WO2022162918A1 - 部品供給制御システム - Google Patents

部品供給制御システム Download PDF

Info

Publication number
WO2022162918A1
WO2022162918A1 PCT/JP2021/003423 JP2021003423W WO2022162918A1 WO 2022162918 A1 WO2022162918 A1 WO 2022162918A1 JP 2021003423 W JP2021003423 W JP 2021003423W WO 2022162918 A1 WO2022162918 A1 WO 2022162918A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply
transport
parts
state
component
Prior art date
Application number
PCT/JP2021/003423
Other languages
English (en)
French (fr)
Inventor
裕司 川崎
正良 森山
祐輔 山▲崎▼
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to DE112021006946.2T priority Critical patent/DE112021006946T5/de
Priority to JP2022577990A priority patent/JPWO2022162918A1/ja
Priority to US18/261,951 priority patent/US20240083692A1/en
Priority to PCT/JP2021/003423 priority patent/WO2022162918A1/ja
Priority to CN202180088076.2A priority patent/CN116671272A/zh
Publication of WO2022162918A1 publication Critical patent/WO2022162918A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0417Feeding with belts or tapes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • B65G2203/0233Position of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/041Camera

Definitions

  • the present invention relates to a parts supply control system.
  • the parts supply control system controls parts supply using bulk feeders.
  • a bulk feeder is installed in a component mounting machine that mounts components on a substrate, and supplies bulk components.
  • Patent Literature 1 discloses a configuration for conveying a plurality of components by imparting vibration to a conveying path. With such a transport operation, the bulk feeder supplies components in a supply area that opens upward so that the suction nozzle can pick up the components.
  • Such a bulk feeder is requested to supply components, for example, by the control device of a component mounting machine, and executes a prescribed transport operation.
  • the parts since the parts are in a bulk state in the supply area, variations may occur in the number of parts that can be picked up even if the prescribed transport operation is performed.
  • Systems that control parts supply using bulk feeders are required to maintain good parts supply conditions and improve productivity.
  • the purpose of this specification is to provide a component supply control system capable of improving the supply state of components in bulk feeders and improving the productivity of component mounting machines equipped with bulk feeders.
  • a component supply control system comprising: a state recognition unit that determines the supply state of the components; and a transport control unit that controls the transport operation of the components in the bulk feeder based on the supply state for each of the plurality of zones. do.
  • the transport operation of the bulk feeder is controlled based on the supply state of parts for each of the plurality of zones in the supply area.
  • the transport operation of the bulk feeder is controlled based on the supply state of parts for each of the plurality of zones in the supply area.
  • FIG. 4 is a plan view schematically showing a component mounting machine equipped with a bulk feeder; It is a perspective view which shows the external appearance of a bulk feeder. It is a side view which shows the principal part of a bulk feeder typically.
  • FIG. 3 is a plan view seen from the IV direction of FIG. 2; 1 is a block diagram showing a component mounting machine to which a component supply control system is applied; FIG. It is a figure which shows the image data which imaged the supply area
  • FIG. 7 is a diagram showing a result of supply state recognition processing for the image data of FIG. 6 ; 7 is a flowchart showing component supply control processing;
  • a component supply control system 80 that controls component supply using the bulk feeder 30 will be described with reference to the drawings.
  • the bulk feeder 30 is installed in, for example, a component mounting machine 10 that mounts components 92 on a substrate 91, and supplies the components 92 in a bulk state (discrete state in which each posture is irregular).
  • the component mounting machine 10 constitutes a production line for producing board products together with a plurality of types of board-facing work machines including other component mounting machines 10, for example.
  • a printing machine, an inspection device, a reflow furnace, etc. can be included in the work machine for the board that constitutes the above production line.
  • Board Transfer Apparatus The component mounting machine 10 includes a board transfer apparatus 11 as shown in FIG.
  • the substrate conveying device 11 sequentially conveys the substrates 91 in the conveying direction and positions the substrates 91 at predetermined positions within the apparatus.
  • the component mounting machine 10 includes a component supply device 12 .
  • the component supply device 12 supplies components to be mounted on the board 91 .
  • the component supply device 12 is equipped with feeders 122 in a plurality of slots 121, respectively.
  • feeders 122 for example, a tape feeder that feeds and moves a carrier tape containing a large number of components to supply components in a pickable manner is applied.
  • the feeder 122 is applied with a bulk feeder 30 that supplies components stored in a bulk state in a collectable manner. Details of the bulk feeder 30 will be described later.
  • the component mounting machine 10 includes a component transfer device 13 .
  • the component transfer device 13 transfers the component supplied by the component supply device 12 to a predetermined mounting position on the board 91 .
  • the component transfer device 13 includes a head driving device 131 , a moving table 132 , a mounting head 133 and a suction nozzle 134 .
