WO2022164288A1 - 비염증성 식세포작용 유도 활성을 갖는 융합분자 - Google Patents

비염증성 식세포작용 유도 활성을 갖는 융합분자 Download PDF

Info

Publication number
WO2022164288A1
WO2022164288A1 PCT/KR2022/001671 KR2022001671W WO2022164288A1 WO 2022164288 A1 WO2022164288 A1 WO 2022164288A1 KR 2022001671 W KR2022001671 W KR 2022001671W WO 2022164288 A1 WO2022164288 A1 WO 2022164288A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion molecule
gas6
amyloid
beta
αaβ
Prior art date
Application number
PCT/KR2022/001671
Other languages
English (en)
French (fr)
Inventor
김찬혁
정원석
정현철
이세영
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to EP22746314.8A priority Critical patent/EP4286406A1/en
Priority to CN202280012573.9A priority patent/CN116848128A/zh
Priority to AU2022211971A priority patent/AU2022211971A1/en
Priority to MX2023008744A priority patent/MX2023008744A/es
Priority to CA3205570A priority patent/CA3205570A1/en
Priority to JP2023546224A priority patent/JP2024505935A/ja
Publication of WO2022164288A1 publication Critical patent/WO2022164288A1/ko
Priority to IL304791A priority patent/IL304791A/en
Priority to US18/360,984 priority patent/US20240018204A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4711Alzheimer's disease; Amyloid plaque core protein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/10Protein-tyrosine kinases (2.7.10)
    • C12Y207/10001Receptor protein-tyrosine kinase (2.7.10.1)

Definitions

  • the present invention relates to a fusion molecule having non-inflammatory phagocytosis-inducing activity, and suggests its applicability for preventing or treating diseases caused by abnormal accumulation of substances such as proteinosis.
  • Amyloidosis is a disease in which an abnormal protein called amyloid accumulates in tissues.
  • Amyloid is a protein mass that has a diameter of 7-13 nm and a beta-sheet structure and appears in a fibrous form when viewed under a microscope. have.
  • Amyloid is not found in a normal body, and it has been reported that 36 proteins can form it to date (Picken, Acta Haematol. (2020), 143:322-334).
  • Representative amyloidosis includes neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington disease, and prion disease. There are a number of amyloidosis that have features.
  • Alzheimer's disease is the biggest cause of dementia and is a fatal disease that accompanies learning and memory impairments. It is predicted that 130 million people in the world will suffer from Alzheimer's disease by 2050, and 1 in 9 people over the age of 65 is already diagnosed with Alzheimer's disease.
  • Alzheimer's disease shows a singularity in that beta-amyloid (A ⁇ ) protein, which is produced by abnormal decomposition of amyloid precursor protein (APP), is deposited on the outside of the brain cell membrane, and is accompanied by tau binding to microtubules. (tau) shows abnormal binding due to protein hyperphosphorylation.
  • a ⁇ beta-amyloid
  • APP amyloid precursor protein
  • oligomers and fibrils which are formed by aggregation of beta-amyloid, cause synapse function degradation and cytotoxicity through various pathways, and astrocytes and microglia responsible for immunity in the brain. It has been recently reported that a vicious cycle that adversely affects nerve cells again occurs through changes in the function of cells (microglia).
  • Alzheimer's disease drugs that inhibit the breakdown of acetylcholine or inhibit the activity of NMDA receptors, and these are aimed only at temporary relief of symptoms, not the underlying treatment of the disease. Therefore, there is still no method that can fundamentally treat Alzheimer's disease, and accordingly, it is known as the most expensive disease to treat and care for patients in an aging population.
  • beta-amyloid-reducing BACE inhibitors in Alzheimer's patients with cognitive decline, beta-amyloid plaques are already accumulated and neuronal cell death is taking place, so the strategy to block further production is not very effective.
  • beta-amyloid antibody binds to beta-amyloid oligomer and fibrils to prevent their aggregation, or microglial cells recognize the monoclonal antibody Fc receptor through phagocytosis of beta-amyloid.
  • ARIA Amyloid-Related-Imaging-Abnormalities
  • beta-amyloid monoclonal antibody Since synapses and nerve cells in the brain respond sensitively to inflammatory cytokines, treatment with beta-amyloid monoclonal antibody is an innate risk that can only cause damage to nerve cells and synapses at the same time even if beta-amyloid is removed to some extent. I have a problem.
  • an important task in the treatment of Alzheimer's disease in the future is to develop a method that can selectively remove only beta-amyloid oligomers and fibrils without causing an inflammatory response and synaptic damage, and these drugs will contribute to the treatment of Alzheimer's disease. is expected to be able to
  • a method for selectively removing only a targeted abnormal accumulation material such as an abnormal accumulation protein that causes proteinosis, without causing an inflammatory response and subsequent tissue damage, is widely applied to Tau (Tau). It will be possible to develop a method to selectively remove abnormally accumulated proteins such as ⁇ -synuclein and huntingtin.
  • These drugs are expected to make an innovative contribution to the treatment of not only neurological diseases such as Huntington's disease, but also diseases related to abnormal accumulation of specific substances.
  • the present invention relates to a fusion molecule having phagocytosis-inducing activity, and an object of the present invention is to suggest the possibility of use for the prevention or treatment of diseases caused by abnormal accumulation of target substances.
  • One aspect of the present invention is a first region having TAM receptor binding ability; And it provides a fusion molecule having a phagocytosis inducing activity, comprising a second region that specifically binds to a target substance.
  • the TAM receptor may be one or more specifically selected from the group consisting of Tyro3, Axl and MerTK, which bind to laminin G-like domain (or LG domain) to induce phagocytosis. can do.
  • the first region may include Gas6, ProS1, Tubby, Tulp1, Gal3, or an active fragment thereof. If it is a protein in which the ability to induce phagocytosis through interaction with these native TAM receptors is preserved It is not particularly limited in its form or scope.
  • the first region may be preferably selected from Gas6, ProS1, or active fragments thereof.
  • the first region may include a laminin G-like domain of Gas6 or ProS1, or an active fragment thereof, which is a phagocytosis-related bridging molecule strongly expressed in various tissues, and laminin G- Since it contains a similar domain, it can induce phagocytosis through TAM receptors.
  • the laminin G-like domain may specifically include an LG1 domain, an LG2 domain, or a combination thereof, and preferably include both an LG1 domain and an LG2 domain, which bind to the TAM receptor and phagocytose. may induce phagocytosis.
  • the first region may include at least one of SEQ ID NO: 1 and SEQ ID NO: 2; Or at least one of SEQ ID NO: 3 and SEQ ID NO: 4; may be a peptide comprising the sequence.
  • the first region comprises a sequence comprising both the sequences of SEQ ID NO: 1 and SEQ ID NO: 2; or a sequence comprising both SEQ ID NO:3 and SEQ ID NO:4; It may be a peptide comprising any one, and more preferably a peptide comprising the sequence of SEQ ID NO: 5 or SEQ ID NO: 6.
  • the peptide comprising the sequence of SEQ ID NO: includes not only the amino acid sequence but also amino acid sequence variants.
  • the sequence variant means a protein having a sequence different from that of the amino acid sequence and one or more amino acid residues, and as long as the activity of the fusion molecule is maintained, any cleavage, deletion, insertion, substitution, etc. It is possible.
  • An example of the sequence variant is a form in which an amino acid residue at a site not essential for activity is truncated or deleted, or a form in which an amino acid residue at a site important for self-repression is substituted.
  • modification may be performed by phosphorylation, glycosylation, methylation, farnesylation, or the like. It is more preferable if the function and/or stability (thermal stability, pH stability, structural stability, etc.) and/or solubility of the protein is increased by the mutation in the amino acid sequence through the mutation and modification of the sequence.
  • the method of inducing a mutation in the amino acid sequence is to use a method of preparing a nucleic acid molecule containing a nucleotide sequence corresponding to the amino acid sequence to be changed by mutating the nucleotide sequence encoding the protein, and obtaining a gene encoding it
  • the method may be mutagenized in vivo or in vitro using any mutagenesis technique well known in the art. For example, site-directed mutagenesis (Hutchinson et al., J. Biol.
  • the first region when the first region includes a laminin G-like domain of Gas6 or ProS1, or an active fragment thereof, the first region may not include a Gla domain, which although the region does not recognize phosphatidylserine (PS), the second region may recognize a target substance and induce phagocytosis.
  • PS phosphatidylserine
  • the first region when the first region includes a laminin G-like domain of Gas6 or ProS1, or an active fragment thereof, the first region may not include both a Gla domain and an EGF domain. , this may be for the purpose of increasing the yield by suppressing the aggregation phenomenon in the purification process of the fusion molecule in addition to the technical effect that can be obtained by not including the Gla domain described above.
  • the target material may be a material that accumulates in a living tissue and causes a disease. For example, it may be accumulating in the affected, ie, diseased, tissue of the patient.
  • the substance accumulated in the disease may be a protein, that is, the disease may be proteinosis, but is not limited thereto.
  • the target substance may be amyloid, ie, the proteinosis may be amyloidosis.
  • the target material may be selected from among the abnormal accumulation substances shown in Table 1 below, and in this case, the disease may be a disease in which each abnormal accumulation substance is detected.
  • the proteinosis may be one selected from Alzheimer's disease, Parkinson's disease, Huntington's disease, and Prion's disease, and in this case, the target substance may be an abnormally accumulated protein that causes the disease, that is, each (respectively) It may be a beta-amyloid ( ⁇ -Amyloid), tau (Tau), alpha-synuclein ( ⁇ -Synuclein), huntingtin (Huntingtin), prion (prion) protein.
  • ⁇ -Amyloid beta-amyloid
  • tau tau
  • ⁇ -Synuclein alpha-synuclein
  • prion prion
  • Abnormal accumulation substance abbreviation disease ⁇ -Amyloid derived from amyloid precursor protein A ⁇ Alzheimer's disease, hereditary cerebral haemorrhage with amyloidosis, etc.
  • ⁇ -Synuclein A ⁇ Syn Parkinson's disease, Parkinson's dementia, Dementia with Lewy bodies, Multiple System Atrophy, etc.
  • PrP Sc APrP Transmissible Spongiform Encephalopathy Fatal familial insomnia, Gerstmann-Straussler-Scheinker disease, Creutzfeldt-Jacob disease, New variant Creutzfeldt-Jacob disease, etc.
  • Microtubule associated protein tau ATau Tauopathies (Pick's disease, Progressive supranuclear palsy, Corticobasal degeneration, Frontotemporal dementia with parkinsonism linked to chromosome 17, Argyrophilic grain disease, etc.), Alzheimer's disease, Parkinson's disease, etc.
  • Huntingtin exon 1 doesn't exist) Huntington's disease, etc.
  • TDP43 TAR DNA-binding protein 43
  • SOD1 Superoxide dismutase 1
  • ALS Amyotrophic lateral sclerosis
  • the second region that specifically binds to the target substance may be selected from among an antibody, an active fragment thereof, an antibody-like protein, a peptide, an aptamer, and a soluble receptor that specifically binds to the target substance. There is no particular limitation as long as it is a form that can be specifically bound.
  • the antibody or active fragment thereof comprises, for example, i) an immunoglobulin selected from among IgG1, IgG2, IgG3 and IgG4; ii) native antibody fragments such as Fv, Fab, Fab', F(ab')2, VHH, VNAR, etc.; iii) engineered antibodies such as scFv, dsFv, ds-scFv, (scFv)2, diabody, triabody, tetrabody, pentabody and the like; It may be selected from The antibody or active fragment thereof is, for example, a Mab, Fab or single-chain Fv fragment thereof based on six complementarity-determining regions (CDRs) derived from an antibody or antibody that specifically binds to a corresponding target substance ( scFv).
  • CDRs complementarity-determining regions
  • the protein or active fragment thereof that specifically binds to the target substance includes an essential part for the activity of specifically binding to the target substance, and is connected to the first region without accompanying an inflammatory reaction. As long as it exhibits an effect that does not cause synaptic damage, it is not particularly limited in its form or scope.
  • the target substance may be beta-amyloid, and in this case, the protein or active fragment thereof specifically binding to the target substance may include aducanumab or a single chain Fv fragment thereof.
  • the second region is based on six complementarity determining regions (CDRs) derived from any one selected from the group consisting of aducanumab, semorinemab, and cinpanemab, Mab, Fab, or It may include a single chain Fv fragment.
  • CDRs complementarity determining regions
  • the antibody or active fragment thereof may not include an Fc region, and preferably may include an Fc region variant that does not bind to an Fc receptor (particularly an Fc ⁇ receptor). Such Fc region variants may be included to improve physical properties, such as purification.
  • the antibody-like protein refers to a protein scaffold capable of specifically binding to a target material, such as an antibody.
  • Antibody-like proteins can be designed to target a binding site that the antibody cannot reach due to their small size (2-20 kDa) compared to the average 150 kDa antibody. It is known that it is more stable at high temperatures than antibodies, and that synthesis and chemical synthesis using non-mammalian cells such as viruses and yeast are much easier.
  • the aptamer refers to single-stranded DNA (ssDNA) or RNA having high specificity and affinity for a specific substance.
  • ssDNA single-stranded DNA
  • RNA RNA having high specificity and affinity for a specific substance.
  • Aptamers have very high affinity for specific substances and are stable, can be synthesized by a relatively simple method, can be modified in various ways to increase binding force, and can be targeted to cells, proteins, and even small organic substances. Its specificity and stability are very high compared to antibodies that have already been developed.
  • the method for preparing the aptamer may be prepared through a known SELEX (Systematic Evolution of Ligands by Exponential enrichment) method.
  • Such an aptamer for example, can be linked to the first region after preparing an aptamer that specifically binds to beta-amyloid, tau, and alpha-synuclein through a known SELEX (Systematic Evolution of Ligands by Exponential enrichment) method, Through this, the fusion molecule according to the present invention can be generated.
  • SELEX Systematic Evolution of Ligands by Exponential enrichment
  • the aptamer of the present invention is not limited as long as it can specifically bind to beta-amyloid, tau, and alpha-synuclein, and the bases used in the aptamer are A, G, C, U, unless otherwise specified, their deoxy It may be selected from the group consisting of bases in the form.
  • the aptamer is, in order to improve stability, polyethylene glycol (PEG), idT (inverted deoxythymidine), LNA (Locked Nucleic Acid) at the 5' end region, the middle region, the 3' end region, or both ends.
  • PEG polyethylene glycol
  • idT inverted deoxythymidine
  • LNA Locked Nucleic Acid
  • 2'-methoxy nucleoside, 2'-amino nucleoside, 2'F-nucleoside, amine linker, thiol linker, and one or more selected from the group consisting of cholesterol may be combined and modified.
  • idT inverted deoxythymidine
  • idT is one of the molecules used to prevent degradation by nucleases of aptamers, which are generally weak in resistance to nucleases.
  • idT combines the 3'-OH of the preceding unit with the 3'-OH of the next unit by artificially changing so that 5'-OH, not 3'-OH, is exposed. It is a molecule that has the effect of inhibiting degradation by 3'exonuclease, a type of nuclease.
  • the soluble receptor of the present invention includes a domain having an activity capable of binding to a target substance, that is, an endogenous ligand, and the domain is derived from an endogenous membrane receptor or an intracellular receptor. one or a derivative thereof.
  • a region having activity other than binding to a target substance in the intrinsic receptor may be removed.
  • the peptide which may be the second region, is a polypeptide containing an amino acid capable of specifically binding to a target substance as a monomer, except for the antibody or its active fragment, antibody-like protein, and soluble receptor. it means.
  • the phagocytosis may be induced in cells expressing the TAM receptor.
  • Phagocytosis generally refers to the swallowing of cells or particles of 0.5 ⁇ m or larger, and involves the process of tethering, engulfing, and degrading the cells or particles.
  • phagocytosis forms a phagosome that surrounds internalized cells or particles, and also includes a process of decomposition within the phagolysosome by the fusion of the phagosome and lysosome. .
  • apoptosis or necrosis apoptosis or necrosis
  • efferocytosis apoptosis or necrosis
  • the cells expressing the TAM receptor may be one or more professional phagocytes, one or more non-professional phagocytes, or a combination thereof.
  • professional phagocytes refer to cells whose main role is to remove dead cells and accumulated debris through phagocytosis, and include macrophages, neutrophils, dendritic cells and This includes mast cells. Macrophages usually stay in each tissue that can be a pathway for infection, and in many cases are called by different names for each tissue, such as adipose tissue macrophage in adipose tissue, monocyte in bone marrow or blood, and cooper in liver.
  • spleen examples include red pulp macrophage of the red pulp of spleen, peritoneal macrophage of the peritoneal cavity, and LysoMac of Peyer's patch.
  • unprofessional phagocytes refer to cells that mainly function specific to the tissue in which the phagocytes reside, but can phagocytose when necessary, and include epithelial cells, endothelial cells, and fibroblasts (epithelial cells). fibroblast), mesenchymal cells, etc., and some tissue-specific cells, such as astrocytes or oligodendrocytes of the central nervous system, Muller cells of the retina, and hepatocytes of the liver ( hepatocyte), muscle satellite cells, testicular Sertoli cells, etc., natural killer cells, large granular lymphocytes, eosinophils, basophils , including some lymphocytes such as B cells.
  • fibroblast epithelial cells
  • mesenchymal cells etc.
  • tissue-specific cells such as astrocytes or oligodendrocytes of the central nervous system, Muller cells of the retina, and hepatocytes of the liver ( hepatocyte), muscle satellite cells, testicular
  • the fusion molecule according to the present invention can induce phagocytosis in phagocytes specific to the tissue in which the target substance to be removed is accumulated.
  • the phagocytosis may be induced in astrocytes, microglia, oligodendrocytes, or a combination thereof. This can be induced, for example, by locally administering the fusion molecule according to the present invention to such a tissue or by manipulating cells in the tissue to express and secrete the fusion molecule.
  • the induction of phagocytosis may not be accompanied by an inflammatory response. In that it does not induce an inflammatory response while removing the target substance, and can suppress tissue damage caused by the inflammatory response, it is possible to more safely treat the deterioration of tissue due to the accumulation of the target substance compared to the existing technology.
  • the fusion molecule may further include a tag.
  • a label When such a label is added to the fusion molecule, it can be used to purify the fusion molecule, or to check the expression, action or process of the fusion molecule.
  • the label is His-tag, T7-tag, S-tag, FLAG-tag, Strep-tag, Trx: thioredoxin-tag, His-patch thioredoxin-tag, lacZ (L-Galactosidase)-tag, chloramphenicol acetyltransferase-tag, trpE-tag, avidin/streptavidin/ Strep -tag, T7gene10-tag, staphylococcal Protein A (staphylococcal protein A)-tag, streptococcal protein G-tag, GST (glutathione- S -transferase)-tag, DHFR (dihydrofolate reductase)-tag, CBD's (cellulose binding domains)-tag , MBP (maltose binding protein)-tag, galactose-binding protein-tag, calmodulin binding protein (CBP: calmodulin binding protein)-tag, HAI (hemagglutin
