WO2022163278A1 - コンデンサ - Google Patents

コンデンサ Download PDF

Info

Publication number
WO2022163278A1
WO2022163278A1 PCT/JP2021/048516 JP2021048516W WO2022163278A1 WO 2022163278 A1 WO2022163278 A1 WO 2022163278A1 JP 2021048516 W JP2021048516 W JP 2021048516W WO 2022163278 A1 WO2022163278 A1 WO 2022163278A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
plate
bus bar
heat transfer
electrode terminal
Prior art date
Application number
PCT/JP2021/048516
Other languages
English (en)
French (fr)
Inventor
雄基 浦野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022578187A priority Critical patent/JPWO2022163278A1/ja
Priority to DE112021006941.1T priority patent/DE112021006941T5/de
Priority to CN202180091458.0A priority patent/CN116783669A/zh
Publication of WO2022163278A1 publication Critical patent/WO2022163278A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/106Fixing the capacitor in a housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/103Sealings, e.g. for lead-in wires; Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/236Terminals leading through the housing, i.e. lead-through
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors

Definitions

  • the present invention relates to capacitors.
  • the capacitor element generates heat when the capacitor is energized. In the capacitor configured as described above, heat is less likely to be released from the capacitor element because the capacitor element is embedded in the filling resin.
  • the capacitor having the above configuration can be mounted in an inverter device for driving an electric motor.
  • the capacitor element since a large amount of current tends to flow from the power supply device to the inverter device, a large amount of current tends to flow to the capacitor element, and heat generation of the capacitor element tends to increase.
  • an object of the present invention is to provide a capacitor capable of enhancing heat dissipation from a capacitor element.
  • a main aspect of the present invention relates to a capacitor.
  • a capacitor according to this aspect includes a capacitor element, a first bus bar and a second bus bar respectively connected to first electrodes and second electrodes provided on both end surfaces of the capacitor element, one surface of which is open, and the capacitor element and a filling resin filled in the case.
  • the first bus bar includes a first portion covering the capacitor element from the opening side in the filling resin
  • the second bus bar overlaps the first portion from the opening side in the filling resin.
  • Including a second part The capacitor further includes an exposed surface located closer to the opening than the second portion so as to overlap the first portion and exposed from the filling resin, and receives heat transferred to the second portion to expose the exposed surface. It has a heat transfer part that emits from the surface.
  • FIG. 1(a) is a perspective view of the film capacitor according to the first embodiment
  • FIG. 1(b) is a perspective view of the film capacitor not filled with a filling resin according to the first embodiment.
  • FIG. 2 is an exploded perspective view of the film capacitor according to the first embodiment
  • FIG. 3 is a perspective view of the capacitor element unit according to the first embodiment, viewed from the rear lower side.
  • FIG. 4(a) is a perspective view of a first busbar according to the first embodiment
  • FIG. 4(b) is a perspective view of a second busbar according to the first embodiment.
  • FIG. 5(a) is a perspective view of a first insulating sheet according to the first embodiment
  • FIG. 5(b) is a perspective view of a second insulating sheet.
  • FIG. 6(a) is a perspective view of the heat transfer plate according to the first embodiment as seen from the front and below, and FIG. 6(b) is a front cross-sectional view of the heat transfer plate according to the first embodiment.
  • FIG. 7(a) is a perspective view of a film capacitor according to the second embodiment
  • FIG. 7(b) is a perspective view of a capacitor element unit according to the second embodiment.
  • FIG. 8(a) is a perspective view of a first busbar according to the second embodiment
  • FIG. 8(b) is a perspective view of a second busbar according to the second embodiment.
  • FIG. 9 is a perspective view of a first insulating sheet according to a second embodiment;
  • a film capacitor which is one embodiment of the capacitor of the present invention, will be described below with reference to the drawings.
  • front-rear, left-right, and up-down directions are indicated in each figure as appropriate. It should be noted that the illustrated directions only indicate relative directions of the film capacitors, and do not indicate absolute directions. Also, for convenience of explanation, some configurations such as “bottom portion” and “front side portion” may be named according to the direction of illustration.
  • FIG. 1(a) is a perspective view of the film capacitor 1A
  • FIG. 1(b) is a perspective view of the film capacitor 1A in which the filling resin 600 is not filled.
  • the film capacitor 1A includes four capacitor elements 100, a first bus bar 200, a second bus bar 300, a heat transfer plate 400, a case 500, a filling resin 600.
  • Capacitor element unit 10 is configured by assembling four capacitor elements 100 , first bus bar 200 and second bus bar 300 so as to be integrated.
  • Capacitor element unit 10 is accommodated in case 500 , and heat transfer plate 400 is installed on second bus bar 300 of capacitor element unit 10 with insulating sheet 700 interposed therebetween.
  • a filling resin 600 is filled in the case 500 .
  • Filling resin 600 is a thermosetting resin, such as an epoxy resin.
  • the four capacitor elements 100 and part of the first busbar 200 and the second busbar 300 are covered with the hardened filling resin 600 and protected from moisture and impact by the case 500 and the filling resin 600. .
  • the upper side of heat transfer plate 400 is exposed from filling resin 600 .
  • FIG. 2 is an exploded perspective view of the film capacitor 1A.
  • FIG. 3 is a perspective view of the capacitor element unit 10 as seen from the rear lower side.
  • 4A is a perspective view of the first busbar 200
  • FIG. 4B is a perspective view of the second busbar 300.
  • FIG. 5(a) is a perspective view of the first insulating sheet 810
  • FIG. 5(b) is a perspective view of the second insulating sheet 820.
  • installation regions R1 and R2 of insulating sheet 700 and heat transfer plate 400 on second bus bar 300 of capacitor element unit 10 are indicated by dashed lines for convenience.
  • capacitor element unit 10 includes four capacitor elements 100, a first bus bar 200, a second bus bar 300, a first insulating sheet 810 and a second insulating sheet 820. And prepare.
  • the four capacitor elements 100 are formed by stacking two aluminum-deposited metallized films on a dielectric film, winding or laminating the stacked metallized films, and pressing them into a flat shape.
  • Capacitor element 100 has a shape similar to a flattened cylinder.
  • a first electrode 110 is formed on one end surface 101 of the capacitor element 100 by spraying a metal such as zinc, and a second electrode 120 is formed on the other end surface 102 by similarly spraying a metal such as zinc. be.
  • capacitor element 100 of the present embodiment is formed of a metallized film in which aluminum is vapor-deposited on a dielectric film. It may be formed by a film. Alternatively, capacitor element 100 may be formed of a metallized film obtained by vapor-depositing a plurality of these metals, or may be formed of a metallized film obtained by vapor-depositing an alloy of these metals. .
  • the four capacitor elements 100 have one end face 101, that is, the first electrode 110, facing upward, and the other end face 102, that is, the second electrode 120, facing downward. are arranged side by side in two rows in the left-right direction. First electrode 110 and second electrode 120 of four capacitor elements 100 are electrically connected to first bus bar 200 and second bus bar 300, respectively.
  • the first bus bar 200 is formed into a predetermined shape by appropriately cutting, bending, or otherwise processing a plate-like conductive material such as a copper plate. , the second connection terminal portion 230 and the relay portion 240 are integrated. In this embodiment, the first bus bar 200 is a P-pole bus bar.
  • the electrode terminal portion 210 has a rectangular plate shape and contacts the first electrodes 110 of the four capacitor elements 100 so as to cover the first electrodes 110 from above.
  • a total of four pairs of connection pins 211 are formed on the front and rear sides of the left end portion and on the front and rear sides of the right end portion of the electrode terminal portion 210 .
  • a pair of corresponding connection pins 211 are joined to each first electrode 110 by a joining method such as soldering.
  • a circular flow hole 212 is formed in the electrode terminal portion 210 .
  • a relay portion 240 relays between the electrode terminal portion 210 and the three first connection terminal portions 220 and second connection terminal portions 230 .
  • the relay portion 240 extends upward from the rear end portion of the electrode terminal portion 210, and has a lower plate portion 241 having the same lateral width as the electrode terminal portion 210, and protrudes greatly to the left and right sides of the lower plate portion 241. It is composed of an upper plate portion 242 .
  • the three first connection terminal portions 220 are provided at the upper end portion of the relay portion 240 so as to be arranged in the horizontal direction at equal intervals.
  • the first connection terminal portion 220 has a hook shape that extends upward and then bends and extends rearward.
  • a circular through hole 221 is formed in the first connection terminal portion 220 .
  • a nut 222 is fitted in the through hole 221 .
  • the second connection terminal portion 230 is provided at the right end of the upper end portion of the relay portion 240 .
  • the second connection terminal portion 230 has a shape that extends slightly upward, then bends and extends long rearward.
  • a circular through hole 231 is formed at the tip of the second connection terminal portion 230 .
  • the second bus bar 300 is formed into a predetermined shape by appropriately cutting, bending, or otherwise processing a plate-like conductive material such as a copper plate, and includes two electrode terminal portions 310 and three first connection terminals. It has a configuration in which the portion 320, the second connection terminal portion 330, the overlapping portion 340, the two first relay portions 350, and the second relay portion 360 are integrated.
  • the second busbar 300 is an N-pole busbar.
  • the left electrode terminal portion 310 has a rectangular plate shape with the front and rear corners on the left side cut obliquely, and the second electrodes 120 are connected to the second electrodes 120 of the two capacitor elements 100 in the left column. Contact from below so as to cover.
  • the right electrode terminal portion 310 has a rectangular plate shape with the front and rear corners on the right side cut obliquely, and the second electrodes 120 are connected to the second electrodes 120 of the two capacitor elements 100 in the right column. Contact from below so as to cover.
  • a pair of connection pins 311 are formed on the front and rear sides of the right end portion of the electrode terminal portion 310 on the left side.
  • a pair of connection pins 311 are formed on the front and rear sides of the left end portion of the right electrode terminal portion 310 .
  • a pair of corresponding connection pins 311 of the electrode terminal portion 310 on the left side is joined to each of the second electrodes 120 of the two capacitor elements 100 in the left column by a joining method such as soldering.
  • a pair of corresponding connection pins 311 of the electrode terminal portion 310 on the right side is joined to each of the second electrodes 120 of the two capacitor elements 100 in the right column by a joining method such as soldering.
  • the overlapping portion 340 has a rectangular plate shape and overlaps the electrode terminal portion 210 of the first bus bar 200 from above.