  • the head driving device 131 moves the moving table 132 in the horizontal direction (X direction and Y direction) by a linear motion mechanism.
  • the mounting head 133 is detachably fixed to the moving table 132 by a clamp member (not shown), and is horizontally movable in the apparatus.
  • the mounting head 133 supports a plurality of suction nozzles 134 rotatably and vertically.
  • the suction nozzle 134 is a holding member that picks up and holds the component 92 supplied by the feeder 122 .
  • the suction nozzle 134 sucks the component supplied by the feeder 122 with the supplied negative pressure air.
  • a chuck or the like that holds the component by gripping it can be adopted.
  • Component camera 14, board camera 15 The component mounting machine 10 has a component camera 14 and a substrate camera 15 .
  • the component camera 14 and the substrate camera 15 are digital imaging devices having imaging elements such as CMOS.
  • the component camera 14 and the board camera 15 perform imaging based on the control signal, and send out image data obtained by the imaging.
  • the component camera 14 is configured to be able to image the component held by the suction nozzle 134 from below.
  • the substrate camera 15 is provided on the moving table 132 so as to be horizontally movable integrally with the mounting head 133 .
  • the board camera 15 is configured to be able to image the board 91 from above.
  • the substrate camera 15 can image various devices within the movable range of the moving table 132 .
  • the substrate camera 15 of the present embodiment is configured such that the supply area As where the bulk feeder 30 supplies the components 92 and the reference mark 344 provided on the upper portion of the bulk feeder 30 are included in the field of view of the camera. It can be imaged.
  • the substrate camera 15 can be used for imaging different imaging targets in order to acquire image data used for various image processing.
  • controller 16 The component mounting machine 10 includes a control device 16 as shown in FIG.
  • the control device 16 is mainly composed of a CPU, various memories, a control circuit, and a storage device.
  • the control device 16 stores various data such as a control program used for controlling the mounting process.
  • the control program indicates the mounting position, mounting angle, and mounting order of the components to be mounted on the board 91 in the mounting process.
  • the control device 16 executes recognition processing of the holding state of the component held by each of the plurality of holding members (suction nozzles 134). Specifically, the control device 16 performs image processing on the image data acquired by the component camera 14 and recognizes the position and angle of each component with respect to the reference position of the mounting head 133 . In addition to the component camera 14 , the control device 16 performs image processing on image data obtained by imaging the component from the side, below, or above, such as a head camera unit integrally provided with the mounting head 133 . You may make it
  • the control device 16 executes the mounting process by controlling the component mounting operation by the mounting head 133 based on the control program.
  • the mounting process includes a process of repeating a PP cycle (pick-and-place cycle) including a collection operation and a mounting operation a plurality of times.
  • the above-mentioned “collection operation” is an operation of collecting the component supplied by the component supply device 12 by the suction nozzle 134 .
  • control device 16 controls the operation of the component supply device 12 including the bulk feeder 30 when executing the above collection operation.
  • the control for the operation of the bulk feeder 30 includes, for example, the operation of supplying the parts 92 by the bulk feeder 30 and the control of the opening/closing operation of the shutter 37, which will be described later.
  • the control device 16 has a state recognition section 81 .
  • the state recognition unit 81 recognizes the supply state of the plurality of components 92 in the supply area As of the bulk feeder 30 based on the image data acquired by the camera (the substrate camera 15 in this embodiment).
  • the supply state recognition processing includes a process of recognizing whether or not there is a part 92 that can be picked up in the supply area As, and recognizing the position and angle of the part 92 if there is a part 92 that can be picked up. .
  • the control device 16 controls the operation of the mounting head 133 in the collection operation based on the result of the supply state recognition processing.
  • the state recognition section 81 constitutes a component supply control system 80 . Details of the state recognition unit 81 will be described later.
  • the above-mentioned “mounting operation” is an operation of mounting the collected component at a predetermined mounting position on the substrate 91 at a predetermined mounting angle.
  • the control device 16 controls the operation of the mounting head 133 based on information output from various sensors, results of image processing, control programs, and the like. Thereby, the positions and angles of the plurality of suction nozzles 134 supported by the mounting head 133 are controlled.
  • the bulk feeder 30 is installed in the component mounting machine 10 and functions as a part of the component supply device 12 .
  • Bulk feeder 30 feeds components 92 stored in bulk and not aligned, such as carrier tape. Therefore, unlike the tape feeder, the bulk feeder 30 does not use a carrier tape, and thus has the advantage of omitting the loading of the carrier tape and the recovery of the used tape.