  • the fusion molecule may further include a signal peptide (a signal peptide or leader sequence) at the N-terminus.
  • the signal peptide is a short peptide present at the N-terminus at the beginning of the synthesis of a protein directed toward the secretory pathway, and is known to specify the intracellular location of the protein, (in the case of a membrane protein), and the membrane topology. have.
  • the signal peptide may be cleaved while the fusion molecule is expressed and secreted out of the cell.
  • first region, second region, label, signal peptide, or region having minimal functionality included in the fusion molecule are directly linked to each other, It may be linked by a linker comprising a short oligopeptide or polypeptide.
  • the linker may comprise from 2 to 500 amino acid residues.
  • the linker is not particularly limited in length or type, as long as it is a linker capable of forming the fusion molecule by linking each of the aforementioned regions to have the intended activity.
  • a commonly used oligopeptide linker is (GGGGS)n, that is, a linker in which one or more Gly-Gly-Gly-Gly-Ser units are repeated.
  • Others GSSGGS)n, KESGSVSSEQLAQFRSLD, EGKSSGSGSESKST, GSAGSAAGSGEF, (EAAAK)n, CRRRRRREAEAC, A(EAAAK)4ALEA(EAAAK)4A, GGGGGGGG, GGTSGGGG, AEFPAAAKEAAAAKA, PAPAP, HRVQGGTRAD) , AGNRVRRSVG, RRRRRR, GFLG, or GSSGGSGSSGGSGGGDEADGSRGSQKAGVDE may also be used as the linker, but is not limited thereto.
  • nucleic acid molecule encoding the fusion molecule and an expression vector comprising the same.
  • one or more nucleic acid bases may be mutated by substitution, deletion, insertion, or a combination thereof, as long as it encodes a protein having the same activity.
  • the nucleic acid molecule sequence encoding the fusion molecule may be isolated from nature or may be artificially prepared through synthetic or genetic recombination methods.
  • the nucleic acid molecule sequence encoding the fusion molecule is provided by operatively linking it to an expression vector capable of expressing it.
  • the "expression vector” is a vector capable of expressing a target protein or target RNA by introducing a nucleic acid sequence encoding a target gene into a suitable host cell, and includes an essential regulatory element operably linked to express a gene insert. say the offering Such expression vectors include all vectors such as plasmid vectors, cosmid vectors, bacteriophage vectors, and viral vectors.
  • Suitable expression vectors have expression control elements such as promoters, start codons, stop codons, polyadenylation signals and enhancers.
  • the start codon and stop codon are generally considered to be part of a nucleic acid sequence that encodes a protein, and the protein coding sequence is constructed to be in frame to be operable in a vector. Promoters may be constitutive or inducible.
  • a conventional expression vector includes a selection marker. The operative linkage with the expression vector may be prepared using a genetic recombination technique well known in the art, and enzymes generally known in the art may be used for site-specific DNA cleavage and ligation.
  • the expression vector is preferably introduced into a cell for purification and isolation after expression of the fusion molecule in a host cell, or when injected in vivo, so that the cell can express and secrete the fusion molecule.
  • the vector may preferably be a non-integrating vector, that is, a vector that does not integrate into the genome of the host cell.
  • a cell expressing the fusion molecule As an aspect of the present invention, there is provided a cell expressing the fusion molecule.
  • the cell may be transformed to contain the nucleic acid molecule or an expression vector containing the same, and the "transformation” includes any method of introducing a nucleic acid molecule into an organism, cell, tissue or organ, and is known in the art. As described above, it can be carried out by selecting an appropriate standard technique according to the host cell. These methods include electroporation, protoplast fusion, calcium phosphate (CaPO 4 )) precipitation, calcium chloride (CaCl 2 ) precipitation, agitation with silicon carbide fibers, agrobacterium mediated transformation, PEG, dextran sulfate, lipo pectamine and drying/inhibition mediated transformation methods, and the like.
  • transformation includes any method of introducing a nucleic acid molecule into an organism, cell, tissue or organ, and is known in the art. As described above, it can be carried out by selecting an appropriate standard technique according to the host cell. These methods include electroporation, protoplast fusion, calcium phosphate (CaPO 4 )
  • the host cells include Escherichia coli, Bacillus subtilis, Streptomyces, Pseudomonas (eg, Pseudomonas putida), Proteus mummy.
  • prokaryotic host cells such as, but not limited to, Proteus mirabilis or Staphylococcus (eg, Staphylocus carnosus).
  • fungi such as Aspergillus, Pichia pastoris, Saccharomyces cerevisiae, Schizosaccharomyces, Neurospora crassa), other lower eukaryotic cells, or cells derived from higher eukaryotes including insect cells, plant cells, mammals and the like can be used as host cells.
  • a conventional biochemical separation technique for example, treatment with a protein precipitating agent (salting-out method), centrifugation, sonication, ultrafiltration, dialysis, molecular sieve chromatography (Gel filtration), adsorption chromatography, ion exchange chromatography, various chromatography such as affinity chromatography, etc. can be used, and are usually used in combination to separate high-purity proteins (Sambrook et al., Molecular). Cloning: A laborarory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press (1989); Deuscher, M., Guide to Protein Purification Methods Enzymology, Vol. 182. Academic Press. Inc., San Diego, CA (1990)).
  • a pharmaceutical composition for preventing or treating a disease caused by the accumulation of the target substance in a living tissue including the fusion molecule or the expression vector.
  • the composition may be locally administered where the causative agent of the disease, that is, the target substance is accumulated.
  • a method for preventing or treating proteinosis comprising administering to an individual a pharmaceutically effective amount of the fusion molecule.
  • the fusion molecule for the preparation of a medicament for the prevention or treatment of proteinosis.
  • the fusion molecule which is an active ingredient in the pharmaceutical composition, is included as a "pharmaceutically effective amount".
  • pharmaceutically effective amount means an amount sufficient to achieve the efficacy or activity of the fusion molecule described above.
  • the pharmaceutical composition may be administered orally or parenterally, preferably parenterally, more preferably topically to a tissue in which the target material to be removed has accumulated.
  • parenteral administration includes subcutaneous injection, intravenous, intramuscular, intrasternal injection or infusion techniques.
  • the pharmaceutical composition when formulated as an injection, it can be prepared according to a conventional injection preparation method known in the art.
  • the injection may be in a form dispersed in a sterile medium so that it can be used as it is when administered to a patient, or may be administered after dispersing it at an appropriate concentration by adding distilled water for injection during administration.
  • a diluent When the pharmaceutical composition is formulated for oral administration, one or more of a diluent, a lubricant, a binder, a disintegrant, a sweetener, a stabilizer, and a preservative may be selected and used as a carrier, and as an additive, a fragrance, vitamins, and antioxidants
  • a diluent When the pharmaceutical composition is formulated for oral administration, one or more of a diluent, a lubricant, a binder, a disintegrant, a sweetener, a stabilizer, and a preservative may be selected and used as a carrier, and as an additive, a fragrance, vitamins, and antioxidants
  • a fragrance As an additive, a fragrance, vitamins, and antioxidants
  • vitamins, and antioxidants One or more types can be selected and used from among the agents.
  • a suitable dosage of the pharmaceutical composition may be variously prescribed depending on factors such as formulation method, administration method, age, weight, sex, pathological condition, food, administration time, administration route, excretion rate, and response sensitivity of the patient. have.
  • the dosage of the pharmaceutical composition of the present invention is 0.0001-1000 ⁇ g/kg (body weight) based on an adult.
  • the present invention relates to a fusion molecule having phagocytosis-inducing activity, which can solve the problem of tissue damage caused by activation of an inflammatory reaction of the prior art, and thus abnormally accumulated substances, such as beta-amyloid, tau, alpha-synuclein , Huntingtin or prion and the like can be effectively removed to prevent or treat diseases caused by such accumulation, such as Alzheimer's disease, Parkinson's disease, Huntington's disease or prion disease.
  • Such a fusion molecule may be administered to a patient in the form of a purified fusion molecule or a gene therapy vector capable of expressing and secreting the fusion molecule upon introduction into cells.
  • FIG. 1 is a schematic diagram of a beta-amyloid and FITC chimeric phagocytic derivatives based on Gas6.
  • FIG. 3 is a schematic diagram showing the action of the chimeric phagocytic derivative prepared according to Preparation Example 1 on the TAM receptor.
  • FIG. 5 is a representative view confirming the beta-amyloid uptake ability of ⁇ A ⁇ -Gas6 in HMC3 cell line through in vitro beta-amyloid engulfment assay.
  • 11 is a result of comparative analysis of the level of pro-inflammatory cytokine secretion by ⁇ A ⁇ -Gas6 and aducanumab using THP-Axl cells.
  • Figure 14 is a result of confirming the ability to remove beta-amyloid of astrocytes greatly increased by ⁇ A ⁇ -Gas6.
  • 16 is a result confirming the transcription level of the pro-inflammatory cytokine of BV2 that is changed by ⁇ A ⁇ -Gas6 and aducanumab.
  • 17 is a result confirming the beta-amyloid plaque removal ability of ⁇ A ⁇ -Gas6 through administration of ⁇ A ⁇ -Gas6 protein in 5XFAD Alzheimer's disease model mice.
  • FIG. 21 is a result confirming that beta-amyloid contained in lysosomes is increased by being removed by microglia in 5XFAD Alzheimer's disease model mice when ⁇ A ⁇ -Gas6 virus is administered.
  • 25 is an experimental protocol for confirming cognitive and memory abilities in 5XFAD Alzheimer's disease model mice upon administration of ⁇ A ⁇ -Gas6 virus.
  • 26 is a result confirming that the cognitive and memory ability of the mouse is recovered superior to that of aducanumab in the 5XFAD Alzheimer's disease model mouse when the ⁇ A ⁇ -Gas6 virus is administered.
  • 29 is a result of confirming the beta-amyloid uptake ability of ⁇ A ⁇ -ProS1 in primary cultured astrocytes through in vitro beta-amyloid engulfment assay.
  • FIG. 31 is the result of confirming the beta-amyloid uptake ability of ⁇ A ⁇ (Mab)-Gas6 in HMC3 cell line by in vitro beta-amyloid engulfment assay, respectively.
  • beta-amyloid (A ⁇ )-specific chimeric phagocytic derivative based on Gas6 protein first, the Gla domain, a site that recognizes PS (phosphatidylserine) of apoptotic cells, is removed, and the beta-amyloid-specific antibody is placed there.
  • a single-chain variable fragment (scFv) of aducanumab was introduced [ ⁇ A ⁇ -Gas6(E)].
  • Table 2 shows the amino acid sequences involved in the preparation of the fusion molecule
  • Table 3 shows the nucleotide sequences involved in the preparation of the fusion molecule (the underlined sequence is the Flag tag).
  • ⁇ FITC-Gas6(E) FLAG tag, Gla delete, G-/-) MAPSLSPGPAALRRAPQLLLLAAECALAQVQLVESGGNLVQPGGSLRLSCAASGFTFGSFSMSWVRQAPGGGLEWVAGLSARSSLTHYADSVKGRFTISRDNAKNSVYLQMNSLRVEDTAVYYCARRSYDSSGYWGHFYSYMDVWGQGTLVTVSGGGGSGGGGSGGGGSSVLTQPSSVSAAPGQKVTISCSGSTSNIGNNYVSWYQQHPGKAPKLMIYDVSKRPSGVPDRFSGSKSGNSASLDISGLQSEDEADYYCAAWDDSLSEFLFGTGTKLTVLGGGGGSGGGGSCINKYGSPYTKNSGFATCVQNLPDQCTPNPCDRKGTQACQDLMGNFFCLCKAGW DYKDHDIDYKDDDDK * 3.
  • ⁇ FITC-Gas6 FLAG tag, Gla EGF delete, GE-/-
  • ⁇ A ⁇ -Gas6 (HA tag, Gla EGF delete, GE-/-) MAPSLSPGPAALRRAPQLLLLLLAAECALADIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRGGGGSGGGGSGGGGSEVQLVESGGGVVQPGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWFDGTKKYYTDSVKGRFTISRDNSKNTLYLQMNTLRAEDTAVYYCARDRGIGARRGPYYMDVWGKGTTVTVSSGGGGSGGSDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLF AGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDA
  • ⁇ FITC-Gas6(E) FLAG tag, Gla delete, G-/-
  • the Gla domain and the EGF repeat domain are first removed, and the single-chain variable fragment (scFv) of the tau-specific antibody, semorinemab, is placed there. ) was introduced ( ⁇ Tau-Gas6).
  • scFv single-chain variable fragment of the tau-specific antibody
  • semorinemab semorinemab
  • beta-amyloid (A ⁇ )-specific chimeric phagocytic derivative based on ProS1 protein
  • Gla domain and the EGF repeat domain were first removed, and the beta-amyloid-specific antibody, aducanumab, single-chain Fv fragment ( single-chain variable fragment; scFv) was introduced ( ⁇ A ⁇ -ProS1).
  • the amino acid sequence and nucleotide sequence of the chimeric phagocytic derivative are shown in Table 6.
  • Gas6 protein-based beta-amyloid (A ⁇ )-specific chimeric phagocytic derivatives were prepared by removing the Gla domain, a site that recognizes PS (phosphatidylserine) in apoptotic cells, and replacing the beta-amyloid-specific antibody
  • An antigen-binding fragment (Fab) or monoclonal antibody (Mab) of aducanumab was introduced ( ⁇ A ⁇ [Fab]-Gas6, ⁇ A ⁇ [Mab]-Gas6).
  • Fab antigen-binding fragment
  • Mob monoclonal antibody
  • the amino acid sequences and nucleotide sequences of the two chimeric phagocytic derivatives are shown in Tables 7 and 8.
  • each plasmid was secreted from the transfected HEK293 cells.
  • the cell culture medium was collected and tested using beta-amyloid oligomer and FITC-attached beads. As a result, as shown in FIG.
  • ⁇ A ⁇ -Gas6 of Tyro3, Mertk, and Axl mainly removes beta-amyloid oligomers through Axl through an experiment in which an antibody that interferes with the function of TAM receptors is treated ( FIGS. 7 to 9 ).
  • Axl was removed from HMC3 cells, the activity of ⁇ A ⁇ -Gas6 was greatly reduced.
  • THP-1 a human monocyte cell line that does not express TAM receptors, did not increase the ability to remove beta-amyloid by ⁇ A ⁇ -Gas6. It was confirmed that the ability to take (fibril) significantly increased.
  • THP-Axl cells overexpressing Axl have both Axl and Fc receptors, the degree of inflammatory response induced when beta-amyloid is ingested through ⁇ A ⁇ -Gas6 and aducanumab was confirmed.
  • the NF-kB reporter was expressed in THP-Axl cells, and when the controls, ⁇ A ⁇ -Gas6 and aducanumab were put together with the beta-amyloid oligomer, respectively, when the NF-kB reporter was added with aducanumab, Although significantly increased, ⁇ A ⁇ -Gas6 was confirmed to be expressed at or below the control level ( FIG. 10 ).
  • ⁇ A ⁇ -Gas6 increased the expression of the Twist1/2 gene, which is known as a mechanism for suppressing the inflammatory response, unlike aducanumab ( FIG. 12 ).
  • astrocytes and microglia cells that express TAM receptors in the brain, can remove beta-amyloid through ⁇ A ⁇ -Gas6, primary astrocytes and microglia obtained from mouse brain ( microglia) were each purified and then cultured. Then, purified ⁇ A ⁇ -Gas6 and aducanumab were added together with beta-amyloid fibrils to observe the degree of beta-amyloid fibril removal in real time.
  • ⁇ A ⁇ -Gas6 increased the beta-amyloid removal ability of microglia in a concentration-dependent manner, similar to the results obtained in HMC3, a cell line expressing Axl (FIG. 13).
  • the beta-amyloid removal ability of astrocytes did not change at all, but in the case of ⁇ A ⁇ -Gas6, it was confirmed that the beta-amyloid removal ability of astrocytes was significantly increased in a concentration-dependent manner ( Fig. 14). This means that because astrocytes do not express Fc receptors while expressing TAM receptors, the previously insignificant beta-amyloid removal ability due to ⁇ A ⁇ -Gas6 is greatly improved.
  • BV2 cells which are astrocytes and microglia cell lines, respectively
  • TNF, IL-1a, and IL-1b mRNA levels were measured ( FIGS. 15 and 16 ).
  • the transcripts and proteins of the above inflammatory cytokines were significantly increased in astrocytes and BV2 cells compared to the control, but in ⁇ A ⁇ -Gas6, these inflammatory cytokines It was confirmed that the amount of Cain did not increase compared to the control group.
  • ⁇ A ⁇ -Gas6 fusion phagocytic derivatives effectively removes beta-amyloid plaques accumulated in the patient's brain through astrocytes and microglia without accompanying inflammatory reaction, which is a serious side effect of existing monoclonal antibody therapeutics. It was found that it can be a technological method, which is judged to be a very encouraging result that can greatly improve the current treatment strategy.
  • 5XFAD was used as Alzheimer's disease model mice. Since 5XFAD simultaneously expresses 5 genes with mutations, beta-amyloid plaques are formed quickly, and pathological symptoms caused by beta-amyloid plaques can be studied from 3 to 4 months of age regardless of aging.
  • ⁇ A ⁇ -Gas6 was delivered to the brain in two different ways. It is known through previous studies that aducanumab is not well delivered to the brain by intraperitoneal injection or intravascular injection even in Alzheimer's disease model mice. Therefore, in order to accurately compare and analyze the effect of ⁇ A ⁇ -Gas6 with aducanumab, 1) direct cannulation surgery was performed in the mouse brain, and purified ⁇ A ⁇ -Gas6 and aducanumab were administered to the brain once a day, respectively.
  • ⁇ A ⁇ -Gas6 and aducanumab were each made in lentiviral form and expressed through stereotaxic injection into the hippocampus of mice.
  • ⁇ A ⁇ -Gas6 purified protein was added or the gene was expressed in the form of a lentivirus, it was found that the number of beta-amyloid plaques was significantly reduced ( FIGS. 17 and 18 ).
  • TAM receptors are expressed in both microglia and astrocytes, microglia and astrocytes can recognize and remove beta-amyloid upon introduction of ⁇ A ⁇ -Gas6.
  • ⁇ A ⁇ -Gas6 was significantly superior to that of aducanumab when the cognitive and memory test for memorizing the shape or location of a new object in Alzheimer's model mice was performed according to the protocol of FIG. was seen (Fig. 26).
  • phagocytic proteins specific for tau Tau
  • alpha-synuclein ⁇ Syn
  • in vitro tau engulfment assay was developed so that tau oligomers can be conjugated with a pH indicator to emit red fluorescence in intracellular lysosomes when they are uptaken by phagocytosis.
  • In vitro tau engulfment assay was performed by treating HMC3 cells, a human microglia cell line expressing TAM receptors, with a culture medium expressing the phagocytic protein [ ⁇ Tau-Gas6] according to Preparation Example 2, and as a result, tau oligomer as shown in FIG. 27 . It was confirmed that is selectively removed by ⁇ Tau-Gas6.
  • ⁇ A ⁇ -ProS1 was prepared as in Preparation Example 4 using the ProS1 ligand, and the efficacy was evaluated. evaluated.
  • the in vitro A ⁇ engulfment assay used in Experimental Example 1-3 was performed by treating the culture medium expressing ⁇ A ⁇ -ProS1 in primary cultured mouse astrocytes expressing TAM receptors. As a result, as shown in FIG. 29, beta-amyloid oligomer was selectively removed by ⁇ A ⁇ -ProS1.
  • an antigen-binding fragment or a complete monoclonal antibody (A monoclonal antibody; Mab) was used to prepare a phagocytic protein prepared according to Preparation Example 5 ( ⁇ A ⁇ [Fab]-Gas6 and ⁇ A ⁇ [Mab]-Gas6).
  • the in vitro A ⁇ engulfment assay used in Experimental Example 1-3 was performed by treating HMC3 cells, a human microglia cell line expressing TAM receptors, with a culture medium expressing ⁇ A ⁇ [Fab]-Gas6 and ⁇ A ⁇ [Mab]-Gas6. , As a result, as shown in FIGS. 30 and 31 , it was confirmed that the beta-amyloid oligomer was selectively removed by ⁇ A ⁇ [Fab]-Gas6 and ⁇ A ⁇ [Mab]-Gas6, respectively.
  • the fusion molecule having phagocytosis-inducing activity can solve the tissue damage problem caused by the activation of the inflammatory reaction of the prior art, and thus abnormally accumulated substances, such as beta-amyloid, tau, alpha-synu
  • abnormally accumulated substances such as beta-amyloid, tau, alpha-synu
  • it can be used for the prevention or treatment of diseases caused by such accumulation, such as Alzheimer's disease, Parkinson's disease, Huntington's disease or prion disease, and can be used in the treatment industry for these diseases have.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Psychology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 식세포작용 유도 활성을 갖는 융합분자에 관련된 것으로서, 종래기술이 갖는 염증반응 활성화에 따른 조직 손상 문제를 해결할 수 있으며, 이에 따라 축적된 이상 단백질, 예컨대 베타-아밀로이드, 타우, 알파-시누클린, 헌팅틴 또는 프라이온 등을 효과적으로 제거하여, 이러한 물질의 이상 축적에 의해 일어나는 단백질증 등의 예방 또는 치료용도로 활용이 가능하다.