  • Two first relay portions 350 relay between the two electrode terminal portions 310 and the overlapping portion 340 .
  • the left first relay portion 350 extends from the left electrode terminal portion 310 so as to pass through the outside (left side) of the row of the left capacitor elements 100 and is connected to the left end portion of the overlapping portion 340 .
  • the first relay portion 350 on the right side extends from the electrode terminal portion 310 on the right side so as to pass through the outside (right side) of the row of the capacitor elements 100 on the right side and is connected to the right end portion of the overlapping portion 340 .
  • a circular communication hole 351 is formed in the two first relay portions 350 along the peripheral surface 103 of the capacitor element 100 .
  • a second relay portion 360 relays between the overlapping portion 340 and the three first connection terminal portions 320 and the second connection terminal portions 330 .
  • the second relay portion 360 extends upward from the rear end portion of the overlapped portion 340, and has a lower plate portion 361 having the same left and right width as the overlapped portion 340, and protrudes farther to the left and right than the lower plate portion 361. It is composed of an upper plate portion 362 .
  • the second relay portion 360 overlaps the relay portion 240 of the first busbar 200 from the front.
  • the three first connection terminal portions 320 are provided at the upper end portion of the second relay portion 360 so as to be arranged in the horizontal direction at equal intervals. Each first connection terminal portion 320 is arranged to the left of each first connection terminal portion 220 of the first bus bar 200 .
  • the first connection terminal portion 320 has a hook shape that extends upward and then bends and extends rearward.
  • a circular through hole 321 is formed in the first connection terminal portion 320 .
  • a nut 322 is fitted in the through hole 321 .
  • the second connection terminal portion 330 is provided at the right end of the upper end portion of the second relay portion 360 and is arranged to the right of the second connection terminal portion 230 of the first bus bar 200 .
  • the second connection terminal portion 330 has a shape that extends slightly upward, then bends and extends long rearward.
  • a circular through hole 331 is formed at the tip of the second connection terminal portion 330 .
  • the first insulating sheet 810 and the second insulating sheet 820 are sandwiched between the first busbar 200 and the second busbar 300 .
  • the first insulating sheet 810 and the second insulating sheet 820 are made of insulating paper or an insulating resin material such as acrylic or silicon.
  • the first insulating sheet 810 includes a first insulating portion 811, two second insulating portions 812 and a second insulating portion 811 each having a shape corresponding to the overlapping portion 340, the two first relay portions 350 and the second relay portion 360 of the second bus bar 300, respectively. 3 insulation 813 is included.
  • the third insulating portion 813 covers both surfaces of the second relay portion 360 .
  • a circular flow hole 814 overlapping the flow hole 212 of the electrode terminal portion 210 of the first bus bar 200 is formed in the first insulating portion 811 .
  • a semicircular notch 815 is formed in the two second insulating portions 812 so as to overlap with the communication hole 351 of the first relay portion 350 .
  • the second insulating sheet 820 has a shape corresponding to the relay portion 240 of the first busbar 200 and covers both surfaces of the relay portion 240 .
  • a first insulating portion 811 is interposed between the electrode terminal portion 210 of the first bus bar 200 and the overlapping portion 340 of the second bus bar 300 . This ensures insulation between the electrode terminal portion 210 and the overlapping portion 340 .
  • the overlapping portion 340 is adjacent to the electrode terminal portion 210 via the first insulating portion 811 . As a result, heat is easily transferred from the electrode terminal portion 210 to the overlapping portion 340 .
  • it is desirable that both the electrode terminal portion 210 and the overlapping portion 340 are in contact with the first insulating portion 811 there is a slight gap between at least one of the electrode terminal portion 210 and the overlapping portion 340 and the first insulating portion 811 . There may be gaps in
  • Two second insulating parts 812 are interposed between the first electrodes 110 of the four capacitor elements 100 and the two first relay parts 350 of the second bus bar 300 . This ensures insulation between the first electrodes 110 of the four capacitor elements 100 and the two first relay portions 350 .
  • a third insulating portion 813 and a second insulating sheet 820 are interposed between the relay portion 240 of the first busbar 200 and the second relay portion 360 of the second busbar 300 . This ensures insulation between the relay portion 240 and the second relay portion 360 .
  • first insulating sheet 810 a highly thermally conductive insulating material may be used for the first insulating sheet 810 .
  • the thermal conductivity of first insulating sheet 810 is set to approximately 3.0 to 3.5 W/m ⁇ K. This thermal conductivity is higher than that of the filling resin 600 .
  • capacitor element unit 10 electrode terminal portion 210 and relay portion 240 of first bus bar 200 overlap overlapping portion 340 and second relay portion 360 of second bus bar 300 , thereby increasing the ESL (equivalent series inductance) in capacitor element unit 10 . ) is expected to be reduced.
  • FIG. 6(a) is a perspective view of the heat transfer plate 400 viewed from the lower front
  • FIG. 6(b) is a front cross-sectional view of the heat transfer plate 400.
  • heat transfer plate 400 is formed separately from second bus bar 300 using a metal material such as aluminum. and a plate-like portion 420 .
  • the first plate-like portion 410 has a rectangular plate-like shape.
  • the upper surface of the first plate-shaped portion 410 serves as an exposed surface 401 exposed from the filling resin 600 .
  • the exposed surface 401 is a flat surface.
  • Three circular through-holes 411 are formed on the left side and the right side of the first plate-shaped portion 410 .
  • Each through-hole 411 has an upper end 411a chamfered, and a lower portion 411b has a tapered shape in which the hole diameter gradually increases from the lower surface side to the upper surface side of the first plate-shaped portion 410.
  • the first plate-shaped portion 410 is formed with square recesses 412 at the left end and the right end.
  • the first plate-shaped portion 410 is larger in size than the second plate-shaped portion 420 .
  • the second plate-shaped part 420 has a rectangular shape and is integrally formed with the first plate-shaped part 410 so as to protrude from the central portion of the lower surface of the first plate-shaped part 410 .
  • the lower surface of the second plate-like portion 420 forms a facing surface 402 that faces the exposed surface 401 and faces the surface (upper surface) of the overlapping portion 340 of the second bus bar 300 .
  • the insulating sheet 700 is a sheet-like insulating member, has a rectangular shape, and is made of insulating paper or an insulating resin material such as acrylic or silicone.
  • the insulating sheet 700 has a larger size than the second plate-shaped portion 420 of the heat transfer plate 400 .
  • the thermal conductivity of the insulating sheet 700 is about 3.0 to 3.5 W/m ⁇ K.
  • case 500 is made of resin, for example, polyphenylene sulfide (PPS), which is a thermoplastic resin.
  • PPS polyphenylene sulfide
  • the case 500 is formed in a substantially rectangular parallelepiped box shape, and has a bottom portion 501, a front side portion 502, a rear side portion 503, a left side portion 504, and a right side portion 505 rising from the bottom portion 501, and an opening 506 on the top surface. have.
  • PPS polyphenylene sulfide
  • the case 500 is provided with first attachment tabs 510 at the corners between the front side portion 502 and the left side portion 504 and the corners between the front side portion 502 and the right side portion 505 .
  • a circular mounting hole 511 is formed in the first mounting tab 510 .
  • the case 500 is also provided with second mounting tabs 520 on the front and rear sides of the left side portion 504 and on the front and rear sides of the right side portion 505 .
  • a circular mounting hole 521 is formed in the second mounting tab 520 .
  • a metal collar 522 is fitted into the mounting hole 521 for reinforcement of the hole.
  • the portions of the left side surface portion 504 and the right side surface portion 505 where the rear second mounting tabs 520 are provided protrude inward in a shape corresponding to the recessed portion 412 of the heat transfer plate 400 to constitute the protruding portion 530 .
  • the capacitor element unit 10 When the film capacitor 1A is assembled, the capacitor element unit 10 is accommodated in the case 500 as shown in FIG. 1(b).
  • the four capacitor elements 100 have the first electrodes 110 facing the opening 506 side and the second electrodes 120 facing the bottom portion 501 side.
  • the electrode terminal portion 210 of the first bus bar 200 covers the first electrodes 110 from the opening 506 side, and the overlapping portion 340 of the second bus bar 300 overlaps the electrode terminal portion 210 from the opening 506 side.
  • An insulating sheet 700 is installed on the overlapping portion 340 (installation area R1 in FIG. 2), and a heat transfer plate 400 is installed thereon (installation area R2 in FIG. 2).
  • the heat transfer plate 400 is positioned closer to the opening 506 than the overlapping portion 340 in the case 500 so as to overlap the electrode terminal portion 210 .
  • the lower surface of the second plate-shaped portion 420 of the heat transfer plate 400 contacts the insulating sheet 700 and closely faces the upper surface of the overlapping portion 340 as the facing surface 402 .
  • the insulating sheet 700 provides insulation between the heat transfer plate 400 and the overlapping portion 340 .
  • the concave portion 412 of the heat transfer plate 400 is fitted into the projecting portion 530 of the case 500 , and the heat transfer plate 400 is positioned in the front, rear, left, and right directions with respect to the case 500 .
  • the upper surface of the heat transfer plate 400 slightly protrudes upward from the case 500 .
  • a filling resin 600 in a liquid state is injected into the case 500 .
  • filling resin 600 passes through circulation hole 212 of first bus bar 200 and two circulation holes 351 of second bus bar 300 , thereby facilitating spreading over four capacitor elements 100 .
  • the case 500 is filled with the filling resin 600 to the vicinity of the opening 506, the injection of the filling resin 600 is completed.
  • the case 500 is heated and the filling resin 600 inside the case 500 is cured.
  • the film capacitor 1A is completed as shown in FIG. 1(a).
  • the three first connection terminal portions 220 and the second connection terminal portions 230 of the first bus bar 200 and the three first connection terminal portions 320 and the second connection terminal portions 330 of the second bus bar 300 are It is exposed from the filling resin 600 and positioned behind the case 500 .
  • a portion of the heat transfer plate 400 that is, the upper side of the first plate-like portion 410 is exposed from the filling resin 600 , and the upper surface of the first plate-like portion 410 is exposed from the filling resin 600 as an exposed surface 401 .
  • the six through-holes 411 of the heat transfer plate 400 are filled halfway with the filling resin 600 . Since the through holes 411 are tapered, the filling resin 600 in the through holes 411 produces an anchor effect, making it difficult for the heat transfer plate 400 to come off upward.
  • the film capacitor 1A can be mounted, for example, in an inverter device for driving an electric motor in an electric vehicle.
  • DC power is supplied to the inverter device from a power supply device (battery).
