO) of transparent conductive materials.
- the group of metal oxide transparent conductive films are prepared by atomic layer deposition method.
- MO is ZrO 2
- the ReO oxide is Eu 2 O 3
- the carrier mobility of the metal oxide transparent conductive film is 135 cm 2 /Vs, and the carrier concentration is 8.8 ⁇ 10 19 cm -3 .
- Example 4 Praseodymium oxide doped indium oxide transparent conductive film
- a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: doping ytterbium oxide in indium oxide (In 2 O 3 ) as a charge conversion center to form ytterbium oxide doped indium oxide (IPrO) Transparent conductive material.
- the metal oxide transparent conductive films of the group are prepared by a reactive plasma deposition method.
- the carrier mobility of the metal oxide transparent conductive film is 173 cm 2 /Vs, and the carrier concentration is 5.6 ⁇ 10 20 cm -3 .
- Example 5 Terbium oxide doped indium oxide transparent conductive film
- a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: doping terbium oxide in indium oxide (In 2 O 3 ) as a charge conversion center to form terbium oxide doped indium oxide (ITbO) Transparent conductive material.
- the group of metal oxide transparent conductive films is prepared by a magnetron sputtering method.
- the ReO oxide is Tb 2 O 3 .
- the carrier mobility of the metal oxide transparent conductive film is 148 cm 2 /Vs, and the carrier concentration is 9.4 ⁇ 10 19 cm -3 .
- an n-type single crystal silicon wafer is used as the substrate, and then intrinsic a-Si and p-type a-Si with a thickness of 10 nm are sequentially deposited on the n-type silicon wafer after a cleaning process to form a p-n heterojunction, and then a p-n heterojunction is formed.
- a transparent conductive film TCO1 is re-deposited on the p-n heterojunction.
- Intrinsic a-Si thin film and n-type a-Si thin film with a thickness of 10 nm are sequentially deposited on the back of the silicon wafer, and then a transparent conductive film TCO2 is deposited on the n-type a-Si thin film.
- conductive silver pastes were prepared on TCO1 and TCO2 by screen printing technology as collectors, respectively.
- the TCO1 material is a ytterbium oxide doped indium oxide transparent conductive material, prepared by a reactive plasma deposition method .
- the target material is a cylindrical ceramic target material, and the relative density of the target material is about 65%;
- the substrate is not heated, and a dual-gun plasma source is used, that is, two targets are coated at the same time;
- the air pressure of the cavity is 0.3Pa;
- the applied voltage of the ion source is 70V, 175A;
- the TCO2 material is ytterbium oxide doped indium oxide transparent conductive material, which is prepared by magnetron sputtering deposition method .
- the target material is a bar-shaped ceramic target material, and the relative density of the target material is about 99%; a single target material is used for sputtering coating;
- the substrate is not heated
- the air pressure of the cavity is 0.3Pa;
- the sputtering power is 2kw
- the transparent conductive film TCO1 and the transparent conductive film TCO2 are not limited to the above-mentioned materials, and the material can also be formed of the transparent conductive films in the embodiments 1-5 described in the present invention, and will not be repeated here.
- a display panel comprising the transparent conductive film in the above-mentioned embodiments 1-5, the film is used for the anode of an organic light emitting diode (OLED) in the display panel.
