WO2022166044A1 - 一种金属氧化物透明导电薄膜及其应用 - Google Patents

一种金属氧化物透明导电薄膜及其应用 Download PDF

Info

Publication number
WO2022166044A1
WO2022166044A1 PCT/CN2021/096785 CN2021096785W WO2022166044A1 WO 2022166044 A1 WO2022166044 A1 WO 2022166044A1 CN 2021096785 W CN2021096785 W CN 2021096785W WO 2022166044 A1 WO2022166044 A1 WO 2022166044A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
metal oxide
conductive film
oxide
rare earth
Prior art date
Application number
PCT/CN2021/096785
Other languages
English (en)
French (fr)
Inventor
徐苗
徐华
李民
庞佳威
陈子楷
陶洪
邹建华
王磊
彭俊彪
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022166044A1 publication Critical patent/WO2022166044A1/zh
Priority to US18/229,669 priority Critical patent/US20230377767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current

Definitions

  • the invention relates to the technical field of coating technology, in particular to the manufacture of metal oxide transparent conductive films (TCO) in flat panel displays and solar cells, in particular to a metal oxide transparent conductive film and applications thereof.
  • TCO metal oxide transparent conductive films
  • the indium ion (In 3+ ) has a relatively large ionic radius, which makes the In-In bond orbital overlap larger. , making its 5s orbital an efficient carrier transport channel.
  • one of the objectives of the present invention is to provide a metal oxide transparent conductive film, which uses rare earth ions in rare earth oxides with lower electronegativity and forms ionic bonds with oxygen ions.
  • Ln - O has a higher bond breaking energy, so it can effectively control the oxygen vacancy concentration in the In2O3 film.
  • rare earth metal ions and indium ions have comparable ionic radii, and it is easier to maintain the crystal structure of indium oxide during doping, ensuring that the 5s orbital of indium is fully overlapped, which can reduce the defect scattering caused by structural mismatch. It can maintain its good high mobility characteristics.
  • the second purpose of the present invention is to provide the application of the metal oxide transparent conductive film.
  • the rare earth oxide ReO is one or a combination of any two or more materials selected from ytterbium oxide, europium oxide, cerium oxide, praseodymium oxide, and terbium oxide.
  • M is Sn (tin), Bi (bismuth), Ti (titanium), Zr (zirconium), Hf (hafnium), Ta (tantalum), W (tungsten), Nb (niobium), Mo ( Molybdenum) one or any combination of two or more materials.
  • the metal oxide transparent conductive film provided by the present invention is a composite conductive film based on indium oxide, and a higher mobility is obtained by introducing rare earth oxide, and its carrier concentration is controlled. Because rare earth ions in rare earth oxides have lower electronegativity, and the ionic bond Ln-O formed with oxygen ions has higher bond breaking energy. Therefore, the oxygen vacancy concentration in the In 2 O 3 film can be effectively controlled.
  • the optional material of the rare earth oxide ReO is one or a combination of any two or more materials selected from ytterbium oxide, europium oxide, cerium oxide, praseodymium oxide, and terbium oxide, as a carrier concentration control agent.
  • ytterbium oxide europium oxide
  • cerium oxide cerium oxide
  • praseodymium oxide praseodymium oxide
  • terbium oxide a carrier concentration control agent.
  • Yb 2+ ions and Eu 2+ ions in ytterbium oxide and europium oxide have fully and half filled 4f electron orbitals, respectively. Therefore, its divalent ions have lower energy in oxides than trivalent ions.
  • the bond breaking enthalpy changes ( ⁇ Hf298) of Yb-O and Eu-O are 715.1 kJ/mol and 557.0 kJ/mol, respectively, which are much larger than the bond breaking energies of In-O, which can effectively control the oxygen vacancy concentration.
  • the oxygen ions in cerium oxide, praseodymium oxide and terbium oxide may have valences of +3 and +4.
  • the carrier concentration can be significantly reduced .
  • the bond breaking energies of Ce-O, Pr-O and Tb-O bonds are higher than 759kJ/mol. Therefore, cerium oxide, praseodymium oxide and terbium oxide have stronger ability to control the carrier concentration.
  • the introduction of ReO can effectively control the oxygen vacancies of oxide semiconductor thin films under high In system.