  • the inverter device has an inverter circuit including an IGBT (Insulated Gate Bipolar Transistor), converts DC power into three-phase AC power, and supplies it to an electric motor.
  • IGBT Insulated Gate Bipolar Transistor
  • Through-holes 231 and 331 are used for the second connection terminal portion 230 of the first bus bar 200 and the second connection terminal portion 330 of the second bus bar 300, respectively. connected by screws. Also, the three first connection terminal portions 220 of the first bus bar 200 and the three first connection terminal portions 320 of the second bus bar 300 are provided with external terminals (not shown) connected to an inverter circuit, respectively. They are connected by screwing using nuts 222 and 322 .
  • the cooling member 2 is attached to the exposed surface 401 of the heat transfer plate 400 as indicated by the dashed line in FIG. 1(a) in order to enhance the heat radiation effect.
  • the cooling member 2 is for forcibly cooling the heat transfer plate 400 from the outside. be done.
  • the cooling member 2 may be a cooler using a Peltier element. Since the heat transfer plate 400 and the second bus bar 300 are insulated by the insulating sheet 700, the cooling member 2 is in direct contact with the exposed surface 401, which is the mounting surface.
  • the inverter device When the inverter device operates and the film capacitor 1A is energized, the four capacitor elements 100 generate heat.
  • the heat generated from the four capacitor elements 100 is transmitted to the electrode terminal portions 210 of the first busbar 200, the two electrode terminal portions 310 of the second busbar 300, and the two first relay portions 350.
  • Heat transfer plate 400 is cooled by cooling member 2 . Therefore, the heat transmitted to the two electrode terminal portions 310 and the two first relay portions 350 moves to the overlapped portion 340 and is transmitted to the facing surface 402 of the heat transfer plate 400, causing the heat transfer plate 400 to spread in its thickness direction. , reaches the exposed surface 401 and is discharged from the exposed surface 401 to the cooling member 2 .
  • the overlapped portion 340 overlaps the electrode terminal portion 210 so as to be close to it. Therefore, the heat transmitted to the electrode terminal portion 210 also moves to the overlapping portion 340 , moves to the exposed surface 401 of the heat transfer plate 400 , and is released from the exposed surface 401 to the cooling member 2 .
  • the heat transfer path to the exposed surface 401 has a short distance and a large cross-sectional area. As a result, the thermal resistance of the moving path is reduced, so that heat is transferred well from the overlapped portion 340 to the exposed surface 401 . Therefore, heat dissipation from the overlapping portion 340 is improved. Furthermore, since the first plate-shaped portion 410 of the heat transfer plate 400 is larger in size than the second plate-shaped portion 420, the area of the exposed surface 401, which is a heat dissipation surface, is increased, and the heat dissipation effect to the cooling member 2 is enhanced. .
  • the heat transmitted to the left electrode terminal portion 310 is transmitted to the overlapping portion 340 through the left first relay portion 350, and the heat transmitted to the right electrode terminal portion 310 is transmitted through the right first relay portion 350. It is transmitted to the overlapping section 340 through the That is, the heat received by the electrode terminal portions 310 on both sides is transmitted to the overlapped portion 340 in a short distance, so that the heat dissipation from the electrode terminal portions 310 on both sides is improved.
  • the heat is radiated from the four capacitor elements 100 to the outside through the first bus bar 200, the second bus bar 300, and the heat transfer plate 400, so that the capacitor elements 100 are less likely to become hot when the current is supplied. .
  • the film capacitor 1A includes a capacitor element 100, a first bus bar 200 and a second bus bar 300 respectively connected to a first electrode 110 and a second electrode 120 provided on both end surfaces 101 and 102 of the capacitor element 100, and one surface ( It has a case 500 with an open top surface) in which the capacitor element 100 is accommodated, and a filling resin 600 filled in the case 500 .
  • First bus bar 200 includes a first portion (electrode terminal portion 210 ) that covers capacitor element 100 from opening 506 side in filling resin 600
  • second bus bar 300 has a first portion from opening 506 side in filling resin 600 . It includes a second portion (overlapping portion 340) that overlaps the .
  • the film capacitor 1A further includes an exposed surface 401 which is positioned closer to the opening 506 than the second portion so as to overlap the first portion and which is exposed from the filling resin 600.
  • the exposed surface 401 receives the heat transmitted to the second portion.
  • a heat transfer portion (heat transfer plate 400 ) is provided to emit heat from 401 .
  • the heat transferred from capacitor element 100 to second bus bar 300 can be effectively released to the outside through the heat transfer section.
  • the heat transferred to 1 bus bar 200 can be effectively released to the outside through the second portion (overlapping portion 340) and the heat transfer portion. Therefore, heat dissipation from capacitor element 100 through first bus bar 200 and second bus bar 300 can be enhanced, and capacitor element 100 can be prevented from becoming hot when energized.
  • the heat transfer portion (heat transfer plate 400) is a plate-like member formed separately from the second bus bar 300, and the exposed surface 401 faces back to the second portion (overlapping portion 340). It is configured to include a facing surface 402 that faces the surface of the .
  • the heat transferred to the second portion moves in the thickness direction of the heat transfer portion (heat transfer plate 400), so the heat transfer path to the exposed surface 401 is short. , the cross-sectional area becomes large. As a result, the heat resistance of the moving path is reduced, so that heat is transferred well from the second portion to the exposed surface 401 . Therefore, heat dissipation from capacitor element 100 through first bus bar 200 and second bus bar 300 can be further enhanced.
  • the heat transfer portion (heat transfer plate 400) includes a first plate-like portion 410 having an exposed surface 401 and a second plate-like portion 410 integrally formed with the first plate-like portion 410 and having a facing surface 402.
  • the first plate-like portion 410 is larger in size than the second plate-like portion 420 .
  • the area of the exposed surface 401 which is a heat dissipation surface, can be increased, and the heat dissipation from the exposed surface 401 can be enhanced.
  • the capacitor element 100 is arranged in the case 500 so that the first electrode 110 faces the opening 506 side and the second electrode 120 faces the bottom surface portion 501 side, and the first bus bar 200
  • a second bus bar 300 covers the second electrode 120 and a second electrode terminal portion (electrode terminal portion 310) connected to 120; and a third portion (first relay portion 350) extending from the second electrode terminal portion and connected to the second portion (overlapping portion 340). It is configured like this.
  • the heat transmitted from the capacitor element 100 to the second electrode terminal portion (electrode terminal portion 310) and the third portion (first relay portion 350) is transferred to the second portion (overlapping portion 340) and the heat transfer portion (
  • the heat transferred from the capacitor element 100 to the first electrode terminal portion (electrode terminal portion 210) can be effectively released to the outside through the heat transfer plate 400), and the heat transferred from the capacitor element 100 to the first electrode terminal portion (electrode terminal portion 210) can be transferred to the second portion (overlapping portion 340) and the heat transfer portion (heat transfer plate 400) can be well discharged to the outside.
  • the film capacitor 1A has a case 500 in which a plurality (four) of capacitor elements 100 are arranged in two rows, and the second bus bar 300 is arranged to accommodate the plurality (two) of the capacitor elements 100 in each row.
  • two second electrode terminal portions (electrode terminal portions 310) each connected to the second electrode 120 of the second electrode terminal portion (electrode terminal portion 310) extending from each second electrode terminal portion so as to pass through the outside of each column and extending from the opposite side to the second electrode terminal portion (electrode terminal portion 310). It is configured to include two third portions (first relay portion 350) connected to the portion (overlapping portion 340).
  • the heat received by the two second electrode terminal portions is transmitted to the second portion (overlapping portion 340) in a short distance, so that the heat dissipation from the two second electrode terminal portions gets better.
  • the film capacitor 1A is configured such that the cooling member 2 for cooling the heat transfer portion (heat transfer plate 400) is attached to the exposed surface 401.
  • the heat transfer section (heat transfer plate 400) can be sufficiently cooled, and the heat dissipation from the first bus bar 200 and the second bus bar 300 through the heat transfer section can be sufficiently enhanced.
  • FIG. 7(a) is a perspective view of the film capacitor 1B
  • FIG. 7(b) is a perspective view of the capacitor element unit 10.
  • FIG. FIG. 8(a) is a perspective view of the first busbar 200a
  • FIG. 8(b) is a perspective view of the second busbar 300a.
  • FIG. 9 is a perspective view of the first insulating sheet 810a.
  • a heat transfer section (heat transfer plate 400) separate from the second bus bar 300 is provided.
  • the heat transfer portions (the first heat transfer portion 370 and the two second heat transfer portions 380 ) are integrally formed with the second bus bar 300 .
  • the capacitor element unit 10 includes a first bus bar 200a, a second bus bar 300a and a first insulating sheet having different configurations from the first bus bar 200, the second bus bar 300 and the first insulating sheet 810 of the first embodiment. 810a without the second insulating sheet.
  • the first bus bar 200a is made of a conductive material and has a configuration in which an electrode terminal portion 210a, three first connection terminal portions 220a, a second connection terminal portion 230a, and a relay portion 240a are integrated.
  • the first bus bar 200a has the same structure as the first bus bar of the first embodiment, except that the electrode terminal portion 210a is longer in the front-rear direction than the electrode terminal portion 210 of the first embodiment and has a notch 213 at the front end. It has a shape similar to 200.
  • Four pairs of connection pins 211a and communication holes 212a are formed in the electrode terminal portion 210a.
  • Through holes 221a are formed in the three first connection terminal portions 220a, and nuts 222a are attached to the through holes 221a.
  • a through hole 231a is formed in the second connection terminal portion 230a.
  • the second bus bar 300a is made of a conductive material and includes two electrode terminal portions 310a, three first connection terminal portions 320a, a second connection terminal portion 330a, an overlapping portion 340a, and two first relay portions. 350a, the second relay portion 360a, the first heat transfer portion 370, and the two second heat transfer portions 380 are integrated.
  • the two electrode terminal portions 310a have a rectangular plate shape longer in the front-rear direction than the two electrode terminal portions 310 of the first embodiment.
  • a pair of connection pins 311a are formed on the front and rear sides of the right end of the left electrode terminal portion 310a, and a projecting piece 312 extending upward is formed on the rear end of the left end.
  • a pair of connection pins 311a are formed on the front and rear sides of the left end of the right electrode terminal portion 310a, and a projecting piece 312 extending upward is formed on the rear end of the right end.