Description

비염증성 식세포작용 유도 활성을 갖는 융합분자
본 발명은 비염증성 식세포작용 유도 활성을 갖는 융합분자에 관련된 것으로서, 이의 단백질증 등 물질의 이상 축적에 의해 일어나는 질환의 예방 또는 치료용도로 활용가능성을 제시한다.
많은 퇴행성 질환은 특정 단백질의 비정상적인 접힘(folding), 폴리머화(polymerization) 및 축적을 특징으로 한다. 이러한 단백질증(proteopathy)에는 여러 종류의 아밀로이드증(amyloidosis)이 포함된다.
아밀로이드증(amyloidosis)은 아밀로이드로 불리는 비정상적인 단백질이 조직에 축적되어 나타나는 질환이다. 아밀로이드는 7-13 nm의 직경 및 베타 시트(β-sheet) 구조를 가지고 현미경 하에서 보면 섬유성 형태로 나타나는 단백질 덩어리로, Thioflavin T (ThioT) 및 콩고 레드(congo red)에 의해 염색되는 특징을 가지고 있다. 아밀로이드는 정상적인 체내에서 발견되지 않으며, 현재까지 36가지 단백질이 이를 형성할 수 있음이 보고되어 있다 (Picken, Acta Haematol.(2020), 143:322-334). 대표적인 아밀로이드증에는 알츠하이머 병(Alzheimer's disease), 파킨슨 병(Parkinson's disease), 헌팅턴 병(Huntington disease) 및 프라이온 병(prion disease)등의 신경질환이 포함되며, 그 외에도 원인 단백질과 영향받은 장기에 따라 다양한 양상을 가지는 다수의 아밀로이드증이 존재한다.
알츠하이머 병은 치매의 가장 큰 원인이며 학습과 기억 장애를 동반하는 치명적인 질환이다. 2050년에는 세계 인구 중 1억 3천만 명이 알츠하이머 병을 앓게 될 것으로 예측되고 있으며, 이미 65세 이상 인구 중에서는 9명당 1명이 알츠하이머 병으로 진단받고 있다.
알츠하이머 병은 아밀로이드 전구단백질(Amyloid precursor protein; APP)이 비정상적으로 분해되어 생기는 베타-아밀로이드(Aβ) 단백질이 뇌 세포막 바깥에 침착되어 쌓이는 특이점을 보이며, 이와 동반되어 미세소관(microtubule)에 결합하는 타우(tau) 단백질의 과인산화에 따른 비정상적인 결합을 나타낸다.
이 중, 베타-아밀로이드가 뭉쳐서 생기는 올리고머(oligomer)와 피브릴(fibril)은 다양한 경로를 통해 시냅스(synapse) 기능 저하 및 세포 독성을 일으키며, 뇌에서 면역을 담당하는 별아교세포(astrocyte) 및 미세아교세포(microglia)의 기능 변화를 통해 다시 신경 세포에 악영향을 끼치는 악순환이 이루어진다는 것이 최근 보고되고 있다.
현재까지의 FDA 승인된 알츠하이머 병 치료제는 아세틸콜린(Acetylcholine) 분해를 억제하거나 NMDA 수용체의 활성을 억제하는 약물들이며, 이들은 병의 근본 치료가 아니라 증상의 일시적인 완화만을 목표로 한다. 따라서 아직까지 알츠하이머 병을 근본적으로 치료할 수 있는 방법은 존재하지 않으며 이에 따라 인구 고령화 시대에 있어서 환자 치료 및 케어에 가장 고비용이 드는 질환으로 알려져 있다.
알츠하이머 병의 근본적인 치료를 위해 현재까지 수십 년 동안 베타-아밀로이드의 생성 억제 및 제거에 중점을 두고 약 개발이 이루어지고 있다. 하지만 안타깝게도 대부분의 베타-아밀로이드의 생성 억제 및 제거를 위해 개발된 알츠하이머 치료 약물들이 임상 단계에서 효과를 보이지 못해 실패하였다. 한 예로, 베타-아밀로이드 감소를 위한 BACE 저해제의 경우 인지기능저하가 발생한 알츠하이머 환자에서는 이미 베타-아밀로이드 플라크가 축적되고 신경세포사멸이 이루어지고 있어 추가적인 생성을 방해하는 전략이 크게 효과가 없다.
최근 베타-아밀로이드 올리고머와 피브릴에 특이적으로 결합하는 단일 클론 항체가 알츠하이머 병 환자에서 베타-아밀로이드 제거를 유도하고 인지기능을 회복시켰다는 연구결과가 보고되면서, 베타-아밀로이드 항체를 통한 알츠하이머 병 치료 전략이 새로운 희망으로 급부상하였다.
현재까지 제안된 베타-아밀로이드 단일 클론 항체의 작용 기전으로는 베타-아밀로이드 항체가 베타-아밀로이드 올리고머와 피브릴에 결합하여 이들의 응집을 막거나, 또는 미세아교세포가 단일 클론 항체를 인식하는 Fc 수용체를 통해 베타-아밀로이드의 식세포작용(phagocytosis)을 일으키는 것 등이 있다.
하지만 이 같은 알츠하이머 병 치료제 개발의 진전에도 불구하고 베타-아밀로이드 단일 클론 항체를 이용한 현 면역요법은, 항체 처리 환자의 55%에서 심한 이데마(edema)를 수반하는 ARIA(Amyloid-Related-Imaging-Abnormalities) 현상을 보이고 있으며, 실제 이 때문에 35% 정도의 ARIA 환자는 임상 실험 중도 제외되었다. ARIA 현상은 베타-아밀로이드 단일 클론 항체가 Fc 수용체 자극시 필연적으로 활성화되는 염증 반응에 의한 시냅스 및 세포 독성에 따른 것으로 알려져 있다.
뇌에 존재하는 시냅스들과 신경세포들은 염증성 사이토카인에 민감하게 반응하므로 베타-아밀로이드 단일 클론 항체를 이용한 치료는 결국 베타-아밀로이드가 어느 정도 제거되더라도 동시에 신경세포 및 시냅스의 손상을 일으킬 수밖에 없는 태생적인 문제점을 가지고 있다. 또한, 단일 클론 항체와 더불어 Alector와 Denali 등의 기업들은 미세아교세포의 면역학적 기전을 조절하는 TREM2와 같은 타겟을 활성화시켜 미세아교세포의 베타-아밀로이드 제거능력을 향상시키려는 전략을 제시하여 크게 조명을 받고 있다. 하지만, 이 역시 미세아교세포가 과하게 활성화될 경우, 전반적인 식세포작용 능력의 증가로 인한 시냅스 손상이 예상된다.
따라서, 앞으로 알츠하이머병의 치료에 있어 중요한 과제는 염증 반응과 시냅스 손상을 일으키지 않으면서 베타-아밀로이드 올리고머와 피브릴만을 선택적으로 제거할 수 있는 방법을 개발하는 것이며, 이러한 약물은 알츠하이머 병 치료에 획기적인 기여를 할 수 있을 것으로 예상된다.
더 나아가, 위와 같이 염증 반응과 이에 따른 추가적인 조직 손상을 일으키지 않으면서 목표로 하는 이상 축적 물질, 예컨대 단백질증의 원인이 되는 이상 축적 단백질만을 선택적으로 제거할 수 있는 방법을 넓게 적용하여 타우 (Tau)나 알파-시누클린(α-Synuclein) 및 헌팅틴(Huntingtin) 등 이상 축적된 단백질을 선택적으로 제거할 수 있는 방법을 개발할 수 있을 것이다. 이러한 약물은 헌팅턴병 등의 신경질환뿐 아니라, 특정 물질의 이상 축적과 관련된 질환 전반의 치료에 획기적인 기여를 할 수 있을 것으로 예상된다.
본 발명은 식세포작용 유도 활성을 갖는 융합분자에 관련된 것으로서, 이의 표적 물질의 이상 축적에 의한 질병의 예방 또는 치료용도로 활용가능성을 제시하는 것에 그 목적이 있다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업계 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양태는 TAM 수용체 결합능을 갖는 제1영역; 및 표적 물질에 특이적으로 결합하는 제2영역을 포함하는, 식세포작용 유도 활성을 갖는 융합분자를 제공한다.
여기서, 상기 TAM 수용체는 구체적으로 Tyro3, Axl 및 MerTK로 이루어진 군에서 선택된 하나 이상일 수 있고, 이들은 라미닌 G-유사 도메인(laminin G-like domain, 또는 LG domain)과 결합하여 식세포작용(phagocytosis)을 유도할 수 있다.
상기 제1영역은 Gas6, ProS1, Tubby, Tulp1, Gal3 또는 이들의 활성 단편을 포함하는 것일 수 있는데, 이들 고유의 TAM 수용체와의 상호작용을 통한 식세포작용(phagocytosis) 유도능이 보존된 형태의 단백질이라면 그 형태나 범위에 있어 특별히 제한되는 것은 아니다. 상기 제1영역은 바람직하게 Gas6, ProS1 또는 이들의 활성 단편 중에서 선택되는 것일 수 있다.
보다 구체적으로, 상기 제1영역은 Gas6 또는 ProS1의 라미닌 G-유사 도메인, 또는 이의 활성 단편을 포함하는 것일 수 있고, 이들은 다양한 조직에서 강하게 발현되는 식세포작용 관련 결합 분자(bridging molecule)로서 라미닌 G-유사 도메인을 포함하고 있어 TAM 수용체를 통해 식세포작용을 유도할 수 있다.
상기 라미닌 G-유사 도메인은 구체적으로 LG1 도메인, LG2 도메인 또는 이들의 조합을 포함하는 것일 수 있고, 바람직하게는 LG1 도메인과 LG2 도메인을 모두 포함하는 것일 수 있는데, 이들은 상기 TAM 수용체와 결합하여 식세포작용(phagocytosis)을 유도할 수 있다.
상기 제1영역은 서열번호 1 및 서열번호 2 중 하나 이상; 또는 서열번호 3 및 서열번호 4 중 하나 이상;의 서열을 포함하는 펩타이드인 것일 수 있다. 바람직하게, 상기 제1영역은 서열번호 1 및 서열번호 2의 서열을 모두 포함하는 서열; 또는 서열번호 3 및 서열번호 4를 모두 포함하는 서열; 중 어느 하나를 포함하는 펩타이드인 것일 수 있으며, 더욱 바람직하게 서열번호 5 또는 서열번호 6의 서열을 포함하는 펩타이드인 것일 수 있다. 상기 서열번호의 서열을 포함하는 펩타이드는 상기 아미노산 서열뿐만 아니라 아미노산 서열 변이체도 포함한다. 상기 서열 변이체란, 아미노산 서열과 하나 이상의 아미노산 잔기가 상이한 서열을 가지는 단백질을 의미하고, 상기 융합분자의 활성을 유지하는 한, 단백질의 최종 구조물에서 어떤 절단, 결실, 삽입, 치환 등과 이들의 조합도 가능하다. 서열 변이체의 한 예는, 활성에 필수적이지 않은 부위의 아미노산 잔기를 절단 또는 결실한 형태이거나, 자가억제에 중요한 부위의 아미노산 잔기 치환시킨 형태이다. 또한 경우에 따라서는, 인산화(phosphorylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation) 등으로 수식(modification)될 수도 있다. 이러한 서열의 변이와 수식을 통하여, 아미노산 서열상의 변이에 의해 단백질의 기능 및/또는 안정성 (열 안정성, pH 안정성, 구조 안정성 등) 및/또는 용해도가 증가될 경우 더욱 바람직하다.
상기 아미노산 서열에서 변이를 유발하는 방법은 단백질을 코딩하는 뉴클레오티드 서열을 변이시킴으로써 변경하고자 하는 아미노산 서열에 해당하는 뉴클레오티드 서열을 포함하는 핵산 분자를 갖도록 제조하는 방법을 이용하는 것으로, 이를 코딩하는 유전자를 획득하는 방법은 당 분야에서 잘 알려져 있는 모든 돌연변이 기술을 사용하여 생체 내 또는 실험관 내에서 돌연변이될 수 있다. 예컨대, 사이트-다이렉트 돌연변이(site-directed mutagenesis) (Hutchinson et al., J. Biol. Chem., 253:6551, 1978; Zoller and Smith, DNA, 3:479-488, 1984; Oliphant et al., Gene, 44:177, 1986; Hutchinson et al., Proc. Natl. Acad. Sci. U.S.A., 83:710, 1986), TAB 링커(Pharmacia), PCR 기술(Higuchi, 1989, "Using PCR to Engineer DNA" in PCR Technology: Principles and Applications for DNA Amplification, H. Erlich, ed., Stockton Press, Chapter 6, pp. 61-70) 등이 사용될 수 있다.
또한, 상기 제1영역이 Gas6 또는 ProS1의 라미닌 G-유사 도메인(laminin G-like domain), 또는 이의 활성 단편을 포함하는 경우, 상기 제1영역은 Gla 도메인을 포함하지 않을 수 있는데, 이는 제1영역이 PS(phosphatidylserine)을 인지하지 않도록 하되, 제2영역이 표적 물질을 인지하여 식세포작용을 유도하고자 하는 목적일 수 있다.
또한, 상기 제1영역이 Gas6 또는 ProS1의 라미닌 G-유사 도메인(laminin G-like domain), 또는 이의 활성 단편을 포함하는 경우, 상기 제1영역은 Gla 도메인 및 EGF 도메인을 모두 포함하지 않을 수 있는데, 이는 전술한 Gla 도메인을 포함하지 않음으로써 얻을 수 있는 기술적 효과와 더불어, 상기 융합분자의 정제과정에서 응집(aggregation)현상을 억제하여 수율을 증대시키기 위한 목적일 수 있다.
상기 표적 물질은 생체 조직에 축적되어 질병을 일으키는 물질일 수 있다. 예컨대, 환자의 영향받은(affected), 즉 병든(diseased) 조직에 축적되어 있는 것일 수 있다. 상기 질병에 있어 축적되는 물질은 단백질, 즉 상기 질병은 단백질증일 수 있으나, 이에 제한되지 않는다. 예컨대, 상기 표적 물질은 아밀로이드이고, 즉, 상기 단백질증은 아밀로이드증일 수 있다. 상기 표적 물질은 하기 표1의 이상 축적 물질 중에서 선택되는 것일 수 있고, 이때 상기 질병은 각 이상 축적 물질이 검출되는 질병일 수 있다. 예컨대, 상기 단백질증은 알츠하이머병, 파킨슨병, 헌팅턴병 및 프라이온 병 중에서 선택되는 것일 수 있고, 이때, 상기 표적 물질은 해당 질환의 원인이 되는 이상 축적된 단백질일 수 있으며, 즉, 각각(respectively) 베타-아밀로이드(β-Amyloid), 타우(Tau), 알파-시누클린(α-Synuclein), 헌팅틴(Huntingtin), 프라이온(prion) 단백질일 수 있다.
이상 축적 물질 약자 질병
Amyloid precursor protein 유래의 β-Amyloid 알츠하이머병, 아밀로이드증 동반 유전성 뇌출혈(Heteditary cerebral haemorrhage with amyloidosis) 등
α-Synuclein AαSyn 파킨슨병, 파킨슨성 치매, 루이바디 치매(Dementia with Lewy bodies), 다계통 위축증(Multiple System Atrophy) 등
PrPSc APrP 전파성 해면양뇌증(Transmissible Spongiform Encephalopathy; Fatal familial insomnia, Gerstmann-Straussler-Scheinker disease, Creutzfeldt-Jacob disease, New variant Creutzfeldt-Jacob disease 등) 등
미세소관관련단백질 타우 (Microtubule=associated protein tau) ATau 각종 타우병증(Tauopathies; Pick's disease, Progressive supranuclear palsy, Corticobasal degeneration, Frontotemporal dementia with parkinsonism linked to chromosome 17, Argyrophilic grain disease 등), 알츠하이머병, 파킨슨병 등
Huntingtin exon 1 (없음) 헌팅턴병 등
TAR DNA-binding protein 43 (TDP43) (없음) 전두엽성 치매(Frontotemporal Dementia), 근위축성 측삭경화증(amyotrophic lateral sclerosis, ALS) 등
Superoxide dismutase 1 (SOD1) (없음) 근위축성 측삭경화증(amyotrophic lateral sclerosis, ALS) 등
ABri 펩타이드 ABri 가족성 영국형 치매(Familial British dementia)
ADan 펩타이드 ADan 가족성 덴마크형 치매(Familial Danish dementia)
이뮤노글로뷸린 경쇄 단편 AL 경쇄 아밀로이드증(Light chain amyloidosis)
이뮤노글로뷸린 중쇄 단편 AH 중쇄 아밀로이드증(Heavy chain amyloidosis)
혈장 아밀로이드 A (Serum amyloid A) 단백질의 N말단 전체 단편 AA AA 아밀로이드증(AA 아밀로이드증)
트렌스티레틴(Transthyretin) ATTR 노인전신성아밀로이드증(Senile systemic amyloidosis), Familial amyloid polyneuropathy, Familial amyloid cardiomyopathy, Leptomeningeal amyloidosis
베타-2 마이크로글로뷸린(β-2 Microglobulin) Aβ2M 투석관련 아밀로이드증(Dialysis related amyloidosis), 유전성 내장 아밀로이드증(Hereditary visceral amyloidosis)
아포지질단백질 AI(Apolipoprotein AI)의 N말단 단편 AApoAI ApoAI 아밀로이드증
C말단이 연장된 아포지질단백질 AII AApoAII ApoAII 아밀로이드증
아포지질단백질 AIV의 N말단 단편 AApoAIV ApoAIV 아밀로이드증
아포지질단백질 C-II AApoCII ApoCII 아밀로이드증
아포지질단백질 C-III AApoCIII ApoCIII 아밀로이드증
겔솔린(Gelsoliin) 단편 AGel 핀란드형(Finnish type) 가족성 아밀로이드증
라이소자임(Lysozyme) ALys 유전성 비신경성 전신 아밀로이드증(Hereditary non-neuropathic systemic amyloidosis)
피브리노겐 α쇄(Fibrinogen alpha chain) 단편 AFib 피브리노겐 아밀로이드증(Fibrinogen amyloidosis)
N말단이 절단된 시스태틴 C (Cystatin C) ACys 아이슬란드형(Icelandic type) 아밀로이드증 동반 유전성 뇌출혈
아밀린(Amylin, IAPP) AIAPP 2형 당뇨(Diabetes mellitus type 2), 인슐린종(Insulinoma)
칼시토닌(Calcitonin) ACal 갑상선수질암(Medullary carcinoma of the thyroid)
심방나트륨이뇨인자(Atrial natriuretic factor) AANF 심장 부정맥(Cardiac arrhythmias), 격리심방 아밀로이드증(Isolated atrial amyloidosis)
프롤락틴(Prolactin) APro 뇌하수체 프롤락틴선종(Pituitary Prolactinoma)
인슐린(Insulin) AIns 주입 국소성 아밀로이드증(Injection-localized amyloidosis)
락타드헤린(Lactadherin 또는 Medin) AMed 대동맥중합병증(Aortic medial amyloidosis)
락토트랜스페린(Lactotransferrin 또는 Lactoferrin) ALac 젤라틴드롭형 각막이상증(Gelatinous drop-like corneal dystrophy)
ODAM(Odontogenic ameloblast-associated protein) AOAAP 치원성석회화상피종(Calcifying epithelial odontogenic tumors)
SP-C(Pulmonary surfactant-associated protein C) ASPC 폐포 단백증(Pulmonary alveolar proteinosis)
LECT-2(Leukocyte cell-derived chemotaxin-2) ALECT2 신장 LECT2 아밀로이드증(Renal LECT2 amyloidosis)
갈렉틴-7(Galectin-7) Agal7 태선양 아밀로이드증(Lichen amyloidosis), 황반 아밀로이드증(Macular amyloidosis)
코네오데스모신(Corneodesmosin) ACor 두부 단순 감모증(Hypotrichosis simplex of the scalp)
TGFBI (또는 Keratoepithelin)의 C말단 단편 AKer 과립형각막이상증(Lattice corneal dystrophy; type I, 3A 또는 Avellino가 있음)
SGI(Semenogelin-1) ASem1 정낭 아밀로이드증(Seminal vesicle amyloidosis)
S100 단백질(A8 또는 A9) (없음) 전립선암(Prostate cancer)
엔푸비르타이드(Enfuvirtide) AEnf 주입 국소성 아밀로이드증(Injection-localized amyloidosis)
상기 표적 물질에 특이적으로 결합하는 제2영역은 상기 표적 물질에 특이적으로 결합하는 항체, 이의 활성 단편, 항체 유사 단백질, 펩타이드, 압타머 및 가용성 수용체 중에서 선택되는 것일 수 있으나, 해당 표적 물질에 특이적으로 결합할 수 있는 형태의 것이라면 특별한 제한은 없다.
여기서 항체 또는 이의 활성 단편은, 예컨대 i) IgG1, IgG2, IgG3 및 IgG4 중에서 선택된 면역글로불린; ii) Fv, Fab, Fab’, F(ab’)2, VHH, VNAR 등과 같은 천연(native) 항체 단편; iii) scFv, dsFv, ds-scFv, (scFv)2, 디아바디(diabody), 트리아바디(triabody), 테트라바디(tetrabody), 펜타바디(pentabody) 등과 같은 엔지니어링된 항체; 중에서 선택된 것일 수 있다. 상기 항체 또는 이의 활성 단편은, 예컨대 해당 표적 물질에 대해 특이적으로 결합하는 항체 또는 항체로부터 유래한 6개의 상보성 결정 영역(complementarity-determining regions, CDRs)에 기반한 Mab, Fab 또는 이의 단일사슬 Fv 단편(scFv)일 수 있다. 즉, 상기 표적 물질에 특이적으로 결합하는 단백질 또는 이의 활성 단편은 해당 표적 물질에 특이적으로 결합하는 활성에 필수적인 부분을 포함하는 것으로서, 상기 제1영역과 연결되어, 염증반응을 수반하지 않으면서 시냅스 손상을 일으키지 않는 효과를 나타내는 것이라면 그 형태나 범위에 있어 특별히 제한되는 것은 아니다. 예컨대, 상기 표적 물질은 베타-아밀로이드일 수 있고, 이때 상기 표적 물질에 특이적으로 결합하는 단백질 또는 이의 활성 단편에 있어 아두카누맙(aducanumab) 또는 이의 단일사슬 Fv 단편을 포함하는 것일 수 있다. 상기 제2영역은 아두카누맙(aducanumab), 세모리네맙(semorinemab) 및 신파네맙(cinpanemab)으로 이루어진 군에서 선택된 어느 하나로부터 유래한 6개 상보성 결정 영역(CDR)에 기반한 Mab, Fab, 또는 단일사슬 Fv 단편을 포함하는 것일 수 있다.
상기 항체 또는 이의 활성 단편은 Fc 영역을 포함하지 않는 것일 수 있으며, 바람직하게 Fc 수용체(특히 Fcγ 수용체)에 결합하지 않는 Fc 영역 변이체를 포함할 수 있다. 이러한 Fc 영역 변이체는 정제 등 물성을 향상시키기 위한 것으로 포함될 수 있다.
상기 항체 유사 단백질(antibody-like protein)은 항체와 같이 표적 물질에 특이적으로 결합할 수 있는 단백질 스캐폴드(scaffold)를 말한다. 항체 유사 단백질은 평균 150 kDa정도인 항체에 비해 2-20 kDa으로 크기가 작아 항체가 닿을 수 없는 결합 부위를 표적으로 할 수 있게 설계될 수 있다. 항체보다 고온에서 안정적이며, 바이러스, 효모 등 비 포유류 세포를 이용한 합성, 화학적 합성이 훨씬 용이한 것으로 알려져 있다.
본 발명에서, 압타머란 특정 물질에 대해 높은 특이성과 친화도를 가지는 단일가닥 DNA(ssDNA) 또는 RNA를 말한다. 압타머는 특정 물질에 대한 친화도가 매우 높고 안정하고, 비교적 단순한 방법으로 합성할 수 있으며, 결합력을 높이기 위해 다양한 변형이 가능하고, 세포, 단백질, 및 작은 유기물질까지도 표적물질이 될 수 있기 때문에, 그 특이성 및 안정성이 이미 개발되어 있는 항체에 비해 매우 높은 특징이 있다. 또한 압타머의 제조방법은 공지된 SELEX (Systematic Evolution of Ligands by Exponential enrichment) 방법을 통해 제조될 수 있다. 이러한 압타머는 예컨대, 베타 아밀로이드, 타우, 알파-시누클레인에 특이적으로 결합하는 압타머를 공지된 SELEX (Systematic Evolution of Ligands by Exponential enrichment) 방법을 통해 제조한 후 상기 제1영역과 연결할 수 있으며, 이를 통해 본 발명에 따른 융합분자를 생성할 수 있다.
본 발명의 압타머는 베타 아밀로이드, 타우, 알파-시누클레인에 특이적으로 결합할 수 있는 것이라면 제한되지 않으며, 압타머에 사용되는 염기는 특별한 언급이 없는 한, A, G, C, U 이들의 deoxy 형태의 염기들로 이루어진 군에서 선택된 것일 수 있다.
또한, 상기 압타머는, 안정성 증진을 위하여, 5' 말단 부위, 중간 부위, 3' 말단 부위, 또는 양 말단 부위에 폴리에틸렌글리콜(polyethylene glycol, PEG), idT(inverted deoxythymidine), LNA(Locked Nucleic Acid), 2'-메톡시 뉴클레오사이드, 2'-아미노 뉴클레오사이드, 2'F-뉴클레오사이드, 아민 링커, 티올 링커 및 콜레스테롤로 이루어진 군에서 선택된 하나 이상의 것이 결합되어 변형된 것일 수 있다. idT(inverted deoxythymidine)는 일반적으로 뉴클레아제에 대한 내성이 약한 압타머의 뉴클레아제에 의한 분해를 막기 위하여 사용되는 분자 중 하나로서, 핵산단위체는 앞 단위체의 3’-OH와 다음 단위체의 5’-OH와 결합하여 사슬을 이루지만, idT는 앞 단위체의 3’-OH와 다음 단위체의 3’-OH를 결합하여 3’-OH가 아닌 5’-OH가 노출이 되도록 인위적인 변화를 가함으로써 뉴클레아제의 일종인 3’엑소뉴클레아제(3’exonuclease)에 의한 분해를 억제하는 효과를 일으키는 분자이다.