  • indium oxide is prone to lattice distortion during the preparation process, and the doping of rare earth oxides can be effectively suppressed; moreover, rare earth metal ions and indium ions have comparable ionic radii, and it is easier to maintain the indium oxide during doping.
  • the crystal structure ensures that the 5s orbital of indium is fully overlapped, which can reduce the defect scattering caused by structural mismatch, so it can also maintain its better high mobility characteristics.
  • the introduction of ReO rare earth oxides can act as photogenerated charge conversion centers.
  • the material selection is based on the electronic structure characteristics of the 4f orbital in the rare earth ion, which can form an efficient charge conversion center with the 5s orbital of the indium ion.
  • the rare earth ions are in a stable low-energy state. Due to the modulation of the Fermi level, the film has a high carrier concentration, which can effectively shield the carrier scattering effect caused by the conversion center.
  • the electrical properties of the device were not significantly affected.
  • Under negative bias the electron orbital of rare earth element 4f and the 5s orbital of indium are coupled, and the rare earth ion is in an unstable activation state.
  • the photogenerated charge carriers are brought back to the "ground state" in the form of non-radiative transitions through their coupled orbitals; at the same time the activation center is reactivated. Therefore, the conversion center can provide a fast recombination channel for photogenerated carriers, avoiding its influence on the film stability.
  • the metal oxide transparent conductive film has a bixbyite crystal structure.
  • the carrier mobility of the metal oxide transparent conductive film is 50 ⁇ 200 cm 2 /Vs, and the carrier concentration is 1 ⁇ 10 19 ⁇ 5 ⁇ 10 21 cm ⁇ 3 .
  • the carrier mobility of the metal oxide transparent conductive film is 120 ⁇ 200 cm 2 /Vs, and the carrier concentration is 1 ⁇ 10 19 ⁇ 6 ⁇ 10 20 cm ⁇ 3 .
  • the metal oxide transparent conductive film is prepared by adopting any one of a physical vapor deposition process, a chemical vapor deposition process, an atomic layer deposition process, a laser deposition process, a reactive plasma deposition process, and a solution method. film.
  • the second purpose of the present invention adopts the following technical scheme to realize:
  • rare earth ions and indium ions have comparable ionic radii, which can reduce the scattering of defects caused by structural mismatches, so they can maintain their better high mobility characteristics.
  • the present invention forms a high-performance transparent conductive film by introducing doped rare earth oxide into the indium-containing metal oxide. Since the rare earth oxide has extremely high oxygen bond breaking energy, the current carrying in the oxide semiconductor can be effectively controlled. Sub-concentration, improve the transmittance of infrared band, making it more suitable for application in solar cells, display panels or detectors.
  • Fig. 1 is the transmittance spectrum of TCO1 of transparent conductive film in Example 6;
  • FIG. 2 is the transmittance spectrum of TCO2 of the transparent conductive film in Example 6.
  • Example 1 Ceria Doped Indium Tin Oxide Transparent Conductive Film
  • a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: doping cerium oxide in indium tin oxide (ITO) as a charge conversion center to form cerium oxide doped indium tin zinc oxide (Ce:ITO) ) of transparent conductive materials.
  • the group of metal oxide transparent conductive films is prepared by a solution method.
  • MO is SnO 2
  • ReO oxide is CeO 2
  • the carrier mobility of the metal oxide transparent conductive film is 123 cm 2 /Vs, and the carrier concentration is 9.1 ⁇ 10 19 cm -3 .
  • Example 2 Ytterbium oxide doped indium titanium oxide transparent conductive film
  • a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: indium titanium oxide (ITiO) is doped with ytterbium oxide as a charge conversion center to form ytterbium oxide doped indium titanium oxide (Yb: ITiO) of transparent conductive materials.
  • the group of metal oxide transparent conductive films is prepared by a magnetron sputtering method.
  • MO is TiO 2
  • ReO oxide is Yb 2 O 3
  • the carrier mobility of the metal oxide transparent conductive film is 186 cm 2 /Vs, and the carrier concentration is 3.6 ⁇ 10 20 cm -3 .
  • Example 3 Europium oxide doped indium zirconium oxide transparent conductive film