  • the overlapped portion 340a includes a first overlapped portion 341 having the same shape as the overlapped portion 340 of the first embodiment, and a rectangular plate-shaped first overlapped portion 341 provided in front of the first overlapped portion 341 with the first heat transfer portion 370 interposed therebetween. and a double overlap portion 342 .
  • the second overlapping portion 342 overlaps the front portion of the electrode terminal portion 210a of the first bus bar 200a from above.
  • a circular flow hole 343 is formed in the front portion of the first overlapping portion 341 to flow the filling resin 600 in a liquid state.
  • the three first connection terminal portions 320a, the second connection terminal portions 330a, the two first relay portions 350a and the second relay portions 360a are the same as the three first connection terminal portions 320 and the second connection terminals of the first embodiment. It has the same shape as the portion 330 , the two first relay portions 350 and the second relay portion 360 .
  • Communication holes 351a are formed in the two first relay portions 350a.
  • Through holes 321a are formed in the three first connection terminal portions 320a, and nuts 322a are attached to the through holes 321a.
  • a through hole 331a is formed in the second connection terminal portion 330a.
  • the first heat transfer part 370 is provided in the front part of the overlapped part 340a, and the two second heat transfer parts 380 are provided on the left and right of the rear part of the overlapped part 340a.
  • the first heat transfer part 370 includes a first plate-like part 371 and two second plate-like parts 372 having a rectangular plate shape.
  • the second plate-shaped portion 372 on the front side extends from the front end portion of the first plate-shaped portion 371 toward the second overlapping portion 342 side and connects to the rear end portion of the second overlapping portion 342 .
  • the second plate-shaped portion 372 on the rear side extends from the rear end portion of the first plate-shaped portion 371 toward the first overlapping portion 341 side and connects to the front end portion of the first overlapping portion 341 .
  • Each of the second plate-like portions 372 is formed with three oval circulation holes 373 for circulating the filling resin 600 in the liquid state.
  • the two second heat transfer parts 380 include a first plate-like part 381 and a second plate-like part 382 having a rectangular plate shape.
  • a second plate-like portion 382 extends from the left end of the first plate-like portion 381 toward the first overlapping portion 341 and connects to the left end of the first overlapping portion 341 .
  • a support piece 383 extends toward the first overlapped portion 341 from the right end portion of the first plate-shaped portion 381 and contacts the first overlapped portion 341 .
  • the right side of the first plate-like portion 381 is supported by the support piece 383 .
  • the second plate-like portion 382 extends from the right end of the first plate-like portion 381 toward the first overlapping portion 341 and connects to the right end of the first overlapping portion 341 .
  • a support piece 383 extends toward the first overlapping portion 341 from the left end portion of the first plate-shaped portion 381 and contacts the first overlapping portion 341 .
  • the left side of the first plate-like portion 381 is supported by the support piece 383 .
  • the first insulating sheet 810a includes a first insulating portion 811a, two second insulating portions 812a, and a third insulating portion 813a. It has the same shape as the first insulating sheet 810 of the first embodiment except that it is elongated. A flow hole 814a is formed in the first insulating portion 811a, and notches 815a are formed in the two second insulating portions 812a. First insulating sheet 810 a ensures insulation between second bus bar 300 a and first bus bar 200 a and first electrodes 110 of four capacitor elements 100 .
  • the first heat transfer section 370 is positioned on the front side, and the two second heat transfer sections 380 are positioned side by side on the rear side.
  • the first plate-like portion 371 of the first heat transfer portion 370 and the first plate-like portions 381 of the two second heat transfer portions 380 extend along the opening 506 of the case 500 and are entirely exposed from the filling resin 600.
  • their surfaces are exposed from the filling resin 600 as exposed surfaces 374 and 384 .
  • the height positions of the three exposed surfaces 374 and 384 are made equal.
  • the cooling member 2 is attached to the exposed surface 374 of the first heat transfer section 370 and the exposed surfaces 384 of the two second heat transfer sections 380, as indicated by the dashed line in FIG. 7(a). At this time, an insulating sheet (not shown) similar to the insulating sheet 700 of the first embodiment is sandwiched between the cooling member 2 and the three exposed surfaces 374 and 384 that are mounting surfaces. Insulation between bus bar 300 and cooling member 2 is achieved.
  • the inverter device When the inverter device operates and the film capacitor 1B is energized, the four capacitor elements 100 generate heat.
  • the heat generated from the four capacitor elements 100 is transmitted to the electrode terminal portion 210a of the first busbar 200a, the two electrode terminal portions 310a of the second busbar 300a, and the two first relay portions 350a.
  • the first heat transfer section 370 and the two second heat transfer sections 380 are cooled by the cooling member 2 .
  • the heat transmitted to the two electrode terminal portions 310a and the two first relay portions 350a moves to the overlapping portion 340a, and the second plates of the first heat transfer portion 370 and the two second heat transfer portions 380 It is transmitted to the plate-like portions 372 and 382 , moves through these second plate-like portions 372 and 382 , reaches the first plate-like portions 371 and 381 , and is discharged from the exposed surfaces 374 and 384 to the cooling member 2 .
  • the overlapped portion 340a overlaps the electrode terminal portion 210a so as to be close to it.
  • the heat transmitted to the electrode terminal portion 210a also moves to the overlapping portion 340a, further moves to the exposed surfaces 374 and 384 of the first heat transfer portion 370 and the two second heat transfer portions 380, and moves to the exposed surfaces. 374 , 384 to the cooling member 2 .
  • the heat transfer portions are integrally formed with the second bus bar 300a, extend along the opening 506 of the case 500, and expose the surface thereof.
  • the insulating sheet 700 is interposed between the heat transfer plate 400 and the overlapping portion 340 of the second bus bar 300 .
  • a configuration in which the opposing surface 402 of the heat transfer plate 400 directly contacts the overlapped portion 340 without the insulating sheet 700 interposed between the heat transfer plate 400 and the overlapped portion 340 may be adopted.
  • an insulating sheet is sandwiched between the exposed surface 401 and the cooling member 2 when the cooling member 2 is attached to the exposed surface 401 of the heat transfer plate 400 .
  • the heat transfer plate 400 is composed of the first plate-like portion 410 and the second plate-like portion 420 having different sizes.
  • the heat transfer plate 400 may have any shape as long as it is configured as a plate-like member.
  • the three heat transfer portions, the first heat transfer portion 370 and the two second heat transfer portions 380, are integrally formed with the second bus bar 300, but how many heat transfer portions are provided? There may be.
  • the entire first plate-like portions 371 and 381 of the first heat transfer portion 370 and the two second heat transfer portions 380 are exposed from the filling resin 600 .
  • the entire first plate-like portions 371 and 381 do not have to be exposed from the filling resin 600 .
  • the first busbars 200, 200a and the second busbars 300, 300a are provided with the three first connection terminal portions 220, 320, 220a, 320a. , the number of the first connection terminal portions 220, 320, 220a, 320a may be changed as appropriate.
  • the first bus bars 200, 200a and the second bus bars 300, 300a have two types of connection terminal portions: first connection terminal portions 220, 320, 220a, 320a and second connection terminal portions 230, 330, 230a, 330a.
  • a configuration in which one type of connection terminal portion is provided may be employed instead of the configuration in which the connection terminal portion is provided.
  • the first busbars 200 and 200a are P-pole busbars
  • the second busbars 300 and 300a are N-pole busbars
  • the first busbars 200 and 200a may be N-pole busbars
  • the second busbars 300 and 300a may be P-pole busbars.
  • a plurality of (two) capacitor elements 100 are arranged in two rows in the left-right direction within the case 500 .
  • the arrangement of capacitor elements 100 within case 500 may be arbitrary, and for example, a plurality of capacitor elements 100 may be arranged in a row within case 500 .
  • the second bus bars 300, 300a may be provided with one electrode terminal portion 310, 310a and one first relay portion 350, 350a.
  • the film capacitors 1A and 1B are provided with four capacitor elements 100 .
  • the number of capacitor elements 100 can be changed as appropriate, including the case where it is one.
  • the capacitor element 100 is formed by stacking two metallized films in which aluminum is vapor-deposited on a dielectric film, and winding or laminating the stacked metallized films.
  • these capacitor elements 100 are formed by stacking a metallized film in which aluminum is vapor-deposited on both sides of a dielectric film and an insulating film, and winding or laminating this. may be formed.
  • the capacitor element 100 is arranged in the case 500 such that the first electrode 110 and the second electrode 120 face the opening 506 side and the bottom portion 501 side of the case 500.
  • the present invention is applied to the film capacitors 1A and 1B that are used.
  • the present invention can also be applied to a film capacitor in which the capacitor element is arranged inside the case such that the first electrode and the second electrode face the side surface of the case.
  • the capacitor in the first bus bar, for example, between the electrode terminal portion connected to the first electrode and the connection terminal portion connected to the external terminal, the capacitor is provided from the opening side of the case as a relay portion for relaying these.
  • a first portion is provided that covers the peripheral surface of the element.
  • the film capacitors 1A and 1B are mentioned as an example of the capacitor of the present invention.
  • the present invention can also be applied to capacitors other than film capacitors.
  • the present invention is useful for capacitors used in various electronic devices, electrical devices, industrial devices, vehicle electrical equipment, and the like.
  • 1A film capacitor (capacitor) 2 cooling member 100 capacitor element 110 first electrode 120 second electrode 200 first bus bar 210 electrode terminal portion (first electrode terminal portion, first portion) 300 second bus bar 310 electrode terminal portion (second electrode terminal portion) 340 overlapping part (second part) 350 first relay section (third section) 400 heat transfer plate (heat transfer part) 401 exposed surface 402 facing surface 410 first plate-shaped portion 420 second plate-shaped portion 500 case 501 bottom portion 506 opening 600 filling resin 1B film capacitor 200a first bus bar 210a electrode terminal portion (first electrode terminal portion, first portion) 300a second bus bar 310a electrode terminal portion (second electrode terminal portion) 340a overlapping portion (second portion) 350a first relay portion (third portion) 370 first heat transfer section (heat transfer section) 371 First plate-shaped part 372 Second plate-shaped part 374 Exposed surface 380 First heat transfer part (heat transfer part) 381 First plate-shaped portion 382 Second plate-shaped portion 384 Exposed surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