본 발명의 가용성 수용체(soluble receptor)는 표적 물질, 즉 내재적 리간드(endogenous ligand) 와 결합할 수 있는 활성을 가지는 영역(domain)을 포함하는 것으로서, 상기 영역은 내재적인 막 수용체 또는 세포 내 수용체에서 유래한 것 또는 그 유도체(derivative)일 수 있다. 이때, 본 발명의 융합분자의 제2영역에 포함되는 상기 가용성 수용체는 바람직하게 상기 내재적인 수용체에서 표적 물질에 대한 결합 외의 활성을 가지는 영역은 제거된 것을 이용할 수 있다.
본 발명에서 상기 제2영역일 수 있는 펩타이드는 표적 물질에 특이적으로 결합할 수 있는 아미노산을 모노머(monomer)로 한 폴리펩타이드 중 상기 항체 또는 이의 활성 단편, 항체 유사 단백질 및 가용성 수용체를 제외한 나머지를 의미한다.
본 발명에 따른 융합분자는 TAM 수용체와의 상호작용을 통해 상기 식세포작용을 유도하게 되므로, 상기 식세포작용은 TAM 수용체를 발현하는 세포에서 유도되는 것일 수 있다. 식세포작용(phagocytosis)는 일반적으로 세포나 0.5 μm 이상의 입자를 삼키는 것으로, 해당 세포 또는 입자를 붙잡고(tether), 삼킨(engulf) 후 분해(degrade)시키는 과정을 포함한다. 이때, 식세포작용은 삼켜진(internalized) 세포나 입자를 에워싸는 포식소체(phagosome)를 형성하며, 포식소체와 리소좀(lysosome)의 융합에 의한 포식용해소체(phagolysosome) 내에서 분해하는 과정을 포함하기도 한다. 이때, 식세포작용 중에서 아폽토시스나 괴사(apoptosis or necrosis) 기작으로 죽거나 죽어가는 세포에 대한 것을 efferocytosis라고 하기도 한다.
상기 TAM 수용체를 발현하는 세포는 한 가지 이상의 전문적인 포식세포(professional phagocyte), 한 가지 이상의 비전문적인 포식세포(non-professional phagocyte) 또는 그 조합인 것일 수 있다. 여기서, 전문적인 포식세포는 주된 역할이 포식작용을 통해 사멸한 세포 및 축적된 찌꺼기 등을 제거하는 데에 있는 세포를 말하며, 대식세포(macrophage), 호중구(neutrophil), 수지상세포(dendritic cell) 및 비만세포(mast cell)가 여기에 포함된다. 대식세포는 대체로 감염의 길목이 될 수 있는 각 조직에 머물게 되고, 많은 경우 조직별로 다른 이름으로 불리는데, 지방조직의 지방조직 대식세포(adipose tissue macrophage), 골수나 혈액의 단핵구(monocyte), 간의 쿠퍼 세포(Kuffer cell), 림프절의 부비동 조직구(sinus histiocyte), 폐포의 폐포 대식세포(alveolar macrophage), 결합조직의 조직구(histiocyte) 내지는 그 연결체인 거대세포(giant cell), 중추신경계의 미세아교세포(microglia), 태반의 호프바우어 세포(Hopfbauer cell), 신장의 사구체내 혈관사이세포(Intraglomerular mesangial cell), 뼈의 파골세포(osteoclast), 육아종(granulomas)의 상피모양세포(epithelioid cell), 비장 적색속질(red pulp of spleen)의 적색속질 대식세포(red pulp macrophage), 복강(peritoneal cavity)의 복막 대식세포(peritoneal macrophage), 페이에르판(Peyer's patch)의 리소맥(LysoMac) 등을 그 예로 들 수 있다. 반면 비전문적인 포식세포는 해당 포식세포가 상주하는 조직에 특이적인 기능을 주로 하되 필요시 포식작용을 할 수 있는 세포를 의미하며, 상피세포(epithelial cell), 내피세포(endothelial cell), 섬유아세포(fibroblast), 중간엽세포(mesenchymal cell) 등이 해당되고, 일부 조직 특이적인 세포, 예컨대 중추신경계의 별아교세포(astrocyte)나 희돌기세포(oligodendrocyte), 망막의 뮐러세포(Muller glia), 간의 간세포(hepatocyte), 근육의 위성세포(satellite cell), 고환의 세르톨리세포(Sertoli cell) 등과, 자연살해세포(natural killer cell), 대형과립림프구(large granular lymphocyte), 호산구(eosinophil), 호염구(basophil), B세포(B cell) 등의 일부 림프구를 포함한다. 본 발명에 따른 융합분자는 제거하고자 하는 표적 물질 축적된 조직에 특이적인 식세포(phagocyte) 내에서 식세포작용을 유도할 수 있다. 예컨대, 뇌 내에 축적된 이상 단백질을 제거하고자 하는 경우, 상기 식세포작용은 별아교세포(astrocyte), 미세아교세포(microglia), 희돌기세포 (oligodendrocyte) 또는 이들의 조합에서 유도될 수 있다. 이는 예컨대 본 발명에 따른 융합분자를 이러한 조직에 국소투여하거나 해당 조직 내 세포가 상기 융합분자를 발현 및 분비하도록 조작하여 유도될 수 있다.
상기 식세포작용의 유도는 염증반응을 수반하지 않는 것일 수 있다. 이는 표적 물질을 제거하면서도 염증반응을 유도하지 않고, 염증반응으로 인한 조직 손상을 억제할 수 있다는 점에서, 해당 표적 물질의 축적에 의한 조직의 기능 저하를 기존의 기술에 비해 좀더 안전하게 치료할 수 있다.
상기 융합분자는 추가로 표지(tag)를 포함할 수 있다. 이러한 표지를 융합분자에 부가하면 이를 상기 융합분자의 정제나, 발현, 작용여부 또는 작용과정 등의 확인에 이용할 수 있다.
상기 표지는  His-태그, T7-태그, S-태그, FLAG-태그, Strep-태그, 씨오레독신 (Trx: thioredoxin)-태그, 히스-패치 시오레독신 (His-patch thioredoxin)-태그, lacZ (L-Galactosidase)-태그, 클로로암페니콜 아세틸트랜스퍼라제 (chloramphenicol acetyltransferase)-태그, trpE-태그, 아비딘/스트렙타아비딘/스트립 (avidin/streptavidin/Strep)-태그, T7gene10-태그, 스타필로코칼 단백질 A (staphylococcal protein A)-태그, 스타필로코칼 단백질 G (streptococcal protein G)-태그, GST (glutathione-S-transferase)-태그, DHFR (dihydrofolate reductase)-태그, CBD's (cellulose binding domains)-태그, MBP (maltose binding protein)-태그, 갈락토즈-결합 단백질 (galactose-binding protein)-태그, 칼모듈린 결합 단백질 (CBP: calmodulin binding protein)-태그, HAI (hemagglutinin influenza virus)-태그, HSV-태그, B-(VP7 protein region of bluetongue virus)-태그, 폴리시스테인 (polycysteine)-태그, 폴리페닐알라닌 (polyphenyalanine)-태그, (Ala-Trp-Trp-Pro)n-태그, 폴리아스파틱 에시드 (polyaspartic acid)-태그, c-myc-태그, lac-억제자 (lac repressor)-태그 등이 있으며, 이로 제한되지 않는다. 상기 표지는 목적 단백질의 N-말단, C-말단 또는 내부에 위치할 수 있다.
상기 융합분자는 추가로 N말단에 시그널 펩타이드(signal peptide 또는 리더 서열(leader sequence))를 포함할 수 있다. 시그널 펩타이드는 분비 경로(secretory pathway)를 향하는 단백질의 합성 초기에 N 말단에 존재하는 짧은 펩타이드로서, 해당 단백질의 세포 내 위치, (막 단백질의 경우) 막 방향성(membrane topology) 등을 지정하는 것으로 알려져 있다. 상기 시그널 펩타이드는 상기 융합분자가 발현되어 세포외로 분비되는 과정에서 잘려나갈 수 있다.
상기 융합분자에 포함되는 전술한 제1영역, 제2영역, 표지, 시그널 펩타이드 또는 최소한의 기능성을 가지는 영역(예컨대 LG1 및 LG2 영역 또는 scFv의 중쇄가변영역 및 경쇄가변영역)은 서로 직접 연결되거나, 짧은 올리고펩타이드 또는 폴리펩타이드를 포함하는 링커에 의해 연결될 수 있다. 일반적으로 링커는 2 내지 500개의 아미노산 잔기를 포함할 수 있다. 상기 링커는 전술한 각 영역이 의도한 활성을 가질 수 있도록 연결하여 상기 융합분자가 구성될 수 있도록 할 수 있는 링커라면, 특별히 그 길이나 종류에 제한되지 않는다. 흔하게 쓰이는 올리고펩타이드 링커로 (GGGGS)n, 즉 Gly-Gly-Gly-Gly-Ser 유닛이 하나 이상 반복된 형태의 링커를 예로 들 수 있다. 그 밖에 (GSSGGS)n, KESGSVSSEQLAQFRSLD, EGKSSGSGSESKST, GSAGSAAGSGEF, (EAAAK)n, CRRRRRREAEAC, A(EAAAK)4ALEA(EAAAK)4A, GGGGGGGG, GGGGGG, AEAAAKEAAAAKA, PAPAP, (Ala-Pro)n, VSQTSKLTRAETVFPDV, PLGLWA, TRHRQPRGWE, AGNRVRRSVG, RRRRRRRR, GFLG, 또는 GSSGGSGSSGGSGGGDEADGSRGSQKAGVDE 등도 링커로 사용될 수 있으나, 이에 한정되지 않는다.
본 발명의 일 양태로서, 상기 융합분자를 코딩하는 핵산분자 및 이를 포함하는 발현벡터를 제공한다.
 상술한 바와 같이, 상기 융합분자를 코딩하는 핵산분자 서열은, 이와 동등한 활성을 갖는 단백질을 코딩하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있다.
상기 융합분자를 코딩하는 핵산분자 서열은 천연에서 분리되거나 인위적으로 합성 또는 유전적 재조합 방법을 통하여 제조할 수 있다. 상기 융합분자를 코딩하는 핵산분자 서열은 이를 발현할 수 있는 발현벡터에 작동적으로 연결시켜 제공된다.
상기 "발현벡터"란 목적 유전자를 코딩하는 핵산 서열을 적합한 숙주세포로 도입하여 목적 단백질 또는 목적 RNA을 발현할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다. 이런 발현벡터에는 플라스미드 벡터, 코스미드 벡터, 박테리오파아지 벡터, 바이러스 벡터 등의 모든 벡터를 포함한다. 
적합한 발현벡터는 프로모터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트를 가진다. 개시 코돈 및 종결 코돈은 일반적으로 단백질을 코딩하는 핵산 서열의 일부로 간주되며, 단백질 코딩 서열은 벡터에서 작동 가능하도록 인프레임(in frame)에 있도록 제작한다.  프로모터는 구성적 또는 유도성일 수 있다.  또한 통상의 발현벡터는 선택 마커를 포함한다. 발현벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용할 수 있다.
상기 발현벡터는 바람직하게 숙주세포에서 상기 융합분자를 발현시킨 후 정제 및 분리하기 위하여, 또는 생체 내 주입시 세포에 도입되어 해당 세포가 상기 융합분자를 발현, 분비할 수 있도록 구성될 수 있다. 생체 내 세포 도입을 목적으로 하는 경우, 상기 벡터는 바람직하게 비통합(non-integrating) 벡터, 즉 숙주세포의 게놈에 통합되지 않는 벡터일 수 있다.
본 발명의 일 양태로서, 상기 융합분자를 발현하는 세포를 제공한다.
상기 세포는 상기 핵산분자 또는 이를 포함하는 발현벡터를 포함하도록 형질전환된 것일 수 있고, 상기 "형질전환"은 핵산분자를 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며 당 분야에서 공지된 바와 같이 숙주 세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다.  이런 방법에는 일렉트로포레이션 (electroporation), 원형질 융합, 인산 칼슘 (CaPO4)) 침전, 염화 칼슘 (CaCl2) 침전, 실리콘 카바이드 섬유 이용한 교반, 아그로 박테리아 매개된 형질전환, PEG, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등이 포함되나 이로 제한되지 않는다. 
상기 숙주 세포로는 에스케리치아 콜라이 (Escherichia coli), 바실러스 서브틸리스 (Bacillus subtilis), 스트렙토마이세스 (Streptomyces), 슈도모나스 (Pseudomonas) (예를 들면, 슈도모나스 푸티다(Pseudomonas putida)), 프로테우스 미라빌리스 (Proteus mirabilis) 또는 스타필로코쿠스 (Staphylococcus) (예를 들면, 스타필로코쿠스 카르노수스 (Staphylocus carnosus))와 같은 원핵 숙주 세포가 있으나 이로 제한되는 것은 아니다.  또한, 아스페르길러스 (Aspergillus)와 같은 진균, 피치아 파스토리스 (Pichia pastoris), 사카로마이세스 세르비시애 (Saccharomyces cerevisiae), 쉬조사카로마이세스 (Schizosaccharomyces), 뉴로스포라 크라사 (Neurospora crassa) 등을 포함하는 효모, 그 밖의 하등 진핵 세포 또는 곤충 세포, 식물 세포, 포유동물 등을 포함하는 고등 진핵생물 유래의 세포를 숙주 세포로 사용할 수 있다.
상기 세포에서 융합분자를 발현시킨 후, 분리 및 정제를 위해 통상적인 생화학 분리 기술, 예를 들어 단백질 침전제의 의한 처리 (염석법), 원심분리, 초음파파쇄, 한외여과, 투석법, 분자체 크로마토그래피 (겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피 등을 이용할 수 있으며, 통상적으로 순도가 높은 단백질을 분리하기 위하여 이들을 조합하여 이용한다 (Sambrook et al., Molecular Cloning: A laborarory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press(1989); Deuscher, M., Guide to Protein Purification Methods Enzymology, Vol. 182. Academic Press. Inc., San Diego, CA(1990)).
본 발명의 일 양태로서, 상기 융합분자 또는 상기 발현벡터를 포함하는, 상기 표적 물질이 생체 조직에 축적되어 일으키는 질병의 예방 또는 치료를 위한 약학적 조성물을 제공한다. 여기서 상기 조성물은 상기 질병의 원인 물질, 즉 표적 물질이 축적되는 곳에 국부투여되는 것일 수 있다.
또한, 본 발명의 일 양태로서, 상기 융합분자의 약학적 유효량을 개체에 투여하는 단계를 포함하는, 단백질증을 예방 또는 치료하는 방법을 제공한다.
또한, 본 발명의 일 양태로서, 단백질증의 예방 또는 치료를 위한 약제의 제조를 위한, 상기 융합분자의 용도를 제공한다.
상기 약학적 조성물에서 유효성분인 상기 융합분자는 "약학적 유효량"으로 포함된다. 상기 용어 "약학적 유효량"은 상술한 융합분자의 효능 또는 활성을 달성하는 데 충분한 양을 의미한다.
상기 약학적 조성물은 경구적 또는 비경구적으로 투여될 수 있으며, 바람직하게는 비경구적으로, 좀더 바람직하게 제거하고자 하는 표적 물질이 축적된 조직에 국소적으로 투여될 수 있다.
본 명세서에서, "비경구적 투여"는 피하 주사, 정맥 내, 근육 내, 흉골 내 주사 또는 주입 기술을 포함한다.
상기 약학적 조성물을 주사제로 제제화 시, 당해 기술분야에 공지되어 있는 통상의 주사제 제조방법에 따라 제조될 수 있다. 상기 주사제는 환자에게 투여 시 그대로 이용될 수 있도록 멸균 매질에 분산된 형태일 수도 있으며, 투여 시 주사용 증류수를 가해 적절한 농도로 분산시킨 다음 투여하는 형태일 수도 있다.
상기 약학적 조성물을 경구투여제로 제제화 시, 담체로서 희석제, 활택제, 결합제, 붕해제, 감미제, 안정제, 및 방부제 중에서 1 종 이상을 선택하여 사용할 수 있으며, 첨가제로는 향료, 비타민류, 및 항산화제 중에서 1 종 이상을 선택하여 사용할 수 있다.
상기 약학적 조성물의 제제화에 필요한 기술 및 약제학적으로 적절한 담체, 첨가제 등에 관해서는 당해 제제학 분야에서 통상의 지식을 가진 자에게 널리 알려져 있으며, 이와 관련하여 문헌들 예컨대 the Handbook of Pharmaceutical Excipients, 4thedition, Rowe et al., Eds., American Pharmaceuticals Association (2003); Remington: the Science and Practice of Pharmacy, 20 th edition, Gennaro, Ed., Lippincott Williams & Wilkins (2000); Remington's Pharmaceutical Sciences (19 th ed., 1995) 등을 참조할 수 있다.
상기 약학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 본 발명의 약학적 조성물의 투여량은 성인 기준으로 0.0001-1000 ㎍/kg (체중)이다.
본 발명은 식세포작용 유도 활성을 갖는 융합분자에 관련된 것으로서, 종래기술이 갖는 염증반응 활성화에 따른 조직 손상 문제를 해결할 수 있으며, 이에 따라 이상 축적된 물질, 예컨대 베타-아밀로이드, 타우, 알파-시누클린, 헌팅틴 또는 프라이온 등을 효과적으로 제거하여, 이러한 축적에 의해 일어나는 질병, 예컨대 알츠하이머병, 파킨슨병, 헌팅턴병 또는 프라이온 병의 예방 또는 치료용도로 활용이 가능하다. 이러한 융합분자는 정제된 융합분자 또는 세포 내 도입시 상기 융합분자를 발현 및 분비할 수 있는 유전자 치료제 벡터 형태로 환자에게 투여될 수 있다.
다만, 상기한 효과로 한정되는 것은 아니며, 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 Gas6를 기반으로 하는 베타-아밀로이드 및 FITC 키메라 포식 유도체의 모식도이다.
도 2는 제조예 1에 따라 제조된 FLAG Tag를 포함하는 키메라 포식 유도체를 제작하고, 이를 웨스턴 블롯으로 확인한 결과이다.
도 3은 제조예 1에 따라 제조된 키메라 포식 유도체의 TAM 수용체에 대한 작용을 모식도로 나타낸 것이다.
도 4는 αAβ-Gas6의 선택적인 베타-아밀로이드 섭취능력을 확인한 결과이다.
도 5는 in vitro에서 베타-아밀로이드 engulfment assay를 통해 HMC3 세포주에서 αAβ-Gas6의 베타-아밀로이드 섭취능력을 확인한 대표도이다.
도 6은 in vitro에서 베타-아밀로이드 engulfment assay를 통해 HMC3 세포주에서 αAβ-Gas6의 베타-아밀로이드 섭취능력을 확인한 결과이다.
도 7는 αAβ-Gas6의 베타-아밀로이드 섭취능력이 TAM 수용체 중 Axl에 의존적임을 확인한 결과이다.
도 8은 αAβ-Gas6의 베타-아밀로이드 섭취능력이 TAM 수용체 중 Axl에 의존적임을 확인한 결과이다.
도 9는 αAβ-Gas6의 베타-아밀로이드 섭취능력이 TAM 수용체 중 Axl에 의존적임을 확인한 결과이다.
도 10은 THP-Axl 세포를 이용하여 αAβ-Gas6와 아두카누맙에 의한 염증 반응 신호전달 활성화를 비교분석한 결과이다.
도 11은 THP-Axl 세포를 이용하여 αAβ-Gas6와 아두카누맙에 의한 전염증성 사이토카인 분비 수준을 비교분석한 결과이다.
도 12는 αAβ-Gas6의 항염증 활성을 확인한 결과이다.
도 13은 αAβ-Gas6에 의해 크게 증가한 미세아교세포의 베타-아밀로이드 제거능력을 확인한 결과이다.
도 14는 αAβ-Gas6에 의해 크게 증가한 별아교세포의 베타-아밀로이드 제거능력을 확인한 결과이다.
도 15는 αAβ-Gas6와 아두카누맙에 의해 변화하는 별아교세포의 전염증성 사이토카인의 전사 수준을 확인한 결과이다.
도 16은 αAβ-Gas6와 아두카누맙에 의해 변화하는 BV2의 전염증성 사이토카인의 전사 수준을 확인한 결과이다.
도 17은 5XFAD 알츠하이머 병 모델 쥐에서 αAβ-Gas6 단백질 투여를 통한 αAβ-Gas6의 베타-아밀로이드 플라크 제거능력을 확인한 결과이다.
도 18은 5XFAD 알츠하이머 병 모델 쥐에서 αAβ-Gas6 바이러스 투여를 통한 αAβ-Gas6의 베타-아밀로이드 플라크 제거능력을 확인한 결과이다.
도 19는 αAβ-Gas6 단백질 투여 시 5XFAD 알츠하이머 병 모델 쥐에서 미세아교세포에 의해 제거되어 리소좀에 함유된 베타-아밀로이드가 증가한 것을 확인한 결과이다.
도 20은 αAβ-Gas6 단백질 투여 시 5XFAD 알츠하이머 병 모델 쥐에서 별아교세포에 의해 제거되어 리소좀에 함유된 베타-아밀로이드가 증가한 것을 확인한 결과이다.
도 21은 αAβ-Gas6 바이러스 투여시 5XFAD 알츠하이머 병 모델 쥐에서 미세아교세포에 의해 제거되어 리소좀에 함유된 베타-아밀로이드가 증가한 것을 확인한 결과이다.
도 22는 αAβ-Gas6 바이러스 투여시 5XFAD 알츠하이머 병 모델 쥐에서 별아교세포에 의해 제거되어 리소좀에 함유된 베타-아밀로이드가 증가한 것을 확인한 결과이다.
도 23은 아두카누맙의 부작용으로 5XFAD 알츠하이머 병 모델 쥐에서 비정상적으로 증가한 미세아교세포에 의한 시냅스 소멸 현상이 αAβ-Gas6 바이러스 투여시에는 크게 회복됨을 확인한 결과이다.
도 24는 아두카누맙의 부작용으로 5XFAD 알츠하이머 병 모델 쥐에서 비정상적으로 증가한 미세아교세포에 의한 시냅스 소멸 현상이 αAβ-Gas6 바이러스 투여시에는 크게 회복됨을 확인한 결과이다.
도 25는 αAβ-Gas6 바이러스 투여시 5XFAD 알츠하이머 병 모델 쥐에서 인지 및 기억 능력을 확인하기 위한 실험 프로토콜이다.
도 26은 αAβ-Gas6 바이러스 투여시 5XFAD 알츠하이머 병 모델 쥐에서 아두카누맙보다 우월하게 쥐의 인지 및 기억 능력이 회복됨을 확인한 결과이다.
도 27은 in vitro에서 타우 engulfment assay를 통해 HMC3 세포주에서 αTau-Gas6의 타우 섭취능력을 확인한 결과이다.
도 28은 in vitro에서 알파-시누클린 engulfment assay를 통해 HMC3 세포주에서 ααSyn-Gas6의 알파-시누클린 섭취능력을 확인한 결과이다.
도 29는 in vitro에서 베타-아밀로이드 engulfment assay를 통해 일차배양된 별아교세포에서 αAβ-ProS1의 베타-아밀로이드 섭취능력을 확인한 결과이다.
도 30은 in vitro에서 베타-아밀로이드 engulfment assay를 통해 HMC3 세포주에서 확인한 αAβ(Fab)-Gas6의 베타-아밀로이드 섭취능력을 각각 확인한 결과이다.
도 31은 in vitro에서 베타-아밀로이드 engulfment assay를 통해 HMC3 세포주에서 확인한 αAβ(Mab)-Gas6의 베타-아밀로이드 섭취능력을 각각 확인한 결과이다.
이하, 보다 구체적으로 설명하기 위해 실시예와 실험예를 들어 상세하게 설명하기로 한다. 그러나, 하기 실시예와 실험예는 예시적인 것으로, 발명의 범위가 이에 제한되는 것은 아니다.
제조예 1. 베타-아밀로이드 제거 활성을 갖는 Gas6 기반 융합분자의 제조(I): scFv 형태의 베타-아밀로이드 결합 영역
Gas6 단백질에 기반한 베타-아밀로이드(Aβ) 특이적 키메라 포식 유도체를 제작하기 위하여, 먼저 아폽토틱(Apoptotic) 세포의 PS(phosphatidylserine)를 인지하는 부위인 Gla 도메인을 없애고, 그 위치에 베타-아밀로이드 특이 항체인 아두카누맙(aducanumab)의 단일사슬 Fv 단편(single-chain variable fragment; scFv)를 도입하였다[αAβ-Gas6(E)].
또한, 단백질 생산의 효율성을 위해 Gas6 단백질의 내부 잔기(internal residue)에 존재하는 EGF 반복 도메인(EGF repeat domain)도 함께 제거하고 아두카누맙 scFv를 도입한 αAβ-Gas6도 제작하였다(도 1).
또한, 아두카누맙의 scFv의 베타-아밀로이드 특이적 결합을 확인하기 위한 대조군으로, 아두카누맙 scFv 대신 FITC를 선택적으로 인식하는 E2 scFv를 도입한 αFITC-Gas6(E), αFITC-Gas6를 함께 제작하였다.
하기 표 2는 상기 융합분자의 제조에 관련된 아미노산 서열이고, 하기 표 3은 상기 융합분자의 제조에 관련된 뉴클레오티드 서열이다(밑줄 친 서열은 Flag tag).
1. αAβ-Gas6(E) (FLAG tag, Gla delete, G-/-)