  • a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: doping europium oxide in indium zirconium oxide (IZrO) as a charge conversion center to form europium oxide doped indium zirconium oxide (Eu:IZrO) of transparent conductive materials.
  • the group of metal oxide transparent conductive films are prepared by atomic layer deposition method.
  • MO is ZrO 2
  • the ReO oxide is Eu 2 O 3
  • the carrier mobility of the metal oxide transparent conductive film is 135 cm 2 /Vs, and the carrier concentration is 8.8 ⁇ 10 19 cm -3 .
  • Example 4 Praseodymium oxide doped indium oxide transparent conductive film
  • a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: doping ytterbium oxide in indium oxide (In 2 O 3 ) as a charge conversion center to form ytterbium oxide doped indium oxide (IPrO) Transparent conductive material.
  • the metal oxide transparent conductive films of the group are prepared by a reactive plasma deposition method.
  • the carrier mobility of the metal oxide transparent conductive film is 173 cm 2 /Vs, and the carrier concentration is 5.6 ⁇ 10 20 cm -3 .
  • Example 5 Terbium oxide doped indium oxide transparent conductive film
  • a group of metal oxide transparent conductive films the material of the group of metal oxide transparent conductive films is: doping terbium oxide in indium oxide (In 2 O 3 ) as a charge conversion center to form terbium oxide doped indium oxide (ITbO) Transparent conductive material.
  • the group of metal oxide transparent conductive films is prepared by a magnetron sputtering method.
  • the ReO oxide is Tb 2 O 3 .
  • the carrier mobility of the metal oxide transparent conductive film is 148 cm 2 /Vs, and the carrier concentration is 9.4 ⁇ 10 19 cm -3 .
  • an n-type single crystal silicon wafer is used as the substrate, and then intrinsic a-Si and p-type a-Si with a thickness of 10 nm are sequentially deposited on the n-type silicon wafer after a cleaning process to form a p-n heterojunction, and then a p-n heterojunction is formed.
  • a transparent conductive film TCO1 is re-deposited on the p-n heterojunction.
  • Intrinsic a-Si thin film and n-type a-Si thin film with a thickness of 10 nm are sequentially deposited on the back of the silicon wafer, and then a transparent conductive film TCO2 is deposited on the n-type a-Si thin film.
  • conductive silver pastes were prepared on TCO1 and TCO2 by screen printing technology as collectors, respectively.
  • the TCO1 material is a ytterbium oxide doped indium oxide transparent conductive material, prepared by a reactive plasma deposition method .
  • the target material is a cylindrical ceramic target material, and the relative density of the target material is about 65%;
  • the substrate is not heated, and a dual-gun plasma source is used, that is, two targets are coated at the same time;
  • the air pressure of the cavity is 0.3Pa;
  • the applied voltage of the ion source is 70V, 175A;
  • the TCO2 material is ytterbium oxide doped indium oxide transparent conductive material, which is prepared by magnetron sputtering deposition method .
  • the target material is a bar-shaped ceramic target material, and the relative density of the target material is about 99%; a single target material is used for sputtering coating;
  • the substrate is not heated
  • the air pressure of the cavity is 0.3Pa;
  • the sputtering power is 2kw
  • the transparent conductive film TCO1 and the transparent conductive film TCO2 are not limited to the above-mentioned materials, and the material can also be formed of the transparent conductive films in the embodiments 1-5 described in the present invention, and will not be repeated here.
  • a display panel comprising the transparent conductive film in the above-mentioned embodiments 1-5, the film is used for the anode of an organic light emitting diode (OLED) in the display panel.
  • OLED organic light emitting diode
  • a detector comprising the transparent conductive film in the above embodiments 1-5, the film is used to drive the detection unit of the detector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种金属氧化物透明导电薄膜,该金属氧化物为:在含铟的金属氧化物MO-In 2O 3中掺入少量稀土氧化物ReO作为光生载流子转换中心,形成(In 2O 3) x(MO) y(ReO) z的透明导电材料。本发明在基于铟的金属氧化物中,通过引入稀土氧化物材料,实现载流子浓度的控制和提高迁移率;其通过利用稀土氧化物中稀土离子具有更低的电负性,并与氧离子形成的离子键Ln-O具有更高的断键能,因此可以有效控制In 2O 3薄膜内的氧空位浓度。稀土离子具有和铟离子相当的离子半径,能降低结构失配造成的缺陷散射,因此更能保持其较好的高迁移率特性。本发明还提供一种该金属氧化物透明导电薄膜的应用。