フィルムコンデンサは、コンデンサ素子と、第1バスバーおよび第2バスバーと、一面(上面)が開口するケースと、充填樹脂と、を備える。第1バスバーは、充填樹脂中において開口側からコンデンサ素子を覆う第1部分(電極端子部)を含み、第2バスバーは、充填樹脂中において開口側から第1部分に重なる第2部分(重合部)を含む。フィルムコンデンサは、さらに、第1部分に重なるように第2部分よりも開口側に位置し、充填樹脂から露出する露出面を含み、第2部分に伝わった熱を受け取って露出面から放出させる伝熱部(伝熱板)を備える。

Description

コンデンサ
 本発明は、コンデンサに関する。
 従来、コンデンサ素子の両端面に設けられた各電極に、それぞれバスバーを接続し、バスバーが接続されたコンデンサ素子をケースに収容して、当該ケース内に充填樹脂を充填するようにしたケースモールド型のコンデンサが知られている(例えば、特許文献1参照)。
特開2015-103777号公報
 コンデンサへの通電時には、コンデンサ素子が発熱する。上記構成のコンデンサでは、コンデンサ素子が充填樹脂の中に埋没しているため、コンデンサ素子から熱が放出されにくい。
 近年、ハイブリッド車や電気自動車が普及しており、これら自動車では、上記構成のコンデンサが、電気モータを駆動するためのインバータ装置に搭載され得る。この場合、電源装置からインバータ装置へ大きな電流が流れやすいため、コンデンサ素子へも大きな電流が流れやすく、コンデンサ素子の発熱が大きくなりやすい。
 よって、上記のようにコンデンサ素子からの放熱が不十分であると、コンデンサ素子に熱損傷等の不具合が生じる虞がある。
 かかる課題に鑑み、本発明は、コンデンサ素子からの放熱性を高めることができるコンデンサを提供することを目的とする。
 本発明の主たる態様は、コンデンサに関する。本態様に係るコンデンサは、コンデンサ素子と、前記コンデンサ素子の両端面に設けられた第1電極および第2電極にそれぞれ接続される第1バスバーおよび第2バスバーと、一面が開口し、前記コンデンサ素子が収容されるケースと、前記ケース内に充填される充填樹脂と、を備える。ここで、前記第1バスバーは、前記充填樹脂中において前記開口側から前記コンデンサ素子を覆う第1部分を含み、前記第2バスバーは、前記充填樹脂中において前記開口側から前記第1部分に重なる第2部分を含む。コンデンサは、さらに、前記第1部分に重なるように前記第2部分よりも前記開口側に位置し、前記充填樹脂から露出する露出面を含み、前記第2部分に伝わった熱を受け取って前記露出面から放出させる伝熱部を備える。
 本発明によれば、コンデンサ素子からの放熱性を高めることができるコンデンサを提供できる。
 本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。
図1(a)は、第1実施形態に係る、フィルムコンデンサの斜視図であり、図1(b)は、第1実施形態に係る、充填樹脂が充填されていない状態のフィルムコンデンサの斜視図である。 図2は、第1実施形態に係る、フィルムコンデンサの分解斜視図である。 図3は、第1実施形態に係る、後方下方から見たコンデンサ素子ユニットの斜視図である。 図4(a)は、第1実施形態に係る、第1バスバーの斜視図であり、図4(b)は、第1実施形態に係る、第2バスバーの斜視図である。 図5(a)は、第1実施形態に係る、第1絶縁シートの斜視図であり、図5(b)は、第2絶縁シートの斜視図である。 図6(a)は、第1実施形態に係る、前方下方から見た伝熱板の斜視図であり、図6(b)は、第1実施形態に係る、伝熱板の正面断面図である。 図7(a)は、第2実施形態に係る、フィルムコンデンサの斜視図であり、図7(b)は、第2実施形態に係る、コンデンサ素子ユニットの斜視図である。 図8(a)は、第2実施形態に係る、第1バスバーの斜視図であり、図8(b)は、第2実施形態に係る、第2バスバーの斜視図である。 図9は、第2実施形態に係る、第1絶縁シートの斜視図である。
 以下、本発明のコンデンサの一実施形態であるフィルムコンデンサについて図を参照して説明する。便宜上、各図には、適宜、前後、左右および上下の方向が付記されている。なお、図示の方向は、あくまでフィルムコンデンサの相対的な方向を示すものであり、絶対的な方向を示すものではない。また、説明の便宜上、「底面部」、「前側面部」など、一部の構成において、図示の方向に従った名称がつけられる場合がある。
 <第1実施形態>
 第1実施形態に係るフィルムコンデンサ1Aについて説明する。
 図1(a)は、フィルムコンデンサ1Aの斜視図であり、図1(b)は、充填樹脂600が充填されていない状態のフィルムコンデンサ1Aの斜視図である。
 図1(a)および(b)に示すように、フィルムコンデンサ1Aは、4つのコンデンサ素子100と、第1バスバー200と、第2バスバー300と、伝熱板400と、ケース500と、充填樹脂600とを備える。4つのコンデンサ素子100、第1バスバー200および第2バスバー300が一体となるように組み付けられることにより、コンデンサ素子ユニット10が構成される。コンデンサ素子ユニット10がケース500内に収容され、コンデンサ素子ユニット10の第2バスバー300の上に伝熱板400が絶縁シート700を介して設置される。ケース500内に充填樹脂600が充填される。充填樹脂600は、熱硬化性樹脂、たとえば、エポキシ樹脂である。ケース500内において、4つのコンデンサ素子100と、第1バスバー200および第2バスバー300の一部とが、硬化した充填樹脂600に被覆され、ケース500および充填樹脂600によって湿気や衝撃から保護される。伝熱板400の上側が充填樹脂600から露出する。
 図2は、フィルムコンデンサ1Aの分解斜視図である。図3は、後方下方から見たコンデンサ素子ユニット10の斜視図である。図4(a)は、第1バスバー200の斜視図であり、図4(b)は、第2バスバー300の斜視図である。図5(a)は、第1絶縁シート810の斜視図であり、図5(b)は、第2絶縁シート820の斜視図である。なお、図2には、便宜上、コンデンサ素子ユニット10の第2バスバー300上に、絶縁シート700および伝熱板400の設置領域R1、R2が破線で示されている。
 図2ないし図5(b)を参照して、コンデンサ素子ユニット10は、4つのコンデンサ素子100と、第1バスバー200と、第2バスバー300と、第1絶縁シート810と、第2絶縁シート820と、を備える。
 4つのコンデンサ素子100は、誘電体フィルム上にアルミニウムを蒸着させた2枚の金属化フィルムを重ね、重ねた金属化フィルムを巻回または積層し、扁平状に押圧することにより形成される。コンデンサ素子100は、扁平な長円柱に近い形状を有する。コンデンサ素子100には、一方の端面101に、亜鉛等の金属の吹付けにより第1電極110が形成され、他方の端面102に、同じく亜鉛等の金属の吹付けにより第2電極120が形成される。
 なお、本実施の形態のコンデンサ素子100は、誘電体フィルム上にアルミニウムを蒸着させた金属化フィルムにより形成されたが、これ以外にも、亜鉛、マグネシウム等の他の金属を蒸着させた金属化フィルムにより形成されてもよい。あるいは、コンデンサ素子100は、これらの金属のうち、複数の金属を蒸着させた金属化フィルムにより形成されてもよいし、これらの金属どうしの合金を蒸着させた金属化フィルムにより形成されてもよい。
 コンデンサ素子ユニット10において、4つのコンデンサ素子100は、一方の端面101、即ち第1電極110が上方向を向き、他方の端面102、即ち第2電極120が下方向を向くとともに、周面103同士が隣り合うように、2つずつ左右方向に2列に並んで配置される。4つのコンデンサ素子100の第1電極110および第2電極120に、それぞれ、第1バスバー200および第2バスバー300が電気的に接続される。
 第1バスバー200は、板状の導電性材料、たとえば、銅板に、適宜、切り抜き、折り曲げ等の加工を施すことにより所定形状に形成され、電極端子部210と、3つの第1接続端子部220と、第2接続端子部230と、中継部240が一体となった構成を有する。本実施形態では、第1バスバー200は、P極のバスバーとされる。
 電極端子部210は、長方形の板状し、4つのコンデンサ素子100の第1電極110に、当該第1電極110を上方から覆うように接触する。電極端子部210には、左端部の前側および後側と、右端部の前側および後側とに、合計4組の一対の接続ピン211が形成される。各第1電極110に、対応する一対の接続ピン211が半田付け等の接合方法により接合される。また、電極端子部210には、円形の流通孔212が形成される。
 電極端子部210と3つの第1接続端子部220および第2接続端子部230との間が中継部240により中継される。中継部240は、電極端子部210の後端部から上方へと延び、電極端子部210と同じ左右の幅を有する下板部241と、下板部241よりも左側と右側とに大きく張り出す上板部242とで構成される。
 3つの第1接続端子部220は、等間隔で左右方向に並ぶように中継部240の上端部に設けられる。第1接続端子部220は、上方に延びた後に屈曲し後方へと延びる鉤形状を有する。第1接続端子部220には、円形の貫通孔221が形成される。貫通孔221には、ナット222が嵌め込まれる。
 第2接続端子部230は、中継部240の上端部の右端に設けられる。第2接続端子部230は、上方へと僅かに延びた後に屈曲して後方へ長く延びる形状を有する。第2接続端子部230には、先端部に円形の貫通孔231が形成される。
 第2バスバー300は、板状の導電性材料、たとえば、銅板に、適宜、切り抜き、折り曲げ等の加工を施すことにより所定形状に形成され、2つの電極端子部310と、3つの第1接続端子部320と、第2接続端子部330と、重合部340と、2つの第1中継部350と、第2中継部360が一体となった構成を有する。本実施形態では、第2バスバー300は、N極のバスバーとされる。
 左側の電極端子部310は、左側の前後の角部が斜めにカットされた長方形の板状を有し、左側の列の2つのコンデンサ素子100の第2電極120に、当該第2電極120を下方から覆うように接触する。右側の電極端子部310は、右側の前後の角部が斜めにカットされた長方形の板状を有し、右側の列の2つのコンデンサ素子100の第2電極120に、当該第2電極120を下方から覆うように接触する。
 左側の電極端子部310には、右端部の前側と後側に一対の接続ピン311が形成される。右側の電極端子部310には、左端部の前側と後側に一対の接続ピン311が形成される。左列の2つのコンデンサ素子100の各第2電極120に、左側の電極端子部310の対応する一対の接続ピン311が半田付け等の接合方法により接合される。右列の2つのコンデンサ素子100の各第2電極120に、右側の電極端子部310の対応する一対の接続ピン311が半田付け等の接合方法により接合される。
 重合部340は、長方形の板状を有し、第1バスバー200の電極端子部210に上方から重なる。2つの電極端子部310と重合部340との間が2つの第1中継部350により中継される。左側の第1中継部350は、左側の電極端子部310から、左側のコンデンサ素子100の列の外側(左側)を通るように延びて重合部340の左端部に繋がる。右側の第1中継部350は、右側の電極端子部310から、右側のコンデンサ素子100の列の外側(右側)を通るように延びて重合部340の右端部に繋がる。2つの第1中継部350には、コンデンサ素子100の周面103に沿う部分に円形の流通孔351が形成される。
 重合部340と3つの第1接続端子部320および第2接続端子部330との間が第2中継部360により中継される。第2中継部360は、重合部340の後端部から上方へと延び、重合部340と同じ左右の幅を有する下板部361と、下板部361よりも左側と右側とに大きく張り出す上板部362とで構成される。第2中継部360は、第1バスバー200の中継部240に前方から重なる。
 3つの第1接続端子部320は、等間隔で左右方向に並ぶように第2中継部360の上端部に設けられる。各第1接続端子部320が第1バスバー200の各第1接続端子部220の左隣りに配置される。第1接続端子部320は、上方に延びた後に屈曲し後方へと延びる鉤形状を有する。第1接続端子部320には、円形の貫通孔321が形成される。貫通孔321には、ナット322が嵌め込まれる。
 第2接続端子部330は、第2中継部360の上端部の右端に設けられ、第1バスバー200の第2接続端子部230の右隣に並ぶ。第2接続端子部330は、上方へと僅かに延びた後に屈曲して後方へ長く延びる形状を有する。第2接続端子部330には、先端部に円形の貫通孔331が形成される。
 第1絶縁シート810および第2絶縁シート820は、第1バスバー200と第2バスバー300との間に挟まれる。第1絶縁シート810および第2絶縁シート820は、絶縁紙や、アクリル、シリコン等の絶縁性を有する樹脂材料により形成される。
 第1絶縁シート810は、第2バスバー300の重合部340、2つの第1中継部350および第2中継部360にそれぞれ対応する形状の第1絶縁部811、2つの第2絶縁部812および第3絶縁部813を含む。第3絶縁部813は、第2中継部360の両表面を覆う。第1絶縁部811には、第1バスバー200の電極端子部210の流通孔212に重なる円形の流通孔814が形成される。2つの第2絶縁部812には、第1中継部350の流通孔351に重なる半円形の切り欠き815が形成される。
 第2絶縁シート820は、第1バスバー200の中継部240に対応する形状を有し、中継部240の両表面を覆う。
 第1絶縁部811が、第1バスバー200の電極端子部210と第2バスバー300の重合部340と間に介在する。これにより、電極端子部210と重合部340との間の絶縁性が確保される。重合部340は、第1絶縁部811を介して電極端子部210と近接する。これにより、電極端子部210から重合部340へ熱が伝わりやすい。なお、電極端子部210と重合部340の双方が第1絶縁部811に接触していることが望ましいが、電極端子部210と重合部340の少なくとも一方と第1絶縁部811との間に僅かに隙間が生じていてもよい。
 2つの第2絶縁部812が4つのコンデンサ素子100の第1電極110と第2バスバー300の2つの第1中継部350との間に介在する。これにより、4つのコンデンサ素子100の第1電極110と2つの第1中継部350との間の絶縁性が確保される。