- OLED organic light emitting diode
- a detector comprising the transparent conductive film in the above embodiments 1-5, the film is used to drive the detection unit of the detector.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Non-Insulated Conductors (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
材料 | 载流子浓度(cm -3) | 载流子迁移率(cm 2/Vs) |
TCO1 | 1.2×10 20 | 169 |
TCO2 | 1.5×10 20 | 142 |
Claims (10)
- 一种金属氧化物透明导电薄膜,其特征在于,该金属氧化物为:在含铟的金属氧化物MO-In 2O 3中掺入少量稀土氧化物ReO作为光生载流子转换中心,形成(In 2O 3) x(MO) y(ReO) z的透明导电材料,其中,x+y+z=1,0.8≤x<0.9999,0≤y<0.2,0.0001≤z≤0.1。
- 根据权利要求1所述的金属氧化物透明导电薄膜,其特征在于,所述MO中,M为Sn、Bi、Ti、Zr、Hf、Ta、W、Nb、Mo中的一种或任意两种以上材料组合。
- 根据权利要求1所述的金属氧化物透明导电薄膜,其特征在于,所述稀土氧化物ReO为氧化镱、氧化铕、氧化铈、氧化镨、氧化铽中的一种或任意两种以上材料组合。
- 根据权利要求1所述的金属氧化物透明导电薄膜,其特征在于,所述金属氧化物透明导电薄膜呈方铁锰矿晶型结构。
- 根据权利要求1所述的金属氧化物透明导电薄膜,其特征在于,0.0001≤z≤0.005。
- 根据权利要求5所述的金属氧化物透明导电薄膜,其特征在于,0.0009≤z≤0.001。
- 根据权利要求1-6中任一项所述的金属氧化物透明导电薄膜,其特征在于,所述金属氧化物透明导电薄膜的载流子迁移率为50~200cm 2/Vs,载流子浓度为1×10 19~5×10 21cm -3。
- 根据权利要求7所述的金属氧化物透明导电薄膜,其特征在于,所述金属氧化物透明导电薄膜的载流子迁移率为120~200cm 2/Vs,载流子浓度为1×10 19~6×10 20cm -3。
- 根据权利要求7所述的金属氧化物透明导电薄膜,其特征在于,所述金 属氧化物透明导电薄膜通过采用物理气相沉积工艺、化学气相沉积工艺、原子层沉积工艺、激光沉积工艺、反应等离子体沉积工艺、溶液法工艺中的任意一种工艺的方法制备成膜。
- 一种如权利要求1-9中任一项所述的金属氧化物透明导电薄膜在太阳电池、显示面板或探测器中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/229,669 US20230377767A1 (en) | 2021-02-03 | 2023-08-02 | Transparent conductive oxide thin film and application thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110152018.3A CN113066599A (zh) | 2021-02-03 | 2021-02-03 | 一种金属氧化物透明导电薄膜及其应用 |
CN202110152018.3 | 2021-02-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/229,669 Continuation US20230377767A1 (en) | 2021-02-03 | 2023-08-02 | Transparent conductive oxide thin film and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022166044A1 true WO2022166044A1 (zh) | 2022-08-11 |
Family
ID=76558639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/096785 WO2022166044A1 (zh) | 2021-02-03 | 2021-05-28 | 一种金属氧化物透明导电薄膜及其应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230377767A1 (zh) |
CN (1) | CN113066599A (zh) |
WO (1) | WO2022166044A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114038916A (zh) * | 2021-10-08 | 2022-02-11 | 华南理工大学 | 绝缘薄膜及其薄膜晶体管以及用途 |
CN114163216A (zh) * | 2021-12-15 | 2022-03-11 | 先导薄膜材料(广东)有限公司 | 一种氧化铟钛镱粉体及其制备方法与应用 |
CN116072326A (zh) * | 2023-02-07 | 2023-05-05 | 中山智隆新材料科技有限公司 | 一种氧化铟锡材料及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011040270A (ja) * | 2009-08-11 | 2011-02-24 | Tohoku Univ | 導電性酸化物及びその製造方法、並びにそれを用いた透明導電膜 |
CN107146816A (zh) * | 2017-04-10 | 2017-09-08 | 华南理工大学 | 一种氧化物半导体薄膜及由其制备的薄膜晶体管 |
CN110767745A (zh) * | 2019-09-18 | 2020-02-07 | 华南理工大学 | 复合金属氧化物半导体及薄膜晶体管与应用 |