Description

一种金属氧化物透明导电薄膜及其应用 技术领域
本发明涉及镀膜工艺技术领域,尤其涉及平板显示和太阳电池中的金属氧化物透明导电薄膜(TCO)制作,具体涉及一种金属氧化物透明导电薄膜及其应用。
背景技术
对于现有广泛使用的铟(In)基金属氧化物透明导电薄膜(TCO)体系中,铟离子(In 3+)由于具有相对较大的离子半径,使得在In-In键轨道交叠较大,使其5s轨道成为高效的载流子传输通道。最成熟并被广泛使用的TCO材料为ITO(In 2O 3:SnO 2=90:10wt.%)薄膜,其中In 3+提供高效的导电通道,Sn 4+可以作为给体提供载流子,并可以减少In-O键的畸变。但是,在ITO体系中,由于铟与氧成键后In-O的断键能较低,所以在单纯的氧化铟(In 2O 3)薄膜中存在大量的氧空位缺陷。而氧空位是作为一种典型的载流子施主,会导致载流子浓度过高。过高的载流子浓度会引起的表面等离子体效应,导致ITO薄膜在红外波段吸收较大。因此,目前TCO材料的应用,需要尽可能的提高电子迁移率,并尽可能的降低载流子浓度。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种金属氧化物透明导电薄膜,其通过利用稀土氧化物中稀土离子具有更低的电负性,并与氧离子形成的离子键Ln-O具有更高的断键能,因此可以有效控制In 2O 3薄膜内的氧空位浓度。加上,稀土金属离子和铟离子具有相当的离子半径,在进行掺杂时 更易保持氧化铟的晶型结构,保证铟的5s轨道充分交叠,能降低结构失配造成的缺陷散射,因此更能保持其较好的高迁移率特性。
本发明的目的之二在于提供该金属氧化物透明导电薄膜的应用。
本发明目的之一采用如下技术方案实现:
一种金属氧化物透明导电薄膜,该金属氧化物为:在含铟的金属氧化物MO-In 2O 3中掺入少量稀土氧化物ReO作为光生载流子转换中心,形成(In 2O 3) x(MO) y(ReO) z的透明导电材料,其中,x+y+z=1,0.8≤x<0.9999,0≤y<0.2,0.0001≤z≤0.1。
其中,稀土氧化物ReO为氧化镱、氧化铕、氧化铈、氧化镨、氧化铽中的一种或任意两种以上材料组合。
金属氧化物MO中,M为Sn(锡)、Bi(铋)、Ti(钛)、Zr(锆)、Hf(铪)、Ta(钽)、W(钨)、Nb(铌)、Mo(钼)中的一种或任意两种以上材料组合。即本发明提供的金属氧化物透明导电薄膜是基于氧化铟的复合导电薄膜,通过引入了稀土氧化物获得了更高的迁移率,并控制其载流子浓度。由于稀土氧化物中稀土离子具有更低的电负性,并与氧离子形成的离子键Ln-O具有更高的断键能。因此可以有效控制In 2O 3薄膜内的氧空位浓度。稀土氧化物ReO可选的材料为氧化镱、氧化铕、氧化铈、氧化镨、氧化铽中的一种或任意两种以上材料组合,作为载流子浓度控制剂。其中,氧化镱和氧化铕中Yb 2+离子和Eu 2+离子分别具有全满和半满的4f电子轨道。因此,其二价离子相比于三价离子在氧化物中具有更低能量。同时,由于Yb-O和Eu-O的断键焓变(ΔHf298)分别为715.1kJ/mol和557.0kJ/mol,均远大于In-O的断键能,进而能有效控制氧空位浓度。而氧化铈、氧化镨和氧化铽中的氧离子存在+3价和+4价的变价可能,在 氧化物半导体中,对于In 3+离子进行替代为掺杂时,可以明显减少载流子浓度。Ce-O,Pr-O,Tb-O键的断键能更高,均大于759kJ/mol。所以氧化铈、氧化镨和氧化铽对载流子浓度控制能力更强。结合以上特点,ReO的引入可以有效的在高In体系下控制氧化物半导体薄膜的氧空位。另外,氧化铟在制备过程中容易产生晶格畸变,稀土氧化物的掺入可以得到有效的抑制;而且,稀土金属离子和铟离子具有相当的离子半径,在进行掺杂时更易保持氧化铟的晶型结构,保证铟的5s轨道充分交叠,能降低结构失配造成的缺陷散射,因此也更能保持其较好的高迁移率特性。
同时,引入ReO稀土氧化物可作为光生电荷转换中心。该材料选择是利用了稀土离子中4f轨道电子结构特点,其和铟离子的5s轨道能形成高效的电荷转换中心。在正偏压下,稀土离子处于稳定的低能态,由于费米能级的调制作用使得薄膜中具有较高的载流子浓度,可以有效屏蔽该转换中心造成的载流子散射效应,从而对器件的电性特性等未有明显的影响。在负偏压下,稀土元素4f中的电子轨道的和铟的5s轨道发生耦合,稀土离子处于不稳定的活化状态。通过其耦合轨道以非辐射跃迁的形式使该光生载流子重新回到“基态”;同时该活化中心重新处于活化状态。因此,该转换中心,在能提供光生载流子的快速复合通道,避免其对薄膜稳定性的影响。