  • the bulk feeder 30 includes, for example, a type that supplies parts 92 in an irregular posture to a planar supply area As. However, if the parts 92 are so close to each other that they are in contact with each other in the supply area As, or if the parts 92 are piled up (overlapping in the vertical direction), or if the parts 92 are in a sideways posture such that the width direction of the parts 92 is the vertical direction. , the component mounting machine 10 cannot pick up these components 92 . Therefore, in order to increase the ratio of the parts 92 that can be collected, the bulk feeder 30 has a type that supplies the parts 92 in a state of being aligned in the supply area As. In this embodiment, the bulk feeder 30 of the type that aligns the parts 92 will be described as an example.
  • the bulk feeder 30 includes a feeder body 31 formed in a flat box shape, as shown in FIG.
  • a connector 311 and two pins 312 are provided at the front of the feeder body 31 .
  • the two pins 312 are inserted into guide holes provided in the slot 121 and used for positioning when the feeder body 31 is set in the slot 121 .
  • a component case 70 that accommodates a plurality of components 92 in a bulk state is detachably attached to the feeder body 31 via the receiving member 32 .
  • a component case 70 is an external device of the bulk feeder 30 .
  • One of various types of component cases 70 suitable for the mounting process is selected and attached to the feeder body 31 .
  • a discharge port 71 for discharging the component 92 to the outside is formed in the front portion of the component case 70 .
  • the receiving member 32 is vibrated with respect to the feeder body 31 and supports the attached component case 70 .
  • the receiving member 32 is formed with a receiving area Ar for receiving the component 92 ejected from the component case 70 .
  • the receiving member 32 has an inclined portion 321 that is inclined forward with respect to the horizontal plane in the receiving area Ar.
  • the inclined portion 321 is positioned below the discharge port 71 of the component case 70 and has a planar shape.
  • the receiving member 32 is formed with a channel for the component 92 extending above the receiving area Ar, and is formed with a delivery portion 322 opening upward from the channel.
  • Bulk feeder 30 includes bracket 33 and track member 34 .
  • the bracket 33 is provided so as to vibrate with respect to the feeder body 31 .
  • the bracket 33 is formed in a block shape extending in the front-rear direction of the feeder body 31, and has a track member 34 attached to its upper surface.
  • the bracket 33 is supported by a support member 41 of a vibrating device 40 which will be described later.
  • the track member 34 is formed with a transport path R along which a plurality of parts 92 are transported, and a supply area As that communicates with the transport path R and opens upward so that a plurality of parts 92 can be picked up.
  • the bulk feeder 30 is provided with a lock unit 35.
  • the lock unit 35 locks the track member 34 while the track member 34 is attached to the bracket 33 .
  • the track member 34 vibrates integrally with the bracket 33 with respect to the feeder body 31 .
  • the track member 34 becomes removable from the bracket 33 by unlocking the lock unit 35 .
  • track member 34 is formed so as to extend in the front-rear direction of the feeder body 31 (left-right direction in FIG. 4).
  • a pair of side walls 341 projecting upward are formed on both edges of the track member 34 in the width direction (the vertical direction in FIG. 4).
  • the pair of side walls 341 surrounds the periphery of the transport path R together with the tip portion 342 of the track member 34 to prevent the component 92 transported on the transport path R from leaking out.
  • a pair of left and right circular reference marks 344 indicating the reference position of the supply area As are provided on the upper surface of the tip portion 342 .
  • the alignment member 50 is replaceably attached to the track member 34 .
  • Alignment member 50 has a plurality of cavities 51 that individually accommodate a plurality of components 92 .
  • the plurality of cavities 51 are arranged in a matrix in the supply area As.
  • the aligning member 50 has a total of 80 cavities 51, 8 of which are regularly arranged in the conveying direction and 10 of which are arranged in the width direction of the conveying path R, respectively.
  • Each of the plurality of cavities 51 opens upward and accommodates the component 92 in a posture in which the thickness direction of the component 92 is the vertical direction.
  • the opening of the cavity 51 is set to a dimension that is slightly larger than the external shape of the component 92 when viewed from above.
  • the depth of the cavity 51 is set according to the type (shape, mass, etc.) of the component 92 .
  • the track member 34 is attached with one selected from various types of track members 34 based on the type of parts 92, the required number of cavities 51, and functionality.
  • the "supply area As" of the track member 34 is an area in which the parts 92 are supplied in bulk and in which the parts 92 can be picked up by the suction nozzle 134 supported by the mounting head 133.
  • the “conveyance path R” of the track member 34 is a path along which the components 92 circulated from the receiving area Ar to the track member 34 are conveyed to the supply area As.
  • the bulk feeder 30 includes a cover 36.
  • the cover 36 is fixed to the track member 34 and covers the transport path R from above.
  • the cover 36 has a plurality of exhaust ports 361 formed on its upper surface.
  • the exhaust port 361 is covered with a mesh whose joints are smaller than the external dimensions of the part 92 .