 第3絶縁部813および第2絶縁シート820が、第1バスバー200の中継部240と第2バスバー300の第2中継部360との間に介在する。これにより、中継部240と第2中継部360との間の絶縁性が確保される。
 なお、第1絶縁シート810に高熱伝導性の絶縁材料が使用されてもよい。この場合、たとえば、第1絶縁シート810の熱伝導率は、3.0~3.5W/m・K程度とされる。この熱伝導率は、充填樹脂600の熱伝導率よりも高くなる。
 コンデンサ素子ユニット10において、第1バスバー200の電極端子部210および中継部240と第2バスバー300の重合部340および第2中継部360とが重なり合うことにより、コンデンサ素子ユニット10におけるESL(等価直列インダクタンス)の低減が期待される。
 図6(a)は、前方下方から見た伝熱板400の斜視図であり、図6(b)は、伝熱板400の正面断面図である。
 図2、図5(a)および(b)を参照して、伝熱板400は、アルミニウム等の金属材料により第2バスバー300と別体に形成され、第1板状部410と、第2板状部420とを含む。
 第1板状部410は、長方形の平板状を有する。第1板状部410の上面は、充填樹脂600から露出する露出面401となる。露出面401は、平坦な面とされている。第1板状部410には、左側と右側に、それぞれ3つずつ円形の貫通孔411が形成される。各貫通孔411は、上端部411aが面取り加工されており、それより下の部分411bが、第1板状部410の下面側から上面側に向かって孔径が徐々に大きくなるテーパ形状を有している。また、第1板状部410には、左端部と右端部に方形の凹部412が形成される。第1板状部410は、第2板状部420よりもサイズが大きい。
 第2板状部420は、長方形状を有し、第1板状部410の下面の中央部から突出するようにして、第1板状部410と一体形成される。第2板状部420の下面は、露出面401と背向し第2バスバー300の重合部340の表面(上面)と対向する対向面402となる。
 図2を参照して、絶縁シート700は、シート状の絶縁部材であり、長方形状を有し、絶縁紙や、アクリル、シリコン等の絶縁性を有する樹脂材料により形成される。絶縁シート700は、伝熱板400の第2板状部420よりも大きなサイズを有する。
 なお、絶縁シート700に高熱伝導性の絶縁材料が使用されてもよい。この場合、たとえば、絶縁シート700の熱伝導率は、3.0~3.5W/m・K程度とされる。
 図2を参照して、ケース500は、樹脂製であり、たとえば、熱可塑性樹脂であるポリフェニレンサルファイド(PPS)により形成される。ケース500は、ほぼ直方体の箱状に形成され、底面部501と、底面部501から立ち上がる前側面部502、後側面部503、左側面部504および右側面部505とを有するとともに、上面に開口506を有する。
 ケース500には、前側面部502と左側面部504との間の角部と、前側面部502と右側面部505との間の角部に、第1取付タブ510が設けられる。第1取付タブ510には、円形の取付孔511が形成される。また、ケース500には、左側面部504の前側および後側と、右側面部505の前側および後側とに、第2取付タブ520が設けられる。第2取付タブ520には、円形の取付孔521が形成される。取付孔521には、孔の補強のために金属製のカラー522が嵌め込まれる。さらに、左側面部504および右側面部505において、後側の第2取付タブ520が設けられた部分は、伝熱板400の凹部412に対応する形状で内側に張り出し、張出部530を構成する。
 フィルムコンデンサ1Aが組み立てられる際、図1(b)に示すように、コンデンサ素子ユニット10がケース500内に収容される。4つのコンデンサ素子100は、第1電極110が開口506側を向き、第2電極120が底面部501側を向く。第1バスバー200の電極端子部210が開口506側から各第1電極110を覆い、第2バスバー300の重合部340が開口506側から電極端子部210に重なる。
 重合部340の上(図2の設置領域R1)に絶縁シート700が設置され、その上(図2の設置領域R2)に伝熱板400が設置される。伝熱板400は、ケース500内において、電極端子部210に重なるように重合部340よりも開口506側に位置する。伝熱板400の第2板状部420の下面が、絶縁シート700に接触するとともに、対向面402として重合部340の上面と近接対向する。伝熱板400と重合部340との間が絶縁シート700により絶縁される。伝熱板400の凹部412がケース500の張出部530に嵌り込み、伝熱板400がケース500に対して前後左右方向に位置決めされる。伝熱板400の上面は、ケース500から僅かに上方に突出する。
 ケース500内に液相状態の充填樹脂600が注入される。このとき、充填樹脂600が、第1バスバー200の流通孔212および第2バスバー300の2つの流通孔351を通ることにより、4つのコンデンサ素子100の部分に行き渡りやすくなる。充填樹脂600が、開口506の近傍までケース500内に満たされると、充填樹脂600の注入が完了する。ケース500が加熱され、ケース500内の充填樹脂600が硬化する。
 こうして、図1(a)のように、フィルムコンデンサ1Aが完成する。コンデンサ素子ユニット10において、第1バスバー200の3つの第1接続端子部220および第2接続端子部230と第2バスバー300の3つの第1接続端子部320と第2接続端子部330とが、充填樹脂600から露出してケース500の後方に位置する。また、伝熱板400は、その一部、即ち第1板状部410の上側が充填樹脂600から露出し、第1板状部410の上面が、露出面401として充填樹脂600から露出する。
 伝熱板400の6つの貫通孔411には、途中まで充填樹脂600が満たされている。貫通孔411にはテーパが設けられているため、貫通孔411の中の充填樹脂600によってアンカー効果が生じ、伝熱板400が上方に外れにくくなる。
 フィルムコンデンサ1Aは、たとえば、電気自動車において電気モータを駆動するためのインバータ装置に搭載され得る。インバー装置には電源装置(バッテリー)から直流の電力が供給される。インバータ装置は、IGBT(Insulated Gate Bipolar transistor)を含むインバータ回路を備え、直流の電力を3相交流の電力に変換し、電気モータへ供給する。
 第1バスバー200の第2接続端子部230および第2バスバー300の第2接続端子部330には、それぞれ対応する、電源装置に繋がる外部端子(図示せず)が、貫通孔231、331を用いたネジ止めにより接続される。また、第1バスバー200の3つの第1接続端子部220および第2バスバー300の3つの第1接続端子部320には、それぞれに対応する、インバータ回路に繋がる外部端子(図示せず)が、ナット222、322を用いたネジ止めにより接続される。
 インバータ装置に設置されたフィルムコンデンサ1Aには、放熱効果を高めるため、図1(a)に一点鎖線で示すように、冷却部材2が伝熱板400の露出面401に装着される。冷却部材2は、外部から伝熱板400を強制的に冷却するためのものであり、たとえば、アルミ二ウムなど熱伝導性に優れる材料で形成され、内部に冷媒が流れる流路を備える構成とされる。冷却部材2は、ペルチェ素子を用いた冷却器であってもよい。なお、伝熱板400と第2バスバー300との間に絶縁シート700による絶縁が図られているため、冷却部材2は、装着面である露出面401に直接、接触する。
 インバータ装置が動作することにより、フィルムコンデンサ1Aに通電されると、4つのコンデンサ素子100が発熱する。
 4つのコンデンサ素子100から発せられた熱は、第1バスバー200の電極端子部210、第2バスバー300の2つの電極端子部310および2つの第1中継部350に伝わる。伝熱板400は、冷却部材2により冷却されている。このため、2つの電極端子部310および2つの第1中継部350に伝わった熱は、重合部340へと移動して伝熱板400の対向面402に伝わり、伝熱板400をその厚み方向に移動して露出面401に達し、露出面401から冷却部材2へ放出される。また、重合部340は、電極端子部210に近接するように重なっている。このため、電極端子部210に伝わった熱も、重合部340へと移動し、さらに伝熱板400の露出面401へ移動して、露出面401から冷却部材2へ放出される。
 ここで、重合部340に伝わった熱は、伝熱板400を厚み方向に移動するため、露出面401までの熱の移動経路は、道のりが短くて断面積が大きなものとなる。これにより、移動経路の熱抵抗が小さくなるため、重合部340から露出面401まで、良好に熱伝達が行われる。よって、重合部340からの放熱性が良好となる。さらに、伝熱板400は、第1板状部410が第2板状部420よりもサイズが大きいため、放熱面である露出面401の面積が大きくなり、冷却部材2への放熱効果が高まる。
 また、左側の電極端子部310に伝わった熱は、左側の第1中継部350を通って重合部340に伝わり、右側の電極端子部310に伝わった熱は、右側の第1中継部350を通って重合部340に伝わる。即ち、両側の電極端子部310で受けた熱が短い道のりで重合部340へ伝わる構成とされているため、両側の電極端子部310からの放熱性が良くなる。
 このようにして、4つのコンデンサ素子100から第1バスバー200、第2バスバー300および伝熱板400介した外部への放熱が行わることにより、通電時に、これらコンデンサ素子100が高温になりにくくなる。
 <第1実施形態の効果>
 以上、本実施形態によれば、以下の効果が奏される。
 フィルムコンデンサ1Aは、コンデンサ素子100と、コンデンサ素子100の両端面101、102に設けられた第1電極110および第2電極120にそれぞれ接続される第1バスバー200および第2バスバー300と、一面(上面)が開口し、コンデンサ素子100が収容されるケース500と、ケース500内に充填される充填樹脂600と、を備える。第1バスバー200は、充填樹脂600中において開口506側からコンデンサ素子100を覆う第1部分(電極端子部210)を含み、第2バスバー300は、充填樹脂600中において開口506側から第1部分に重なる第2部分(重合部340)を含む。フィルムコンデンサ1Aは、さらに、第1部分に重なるように第2部分よりも開口506側に位置し、充填樹脂600から露出する露出面401を含み、第2部分に伝わった熱を受け取って露出面401から放出させる伝熱部(伝熱板400)を備える。
 この構成によれば、伝熱部(伝熱板400)を外部から冷却することにより、コンデンサ素子100から第2バスバー300に伝わった熱を、伝熱部を通じて良好に外部へ放出できるとともに、第1バスバー200に伝わった熱を、第2部分(重合部340)および伝熱部を通じて良好に外部へ放出できる。よって、コンデンサ素子100からの第1バスバー200および第2バスバー300を通じた放熱性を高めることができ、通電時にコンデンサ素子100が高温になることを抑制できる。
 さらに、フィルムコンデンサ1Aは、伝熱部(伝熱板400)が、第2バスバー300と別体に形成された板状部材であり、露出面401と背向し第2部分(重合部340)の表面と対向する対向面402を含むような構成とされている。
 この構成によれば、第2部分(重合部340)に伝わった熱が伝熱部(伝熱板400)を厚み方向に移動するため、露出面401までの熱の移動経路は、道のりが短くて断面積が大きなものとなる。これにより、移動経路の熱抵抗が小さくなるため、第2部分から露出面401まで、良好に熱伝達が行われる。よって、コンデンサ素子100からの第1バスバー200および第2バスバー300を通じた放熱性を一層高めることができる。
 さらに、フィルムコンデンサ1Aは、伝熱部(伝熱板400)が、露出面401を有する第1板状部410と、第1板状部410と一体形成され、対向面402を有する第2板状部420とを含み、第1板状部410が第2板状部420よりもサイズが大きくなるような構成とされている。
 この構成によれば、放熱面である露出面401の面積を大きくでき、露出面401からの放熱性を高めることができる。
 さらに、フィルムコンデンサ1Aは、コンデンサ素子100が、第1電極110が開口506側を向き、第2電極120が底面部501側を向くようにケース500内に配置され、第1バスバー200が、第1電極110を覆い、第1電極110に接続される、第2部分となる第1電極端子部(電極端子部210)を含み、第2バスバー300が、第2電極120を覆い、第2電極120に接続される第2電極端子部(電極端子部310)と、第2電極端子部から延びて第2部分(重合部340)へ繋がる第3部分(第1中継部350)と、を含むような構成とされている。
 この構成によれば、コンデンサ素子100から第2電極端子部(電極端子部310)および第3部分(第1中継部350)に伝わった熱を第2部分(重合部340)および伝熱部(伝熱板400)を通じて良好に外部へ放出できるとともに、コンデンサ素子100から第1電極端子部(電極端子部210)に伝わった熱を第2部分(重合部340)および伝熱部(伝熱板400)を通じて良好に外部へ放出できる。
 さらに、フィルムコンデンサ1Aは、ケース500内に、複数個(4個)のコンデンサ素子100が2列に並んで配置され、第2バスバー300が、各列の複数個(2個)のコンデンサ素子100の第2電極120にそれぞれが接続される2つの第2電極端子部(電極端子部310)と、各第2電極端子部から各列の外側を通るように延びて、相反する側から第2部分(重合部340)に繋がる2つの第3部分(第1中継部350)と、を含むような構成とされている。
 この構成によれば、2つの第2電極端子部(電極端子部310)で受けた熱が短い道のりで第2部分(重合部340)へ伝わるため、2つの第2電極端子部からの放熱性が良くなる。
 さらに、フィルムコンデンサ1Aは、露出面401に伝熱部(伝熱板400)を冷却する冷却部材2が装着されるような構成とされている。
 この構成よれば、伝熱部(伝熱板400)を十分に冷却でき、伝熱部を通じた第1バスバー200および第2バスバー300からの放熱性を十分に高めることができる。
 <第2実施形態>
 第2実施形態に係るフィルムコンデンサ1Bについて説明する。
 図7(a)は、フィルムコンデンサ1Bの斜視図であり、図7(b)は、コンデンサ素子ユニット10の斜視図である。図8(a)は、第1バスバー200aの斜視図であり、図8(b)は、第2バスバー300aの斜視図である。図9は、第1絶縁シート810aの斜視図である。