进一步地,所述金属氧化物透明导电薄膜呈方铁锰矿晶型结构。
优选地,0.0001≤z≤0.005。
更优选地,0.0009≤z≤0.001。
进一步地,所述金属氧化物透明导电薄膜的载流子迁移率为50~200cm 2/Vs,载流子浓度为1×10 19~5×10 21cm -3。优选地,所述金属氧化物透明导电薄膜的载 流子迁移率为120~200cm 2/Vs,载流子浓度为1×10 19~6×10 20cm -3
进一步地,所述金属氧化物透明导电薄膜通过采用物理气相沉积工艺、化学气相沉积工艺、原子层沉积工艺、激光沉积工艺、反应等离子体沉积工艺、溶液法工艺中的任意一种工艺的方法制备成膜。
本发明的目的之二采用如下技术方案实现:
一种上述金属氧化物透明导电薄膜在太阳电池、显示面板或探测器中的应用。
相比现有技术,本发明的有益效果在于:
本发明通过选择一种掺杂策略,在基于铟的金属氧化物中,通过引入稀土氧化物材料,实现载流子浓度的控制和提高迁移率,其通过利用稀土氧化物中稀土离子具有更低的电负性,并与氧离子形成的离子键Ln-O具有更高的断键能,因此可以有效控制In 2O 3薄膜内的氧空位浓度。加上,稀土离子和铟离子具有相当的离子半径,能降低结构失配造成的缺陷散射,因此更能保持其较好的高迁移率特性。
本发明通过在含铟的金属氧化物中引入掺杂稀土氧化物以形成高性能透明导电薄膜,由于稀土氧化物中具有极高的氧断键能,进而可有效控制氧化物半导体内的载流子浓度,提高红外波段的透过率,使其更加适合在太阳电池、显示面板或探测器中应用。
附图说明
图1为实施例6中透明导电薄膜的TCO1的透过率图谱;
图2为实施例6中透明导电薄膜的TCO2的透过率图谱。
具体实施方式
下面,结合附图和具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
以下是本发明具体的实施例,在下述实施例中所采用的原材料、设备等除特殊限定外均可以通过购买方式获得。
实施例1:氧化铈掺杂氧化铟锡透明导电薄膜
一组金属氧化物透明导电薄膜,该组金属氧化物透明导电薄膜材料为:在氧化铟锡(ITO)中掺入氧化铈作为电荷转换中心,形成氧化铈掺杂氧化铟锡锌(Ce:ITO)的透明导电材料。该组金属氧化物透明导电薄膜采用溶液法制备而成。
其中,对于氧化物配比通式(InO 1.5) x(MO) y(ReO) z,MO为SnO 2,ReO氧化物为CeO 2。所组成的氧化物(InO 1.5) x(SnO 2) y(CeO 2) z中x=0.97270,y=0.0264,z=0.0009。但不限于上述的比例,在其他一些实施例中,x=0.96000,y=0.03908,z=0.00092,或者,x=0.900,y=0.095,z=0.0050,或者,x=0.9200,y=0.07999,z=0.00001,在此不再赘述。
该金属氧化物透明导电薄膜的载流子迁移率为123cm 2/Vs,载流子浓度为9.1×10 19cm -3
实施例2:氧化镱掺杂氧化铟钛透明导电薄膜
一组金属氧化物透明导电薄膜,该组金属氧化物透明导电薄膜材料为:在氧化铟钛(ITiO)中掺入氧化镱作为电荷转换中心,形成氧化镱掺杂氧化铟钛(Yb:ITiO)的透明导电材料。该组金属氧化物透明导电薄膜采用磁控溅射法制备而成。
其中,对于氧化物配比通式(InO 1.5) x(MO) y(ReO) z,MO为TiO 2,ReO氧化物为Yb 2O 3。所组成的氧化物(InO 1.5) x(TiO 2) y(YbO 1.5) z中x=0.97943,y=0.01959,z=0.00098。但不限于上述的比例,在其他一些实施例中,x=0.98000,y=0.01950,z=0.00050,或者,x=0.99000,y=0.00500,z=0.00500,或者,x=0.9200,y=0.07999,z=0.00001,在此不再赘述。
该金属氧化物透明导电薄膜的载流子迁移率为186cm 2/Vs,载流子浓度为3.6×10 20cm -3