MAPSLSPGPAALRRAPQLLLLLLAAECALADIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRGGGGSGGGGSGGGGSEVQLVESGGGVVQPGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWFDGTKKYYTDSVKGRFTISRDNSKNTLYLQMNTLRAEDTAVYYCARDRGIGARRGPYYMDVWGKGTTVTVSSGGGGSGGGGSCINKYGSPYTKNSGFATCVQNLPDQCTPNPCDRKGTQACQDLMGNFFCLCKAGWGGRLCDKDVNECSQENGGCLQICHNKPGSFHCSCHSGFELSSDGRTCQDIDECADSEACGEARCKNLPGSYSC
LCDEGFAYSSQEKACRDVDECLQGRCEQVCVNSPGSYTCHCDGRGGLKLSQDMDTCEDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLFAGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAAQGSRADYKDHDGDYKDHDIDYKDDDDK*
2. αFITC-Gas6(E) (FLAG tag, Gla delete, G-/-)
MAPSLSPGPAALRRAPQLLLLLLAAECALAQVQLVESGGNLVQPGGSLRLSCAASGFTFGSFSMSWVRQAPGGGLEWVAGLSARSSLTHYADSVKGRFTISRDNAKNSVYLQMNSLRVEDTAVYYCARRSYDSSGYWGHFYSYMDVWGQGTLVTVSGGGGSGGGGSGGGGSSVLTQPSSVSAAPGQKVTISCSGSTSNIGNNYVSWYQQHPGKAPKLMIYDVSKRPSGVPDRFSGSKSGNSASLDISGLQSEDEADYYCAAWDDSLSEFLFGTGTKLTVLGGGGGSGGGGSCINKYGSPYTKNSGFATCVQNLPDQCTPNPCDRKGTQACQDLMGNFFCLCKAGW
GGRLCDKDVNECSQENGGCLQICHNKPGSFHCSCHSGFELSSDGRTCQDIDECADSEACGEARCKNLPGSYSCLCDEGFAYSSQEKACRDVDECLQGRCEQVCVNSPGSYTCHCDGRGGLKLSQDMDTCEDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLFAGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAAQGSRADYKDHDGDYKDHDIDYKDDDDK*
3. αAβ-Gas6 (FLAG tag, Gla EGF delete, GE-/-)
MAPSLSPGPAALRRAPQLLLLLLAAECALADIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRGGGGSGGGGSGGGGSEVQLVESGGGVVQPGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWFDGTKKYYTDSVKGRFTISRDNSKNTLYLQMNTLRAEDTAVYYCARDRGIGARRGPYYMDVWGKGTTVTVSSGGGGSGGGGSDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLF
AGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAAQGSRADYKDHDGDYKDHDIDYKDDDDK*
4. αFITC-Gas6 (FLAG tag, Gla EGF delete, GE-/-)
MAPSLSPGPAALRRAPQLLLLLLAAECALAQVQLVESGGNLVQPGGSLRLSCAASGFTFGSFSMSWVRQAPGGGLEWVAGLSARSSLTHYADSVKGRFTISRDNAKNSVYLQMNSLRVEDTAVYYCARRSYDSSGYWGHFYSYMDVWGQGTLVTVSGGGGSGGGGSGGGGSSVLTQPSSVSAAPGQKVTISCSGSTSNIGNNYVSWYQQHPGKAPKLMIYDVSKRPSGVPDRFSGSKSGNSASLDISGLQSEDEADYYCAAWDDSLSEFLFGTGTKLTVLGGGGGSGGGGSCINKYGSPYTKNSGFATCVQNKDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLFAGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMW
QTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAAQGSRADYKDHDGDYKDHDIDYKDDDDK*
5. αAβ-Gas6 (HA tag, Gla EGF delete, GE-/-)
MAPSLSPGPAALRRAPQLLLLLLAAECALADIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRGGGGSGGGGSGGGGSEVQLVESGGGVVQPGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWFDGTKKYYTDSVKGRFTISRDNSKNTLYLQMNTLRAEDTAVYYCARDRGIGARRGPYYMDVWGKGTTVTVSSGGGGSGGGGSDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLF
AGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAAGSGSGSGSGSGSYPYDVPDYA*
6. Lentiviral Aducanumab IgG_IRES Zsgreen
MGWSCIILFLVATATGDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGECRRKRGSGEGRGSLLTCGDVEENPGPMGWSCIILFLVATATGEVQLVESGGGVVQPGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWFDGTKKYYTDSVKGRFTISR
DNSKNTLYLQMNTLRAEDTAVYYCARDRGIGARRGPYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSSDKTHTSPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK*
7. Endogenous full sequence human Gas6 protein
MAPSLSPGPAALRRAPQLLLLLLAAECALAALLPAREATQFLRPRQRRAFQVFEEAKQGHLERECVEELCSREEAREVFENDPETDYFYPRYLDCINKYGSPYTKNSGFATCVQNLPDQCTPNPCDRKGTQACQDLMGNFFCLCKAGWGGRLCDKDVNECSQENGGCLQICHNKPGSFHCSCHSGFELSSDGRTCQDIDECADSEACGEARCKNLPGSYSCLCDEGFAYSSQEKACRDVDECLQGRCEQVCVNSPGSYTCHCDGRGGLKLSQDMDTCEDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLFAGGHQDSTW
IVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAAQGSRADYKDHDGDYKDHDIDYKDDDDK*
1. αAβ-Gas6(E) (FLAG tag, Gla delete, G-/-)

ATGGCCCCTTCGCTCTCGCCCGGGCCCGCCGCCCTGCGCCGCGCGCCGCAGCTGCTGCTGCTGCTGCTGGCCGCGGAGTGCGCGCTTGCCGACATTCAGATGACTCAATCTCCTAGCTCTCTGAGCGCCTCCGTTGGAGATAGAGTCACTATTACCTGCAGAGCCAGCCAATCCATCAGCTCTTATCTAAATTGGTACCAACAGAAGCCCGGCAAAGCGCCAAAGCTGCTCATCTACGCTGCAAGCTCCTTACAGAGCGGAGTACCCAGCAGATTCTCAGGCAGTGGCAGTGGGACTGACTTCACATTGACGATTAGCTCTCTGCAGCCTGAAGACTTTGCCACATACTATTGTCAGCAGAGCTATAGCACCCCGCTGACGTTTGGAGGCGGAACTAAGGTGGAAATCAAGAGAGGAGGCGGGGGCTCCGGCGGGGGTGGCTCGGGGGGAGGAGGCTCAGAGGTTCAGCTTGTCGAGTCTGGGGGGGGAG
TCGTTCAGCCAGGTAGAAGCCTCAGACTGAGCTGTGCCGCAAGTGGGTTTGCTTTTTCATCTTACGGTATGCACTGGGTGAGACAGGCTCCTGGCAAAGGACTCGAGTGGGTCGCTGTAATATGGTTCGATGGTACAAAGAAATACTATACCGATAGTGTGAAAGGAAGATTCACCATTTCACGAGACAACAGTAAAAATACCTTGTACCTTCAGATGAACACCCTGAGAGCAGAAGACACAGCCGTGTACTACTGCGCCAGAGATAGAGGTATCGGAGCAAGGCGTGGTCCCTATTATATGGATGTGTGGGGGAAGGGAACAACAGTGACTGTGAGCTCTGGCGGGGGCGGCAGCGGCGGCGGTGGCAGCTGCATCAACAAGTATGGGTCTCCGTACACCAAAAACTCAGGCTTCGCCA
CCTGCGTGCAAAACCTGCCTGACCAGTGCACGCCCAACCCCTGCGATAGGAAGGGGACCCAAGCCTGCCAGGACCTCATGGGCAACTTCTTCTGCCTGTGTAAAGCTGGCTGGGGGGGCCGGCTCTGCGACAAAGATGTCAACGAATGCAGCCAGGAGAACGGGGGCTGCCTCCAGATCTGCCACAACAAGCCGGGTAGCTTCCACTGTTCCTGCCACAGCGGCTTCGAGCTCTCCTCTGATGGCAGGACCTGCCAAGACATAGACGAGTGCGCAGACTCGGAGGCCTGCGGGGAGGCGCGCTGCAAGAACCTGCCCGGCTCCTACTCCTGCCTCTGTGACGAGGGCTTT
GCGTACAGCTCCCAGGAGAAGGCTTGCCGAGATGTGGACGAGTGTCTGCAGGGCCGCTGTGAGCAGGTCTGCGTGAACTCCCCAGGGAGCTACACCTGCCACTGTGACGGGCGTGGGGGCCTCAAGCTGTCCCAGGACATGGACACCTGTGAGGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAGGCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAACGGTGTCGGCCGTGTC
ACCAGCAGCGGCCCGGTCATCAACCATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAGGGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGAGGACTGTATCATCTGAACCTGACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTCGTGCAGCCTATAAACCCTCGTCTGGATGGCTGCATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCATCCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTGCTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCCGGGAGCGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCCGCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTCTGGGCCCCCGACCTCC
GTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCCCTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGCCGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCTCACCTTTGCTGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCcaagGATCCCGGGCTGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGACAAGtga

2. αFITC-Gas6(E) (FLAG tag, Gla delete, G-/-)