 上記第1実施形態のフィルムコンデンサ1Aでは、第2バスバー300と別体の伝熱部(伝熱板400)が設けられた。これに対し、第2実施形態のフィルムコンデンサ1Bでは、伝熱部(第1伝熱部370、2つの第2伝熱部380)が第2バスバー300と一体形成される。
 フィルムコンデンサ1Bでは、コンデンサ素子ユニット10が、上記第1実施形態の第1バスバー200、第2バスバー300および第1絶縁シート810と異なる構成の第1バスバー200a、第2バスバー300aおよび第1絶縁シート810aを備え、第2絶縁シートを備えない。
 第1バスバー200aは、導電性材料により形成され、電極端子部210aと、3つの第1接続端子部220aと、第2接続端子部230aと、中継部240aが一体となった構成を有する。第1バスバー200aは、電極端子部210aが上記第1実施形態の電極端子部210よりも前後方向に長くされ、前端部に切り欠き213を有する点を除き、上記第1実施形態の第1バスバー200と同様な形状を有する。電極端子部210aには、4組の一対の接続ピン211aと流通孔212aが形成される。3つの第1接続端子部220aには貫通孔221aが形成され、貫通孔221aにナット222aが取り付けられる。第2接続端子部230aには貫通孔231aが形成される。
 第2バスバー300aは、導電性材料により形成され、2つの電極端子部310aと、3つの第1接続端子部320aと、第2接続端子部330aと、重合部340aと、2つの第1中継部350aと、第2中継部360aと、第1伝熱部370と、2つの第2伝熱部380とが一体となった構成を有する。
 2つの電極端子部310aは、上記第1実施形態の2つの電極端子部310よりも前後方向に長い長方形の板状を有する。左側の電極端子部310aには、右端部の前側と後側に一対の接続ピン311aが形成され、左端部の後端に上方に延びる突出片312が形成される。右側の電極端子部310aには、左端部の前側と後側に一対の接続ピン311aが形成され、右端部の後端に上方に延びる突出片312が形成される。
 重合部340aは、上記第1実施形態の重合部340と同じ形状の第1重合部341と、第1伝熱部370を挟んで第1重合部341の前方に設けられる長方形の板状の第2重合部342とを含む。第2重合部342は、第1バスバー200aの電極端子部210aの前部に上方から重なる。第1重合部341の前部には、液相状態の充填樹脂600を流通させるための円形の流通孔343が形成される。
 3つの第1接続端子部320a、第2接続端子部330a、2つの第1中継部350aおよび第2中継部360aは、上記第1実施形態の3つの第1接続端子部320、第2接続端子部330、2つの第1中継部350および第2中継部360と同様の形状を有する。2つの第1中継部350aには、流通孔351aが形成される。3つの第1接続端子部320aには貫通孔321aが形成され、貫通孔321aにナット322aが取り付けられる。第2接続端子部330aには貫通孔331aが形成される。
 第1伝熱部370は、重合部340aの前部に設けられ、2つの第2伝熱部380は、重合部340aの後部の左右に設けられる。
 第1伝熱部370は、長方形の平板状を有する第1板状部371および2つの第2板状部372を含む。前側の第2板状部372は、第1板状部371の前端部から第2重合部342側に延びて第2重合部342の後端部に繋がる。後側の第2板状部372は、第1板状部371の後端部から第1重合部341側に延びて第1重合部341の前端部に繋がる。各第2板状部372には、液相状態の充填樹脂600を流通させるための3つの長円形の流通孔373が形成される。
 2つの第2伝熱部380は、長方形の平板状を有する第1板状部381および第2板状部382を含む。左側の第2伝熱部380では、第2板状部382が第1板状部381の左端部から第1重合部341側に延びて第1重合部341の左端部に繋がる。第1板状部381の右端部からは、支持片383が第1重合部341側に延びて第1重合部341に当接する。第1板状部381の右側が支持片383により支持される。右側の第2伝熱部380では、第2板状部382が第1板状部381の右端部から第1重合部341側に延びて第1重合部341の右端部に繋がる。第1板状部381の左端部からは、支持片383が第1重合部341側に延びて第1重合部341に当接する。第1板状部381の左側が支持片383により支持される。
 第1絶縁シート810aは、第1絶縁部811a、2つの第2絶縁部812aおよび第3絶縁部813aを含み、第1絶縁部811aが上記第1実施形態の第1絶縁部811よりも前後方向に長くされている点を除き、上記第1実施形態の第1絶縁シート810と同様な形状を有する。第1絶縁部811aには流通孔814aが形成され、2つの第2絶縁部812aには切り欠き815aが形成される。第1絶縁シート810aにより、第2バスバー300aと、第1バスバー200aおよび4つのコンデンサ素子100の第1電極110との間の絶縁性が確保される。
 図7(a)に示すように、ケース500内において、第1伝熱部370が前側に位置し、2つの第2伝熱部380が後側に左右に並んで位置する。第1伝熱部370の第1板状部371および2つの第2伝熱部380の第1板状部381は、ケース500の開口506に沿って延び、それら全体が充填樹脂600から露出することにより、それらの表面(上面)が露出面374、384として充填樹脂600から露出する。3つの露出面374、384の高さ位置は等しくされている。
 図7(a)に一点鎖線で示すように、冷却部材2が第1伝熱部370の露出面374と2つの第2伝熱部380の露出面384に装着される。このとき、冷却部材2と、装着面である3つの露出面374、384との間には、上記第1実施形態の絶縁シート700と同様の絶縁シート(図示せず)が挟まれ、第2バスバー300と冷却部材2との間の絶縁が図られる。
 インバータ装置が動作することにより、フィルムコンデンサ1Bに通電されると、4つのコンデンサ素子100が発熱する。
 4つのコンデンサ素子100から発せられた熱は、第1バスバー200aの電極端子部210a、第2バスバー300aの2つの電極端子部310aおよび2つの第1中継部350aに伝わる。第1伝熱部370および2つの第2伝熱部380は、冷却部材2により冷却されている。このため、2つの電極端子部310aおよび2つの第1中継部350aに伝わった熱は、重合部340aへと移動して第1伝熱部370および2つの第2伝熱部380の第2板状部372、382に伝わり、これら第2板状部372、382を移動して第1板状部371、381に達し、露出面374、384から冷却部材2へ放出される。また、重合部340aは、電極端子部210aに近接するように重なっている。このため、電極端子部210aに伝わった熱も、重合部340aへと移動し、さらに第1伝熱部370および2つの第2伝熱部380の露出面374、384へ移動して、露出面374、384から冷却部材2へ放出される。
 このようにして、4つのコンデンサ素子100から第1バスバー200a、第2バスバー300aおよび伝熱部370、380を介した外部への放熱が行わることにより、通電時に、これらコンデンサ素子100が高温になりにくくなる。
 <第2実施形態の効果>
 本実施形態のフィルムコンデンサ1Bによっても、上記第1実施形態と同様に、伝熱部(第1伝熱部370、第2伝熱部380)を外部から冷却することにより、コンデンサ素子100から第2バスバー300aに伝わった熱を、伝熱部を通じて良好に外部へ放出できるとともに、第1バスバー200aに伝わった熱を、第2部分(重合部340a)および伝熱部を通じて良好に外部へ放出できる。よって、コンデンサ素子100からの第1バスバー200aおよび第2バスバー300aを通じた放熱性を高めることができ、通電時にコンデンサ素子100が高温になることを抑制できる。
 さらに、フィルムコンデンサ1Bは、伝熱部(第1伝熱部370、第2伝熱部380)が、第2バスバー300aと一体形成され、ケース500の開口506に沿って延び、その表面が露出面374、384として充填樹脂600から露出する第1板状部371、381と、第1板状部371、381から第2バスバー300の第2部分(重合部340a)側へと延びて第2部分に繋がる第2板状部372、382と、を含むような構成とされている。
 この構成によれば、コンデンサ素子ユニット10をケース500内に収容した後、別途、伝熱部をケース500内に装着する作業が不要となるので、フィルムコンデンサ1Bを組み立てやすくなる。
 <変更例>
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、また、本発明の適用例も、上記実施形態の他に、種々の変更が可能である。
 たとえば、上記第1実施形態では、伝熱板400と第2バスバー300の重合部340との間に絶縁シート700が介在した。しかしながら、伝熱板400と重合部340との間に絶縁シート700が介在せず、伝熱板400の対向面402が直接、重合部340に接触する構成が採られてもよい。この場合、冷却部材2が伝熱板400の露出面401に装着される際に、露出面401と冷却部材2との間に絶縁シートが挟まれる。
 さらに、上記第1実施形態では、伝熱板400が、サイズの異なる第1板状部410と第2板状部420とで構成された。しかしながら、伝熱板400は、板状部材として構成されれば、如何なる形状であってもよい。
 さらに、上記第2実施形態では、第1伝熱部370と2つの第2伝熱部380の3つの伝熱部が第2バスバー300と一体形成されたが、伝熱部の個数は幾つであってもよい。
 さらに、上記第2実施形態では、第1伝熱部370および2つの第2伝熱部380の第1板状部371、381全体が充填樹脂600から露出した。しかしながら、少なくともそれらの表面(上面)が露出面374、384として露出していれば、第1板状部371、381全体が充填樹脂600から露出していなくてもよい。
 さらに、上記第1実施形態および上記第2実施形態では、第1バスバー200、200aおよび第2バスバー300、300aに、3つの第1接続端子部220、320、220a、320aが設けられているが、第1接続端子部220、320、220a、320aの個数は、適宜、変更されてよい。また、第1バスバー200、200aおよび第2バスバー300、300aは、第1接続端子部220、320、220a、320aと第2接続端子部230、330、230a、330aの2種類の接続端子部が設けられる構成ではなく、1種類の接続端子部が設けられる構成とされてもよい。
 さらに、上記第1実施形態および上記第2実施形態では、第1バスバー200、200aがP極のバスバーとされ、第2バスバー300、300aがN極のバスバーとされている。しかしながら、第1バスバー200、200aがN極のバスバーとされ、第2バスバー300、300aがP極のバスバーとされてもよい。
 さらに、上記第1実施形態および上記第2実施形態では、コンデンサ素子100が、ケース500内に、複数個(2個)ずつ左右方向に2列に並んで配置された。しかしながら、ケース500内でのコンデンサ素子100の配置は、如何なるものでもよく、たとえば、ケース500内に複数個のコンデンサ素子100が1列に配置されてもよい。この場合、第2バスバー300、300aには、1つの電極端子部310、310aと1つの第1中継部350、350aが設けられればよい。
 さらに、上記第1実施形態および上記第2実施形態では、フィルムコンデンサ1A、1Bに4個のコンデンサ素子100が備えられた。しかしながら、コンデンサ素子100の個数は、1個である場合も含めて、適宜、変更することができる。
 さらに、上記第1実施形態および上記第2実施形態では、コンデンサ素子100は、誘電体フィルム上にアルミニウムを蒸着させた2枚の金属化フィルムを重ね、重ねた金属化フィルムを巻回または積層することで形成されたものであるが、これ以外にも、誘電体フィルムの両面にアルミニウムを蒸着させた金属化フィルムと絶縁フィルムとを重ね、これを巻回または積層することにより、これらコンデンサ素子100が形成されてもよい。
 さらに、上記第1実施形態および第2実施形態では、コンデンサ素子100が、第1電極110および第2電極120がケース500の開口506側および底面部501側を向くように、ケース500内に配置されるフィルムコンデンサ1A、1Bに、本発明が適用された。しかしながら、本発明は、コンデンサ素子が、第1電極および第2電極がケースの側面部と対向するように、ケース内に配置されるフィルムコンデンサに適用することもできる。この場合、第1バスバーでは、たとえば、第1電極に接続される電極端子部と、外部端子に接続される接続端子部との間に、これらを中継する中継部として、ケースの開口側からコンデンサ素子の周面を覆う第1部分が設けられる。
 さらに、上記第1実施形態および上記第2実施形態では、本発明のコンデンサの一例として、フィルムコンデンサ1A、1Bが挙げられた。しかしながら、本発明は、フィルムコンデンサ以外のコンデンサに適用することもできる。
 この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
 なお、上記実施の形態の説明において「上方」「下方」等の方向を示す用語は、構成部材の相対的な位置関係にのみ依存する相対的な方向を示すものであり、鉛直方向、水平方向等の絶対的な方向を示すものではない。
 本発明は、各種電子機器、電気機器、産業機器、車両の電装等に使用されるコンデンサに有用である。
 1A フィルムコンデンサ(コンデンサ)
 2 冷却部材
 100 コンデンサ素子
 110 第1電極
 120 第2電極
 200 第1バスバー
 210 電極端子部(第1電極端子部、第1部分)
 300 第2バスバー
 310 電極端子部(第2電極端子部)
 340 重合部(第2部分)
 350 第1中継部(第3部分)
 400 伝熱板(伝熱部)
 401 露出面
 402 対向面
 410 第1板状部
 420 第2板状部
 500 ケース
 501 底面部
 506 開口
 600 充填樹脂
 1B フィルムコンデンサ
 200a 第1バスバー
 210a 電極端子部(第1電極端子部、第1部分)
 300a 第2バスバー
 310a 電極端子部(第2電極端子部)
 340a 重合部(第2部分)
 350a 第1中継部(第3部分)
 370 第1伝熱部(伝熱部)
 371 第1板状部
 372 第2板状部
 374 露出面
 380 第1伝熱部(伝熱部)
 381 第1板状部
 382 第2板状部
 384 露出面