实施例3:氧化铕掺杂氧化铟锆透明导电薄膜
一组金属氧化物透明导电薄膜,该组金属氧化物透明导电薄膜材料为:在氧化铟锆(IZrO)中掺入氧化铕作为电荷转换中心,形成氧化铕掺杂氧化铟锆(Eu:IZrO)的透明导电材料。该组金属氧化物透明导电薄膜采用原子层沉积方法制备而成。
其中,对于氧化物配比通式(InO 1.5) x(MO) y(ReO) z,MO为ZrO 2,ReO氧化物为Eu 2O 3。所组成的氧化物(InO 1.5) x(ZrO 2) y(EuO 1.5) z中x=0.93943,y=0.05959,z=0.00098。但不限于上述的比例,在其他一些实施例中,x=0.98000,y=0.01950,z=0.00050,或者,x=0.97000,y=0.02800,z=0.00200,或者,x=0.9900,y=0.00999,z=0.00001,在此不再赘述。
该金属氧化物透明导电薄膜的载流子迁移率为135cm 2/Vs,载流子浓度为8.8×10 19cm -3
实施例4:氧化镨掺杂氧化铟透明导电薄膜
一组金属氧化物透明导电薄膜,该组金属氧化物透明导电薄膜材料为:在氧化铟(In 2O 3)中掺入氧化镱作为电荷转换中心,形成氧化镱掺杂氧化铟(IPrO)的透明导电材料。该组金属氧化物透明导电薄膜采用反应等离子体沉积方法制 备而成。
其中,对于氧化物配比通式(InO 1.5) x(MO) y(ReO) z,未含MO,也即y=0;ReO氧化物为Pr 2O 3。所组成的氧化物(InO 1.5) x(PrO 1.5) z中x=0.9000,z=0.1000。但不限于上述的比例,在其他一些实施例中,x=0.98000,z=0.0200,或者,x=0.99000,z=0.01000,或者,x=0.9990,z=0.00100,在此不再赘述。
该金属氧化物透明导电薄膜的载流子迁移率为173cm 2/Vs,载流子浓度为5.6×10 20cm -3
实施例5:氧化铽掺杂氧化铟透明导电薄膜
一组金属氧化物透明导电薄膜,该组金属氧化物透明导电薄膜材料为:在氧化铟(In 2O 3)中掺入氧化铽作为电荷转换中心,形成氧化铽掺杂氧化铟(ITbO)的透明导电材料。该组金属氧化物透明导电薄膜采用磁控溅射方法制备而成。
其中,对于氧化物配比通式(InO 1.5) x(MO) y(ReO) z,无MO;ReO氧化物为Tb 2O 3。所组成的氧化物(InO 1.5) x(TbO 1.5) z中x=0.9800,y=0,z=0.0200;但不限于上述的比例,在其他一些实施例中,x=0.9900,y=0,z=0.0100;或者x=0.9850,z=0.0150,或者,x=0.9990,y=0,z=0.0010,在此不再赘述。
该金属氧化物透明导电薄膜的载流子迁移率为148cm 2/Vs,载流子浓度为9.4×10 19cm -3
实施例6:异质结太阳电池
本实施例以n型单晶硅片为衬底,再经过清洗制程的n型硅片上依次沉积厚度为10nm的本征a-Si、p型a-Si,形成p-n异质结,然后在p-n异质结上再沉积透明导电膜TCO1。在硅片背面依次沉积厚度为10nm的本征a-Si薄膜以及n型a-Si薄膜,然后在n型a-Si薄膜上再沉积透明导电膜TCO2。最后在TCO1和TCO2上分别使用丝网印刷技术制备导电银浆作为集电极。
其中TCO1材料为氧化镱掺杂氧化铟透明导电材料,采用反应等离子体沉积方法制备,所组成的氧化物(InO 1.5) x(YbO 1.5) z中x=0.9000,z=0.1000。
其制备具体条件如下:
靶材为圆柱形陶瓷靶材,靶材相对密度约为65%;
基板未加热,采用双枪的等离子源,也即两个靶材同时镀膜;
腔体中氧气含量为20%,也即O 2/(Ar+O 2)=20%;
腔体气压为0.3Pa;
离子源所加电压为70V,175A;
其中TCO2材料为氧化镱掺杂氧化铟透明导电材料,采用磁控溅射沉积方法制备,所组成的氧化物(InO 1.5) x(YbO 1.5) z中x=0.98000,z=0.0200。
其制备具体条件如下:
靶材为条形陶瓷靶材,靶材相对密度约为99%;采用单靶材溅射镀膜;
基板未加热;
腔体中氧气含量为1.0%,也即O 2/(Ar+O 2)=1.0%;