ATGGCCCCTTCGCTCTCGCCCGGGCCCGCCGCCCTGCGCCGCGCGCCGCAGCTGCTGCTGCTGCTGCTGGCCGCGGAGTGCGCGCTTGCCCAGGTTCAGCTGGTTGAGAGCGGAGGCAATCTGGTTCAGCCCGGTGGTAGTCTGCGTCTGTCTTGTGCGGCGTCAGGGTTCACTTTCGGTAGTTTTTCAATGAGCTGGGTCCGTCAGGCACCAGGCGGTGGGCTGGAATGGGTGGCAGGTCTGTCTGCACGTAGCTCCCTGACCCACTATGCAGATAGTGTTAAAGGGCGGTTCACAATTTCACGCGACAACGCTAAGAATAGCGTCTACCTGCAAATGAACTCCCTGCGGGTCGAGGATACCGCAGTGTATTACTGCGCTCGCCGTTCTTATGACTCTAGTGGATACTGGGGCCATTTTTATAGCTACATGGATGTGTGGGGACAGGGCACTCTGGTGACCGTTTCCGGAGGCGGTGGGTCTGGAGGCGGTGGGAGTGGAGGCGGTGGGTCAAGCGTTCTGACCCAGCCGTCCTCTGTCAGCGCCGCGCCAGGCCAGAAAGTGACAATTTCCTGTTCTGGAAGTACTTCAAACATCGGCAACAATTATGTTTCCTGGTATCAGCAGCAC
CCGGGCAAAGCGCCCAAGCTGATGATTTATGATGTGTCTAAACGTCCAAGTGGTGTTCCTGACCGGTTCAGCGGTTCCAAGTCTGGGAATAGTGCCTCACTGGACATCTCAGGCCTGCAAAGCGAAGATGAGGCGGACTATTACTGCGCAGCTTGGGATGACAGCCTGTCCGAATTTCTGTTCGGCACCGGGACAAAGCTGACCGTGCTGGGCGGCGGGGGCGGCAGCGGCGGCGGTGGCAGCTGCATCAACAAGTATGGGTCTCCGTACACCAAAAACTCAGGCTTCGCCACCTGCGTGCAAAACCTGCCTGACCAGTGCACGCCCAACCCCTGCGATAGGAAGGGGACCCAAGCCTGCCAGGACCTCATGGGCAACTTCTTCTGCCTGTGTAAAGCTGGCTGGGGGGGCCGGCTCTGCGACAAAGATGTCAACGAATGCAGCCAGGAGAACGGGGGCTGCCTCCAGATCTGCCACAACAAGCCGGGTAGCTTCCACTGTTCCTGCCACAGCGGCTTCGAGCTCTCCTCTGATGGCAGGACCTGCCAAGACATAGACGAGTGCGCAGACTCGGAGGCCTGCGGGGAGGCGCGCTGCAAGAACCTGCCCGGCTCCTACTCCTGCCTCTGTGACGAGGGCTTTGCGTACAGCTCCCAGGAGAAGGCTTGCCGAGATGTGGACGAGTGTCTGCAGGGCCGCT
GTGAGCAGGTCTGCGTGAACTCCCCAGGGAGCTACACCTGCCACTGTGACGGGCGTGGGGGCCTCAAGCTGTCCCAGGACATGGACACCTGTGAGGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAGGCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAACGGTGTCGGCCGTGTCACCAGCAGCGGCCCGGTCATCAACCATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAGGGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGAGGACTGTATCATCTGAACCTGACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTC
GTGCAGCCTATAAACCCTCGTCTGGATGGCTGCATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCATCCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTGCTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCCGGGAGCGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCCGCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTCTGGGCCCCCGACCTCCGTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCCCTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGCCGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCT
CACCTTTGCTGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCcaagGATCCCGGGCTGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGACAAGtga
3. αAβ-Gas6 (FLAG tag, Gla EGF delete, GE-/-)
ATGGCCCCTTCGCTCTCGCCCGGGCCCGCCGCCCTGCGCCGCGCGCCGCAGCTGCTGCTGCTGCTGCTGGCCGCGGAGTGCGCGCTTGCCGACATTCAGATGACTCAATCTCCTAGCTCTCTGAGCGCCTCCGTTGGAGATAGAGTCACTATTACCTGCAGAGCCAGCCAATCCATCAGCTCTTATCTAAATTGGTACCAACAGAAGCCCGGCAAAGCGCCAAAGCTGCTCATCTACGCTGCAAGCTCCTTACAGAGCGGAGTACCCAGCAGATTCTCAGGCAGTGGCAGTGGGACTGACTTCACATTGACGATTAGCTCTCTGCAGCCTGAAGACTTTGCCACATACTATTGTCAGCAGAGCTATAGCACCCCGCTGACGTTTGGAGGCGGAACTAAGGTGGAAATCAAGAGAGGAGGCGGGGGCTCCGGCGGGGGTGGCTCGGGGGGAGGAGGCTCAGAGGTTCAGCTTGTCGAGTCTGGGGGGGGAG
TCGTTCAGCCAGGTAGAAGCCTCAGACTGAGCTGTGCCGCAAGTGGGTTTGCTTTTTCATCTTACGGTATGCACTGGGTGAGACAGGCTCCTGGCAAAGGACTCGAGTGGGTCGCTGTAATATGGTTCGATGGTACAAAGAAATACTATACCGATAGTGTGAAAGGAAGATTCACCATTTCACGAGACAACAGTAAAAATACCTTGTACCTTCAGATGAACACCCTGAGAGCAGAAGACACAGCCGTGTACTACTGCGCCAGAGATAGAGGTATCGGAGCAAGGCGTGGTCCCTATTATATGGATGTGTGGGGGAAGGGAACAACAGTGACTGTGAGCTCTGGCGGGGGCGGCAGCGGCGGCGGTGGCAGCGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAG
GCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAACGGTGTCGGCCGTGTCACCAGCAGCGGCCCGGTCATCAACCATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAGGGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGAGGACTGTATCATCTGAACCTGACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTCGTGCAGCCTATAAACCCTCGTCTGGATGGCTGCATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCATCCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTGCTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCC
GGGAGCGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCCGCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTCTGGGCCCCCGACCTCCGTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCCCTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGCCGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCTCACC
TTTGCTGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCcaaGGATCCCGGGCTGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGACAAGtga
4. αFITC-Gas6 (FLAG tag, Gla EGF delete, GE-/-)
ATGGCCCCTTCGCTCTCGCCCGGGCCCGCCGCCCTGCGCCGCGCGCCGCAGCTGCTGCTGCTGCTGCTGGCCGCGGAGTGCGCGCTTGCCCAGGTTCAGCTGGTTGAGAGCGGAGGCAATCTGGTTCAGCCCGGTGGTAGTCTGCGTCTGTCTTGTGCGGCGTCAGGGTTCACTTTCGGTAGTTTTTCAATGAGCTGGGTCCGTCAGGCACCAGGCGGTGGGCTGGAATGGGTGGCAGGTCTGTCTGCACGTAGCTCCCTGACCCACTATGCAGATAGTGTTAAAGGGCGGTTCACAATTTCACGCGACAACGCTAAGAATAGCGTCTACCTGCAAATGAACTCCCTGCGGGTCGAGGATACCGCAGTGTATTACTGCGCTCGCCGTTCTTATGACTCTAGTGGATACTGGGGCCATTTTTATAGCTACATGGATGTGTGGGGACAGGGCACTCTGGTGACCGTTTCCGGAGGCGGTGGGTCTGGAGGCGGTGGGAGTGGAGGCGGTGGGTCAAGCGTTCTGACCCAGCCGTCCTCTGTCAGCGCCGCGCCAGGCCAGAAAGTGACAATTTCCTGTTCTGGAAGTACTTCAAACATCGGCAACAATTATGTTTCCTGGTATCAGCAGCAC
CCGGGCAAAGCGCCCAAGCTGATGATTTATGATGTGTCTAAACGTCCAAGTGGTGTTCCTGACCGGTTCAGCGGTTCCAAGTCTGGGAATAGTGCCTCACTGGACATCTCAGGCCTGCAAAGCGAAGATGAGGCGGACTATTACTGCGCAGCTTGGGATGACAGCCTGTCCGAATTTCTGTTCGGCACCGGGACAAAGCTGACCGTGCTGGGCGGCGGGGGCGGCAGCGGCGGCGGTGGCAGCTGCATCAACAAGTATGGGTCTCCGTACACCAAAAACTCAGGCTTCGCCACCTGCGTGCAAAACAAAGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAGGCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAA
CGGTGTCGGCCGTGTCACCAGCAGCGGCCCGGTCATCAACCATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAGGGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGAGGACTGTATCATCTGAACCTCACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTCGTGCAGCCTATAAACCCTCGTCTGGATGGCTGTATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCATCCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTGCTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCCGGGAGCGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCCGCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTC
TGGGCCCCCGACCTCCGTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCCCTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGCCGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCTCACCTTTGCCGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCcaaGGATCCCGGGCTGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGACAAGtga
5. αAβ-Gas6 HA tag (Gla EGF delete, GE-/-)
ATGGCCCCTTCGCTCTCGCCCGGGCCCGCCGCCCTGCGCCGCGCGCCGCAGCTGCTGCTGCTGCTGCTGGCCGCGGAGTGCGCGCTTGCCGACATTCAGATGACTCAATCTCCTAGCTCTCTGAGCGCCTCCGTTGGAGATAGAGTCACTATTACCTGCAGAGCCAGCCAATCCATCAGCTCTTATCTAAATTGGTACCAACAGAAGCCCGGCAAAGCGCCAAAGCTGCTCATCTACGCTGCAAGCTCCTTACAGAGCGGAGTACCCAGCAGATTCTCAGGCAGTGGCAGTGGGACTGACTTCACATTGACGATTAGCTCTCTGCAGCCTGAAGACTTTGCCACATACTATTGTCAGCAGAGCTATAGCACCCCGCTGACGTTTGGAGGCGGAACTAAGGTGGAAATCAAGAGAGGAGGCGGGGGCTCCGGCGGGGGTGGCTCGGGGGGAGGAGGCTCAGAGGTTCAGCTTGTCGAGTCTGGGGGGGGAG
TCGTTCAGCCAGGTAGAAGCCTCAGACTGAGCTGTGCCGCAAGTGGGTTTGCTTTTTCATCTTACGGTATGCACTGGGTGAGACAGGCTCCTGGCAAAGGACTCGAGTGGGTCGCTGTAATATGGTTCGATGGTACAAAGAAATACTATACCGATAGTGTGAAAGGAAGATTCACCATTTCACGAGACAACAGTAAAAATACCTTGTACCTTCAGATGAACACCCTGAGAGCAGAAGACACAGCCGTGTACTACTGCGCCAGAGATAGAGGTATCGGAGCAAGGCGTGGTCCCTATTATATGGATGTGTGGGGGAAGGGAACAACAGTGACTGTGAGCTCTGGCGGGGGCGGCAGCGGCGGCGGTGGCAGCGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAG
GCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAACGGTGTCGGCCGTGTCACCAGCAGCGGCCCGGTCATCAACCATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAGGGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGAGGACTGTATCATCTGAACCTGACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTCGTGCAGCCTATAAACCCTCGTCTGGATGGCTGCATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCAT
CCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTGCTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCCGGGAGCGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCCGCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTCTGGGCCCCCGACCTCCGTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCCCTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGCCGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCTCACCTTTGCTGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCggcagcggcagcggcagcggcagcggcagcggcagctacccatacgatgttccagattacgctTGA
6. Lentiviral Aducanumab IgG_IRES Zsgreen
GGATCCATGGGCTGGTCCTGCATCATCCTGTTCCTGGTGGCCACCGCCACCGGCGACATTCAGATGACTCAATCTCCTAGCTCTCTGAGCGCCTCCGTTGGAGATAGAGTCACTATTACCTGCAGAGCCAGCCAATCCATCAGCTCTTATCTAAATTGGTACCAACAGAAGCCCGGCAAAGCGCCAAAGCTGCTCATCTACGCTGCAAGCTCCTTACAGAGCGGAGTACCCAGCAGATTCTCAGGCAGTGGCAGTGGGACTGACTTCACATTGACGATTAGCTCTCTGCAGCCTGAAGACTTTGCCACATACTATTGTCAGCAGAGCTATAGCACCCCGCTGACGTTTGGAGGCGGAACTAAGGTGGAAATCAAGAGAAAACGAACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTCGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAA
GTCTACGCCTGCGAAGTCACCCATCAGGGCCTGTCCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTCGCAGAAAACGCGGAAGCGGAgagggcagaggaagtcttctaacatgcggtgacgtggaggagaatcccggccctATGGGCTGGTCCTGCATCATCCTGTTCCTGGTGGCCACCGCCACCGGCGAGGTTCAGCTTGTCGAGTCTGGGGGGGGAGTCGTTCAGCCAGGTAGAAGCCTCAGACTGAGCTGTGCCGCAAGTGGGTTTGCTTTTTCATCTTACGGTATGCACTGGGTGAGACAGGCTCCTGGCAAAGGACTCGAGTGGGTCGCTGTAATATGGTTCGATGGTACAAAGAAATACTATACCGATAGTGTGAAAGGAAGATTCACCATTTCACGAGACAACAGTAAAAATACCTTGTACCTTCAGATGAACACCCTGAGAGCAGAAGACACAGCCGTGTACTACTGCGCCAGAGATAGAGGTATCGGAGCAAGGCGTGGTCCCTATTATATGGATGTGTGGGGGAAGGGAACAACAGTGACTGTGAGCTCTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGT
GGTGACTGTGCCCTCTAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTAGCGACAAAACTCACACAAGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG
TACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCCCCGGGTAAAtga
7. Endogenous full sequence human Gas6 protein

ATGGCCCCTTCGCTCTCGCCCGGGCCCGCCGCCCTGCGCCGCGCGCCGCAGCTGCTGCTGCTGCTGCTGGCCGCGGAGTGCGCGCTTGCCGCGCTGTTGCCGGCGCGCGAGGCCACGCAGTTCCTGCGGCCCAGGCAGCGCCGCGCCTTTCAGGTCTTCGAGGAGGCCAAGCAGGGCCACCTGGAGAGGGAGTGCGTGGAGGAGCTGTGCAGCCGCGAGGAGGCGCGGGAGGTGTTCGAGAACGACCCCGAGACGGATTATTTTTACCCAAGATACTTAGACTGCATCAACAAGTATGGGTCTCCGTACACCAAAAACTCAGGCTTCGCCACCTGCGTGCAAAACCTGCCTGACCAGTGCACGCCCAACCCCTGCGATAGGAAGGGGACCCAAGCCTGCCAGGACCTCATGGGCAACTTC
TTCTGCCTGTGTAAAGCTGGCTGGGGGGGCCGGCTCTGCGACAAAGATGTCAACGAATGCAGCCAGGAGAACGGGGGCTGCCTCCAGATCTGCCACAACAAGCCGGGTAGCTTCCACTGTTCCTGCCACAGCGGCTTCGAGCTCTCCTCTGATGGCAGGACCTGCCAAGACATAGACGAGTGCGCAGACTCGGAGGCCTGCGGGGAGGCGCGCTGCAAGAACCTGCCCGGCTCCTACTCCTGCCTCTGTGACGAGGGCTTTGCGTACAGCTCCCAGGAGAAGGCTTGCCGAGATGTGGACGAGTGTCTGCAGGGCCGCTGTGAGCAGGTCTGCGTGAACTCCCCAGGGAGCTACACCTGCCACTGTGACGGGCGTGGGGGCCTCAAGCTGTCCCAGGACATGGACACCTGTGAGGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAGGCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAACGGTGTCGGCCGTGTCACCAGCAGCGGCCCGGTCATCAACCATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAG
GGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGAGGACTGTATCATCTGAACCTGACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTCGTGCAGCCTATAAACCCTCGTCTGGATGGCTGCATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCATCCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTGCTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCCGGGAGCGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCC
GCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTCTGGGCCCCCGACCTCCGTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCCCTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGCCGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCTCACCTTTGCTGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCcaaGGATCCCGGGCTGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGACAAGtga
제조예 2. 타우를 표적으로 하는 Gas6 기반의 융합분자
Gas6 단백질 기반한 타우 특이적 키메라 포식 유도체를 제작하기 위하여, 먼저 Gla 도메인 및 EGF 반복 도메인을 없애고, 그 위치에 타우 특이 항체인 세모리네맙(semorinemab)의 단일사슬 Fv 단편(single-chain variable fragment; scFv)를 도입하였다(αTau-Gas6). 상기 키메라 포식 유도체의 아미노산 서열 및 뉴클레오티드 서열은 표 4와 같다.
1. αTau-Gas6 (Tau-VL-G4Sx3-VH-LG-HA-T2A-EGFP, amino acid sequence)

MAPSLSPGPAALRRAPQLLLLLLAAECALADDVLTQTPLSLPVTPGQPASISCRSSQSIVHSNGNTYLEWYLQKPGQSPQLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSLVPWTFGQGTKVEIKGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGLIFRSYGMSWVRQAPGKGLEWVATINSGGTYTYYPDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCANSYSGAMDYWGQGTLVTVSSGGGGSGGGGSDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLFAGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAAGSGSGSGSGSGSYPYDVPDYAEGRGSLLTCGDVEENPGPVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK*
2. αTau-Gas6 (Tau-VL-G4Sx3-VH-LG-HA-T2A-EGFP, nucleotide sequence)
ATGGCCCCTTCGCTCTCGCCCGGGCCCGCCGCCCTGCGCCGCGCGCCGCAGCTGCTGCTGCTGCTGCTGGCCGCGGAGTGCGCGCTTGCCGACGATGTATTAACACAAACTCCCCTATCATTGCCGGTGACCCCGGGCCAACCAGCTTCGATCAGCTGCCGTAGCTCTCAGAGCATCGTGCACAGCAACGGTAATACCTACCTGGAATGGTATTTGCAAAAACCGGGTCAATCCCCGCAGTTGCTGATTTATAAAGTTTCGAATCGTTTCAGCGGTGTTCCGGATCGTTTCAGCGGCTCTGGCTCCGGCACCGATTTTACGCTGAAGATCAGTCGCGTGGAAGCGGAGGACGTGGGTGTCTACTACTGCTTTCAGGGTAGTTTGGTGCCGTGGACCTTTGGTCAGGGTACTAAGGTGGAAATTAAGGGTGGTGGGGGATCAGGTGGCGGCGGCAGCGGCGGTGGCGGGAGCGAGGTACAACTAGTTGAATCAGGTGGAGGGTTGGTTCAGCCAGGTGGTTCGCTGCGTCTGAGTTGTGCGGCAAGCGGTTTGATCTTTCGCAGCTATGGTATGAGCTGGGTTCGTCAGGCGCCGGGCAAGGGTCTGGAGTGGGTGGCGACCATTAACTCT
GGCGGCACGTACACCTACTATCCCGACTCCGTGAAAGGCCGTTTCACCATCTCCCGCGACAATAGCAAAAACACCCTGTATTTGCAGATGAACTCGCTCCGCGCAGAGGACACCGCTGTGTACTACTGCGCCAATTCCTACAGCGGTGCTATGGATTATTGGGGTCAGGGCACATTGGTGACTGTAAGCAGCGGCGGGGGCGGCAGCGGCGGCGGTGGCAGCGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAGGCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAACGGTGTCGGCCGTGTCACCAGCAGCGGCCCGGTCATCAACCATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAGGGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGA
GGACTGTATCATCTGAACCTGACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTCGTGCAGCCTATAAACCCTCGTCTGGATGGCTGCATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCATCCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTGCTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCCGGGAGCGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCCGCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTCTGGGCCCCCGACCTCCGTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCCCTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGC
CGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCTCACCTTTGCTGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCGGCAGCGGCAGCGGCAGCGGCAGCGGCAGCGGCAGCtacccatacgatgttccagattacgctGAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATCCTGGCCCAGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA
GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGtaa
제조예 3. 알파-시누클린을 표적으로 하는 Gas6 기반의 융합분자
Gas6 단백질 기반한 알파-시누클린 특이적 키메라 포식 유도체를 제작하기 위하여, 먼저 Gla 도메인 및 EGF 반복 도메인을 없애고, 그 위치에 알파-시누클린 특이 항체인 신파네맙(cinpanemab)의 단일사슬 Fv 단편(single-chain variable fragment; scFv)를 도입하였다(ααSyn-Gas6). 상기 키메라 포식 유도체의 아미노산 서열 및 뉴클레오티드 서열은 표 5와 같다.
1. ααSyn-Gas6 (Cinpanemab (aSyn)_VL-G4Sx3-VH-LG-HA-T2A-EGFP, amino acid sequence)

MAPSLSPGPAALRRAPQLLLLLLAAECALASYELTQPPSVSVSPGQTARITCSGEALPMQFAHWYQQRPGKAPVIVVYKDSERPSGVPERFSGSSSGTTATLTITGVQAEDEADYYCQSPDSTNTYEVFGGGTKLTVLGGGGSGGGGSGGGGSEVQLVESGGGLVEPGGSLRLSCAVSGFDFEKAWMSWVRQAPGQGLQWVARIKSTADGGTTSYAAPVEGRFIISRDDSRNMLYLQMNSLKTEDTAVYYCTSAHWGQGTLVTVSSGGGGSGGGGSDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLFAGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAAGSGSGSGSGSGSYPYDVPDYAEGRGSLLTCGDVEENPGPVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYK*
2. ααSyn-Gas6 (Cinpanemab (aSyn)_VL-G4Sx3-VH-LG-HA-T2A-EGFP, nucleotide sequence)
ATGGCCCCTTCGCTCTCGCCCGGGCCCGCCGCCCTGCGCCGCGCGCCGCAGCTGCTGCTGCTGCTGCTGGCCGCGGAGTGCGCGCTTGCCTCCTATGAGCTGACTCAGCCACCCTCGGTGTCAGTGTCCCCAGGACAGACGGCCAGGATCACCTGCTCTGGAGAAGCATTGCCAATGCAATTTGCTCATTGGTACCAACAGAGGCCAGGCAAGGCCCCAGTGATAGTGGTGTACAAAGACAGTGAGAGACCGTCAGGTGTCCCTGAGCGATTCTCTGGCTCCAGCTCAGGGACAACAGCCACGTTGACCATCACTGGAGTCCAGGCAGAAGATGAGGCTGACTATTACTGCCAGTCGCCAGACAGCACTAACACTTATGAAGTCTTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTGGTGGGGGATCAGGTGGCGGCGGCAGCGGCGGTGGCGGGAGCGAGGTGCAGCTGGTGGAGTCTGGGGGAGGTCTGGTCGAGCCGGGGGGGTCCCTAAGACTCTCCTGTGCAGTCTCCGGATTCGATTTCGAAAAAGCCTGGAT
GAGTTGGGTCCGCCAGGCTCCAGGGCAGGGGCTACAGTGGGTTGCCCGTATCAAGAGCACAGCTGATGGTGGGACAACAAGCTACGCCGCCCCCGTGGAAGGCAGGTTCATCATCTCAAGAGATGATTCGAGAAACATGCTTTATCTGCAAATGAACAGTCTGAAAACTGAAGACACAGCCGTCTATTATTGTACATCAGCCCACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCGGGCGGGGGCGGCAGCGGCGGCGGTGGCAGCGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAGGCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAACGGTGTCGGCCGTGTCACCAGCAGCGGCCCGGTCATCAACC
ATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAGGGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGAGGACTGTATCATCTGAACCTGACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTCGTGCAGCCTATAAACCCTCGTCTGGATGGCTGCATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCATCCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTGCTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCCGGGAGCGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCCGCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTCTGGGCCCCCGACCTCCGTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCCCTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGCCGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCTCACCTTTGCTGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCGG
CAGCGGCAGCGGCAGCGGCAGCGGCAGCGGCAGCtacccatacgatgttccagattacgctGAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATCCTGGCCCAGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGA
AGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGtaa
제조예 4. 베타-아밀로이드를 표적으로 하는 ProS1 기반의 융합분자
ProS1 단백질 기반한 베타-아밀로이드(Aβ) 특이적 키메라 포식 유도체를 제작하기 위하여, 먼저 Gla 도메인 및 EGF 반복 도메인을 없애고, 그 위치에 베타-아밀로이드 특이 항체인 아두카누맙(aducanumab)의 단일사슬 Fv 단편(single-chain variable fragment; scFv)를 도입하였다(αAβ-ProS1). 상기 키메라 포식 유도체의 아미노산 서열 및 뉴클레오티드 서열은 표 6과 같다.
1. αAβ-ProS1 (αAβ-ProS1(GE-)-FLAG-IRES-ZsGreen, amino acid sequence)