CN112289863A (zh) * | 2020-09-25 | 2021-01-29 | 华南理工大学 | 一种金属氧化物半导体及薄膜晶体管与应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110797395A (zh) * | 2019-09-18 | 2020-02-14 | 华南理工大学 | 掺杂型金属氧化物半导体及薄膜晶体管与应用 |
CN111081812A (zh) * | 2019-11-18 | 2020-04-28 | 深圳第三代半导体研究院 | 一种透明导电氧化物薄膜的制备方法及应用 |
-
2021
- 2021-02-03 CN CN202110152018.3A patent/CN113066599A/zh active Pending
- 2021-05-28 WO PCT/CN2021/096785 patent/WO2022166044A1/zh active Application Filing
-
2023
- 2023-08-02 US US18/229,669 patent/US20230377767A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011040270A (ja) * | 2009-08-11 | 2011-02-24 | Tohoku Univ | 導電性酸化物及びその製造方法、並びにそれを用いた透明導電膜 |
CN107146816A (zh) * | 2017-04-10 | 2017-09-08 | 华南理工大学 | 一种氧化物半导体薄膜及由其制备的薄膜晶体管 |
CN110767745A (zh) * | 2019-09-18 | 2020-02-07 | 华南理工大学 | 复合金属氧化物半导体及薄膜晶体管与应用 |
CN112289863A (zh) * | 2020-09-25 | 2021-01-29 | 华南理工大学 | 一种金属氧化物半导体及薄膜晶体管与应用 |
Also Published As
Publication number | Publication date |
---|---|
US20230377767A1 (en) | 2023-11-23 |
CN113066599A (zh) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022166044A1 (zh) | 一种金属氧化物透明导电薄膜及其应用 | |
JP7424659B2 (ja) | 複合金属酸化物半導体および薄膜トランジスタとその応用 | |
WO2021052218A1 (zh) | 掺杂型金属氧化物半导体及薄膜晶体管与应用 | |
WO2022105174A1 (zh) | 一种金属氧化物半导体及薄膜晶体管与应用 | |
WO2022062454A1 (zh) | 一种金属氧化物半导体及薄膜晶体管与应用 | |
TWI589011B (zh) | 化合物太陽電池及其製造方法 | |
CN104752629A (zh) | 铌锌酸盐发光薄膜及其制备方法和应用 | |
TW201344926A (zh) | 化合物太陽電池之製法 | |
KR20130041631A (ko) | 태양전지 제조방법 | |
Samarasekara et al. | High photo-voltage zinc oxide thin films deposited by dc sputtering | |
CN105908127A (zh) | 一种p型掺杂二氧化锡透明导电膜及其制备方法 | |
US11545580B2 (en) | Metal oxide (MO semiconductor and thin-film transistor and application thereof | |
CN108470836A (zh) | 一种钙钛矿薄膜的制备方法及太阳能电池 | |
CN112467002A (zh) | 一种氧化物发光场效应晶体管 | |
JP2016157810A (ja) | ニオブドープ酸化チタンを用いた有機薄膜太陽電池 | |
US20230094925A1 (en) | Rare-Earth Doped Semiconductor Material, Thin-Film Transistor, and Application | |
CN104674173A (zh) | 导电薄膜、其制备方法及应用 | |
Sato et al. | High rate reactive sputter deposition of TiO2 films for photocatalyst and dye-sensitized solar cells | |
Otieno et al. | Structural and Optical Probe into Rare Earth Doped ZnO for Spectral Conversion in Solar Cells | |
CN116666470A (zh) | 一种三方晶系硒薄膜结晶方法及硒基太阳电池 | |
KR20150136721A (ko) | 고품질 cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법 | |
CN104449712A (zh) | 一种钪磷酸盐发光薄膜及其制备方法和应用 | |
CN104342137A (zh) | 铈掺杂三族钒硅酸盐发光薄膜、制备方法及其应用 | |
JP2004111876A (ja) | 光電変換素子 | |
CN103187472A (zh) | 具有高红外光吸收率的薄膜太阳能电池及其制程方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21924051 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21924051 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21924051 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/02/2024) |