Claims (7)

  1.  コンデンサ素子と、
     前記コンデンサ素子の両端面に設けられた第1電極および第2電極にそれぞれ接続される第1バスバーおよび第2バスバーと、
     一面が開口し、前記コンデンサ素子が収容されるケースと、
     前記ケース内に充填される充填樹脂と、を備え、
     前記第1バスバーは、前記充填樹脂中において前記開口側から前記コンデンサ素子を覆う第1部分を含み、
     前記第2バスバーは、前記充填樹脂中において前記開口側から前記第1部分に重なる第2部分を含み、
     前記第1部分に重なるように前記第2部分よりも前記開口側に位置し、前記充填樹脂から露出する露出面を含み、前記第2部分に伝わった熱を受け取って前記露出面から放出させる伝熱部を、さらに備える、
    ことを特徴とするコンデンサ。
  2.  請求項1に記載のコンデンサにおいて、
     前記伝熱部は、前記第2バスバーと別体に形成された板状部材であり、前記露出面と背向し前記第2部分の表面と対向する対向面を含む、
    ことを特徴とするコンデンサ。
  3.  請求項2に記載のコンデンサにおいて、
     前記伝熱部は、
      前記露出面を有する第1板状部と、
      前記第1板状部と一体形成され、前記対向面を有する第2板状部とを含み、
     前記第1板状部は、前記第2板状部よりもサイズが大きい、
    ことを特徴とするコンデンサ。
  4.  請求項1に記載のコンデンサにおいて、
     前記伝熱部は、前記第2バスバーと一体形成され、
      前記開口に沿って延び、その表面が前記露出面として前記充填樹脂から露出する第1板状部と、
      前記第1板状部から前記第2部分側へと延びて前記第2部分に繋がる第2板状部と、を含む、
    ことを特徴とするコンデンサ。
  5.  請求項1ないし4の何れか一項に記載のコンデンサにおいて、
     前記コンデンサ素子は、前記第1電極が前記開口側を向き、前記第2電極が前記ケースの底面部側を向くように前記ケース内に配置され、
     前記第1バスバーは、
      前記第1電極を覆い、前記第1電極に接続される、前記第1部分となる第1電極端子部を含み、
     前記第2バスバーは、
      前記第2電極を覆い、前記第2電極に接続される第2電極端子部と、
      前記第2電極端子部から延びて前記第2部分へ繋がる第3部分と、を含む、
    ことを特徴とするコンデンサ。
  6.  請求項5に記載のコンデンサにおいて、
     前記ケース内には、複数個の前記コンデンサ素子が2列に並んで配置され、
     前記第2バスバーは、
      各列の複数個の前記コンデンサ素子の前記第2電極にそれぞれが接続される2つの前記第2電極端子部と、
      各前記第2電極端子部から各列の外側を通るように延びて、相反する側から前記第2部分に繋がる2つの前記第3部分と、を含む、
    ことを特徴とするコンデンサ。
  7.  請求項1ないし6の何れか一項に記載のコンデンサにおいて、
     前記露出面には、前記伝熱部を冷却する冷却部材が装着される、
    ことを特徴とするコンデンサ。
PCT/JP2021/048516 2021-01-28 2021-12-27 コンデンサ WO2022163278A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022578187A JPWO2022163278A1 (ja) 2021-01-28 2021-12-27
DE112021006941.1T DE112021006941T5 (de) 2021-01-28 2021-12-27 Kondensator
CN202180091458.0A CN116783669A (zh) 2021-01-28 2021-12-27 电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021012514 2021-01-28
JP2021-012514 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022163278A1 true WO2022163278A1 (ja) 2022-08-04

Family

ID=82654550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048516 WO2022163278A1 (ja) 2021-01-28 2021-12-27 コンデンサ

Country Status (4)

Country Link
JP (1) JPWO2022163278A1 (ja)
CN (1) CN116783669A (ja)
DE (1) DE112021006941T5 (ja)
WO (1) WO2022163278A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508382B2 (ja) 2021-02-03 2024-07-01 株式会社指月電機製作所 コンデンサ
WO2024171701A1 (ja) * 2023-02-15 2024-08-22 パナソニックIpマネジメント株式会社 コンデンサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047259A (ja) * 2001-08-03 2003-02-14 Nissan Motor Co Ltd 電力変換装置
CN105931840A (zh) * 2016-05-24 2016-09-07 厦门法拉电子股份有限公司 一种低热阻薄膜电容器及其制作方法
WO2017145830A1 (ja) * 2016-02-25 2017-08-31 パナソニックIpマネジメント株式会社 コンデンサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103777A (ja) 2013-11-28 2015-06-04 日立エーアイシー株式会社 金属化フィルムコンデンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047259A (ja) * 2001-08-03 2003-02-14 Nissan Motor Co Ltd 電力変換装置
WO2017145830A1 (ja) * 2016-02-25 2017-08-31 パナソニックIpマネジメント株式会社 コンデンサ
CN105931840A (zh) * 2016-05-24 2016-09-07 厦门法拉电子股份有限公司 一种低热阻薄膜电容器及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508382B2 (ja) 2021-02-03 2024-07-01 株式会社指月電機製作所 コンデンサ
WO2024171701A1 (ja) * 2023-02-15 2024-08-22 パナソニックIpマネジメント株式会社 コンデンサ

Also Published As

Publication number Publication date
CN116783669A (zh) 2023-09-19
DE112021006941T5 (de) 2023-11-09
JPWO2022163278A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2022163278A1 (ja) コンデンサ
US11776758B2 (en) Capacitor
JP6402942B2 (ja) 電気接続箱
JPWO2014057622A1 (ja) 電力変換装置
JP2003218562A (ja) 電気接続箱
WO2014038299A1 (ja) パワー半導体モジュール
JP7091657B2 (ja) コンデンサモジュール
JP2020022357A (ja) バスバーデバイスとパワーコンバータハウジングとを備えたシステム、その生産方法、車両用パワーコンバータ、および車両
JP3958590B2 (ja) 電気接続箱用配電ユニット及び電気接続箱
WO2013111234A1 (ja) 電力変換装置
CN110383612A (zh) 电气连接箱
JP2004186504A (ja) 半導体装置
JP6780792B2 (ja) 回路構成体及び電気接続箱
JP7526672B2 (ja) 車両用の電力変換装置、および車両
CN109757077B (zh) 电路组件以及安装单元
JPWO2022163278A5 (ja)
JP6058353B2 (ja) 半導体装置
CN113170596B (zh) 电路结构体
CN112136193B (zh) 电容器
WO2021157262A1 (ja) コンデンサ
WO2022158267A1 (ja) コンデンサ
JP2007259539A (ja) 車載用電気接続箱
WO2020080248A1 (ja) 回路構造体及び電気接続箱
KR102415020B1 (ko) 전력반도체 탑재 구조물
JP2021158208A (ja) 電子モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578187

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091458.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021006941

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923281

Country of ref document: EP

Kind code of ref document: A1