腔体气压为0.3Pa;
采用脉冲直流电源,溅射功率为2kw;
同时,在本实施例中,我们在空白的石英衬底上同时制备了参考薄膜,制备的透明导电薄膜Hall性能如表1所示,薄膜透过率图谱如图1和图2所示。
表1 透明导电薄膜Hall性能参数
材料 载流子浓度(cm -3) 载流子迁移率(cm 2/Vs)
TCO1 1.2×10 20 169
TCO2 1.5×10 20 142
以上实施例中,透明导电膜TCO1、透明导电膜TCO2不限于上述所述的材 料,该材料还可以为本发明所记载的实施例1-5中的透明导电薄膜组成,在此不再赘述。
实施例7:显示面板
一种显示面板,包括上述实施例1-5中的透明导电薄膜,该薄膜用于显示面板中的有机发光二极管(OLED)阳极。
实施例8:探测器
一种探测器,包括上述实施例1-5中的透明导电薄膜,该薄膜用于驱动探测器的探测单元。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种金属氧化物透明导电薄膜,其特征在于,该金属氧化物为:在含铟的金属氧化物MO-In 2O 3中掺入少量稀土氧化物ReO作为光生载流子转换中心,形成(In 2O 3) x(MO) y(ReO) z的透明导电材料,其中,x+y+z=1,0.8≤x<0.9999,0≤y<0.2,0.0001≤z≤0.1。
  2. 根据权利要求1所述的金属氧化物透明导电薄膜,其特征在于,所述MO中,M为Sn、Bi、Ti、Zr、Hf、Ta、W、Nb、Mo中的一种或任意两种以上材料组合。
  3. 根据权利要求1所述的金属氧化物透明导电薄膜,其特征在于,所述稀土氧化物ReO为氧化镱、氧化铕、氧化铈、氧化镨、氧化铽中的一种或任意两种以上材料组合。
  4. 根据权利要求1所述的金属氧化物透明导电薄膜,其特征在于,所述金属氧化物透明导电薄膜呈方铁锰矿晶型结构。
  5. 根据权利要求1所述的金属氧化物透明导电薄膜,其特征在于,0.0001≤z≤0.005。
  6. 根据权利要求5所述的金属氧化物透明导电薄膜,其特征在于,0.0009≤z≤0.001。
  7. 根据权利要求1-6中任一项所述的金属氧化物透明导电薄膜,其特征在于,所述金属氧化物透明导电薄膜的载流子迁移率为50~200cm 2/Vs,载流子浓度为1×10 19~5×10 21cm -3
  8. 根据权利要求7所述的金属氧化物透明导电薄膜,其特征在于,所述金属氧化物透明导电薄膜的载流子迁移率为120~200cm 2/Vs,载流子浓度为1×10 19~6×10 20cm -3
  9. 根据权利要求7所述的金属氧化物透明导电薄膜,其特征在于,所述金 属氧化物透明导电薄膜通过采用物理气相沉积工艺、化学气相沉积工艺、原子层沉积工艺、激光沉积工艺、反应等离子体沉积工艺、溶液法工艺中的任意一种工艺的方法制备成膜。
  10. 一种如权利要求1-9中任一项所述的金属氧化物透明导电薄膜在太阳电池、显示面板或探测器中的应用。
PCT/CN2021/096785 2021-02-03 2021-05-28 一种金属氧化物透明导电薄膜及其应用 WO2022166044A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/229,669 US20230377767A1 (en) 2021-02-03 2023-08-02 Transparent conductive oxide thin film and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110152018.3A CN113066599A (zh) 2021-02-03 2021-02-03 一种金属氧化物透明导电薄膜及其应用
CN202110152018.3 2021-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/229,669 Continuation US20230377767A1 (en) 2021-02-03 2023-08-02 Transparent conductive oxide thin film and application thereof