MRVLGGRCGALLACLLLVLPVSEADIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRGGGGSGGGGSGGGGSEVQLVESGGGVVQPGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWFDGTKKYYTDSVKGRFTISRDNSKNTLYLQMNTLRAEDTAVYYCARDRGIGARRGPYYMDVWGKGTTVTVSSGGGGSGGGGSVVSVCLPLNLDTKYELLYLAEQFAGVVLYLKFRLPEISRFSAEFDFRTYDSEGVILYAESIDHSAWLLIALRGGKIEVQLKNEHTSKITTGGDVINNGLWNMVSVEELEHSISIKIAKEAVMDINKPGPLFKPENGLLETKVYFAGFPRKVESELIKPINPRLDGCIRSWNLMKQGASGIKEIIQEKQNKHCLVTVEKGSYYPGSGIAF
HIDYNNVSSAEGWHVNVTLNIRPSTGTGVMLALVSGNNTVPFAVSLVDSTSEKSQDILLSVENTVIYRIQALSLCSDQQSHLEFRVNRNNLELSTPLKIETISHEDLQRQLAVLDKAMKAKVATYLGGLPDVPFSATPVNAFYNGCMEVNINGVQLDLDEAISKHNDIRAHSCPSVWKKTKNSQGSRADYKDHDGDYKDHDIDYKDDDDK*ASAPLPPPPLTLLAEAAWNKAGVRLSICYFPPYCRLLAM*GPGNLALSS*RAFLGVFPLSPKECKVC*MS*RKQFLWKLLEDKQRL*RPFAGSGTPHLATGASAAKSHVYKIHLQRRHNPSATL*VG*LWKESNGSPQA
YSTRG*RMPRRYPIVWDLIWGLGTHALHVFSRG*KNV*APRTTGTWFSFEKHDDNMATTMAQSKHGLTKEMTMKYRMEGCVDGHKFVITGEGIGYPFKGKQAINLCVVEGGPLPFAEDILSAAFMYGNRVFTEYPQDIVDYFKNSCPAGYTWDRSFLFEDGAVCICNADITVSVEENCMYHESKFYGVNFPADGPVMKKMTDNWEPSCEKIIPVPKQGILKGDVSMYLLLKDGGRLRCQFDTVYKAKSVPRKMPDWHFIQHKLTREDRSDAKNQKWHLTEHAIASGSALP*
2. αAβ-ProS1 (αAβ-ProS1(GE-)-FLAG-IRES-ZsGreen, nucleotide sequence)
ATGAGGGTCCTGGGTGGGCGCTGCGGGGCGCTGCTGGCGTGTCTCCTCCTAGTGCTTCCCGTCTCAGAGGCAGACATTCAGATGACTCAATCTCCTAGCTCTCTGAGCGCCTCCGTTGGAGATAGAGTCACTATTACCTGCAGAGCCAGCCAATCCATCAGCTCTTATCTAAATTGGTACCAACAGAAGCCCGGCAAAGCGCCAAAGCTGCTCATCTACGCTGCAAGCTCCTTACAGAGCGGAGTACCCAGCAGATTCTCAGGCAGTGGCAGTGGGACTGACTTCACATTGACGATTAGCTCTCTGCAGCCTGAAGACTTTGCCACATACTATTGTCAGCAGAGCTATAGCACCCCGCTGACGTTTGGAGGCGGAACTAAGGTGGAAATCAAGAGAGGAGGCGGGGGCTCCGGCGGGGGT
GGCTCGGGGGGAGGAGGCTCAGAGGTTCAGCTTGTCGAGTCTGGGGGGGGAGTCGTTCAGCCAGGTAGAAGCCTCAGACTGAGCTGTGCCGCAAGTGGGTTTGCTTTTTCATCTTACGGTATGCACTGGGTGAGACAGGCTCCTGGCAAAGGACTCGAGTGGGTCGCTGTAATATGGTTCGATGGTACAAAGAAATACTATACCGATAGTGTGAAAGGAAGATTCACCATTTCACGAGACAACAGTAAAAATACCTTGTACCTTCAGATGAACACCCTGAGAGCAGAAGACACAGCCGTGTACTACTGCGCCAGAGATAGAGGTATCGGAGCAAGGCGTGGTCCCTATTATATGGATGTGTGGGGGAAGGGAACAACAGTGACTGTGAGCTCTGGCGGGGGCGGCAGCGGCGGCGGTGGCAGCGTTGTTTCAGTGTGCCTTCCCTTGAACCTTGACACAAAGTATGAATTACTTTACTTGGCGGAGCAGTTTGCAGGGGTTGTTTTATATTTAAAATTTCGTTTGCCAGAAATCAGCAGATTTTCAGCAGAATTTGATTTCCGGACATATGATTCAGAAGGCGTGATACTGTACGCAGAATCTATCGATCACTCAGCGTGGCTCCTGATTGCACTTCGTGGTGGAAAGATTGAAGTTCAGCTTAAGAATGAACATACATCCAAAATCACAACTGGAGGTGATGTTATTAATAATGGTCTATGGAATATGGTGTCTGTGGAAGAATTAGAACATAGTATTAGCATTAAAATAGCTAAAGAAGCTGTGATGGATATAAATAAACCTGGACCCCTTTTTAAGCCGGAAAATGGATTGCTGGAA
ACCAAAGTATACTTTGCAGGATTCCCTCGGAAAGTGGAAAGTGAACTCATTAAACCGATTAACCCTCGTCTAGATGGATGTATACGAAGCTGGAATTTGATGAAGCAAGGAGCTTCTGGAATAAAGGAAATTATTCAAGAAAAACAAAATAAGCATTGCCTGGTTACTGTGGAGAAGGGCTCCTACTATCCTGGTTCTGGAATTGCTCAATTTCACATAGATTATAATAATGTATCCAGTGCTGAGGGTTGGCATGTAAATGTGACCTTGAATATTCGTCCATCCACGGGCACTGGTGTTATGCTTGCCTTGGTTTCTGGTAACAACACAGTGCCCTTTGCTGTGTCCTTGGTGGACTCCACCTCTGAAAAATCACAGGATATTCTGTTATCTGTTGAAAATACTGTAATATATCGGATA
CAGGCCCTAAGTCTATGTTCCGATCAACAATCTCATCTGGAATTTAGAGTCAACAGAAACAATCTGGAGTTGTCGACACCACTTAAAATAGAAACCATCTCCCATGAAGACCTTCAAAGACAACTTGCCGTCTTGGACAAAGCAATGAAAGCAAAAGTGGCCACATACCTGGGTGGCCTTCCAGATGTTCCATTCAGTGCCACACCAGTGAATGCCTTTTATAATGGCTGCATGGAAGTGAATATTAATGGTGTACAGTTGGATCTGGATGAAGCCATTTCTAAACATAATGATATTAGAGCTCACTCATGTCCATCAGTTTGGAAAAAGACAAAGAATTCTCAAGGATCCCGGGCTGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGACAAGtgaGCTAGCGCCCCTCTCCCTCCCCCCCCCCTAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGTTATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCTGTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGGTCTGTTGA
ACGCCAAGAACCAGAAGTGGCACCTGACCGAGCACGCCATCGCCTCCGGCTCCGCCTTGCCCtga
제조예 5. 베타-아밀로이드를 표적으로 하는 Gas6 기반의 융합분자(II): Fab 및 Mab 형태의 베타-아밀로이드 결합 영역
Gas6 단백질 기반한 베타-아밀로이드(Aβ) 특이적 키메라 포식 유도체를 제작하기 위하여, 먼저 아폽토틱(apoptotic) 세포의 PS(phosphatidylserine)를 인지하는 부위인 Gla 도메인을 없애고, 그 위치에 베타-아밀로이드 특이 항체인 아두카누맙(aducanumab)의 항원-결합 단편(antigen-binding fragment; Fab) 또는 단클론 항체(monoclonal antibody; Mab)를 도입하였다(αAβ[Fab]-Gas6, αAβ[Mab]-Gas6). 상기 두 키메라 포식 유도체의 아미노산 서열 및 뉴클레오티드 서열은 표 7 및 표 8과 같다.
1. αAβ[Fab]-Gas6 (Aducanumab (Fab)-Gas6-FLAG, amino acid sequence)

METDTLLLWVLLLWVPGSTGDEVQLVESGGGVVQPGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWFDGTKKYYTDSVKGRFTISRDNSKNTLYLQMNTLRAEDTAVYYCARDRGIGARRGPYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHGGGGSGGGGSDILPCVPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLFAGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAADYKDHDGDYKDHDIDYKDDDDK*
2 αAβ[Fab]-Gas6 (Aducanumab (Fab)-Gas6-FLAG, nucleotide sequence)
ATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGAGGTTCAGCTTGTCGAGTCTGGGGGGGGAGTCGTTCAGCCAGGTAGAAGCCTCAGACTGAGCTGTGCCGCAAGTGGGTTTGCTTTTTCATCTTACGGTATGCACTGGGTGAGACAGGCTCCTGGCAAAGGACTCGAGTGGGTCGCTGTAATATGGTTCGATGGTACAAAGAAATACTATACCGATAGTGTGAAAGGAAGATTCACCATTTCACGAGACAACAGTAAAAATACCTTGTACCTTCAGATGAACACCCTGAGAGCAGAAGACACAGCCGTGTACTACTGCGCCAGAGATAGAGGTATCGGAGCAAGGCGTGGTCCCTATTATATGGATGTGTGGGGGAAGGGAACAACAGTGACTGTGAGCTCTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACTGTGCCCTCTAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGC
CCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACGGCGGAGGTGGAAGCGGAGGCGGTGGAAGCGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAGGCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAACGGTGTCGGCCGT
GTCACCAGCAGCGGCCCGGTCATCAACCATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAGGGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGAGGACTGTATCATCTGAACCTCACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTCGTGCAGCCTATAAACCCTCGTCTGGATGGCTGTATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCATCCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTGCTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCCGGGAG
CGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCCGCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTCTGGGCCCCCGACCTCCGTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCCCTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGCCGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCTCACCTTTGC
CGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCGACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAGGATGACGATGACAAGtga
1. αAβ[Mab]-Gas6 (Aducanumab (Mab)-Gas6-FLAG, amino acid sequence)

METDTLLLWVLLLWVPGSTGDEVQLVESGGGVVQPGRSLRLSCAASGFAFSSYGMHWVRQAPGKGLEWVAVIWFDGTKKYYTDSVKGRFTISRDNSKNTLYLQMNTLRAEDTAVYYCARDRGIGARRGPYYMDVWGKGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGGSGGGGSDILPC
VPFSVAKSVKSLYLGRMFSGTPVIRLRFKRLQPTRLVAEFDFRTFDPEGILLFAGGHQDSTWIVLALRAGRLELQLRYNGVGRVTSSGPVINHGMWQTISVEELARNLVIKVNRDAVMKIAVAGDLFQPERGLYHLNLTVGGIPFHEKDLVQPINPRLDGCMRSWNWLNGEDTTIQETVKVNTRMQCFSVTERGSFYPGSGFAFYSLDYMRTPLDVGTESTWEVEVVAHIRPAADTGVLFALWAPDLRAVPLSVALVDYHSTKKLKKQLVVLAVEHTALALMEIKVCDGQEHVVTVSLRDGEATLEVDGTRGQSEVSAAQLQERLAVLERHLRSPVLTFAGGLPDVPVTSAPVTAFYRGCMTLEVNRRLLDLDEAAYKHSDITAHSCPPVEPAAA*
2. αAβ[Mab]-Gas6 (Aducanumab (Mab)-Gas6-FLAG, nucleotide sequence)

ATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGAGGTTCAGCTTGTCGAGTCTGGGGGGGGAGTCGTTCAGCCAGGTAGAAGCCTCAGACTGAGCTGTGCCGCAAGTGGGTTTGCTTTTTCATCTTACGGTATGCACTGGGTGAGACAGGCTCCTGGCAAAGGACTCGAGTGGGTCGCTGTAATATGGTTCGATGGTACAAAGAAATACTATACCGATAGTGTGAAAGGAAGATTCACCATTTCACGAGACAACAGTAAAAATACCTTGTACCTTCAGATGAACACCCTGAGAGCAGAAGACACAGCCGTGTACTACTGCGCCAGAGATAGAGGTATCGGAGCAAGGCGTGGTCCCTATTATATGGATGTGTGGGGGAAGGGAACAACAGTGACTGTGAGCTCTGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCT
CTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACTGTGCCCTCTAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCAC
GTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAA
GAGCCTCTCCCTGTCCCCGGGTAAAGGCGGAGGTGGAAGCGGAGGCGGTGGAAGCGACATCTTGCCGTGCGTGCCCTTCAGCGTGGCCAAGAGTGTGAAGTCCTTGTACCTGGGCCGGATGTTCAGTGGGACCCCCGTGATCCGACTGCGCTTCAAGAGGCTGCAGCCCACCAGGCTGGTAGCTGAGTTTGACTTCCGGACCTTTGACCCCGAGGGCATCCTCCTCTTTGCCGGAGGCCACCAGGACAGCACCTGGATCGTGCTGGCCCTGAGAGCCGGCCGGCTGGAGCTGCAGCTGCGCTACAACGGTGTCGGCCGTGTCACCAGCAGCGGCCCGGTCATCAACCATGGCATGTGGCAGACAATCTCTGTTGAGGAGCTGGCGCGGAATCTGGTCATCAAGGTCAACAGGGATGCTGTCATGAAAATCGCGGTGGCCGGGGACTTGTTCCAACCGGAGCGAGGACTGTATCATCTGAACCTCACCGTGGGAGGTATTCCCTTCCATGAGAAGGACCTCGTGCAGCCTATAAACCCTCGTCTGGATGGCTGTATGAGGAGCTGGAACTGGCTGAACGGAGAAGACACCACCATCCAGGAAACGGTGAAAGTGAACACGAGGATGCAGTG
CTTCTCGGTGACGGAGAGAGGCTCTTTCTACCCCGGGAGCGGCTTCGCCTTCTACAGCCTGGACTACATGCGGACCCCTCTGGACGTCGGGACTGAATCAACCTGGGAAGTAGAAGTCGTGGCTCACATCCGCCCAGCCGCAGACACAGGCGTGCTGTTTGCGCTCTGGGCCCCCGACCTCCGTGCCGTGCCTCTCTCTGTGGCACTGGTAGACTATCACTCCACGAAGAAACTCAAGAAGCAGCTGGTGGTCCTGGCCGTGGAGCATACGGCCTTGGCC
CTAATGGAGATCAAGGTCTGCGACGGCCAAGAGCACGTGGTCACCGTCTCGCTGAGGGACGGTGAGGCCACCCTGGAGGTGGACGGCACCAGGGGCCAGAGCGAGGTGAGCGCCGCGCAGCTGCAGGAGAGGCTGGCCGTGCTCGAGAGGCACCTGCGGAGCCCCGTGCTCACCTTTGCCGGCGGCCTGCCAGATGTGCCGGTGACTTCAGCGCCAGTCACCGCGTTCTACCGCGGCTGCATGACACTGGAGGTCAACCGGAGGCTGCTGGACCTGGACGAGGCGGCGTACAAGCACAGCGACATCACGGCCCACTCCTGCCCCCCCGTGGAGCCCGCCGCAGCCtga
실험예 1. 베타-아밀로이드를 표적으로 하는 Gas6 기반의 융합분자 (I): scFv 형태의 베타-아밀로이드 결합 영역
1-1. 형질전환 세포의 융합분자의 발현 확인
HEK293 세포에 플라스미드 형질주입(transfection) 후, 제조예 1에 따른, Flag tag을 포함하는 융합분자의 발현을 Flag tag을 이용한 웨스턴 블롯으로 확인하였고, 그 결과를 도 2에 나타내었다.
1-2. 제조된 융합분자의 베타-아밀로이드 특이적 결합능력 확인
αAβ-Gas6(E), αAβ-Gas6, αFITC-Gas6(E), αFITC-Gas6가 베타-아밀로이드와 FITC를 각각 선택적으로 인식할 수 있는지를 확인하고자, 각각의 플라스미드가 형질주입된 HEK293 세포로부터 분비된 세포 배양액을 모아 베타-아밀로이드 올리고머와 FITC가 부착된 비드(bead)를 통해 실험하였다. 그 결과 도 4와 같이, αAβ-Gas6(E), αAβ-Gas6는 베타-아밀로이드 올리고머 비드만을, αFITC-Gas6(E), αFITC-Gas6는 FITC 비드만을 인식하고 식세포작용(phagocytosis)을 유도함을 확인하였다.
αAβ-Gas6(E), αAβ-Gas6는 비슷한 정도의 활성을 보임을 확하였으나, Gas6의 EGF 도메인을 추가로 제거한 αAβ-Gas6가 단백질 정제과정에서 응집(aggregation)없이 높은 수율로 확보할 수 있음을 발견하여 αAβ-Gas6를 앞으로의 실험과정에 이용하기로 하였다.
1-3. 제조된 융합분자의 작용기전 확인
(1) 세포주를 이용한 확인
베타-아밀로이드 올리고머(oligomer)를 pH 지시계와 컨쥬게이션시켜 이들이 식세포작용에 의해 섭취(uptake)되었을 때, 세포 안 리소좀 안에서 붉은 형광을 낼 수 있도록 in vitro Aβ engulfment assay를 개발하였다.
TAM 수용체들을 발현하는 인간 미세아교세포주인 HMC3 세포로 in vitro Aβ engulfment assay를 수행한 결과, 베타-아밀로이드 올리고머가 αAβ-Gas6에 의해 선택적으로 제거됨을 확인하였다(도 5 및 6).
특히, TAM 수용체들에 대한 기능을 방해하는 항체를 같이 처리하는 실험을 통해 Tyro3, Mertk, Axl 중 αAβ-Gas6는 주로 Axl를 통해 베타-아밀로이드 올리고머를 제거함을 확인하였다(도 7 내지 9). 실제로, Axl을 HMC3 세포에서 제거하였을 때는 αAβ-Gas6의 활성이 크게 감소하였다. 또한 TAM 수용체들을 발현하지 않는 인간 단핵구 세포주인 THP-1는 αAβ-Gas6에 의한 베타-아밀로이드 제거능력이 상승하지 않았으나, Axl을 과발현 시킨 THP-Axl 세포는 αAβ-Gas6에 의존적으로 베타-아밀로이드 피브릴(fibril)을 섭취하는 능력이 크게 증가함을 확인하였였다.
다음으로, Axl을 과발현 시킨 THP-Axl 세포가 Axl과 Fc 수용체를 모두 가지고 있으므로, αAβ-Gas6와 아두카누맙을 통해 베타-아밀로이드를 섭취하였을 때 유도되는 염증반응 정도를 확인하였다. 이를 위해 먼저 NF-kB 리포터(reporter)를 THP-Axl 세포에서 발현시켜 대조군, αAβ-Gas6와 아두카누맙을 베타-아밀로이드 올리고머와 함께 각각 넣어 주었을 때, NF-kB 리포터가 아두카누맙 첨가시에는 크게 증가하였지만, αAβ-Gas6의 경우에는 대조군 수준 또는 그 이하로 발현되는 것을 확인하였다(도 10). 또한, 가장 대표적인 세 종류의 염증성 사이토카인인 IL-1b, IL-6와 TNF의 분비된 단백질 양을 측정하였을 때, 아두카누맙을 처리한 경우는 THP-Axl 세포에서 대조군에 비해 위의 염증성 사이토카인들의 단백질의 양이 현격히 증가하였다(도 11). 하지만, 중요하게도 αAβ-Gas6에서는 이들 염증성 사이토카인의 양이 대조군에 비해 증가하지 않았음을 확인하였다. 이는 우리의 가설대로 αAβ-Gas6 융합 포식 유도체 단백질이 TAM 수용체를 통해 표적물질을 식세포작용할 때 자연적인 사멸세포의 인식 및 포식작용(efferocytosis)과 마찬가지로 염증반응을 유도하지 않는다는 핵심적인 결과이다.
또한, αAβ-Gas6는 아두카누맙과는 달리 염증반응을 억제시키는 기전으로 알려진 Twist1/2 유전자의 발현을 증가시키는 것을 확인하였다(도 12).
(2) 별아교세포와 미세아교세포를 이용한 확인
뇌 안에서 TAM 수용체를 발현하는 세포인 별아교세포와 미세아교세포가 αAβ-Gas6를 통해 베타-아밀로이드를 제거할 수 있는 지를 알아보기 위해, 쥐의 뇌에서 얻은 별아교세포(primary astrocyte)와 미세아교세포(microglia)를 각각 정제한 후 배양하였다. 이후, 정제된 αAβ-Gas6와 아두카누맙을 베타-아밀로이드 피브릴과 같이 넣어 베타-아밀로이드 피브릴 제거 정도를 실시간으로 관찰하였다.
그 결과, Axl을 발현하는 세포주인 HMC3에서 얻은 결과와 동일하게 αAβ-Gas6가 농도 의존적으로 미세아교세포의 베타-아밀로이드 제거 능력을 증가시킴을 확인하였다(도 13). 중요하게도, 아두카누맙을 넣었을 경우에는 별아교세포의 베타-아밀로이드 제거 능력이 전혀 변화되지 않았지만, αAβ-Gas6의 경우에서는 농도 의존적으로 별아교세포의 베타-아밀로이드 제거 능력이 현격하게 증가함을 확인하였다(도 14). 이는 별아교세포가 Fc 수용체를 발현하지 않는 반면 TAM 수용체를 발현하기 때문에, αAβ-Gas6로 인해 기존에 미미했던 베타-아밀로이드 제거 능력이 크게 향상됨을 의미한다.
별아교세포와 미세아교세포 세포주인 BV2 세포에 αAβ-Gas6와 아두카누맙을 베타-아밀로이드 피브릴과 각각 같이 넣어 베타-아밀로이드 섭취를 증가시킨 후, 각각 세포에서 염증반응 정도를 TNF, IL-1a, IL-1b의 mRNA 레벨을 측정하였다(도 15 및 16). 그 결과, 세포주에서 얻은 결과와 비슷하게, 아두카누맙을 처리한 경우 별아교세포와 BV2 세포에서 대조군에 비해 위의 염증성 사이토카인들의 전사체와 단백질의 양이 현격히 증가하였으나, αAβ-Gas6에서는 이들 염증성 사이토카인의 양이 대조군에 비해 증가하지 않았음을 확인하였다.
상기와 같이, αAβ-Gas6 융합 포식 유도체를 이용하는 것이 기존 단일클론 항체 치료제의 심각한 부작용인 염증반응을 동반하지 않고 환자의 뇌에 축적된 베타-아밀로이드 플라크를 별아교세포와 미세아교세포를 통해 효과적으로 제거하는 획기적인 방법이 될 수 있음을 발견하였으며, 이는 현재의 치료 전략을 크게 향상시킬 수 있는 매우 고무적인 결과로 판단된다.
1-4. In vivo 효능평가
(1) 융합분자 또는 이의 발현벡터 도입에 따른 효능
알츠하이머 병 모델 쥐로 5XFAD를 사용하였다. 5XFAD는 돌연변이가 있는 5개의 유전자를 동시에 발현시키므로 베타-아밀로이드 플라크가 생성되는 시기가 빠르며, 노화와는 관계없이 생후 3~4개월부터 베타-아밀로이드 플라크에 따른 병적 증상을 연구할 수 있다.
5XFAD 모델을 통해 αAβ-Gas6의 효과를 in vivo에서 검증하기 위해, 두 가지 다른 방식으로 αAβ-Gas6를 뇌에 전달하였다. 이미 기존 연구를 통해 아두카누맙은 알츠하이머 병 모델 쥐로서도 혈관 주사나 복강 주사로는 뇌로 전달이 잘 되지 않음이 알려져 있다. 따라서, αAβ-Gas6의 효과를 아두카누맙과 정확하게 비교 분석하기 위해서, 1) 생쥐 뇌에 직접 관 삽입(cannulation) 수술을 해서, 정제한 αAβ-Gas6와 아두카누맙을 각각 하루에 한 번씩 뇌의 뇌실(ventricle)에 3주간 주입하였고, 2) αAβ-Gas6와 아두카누맙 각각을 렌티바이러스 형태로 만들어 생쥐 해마에 입체주입(sterotaxic injection)을 통해 발현시켰다. 중요하게도, αAβ-Gas6정제 단백질을 넣어주거나 렌티 바이러스 형태로 유전자를 발현시켰을 때 모두 유의미하게 베타-아밀로이드 플라크수들이 감소하였음을 발견하였다(도 17 및 18).
또한, 각각 단백질과 바이러스 형태로 αAβ-Gas6를 뇌에 전달했을때 미세아아교세포 및 별아교세포의 리소좀에 들어 있는 베타-아밀로이드 양을 정량한 결과, 이 두 세포 모두에서 베타-아밀로이드 제거 능력이 크게 상승한 것으로 나타났다(도 19 내지 도 22)
이는, in vitro 연구결과와 마찬가지로 TAM 수용체들이 미세아교세포와 별아교세포에서 모두 발현하므로 αAβ-Gas6 도입시 미세아교세포와 별아교세포가 베타-아밀로이드를 인식하고 제거할 수 있게 됨을 의미한다.
(2) 항체치료제와 본 발명의 융합분자의 효과 비교
알츠하이머 병에서는 미세아교세포에 의해 시냅스가 무분별하게 제거되어 시냅스 수가 감소함이 알려져 있다. 놀랍게도 아두카누맙을 알츠하이머 모델 쥐에 전달했을때는 이 현상이 심화되었지만, αAβ-Gas6를 바이러스 형태로 발현시켰을때는 미세아교세포에 의한 비정상적인 시냅스 제거가 정상수준으로 회복되었다 (도 23 및 24).
뿐만아니라 알츠하이머 모델 쥐에서 새로운 물체의 모양이나 위치를 기억하는 인지 및 기억력 테스트를 도 25의 프로토콜에 따라 각각 수행하였을때 아두카누맙에 비해 αAβ-Gas6의 발현은 현격하게 우월한 인지 및 기억력 회복 효과를 보였다 (도 26).
추가로, 본 발명의 키메라 포식 유도체 단백질이 다양한 표적 물질 제거에도 효과적인지 확인하기 위해, 베타-아밀로이드 외에 타우(Tau) 및 알파-시누클린(αSyn)에 특이적인 포식유도 단백질을 제조예 2 및 3과 같이 제조하여 실험예 2 및 3과 같이 각 표적 물질의 제거 효과를 확인하였다.
실험예 2. 타우를 표적으로 하는 Gas6 기반의 융합분자
타우 올리고머(tau oligomer)를 pH 지시계와 컨쥬게이션시켜 이들이 식세포작용에 의해 섭취(uptake)되었을 때, 세포 안 리소좀 안에서 붉은 형광을 낼 수 있도록 in vitro tau engulfment assay를 개발하였다. TAM 수용체들을 발현하는 인간 미세아교세포주인 HMC3 세포에 제조예 2에 따른 포식 유도체 단백질[αTau-Gas6]을 발현하는 배양액을 처리하여 in vitro tau engulfment assay를 수행하였으며, 그 결과 도 27과 같이 타우 올리고머가 αTau-Gas6에 의해 선택적으로 제거됨을 확인하였다.
실험예 3. 알파-시누클린을 표적으로 하는 Gas6 기반의 융합분자
알파-시누클린 올리고머(αSyn oligomer)를 pH 지시계와 컨쥬게이션시켜 이들이 식세포작용에 의해 섭취(uptake)되었을 때, 세포 안 리소좀 안에서 붉은 형광을 낼 수 있도록 in vitro αSyn engulfment assay를 개발하였다. TAM 수용체들을 발현하는 인간 미세아교세포주인 HMC3 세포에 제조예 3에 따른 포식 유도체 단백질[ααSyn-Gas6]을 발현하는 배양액을 처리하여 in vitro αSyn engulfment assay를 수행하였으며, 그 결과 도 28과 같이 알파-시누클린 올리고머가 ααSyn-Gas6에 의해 선택적으로 제거됨을 확인하였다.
실험예 4. 베타-아밀로이드를 표적으로 하는 ProS1 기반의 융합분자
다음으로, 키메라 포식 유도 단백질의 제작에 있어 Gas6가 아닌 TAM 수용체의 다른 리간드(ligand)를 활용하여도 효과가 있는지 확인하기 위해 ProS1 리간드를 이용하여 αAβ-ProS1을 제조예 4와 같이 제작하고 효능을 평가하였다. 이를 위해 TAM 수용체들을 발현하는 일차배양된 쥐 별아교세포에서 αAβ-ProS1을 발현하는 배양액을 처리하여 실험예 1-3에서 사용한 in vitro Aβ engulfment assay를 수행하였으며, 그 결과 도 29와 같이 베타-아밀로이드 올리고머가 αAβ-ProS1에 의해 선택적으로 제거됨을 확인하였다.
실험예 5. 베타-아밀로이드를 표적으로 하는 Gas6 기반의 융합분자(II): Fab 및 Mab 형태의 베타-아밀로이드 결합영역
다음으로, 키메라 포식 유도 단백질의 제작에 있어 표적 단백질의 결합 도메인이 scFv 외 다양한 표적 결합 부위를 사용 가능한지 확인하기 위해, scFv 대신 항원결합단편(antigen-binding fragment, Fab) 혹은 완전한 형태의 단클론항체(monoclonal antibody; Mab)을 이용하여 제조된 포식 유도 단백질을 제조예 5에 따라 제조하여 실험을 수행하였다(αAβ[Fab]-Gas6 및 αAβ[Mab]-Gas6). 이를 위해 TAM 수용체들을 발현하는 인간 미세아교세포주인 HMC3 세포에 αAβ[Fab]-Gas6 및 αAβ[Mab]-Gas6를 발현하는 배양액을 처리하여 실험예 1-3에서 사용한 in vitro Aβ engulfment assay를 수행하였으며, 그 결과 도 30 및 도 31과 같이 베타-아밀로이드 올리고머가 αAβ[Fab]-Gas6 및 αAβ[Mab]-Gas6 각각에 의해 선택적으로 제거됨을 확인하였다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
발명의 실시를 위한 형태는 발명의 실시를 위한 최선의 형태에서 함께 설명되었다.
본 발명의 실시예에 따른 식세포작용 유도 활성을 갖는 융합분자는 종래기술이 갖는 염증반응 활성화에 따른 조직 손상 문제를 해결할 수 있으며, 이에 따라 이상 축적된 물질, 예컨대 베타-아밀로이드, 타우, 알파-시누클린, 헌팅틴 또는 프라이온 등을 효과적으로 제거하여, 이러한 축적에 의해 일어나는 질병, 예컨대 알츠하이머병, 파킨슨병, 헌팅턴병 또는 프라이온 병의 예방 또는 치료용도로 활용할 수 있어 상기 질환들의 치료제 산업에서 이용될 수 있다.