Publications (1)

Publication Number Publication Date
WO2022166044A1 true WO2022166044A1 (zh) 2022-08-11

Family

ID=76558639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096785 WO2022166044A1 (zh) 2021-02-03 2021-05-28 一种金属氧化物透明导电薄膜及其应用

Country Status (3)

Country Link
US (1) US20230377767A1 (zh)
CN (1) CN113066599A (zh)
WO (1) WO2022166044A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038916A (zh) * 2021-10-08 2022-02-11 华南理工大学 绝缘薄膜及其薄膜晶体管以及用途
CN114163216A (zh) * 2021-12-15 2022-03-11 先导薄膜材料(广东)有限公司 一种氧化铟钛镱粉体及其制备方法与应用
CN116072326A (zh) * 2023-02-07 2023-05-05 中山智隆新材料科技有限公司 一种氧化铟锡材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040270A (ja) * 2009-08-11 2011-02-24 Tohoku Univ 導電性酸化物及びその製造方法、並びにそれを用いた透明導電膜
CN107146816A (zh) * 2017-04-10 2017-09-08 华南理工大学 一种氧化物半导体薄膜及由其制备的薄膜晶体管
CN110767745A (zh) * 2019-09-18 2020-02-07 华南理工大学 复合金属氧化物半导体及薄膜晶体管与应用
CN112289863A (zh) * 2020-09-25 2021-01-29 华南理工大学 一种金属氧化物半导体及薄膜晶体管与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797395A (zh) * 2019-09-18 2020-02-14 华南理工大学 掺杂型金属氧化物半导体及薄膜晶体管与应用
CN111081812A (zh) * 2019-11-18 2020-04-28 深圳第三代半导体研究院 一种透明导电氧化物薄膜的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040270A (ja) * 2009-08-11 2011-02-24 Tohoku Univ 導電性酸化物及びその製造方法、並びにそれを用いた透明導電膜
CN107146816A (zh) * 2017-04-10 2017-09-08 华南理工大学 一种氧化物半导体薄膜及由其制备的薄膜晶体管
CN110767745A (zh) * 2019-09-18 2020-02-07 华南理工大学 复合金属氧化物半导体及薄膜晶体管与应用
CN112289863A (zh) * 2020-09-25 2021-01-29 华南理工大学 一种金属氧化物半导体及薄膜晶体管与应用

Also Published As

Publication number Publication date
US20230377767A1 (en) 2023-11-23
CN113066599A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2022166044A1 (zh) 一种金属氧化物透明导电薄膜及其应用
JP7424659B2 (ja) 複合金属酸化物半導体および薄膜トランジスタとその応用
WO2021052218A1 (zh) 掺杂型金属氧化物半导体及薄膜晶体管与应用
WO2022105174A1 (zh) 一种金属氧化物半导体及薄膜晶体管与应用
WO2022062454A1 (zh) 一种金属氧化物半导体及薄膜晶体管与应用
TWI589011B (zh) 化合物太陽電池及其製造方法
CN104752629A (zh) 铌锌酸盐发光薄膜及其制备方法和应用
TW201344926A (zh) 化合物太陽電池之製法
KR20130041631A (ko) 태양전지 제조방법
Samarasekara et al. High photo-voltage zinc oxide thin films deposited by dc sputtering
CN105908127A (zh) 一种p型掺杂二氧化锡透明导电膜及其制备方法
US11545580B2 (en) Metal oxide (MO semiconductor and thin-film transistor and application thereof
CN108470836A (zh) 一种钙钛矿薄膜的制备方法及太阳能电池
CN112467002A (zh) 一种氧化物发光场效应晶体管
JP2016157810A (ja) ニオブドープ酸化チタンを用いた有機薄膜太陽電池
US20230094925A1 (en) Rare-Earth Doped Semiconductor Material, Thin-Film Transistor, and Application
CN104674173A (zh) 导电薄膜、其制备方法及应用
Sato et al. High rate reactive sputter deposition of TiO2 films for photocatalyst and dye-sensitized solar cells
Otieno et al. Structural and Optical Probe into Rare Earth Doped ZnO for Spectral Conversion in Solar Cells
CN116666470A (zh) 一种三方晶系硒薄膜结晶方法及硒基太阳电池
KR20150136721A (ko) 고품질 cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법
CN104449712A (zh) 一种钪磷酸盐发光薄膜及其制备方法和应用
CN104342137A (zh) 铈掺杂三族钒硅酸盐发光薄膜、制备方法及其应用
JP2004111876A (ja) 光電変換素子
CN103187472A (zh) 具有高红外光吸收率的薄膜太阳能电池及其制程方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924051

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21924051

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/02/2024)