Claims (17)

  1. TAM 수용체 결합능을 갖는 제1영역; 및
    표적 물질에 특이적으로 결합하는 제2영역을 포함하는,
    식세포작용 유도 활성을 갖는 융합분자.
  2. 제1항에 있어서, 상기 TAM 수용체는 Tyro3, Axl 및 MerTK로 이루어진 군에서 선택된 하나 이상인 융합분자.
  3. 제1항에 있어서, 상기 제1영역은 Gas6, ProS1, Tubby, Tulp1, Gal3 또는 이들의 활성 단편을 포함하는 것인 융합분자.
  4. 제1항에 있어서, 상기 제1영역은 Gas6 또는 ProS1의 라미닌 G-유사 도메인(laminin G-like domain), 또는 이의 활성 단편을 포함하는 것인 융합분자.
  5. 제1항에 있어서, 상기 제1영역은 서열번호 1 및 2의 서열을 포함하는 라미닌 G-유사 도메인, 또는 서열번호 3 및 4의 서열을 포함하는 라미닌 G-유사 도메인인 것인 융합분자.
  6. 제1항에 있어서, 상기 표적 물질은 생체 조직에 축적되어 질병을 일으키는 물질인, 융합분자.
  7. 제6항에 있어서, 상기 표적 물질은 아밀로이드인 융합분자.
  8. 제6항에 있어서, 상기 질병은 아밀로이드증인 융합분자.
  9. 제1항에 있어서, 상기 표적 물질은 베타-아밀로이드(β-amyloid), 타우(Tau), 알파-시누클린(α-synuclein), 헌팅틴(huntingtin), 프라이온(prion) 및 표 1의 이상 축적 물질 중에서 선택되는 것인, 융합분자.
  10. 제1항에 있어서, 상기 표적 물질에 특이적으로 결합하는 제2영역은 상기 표적 물질에 특이적으로 결합하는 항체, 이의 활성 단편, 항체 유사 단백질, 펩타이드, 압타머 및 가용성 수용체 중에서 선택되는 것인 융합분자.
  11. 제1항에 있어서, 상기 식세포작용은 TAM 수용체를 발현하는 세포에서 유도되는 것인 융합분자.
  12. 제11항에 있어서, 상기 TAM 수용체를 발현하는 세포는 한 가지 이상의 전문적인 포식세포(professional phagocyte), 한 가지 이상의 비전문적인 포식세포(non-professional phagocyte) 또는 그 조합인 것인 융합분자.
  13. 제1항에 있어서, 상기 식세포작용의 유도는 염증반응을 수반하지 않는 것인 융합분자.
  14. 제1항에 따른 융합분자를 인코딩하는 핵산분자.
  15. 제1항의 핵산분자를 포함하는 발현벡터.
  16. 제1항에 따른 융합분자를 발현하는 세포.
  17. 제1항에 따른 융합분자 또는 제15항에 따른 발현벡터를 포함하는, 상기 표적 물질이 생체 조직에 축적되어 일으키는 질병의 예방 또는 치료를 위한 약학적 조성물.
PCT/KR2022/001671 2021-01-29 2022-01-28 비염증성 식세포작용 유도 활성을 갖는 융합분자 WO2022164288A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP22746314.8A EP4286406A1 (en) 2021-01-29 2022-01-28 Fusion molecule having non-inflammatory phagocytosis inducing activity
CN202280012573.9A CN116848128A (zh) 2021-01-29 2022-01-28 具有非炎症性细胞吞噬作用诱导活性的融合分子
AU2022211971A AU2022211971A1 (en) 2021-01-29 2022-01-28 Fusion molecule having non-inflammatory phagocytosis inducing activity
MX2023008744A MX2023008744A (es) 2021-01-29 2022-01-28 Molecula de fusion que tiene actividad no inflamatoria inductora de la fagocitosis.
CA3205570A CA3205570A1 (en) 2021-01-29 2022-01-28 Fusion molecule having non-inflammatory phagocytosis inducing activity
JP2023546224A JP2024505935A (ja) 2021-01-29 2022-01-28 非炎症性食細胞作用誘導活性を有する融合分子
IL304791A IL304791A (en) 2021-01-29 2023-07-27 A fusion molecule with non-inflammatory phagocytosis that causes activity
US18/360,984 US20240018204A1 (en) 2021-01-29 2023-07-28 Fusion molecule having non-inflammatory phagocytosis inducing activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0013045 2021-01-29
KR20210013045 2021-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/360,984 Continuation-In-Part US20240018204A1 (en) 2021-01-29 2023-07-28 Fusion molecule having non-inflammatory phagocytosis inducing activity

Publications (1)

Publication Number Publication Date
WO2022164288A1 true WO2022164288A1 (ko) 2022-08-04

Family

ID=82654839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001671 WO2022164288A1 (ko) 2021-01-29 2022-01-28 비염증성 식세포작용 유도 활성을 갖는 융합분자

Country Status (10)

Country Link
US (1) US20240018204A1 (ko)
EP (1) EP4286406A1 (ko)
JP (1) JP2024505935A (ko)
KR (2) KR102549520B1 (ko)
CN (1) CN116848128A (ko)
AU (1) AU2022211971A1 (ko)
CA (1) CA3205570A1 (ko)
IL (1) IL304791A (ko)
MX (1) MX2023008744A (ko)
WO (1) WO2022164288A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202417520A (zh) * 2022-10-14 2024-05-01 南韓商伊米斯療法股份有限公司 融合分子和治療免疫性疾病的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200181221A1 (en) * 2017-07-24 2020-06-11 Rutgers, The State University Of New Jersey Phosphatidylserine targeting fusion molecules and methods for their use
US20200390853A1 (en) * 2019-06-14 2020-12-17 Beijing Tongren Hospital, Capital Medical University Active peptide for enhancing the phagocytic functions of retinal pigment epithelium and a use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2956820A1 (en) 2014-08-26 2016-03-03 University Of Tennessee Research Foundation Targeting immunotherapy for amyloidosis
SG11202003479TA (en) 2017-10-18 2020-05-28 Regenxbio Inc Fully-human post-translationally modified antibody therapeutics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200181221A1 (en) * 2017-07-24 2020-06-11 Rutgers, The State University Of New Jersey Phosphatidylserine targeting fusion molecules and methods for their use
US20200390853A1 (en) * 2019-06-14 2020-12-17 Beijing Tongren Hospital, Capital Medical University Active peptide for enhancing the phagocytic functions of retinal pigment epithelium and a use thereof

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Handbook of Pharmaceutical Excipients", 2003, AMERICAN PHARMACEUTICALS ASSOCIATION
"Remington: the Science and Practice of Pharmacy", 2000, LIPPINCOTT WILLIAMS & WILKINS
"Remington's Pharmaceutical Sciences", 1995
DEUSCHER, M.: "Guide to Protein Purification Methods Enzymology", vol. 182, 1990, ACADEMIC PRESS. INC.
ERIN D LEW, JENNIFER OH, PATRICK G BURROLA, IRIT LAX, ANNA ZAGÓRSKA, PAQUI G TRAVÉS, JOSEPH SCHLESSINGER, GREG LEMKE: "Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities.", E-LIFE, 1 September 2014 (2014-09-01), pages 1 - 23, XP055953604, [retrieved on 20220822], DOI: 10.7554/eLife.03385 *
HIGUCHI: "PCR Technology: Principles and Applications for DNA Amplification", vol. 6, 1989, STOCKTON PRESS, article "Using PCR to Engineer DNA", pages: 61 - 70
HUTCHINSON ET AL., J. BIOL. CHEM., vol. 253, 1978, pages 6551
HUTCHINSON ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 83, 1986, pages 710
KEDAGE VIVEKANANDA, ELLERMAN DIEGO, CHEN YONGMEI, LIANG WEI-CHING, BORNEO JOVEN, WU YAN, YAN MINHONG: "Harnessing MerTK agonism for targeted therapeutics", MABS, LANDES BIOSCIENCE, US, vol. 12, no. 1, 1 January 2020 (2020-01-01), US , XP055953592, ISSN: 1942-0862, DOI: 10.1080/19420862.2019.1685832 *
OLIPHANT ET AL., GENE, vol. 44, 1986, pages 177
PICKEN, ACTA HAEMATOL., vol. 143, 2020, pages 322 - 334
SAMBROOK ET AL.: "Molecular Cloning: A laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
TONDO GIACOMO, PERANI DANIELA, COMI CRISTOFORO: "TAM Receptor Pathways at the Crossroads of Neuroinflammation and Neurodegeneration", DISEASE MARKERS, WILEY, CHICHESTER., GB, vol. 2019, 15 September 2019 (2019-09-15), GB , pages 1 - 13, XP055953594, ISSN: 0278-0240, DOI: 10.1155/2019/2387614 *
ZOLLERSMITH, DNA, vol. 3, 1984, pages 479 - 488

Also Published As

Publication number Publication date
KR102549520B1 (ko) 2023-07-03
MX2023008744A (es) 2023-10-02
CN116848128A (zh) 2023-10-03
AU2022211971A1 (en) 2023-08-10
CA3205570A1 (en) 2022-08-04
KR20220110442A (ko) 2022-08-08
IL304791A (en) 2023-09-01
US20240018204A1 (en) 2024-01-18
EP4286406A1 (en) 2023-12-06
KR20230104826A (ko) 2023-07-11
JP2024505935A (ja) 2024-02-08

Similar Documents

Publication Publication Date Title
CN108350467B (zh) 基因构建体
WO2018030608A1 (ko) Cas9 단백질 및 가이드 RNA의 혼성체를 함유하는 나노 리포좀 전달체 조성물
RU2757932C2 (ru) Генетическая конструкция для применения при лечении нейродегенеративного нарушения или инсульта
KR20210027377A (ko) 프로그래뉼린을 포함하는 융합 단백질
JP7308034B2 (ja) 最適化二重ヌクレアーゼ融合物および方法
WO2022164288A1 (ko) 비염증성 식세포작용 유도 활성을 갖는 융합분자
WO2020050626A1 (ko) O-글리코실화 가능한 폴리펩타이드 영역을 포함하는 융합 폴리펩타이드
JP7351835B2 (ja) 視神経脊髄炎の処置のための組換えIgG Fc多量体
WO2021154046A1 (ko) pH-감응성 FC 변이체
WO2020213982A1 (ko) Cd9을 이용한 퇴행성 신경질환의 예방 또는 치료용 조성물과 퇴행성 신경질환 치료제 스크리닝 방법
WO2023055155A1 (ko) 혈액 뇌장벽 투과용 펩타이드 및 이의 용도
WO2022235140A1 (ko) 단일사슬항체조각 및 페리틴의 융합단백질을 포함하는 나노입자 및 이의 용도
WO2022010273A1 (ko) 보체 경로 억제제를 포함하는 융합단백질 및 이의 용도
WO2022108148A1 (ko) 자가 항체에 대한 회피율 또는 활성이 증가된 adamts13 변이체
WO2020246760A1 (ko) 퇴행성관절염 예방 또는 치료용 항-oscar 항체
RU2823919C1 (ru) Слитая молекула, способная индуцировать невоспалительный фагоцитоз
JP2023544141A (ja) AIMP2-DX2および必要に応じてmiR-142の標的配列ならびにその組成物を使用した神経系疾患を処置する方法
WO2017209553A2 (ko) 환자 유래 세포를 이용한 항체 스크리닝 방법
US20230416315A1 (en) Prion-fc region fusion protein and use thereof
WO2024123052A1 (ko) 항-타우 항체 및 펩티드를 포함하는 융합체와 그의 용도
WO2023132547A1 (ko) 혈관신생 억제제가 결합된 항-c3b 항체 또는 항-c5 항체 및 이의 용도
WO2022050781A1 (en) Development of cell-permeable truncated socs3 sh2 domain (cp-sd) recombinant protein for anti-obesity agent
WO2022177369A1 (ko) Gpr151 유전자의 5'utr 또는 이의 변이체를 이용한 신경 손상의 치료
WO2024112143A1 (ko) Stat1-tmd의 면역 관련 질환 용도
WO2023239213A1 (ko) 염증세포에서 특이적으로 작동하는 융합단백질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3205570

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/008744

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 304791

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2023546224

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280012573.9

Country of ref document: CN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023015306

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022211971

Country of ref document: AU

Date of ref document: 20220128

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202347055918

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022746314

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022746314

Country of ref document: EP

Effective date: 20230829

ENP Entry into the national phase

Ref document number: 112023015306

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230728

WWE Wipo information: entry into national phase

Ref document number: 11202305715X

Country of ref document: SG