  • the cover 36 is configured to prevent the component 92 from jumping out of the transport path R and to discharge air to the outside from the exhaust port 361 .
  • the bulk feeder 30 has a shutter 37 provided on the upper part of the track member 34 and capable of closing the opening of the supply area As. By opening and closing the shutter 37, the bulk feeder 30 can prevent the component 92 from jumping out and foreign matter from entering the supply area As.
  • the shutter 37 can be switched between an open state, a closed state, and an intermediate state by opening and closing operations.
  • the closed state of the shutter 37 is a state in which the shutter 37 contacts the track member 34 and the opening of the supply area As is completely closed. At this time, the shutter 37 is positioned on the rear side of the feeder body 31 relative to the pair of reference marks 344 of the track member 34, as indicated by the dashed lines in FIG. and
  • the open state of the shutter 37 is a state in which the opening of the supply area As is not closed and the main range of the supply area As (the range in which the plurality of cavities 51 are provided in this embodiment) is exposed. be. At this time, the suction nozzle 134 can pick up the component 92 from any cavity 51 .
  • the intermediate state of the shutter 37 is a state between the closed state and the open state, in which the shutter 37 is separated from the track member 34 by at least the amplitude of the track member 34 vibrated by the vibration of the vibrating device 40 and supplied. This is a state in which projection of the component 92 from the opening of the region As is restricted.
  • the shutter 37 is opened and closed by a driving device (not shown), and is brought into a closed state, an open state, and an intermediate state according to the driving state of the driving device.
  • the track member 34 is formed with a flow path for the component 92 extending downward at the rear portion, and has an introduction portion 343 in which this flow path opens downward.
  • the introduction portion 343 vertically faces the delivery portion 322 of the receiving member 32 .
  • the bulk feeder 30 includes a connecting member 38 having a tubular shape.
  • the connecting member 38 connects the delivery portion 322 of the receiving member 32 and the introduction portion 343 of the track member 34 .
  • the connecting member 38 is a tight coil spring and has flexibility as a whole.
  • the connecting member 38 connects the plurality of components 92 between the receiving area Ar and the transport path R so as to be able to flow.
  • the connecting member 38 absorbs vibration by deforming in accordance with the vibration of the receiving member 32 and the track member 34 with respect to the feeder body 31 .
  • the connecting member 38 reduces or blocks vibrations transmitted between the independently vibrating receiving member 32 and track member 34 .
  • Air supply device 39 The bulk feeder 30 has an air supply device 39 .
  • the air supply device 39 supplies positive pressure air from below the receiving area Ar to circulate the plurality of components 92 from the receiving member 32 to the track member 34 via the connecting member 38 .
  • the air supply device 39 supplies or cuts off the positive pressure air supplied from the outside from below the receiving area Ar based on a command from the feeder control device 60, which will be described later.
  • the air supply device 39 supplies positive pressure air
  • the plurality of parts 92 staying in the receiving area Ar are blown upward by the positive pressure air.
  • the positive pressure air and the plurality of parts 92 flow through the sending portion 322 of the receiving member 32 , the connecting member 38 and the introducing portion 343 in this order, and reach the transport path R of the track member 34 .
  • the positive pressure air is exhausted to the outside from the exhaust port 361 of the cover 36 .
  • the plurality of components 92 drop onto the transport path R of the track member 34 due to their own weight.
  • the bulk feeder 30 includes a vibrating device 40 provided on the feeder body 31 .
  • the vibrating device 40 applies vibration to the track member 34 so that the plurality of components 92 are transported along the transport path R.
  • the vibrating device 40 has a plurality of support members 41 , a plurality of piezoelectric elements 42 , a vibration sensor 43 and a power feeding device 44 .
  • a plurality of support members 41 support the bracket 33 by directly or indirectly connecting the feeder body 31 and the bracket 33 .
  • the plurality of support members 41 include an advance support member 41A used for front-side transportation of the component 92 and a retreat support member 41B used for rear-side transportation.
  • the forward support member 41A and the backward support member 41B are different from each other in the direction of inclination with respect to the vertical direction.
  • the plurality of piezoelectric elements 42 are vibrators that vibrate at a frequency corresponding to power supplied from the power supply device 44 .
  • a plurality of piezoelectric elements 42 are attached to each of the plurality of support members 41 .
  • the vibration sensor 43 detects a vibration value indicating the vibration state of the track member 34 vibrated by the vibration of the vibrating device 40 . Amplitude, frequency, damping time, vibration trajectory, etc. can be applied as the vibration value indicating the vibration state. In this embodiment, the vibration sensor 43 detects the actual vibration frequency or amplitude of the track member 34 when the piezoelectric element 42 vibrates due to power supply.
  • the vibration sensor 43 is provided on each of the plurality of support members 41 that support the bracket 33 that vibrates integrally with the track member 34 . More specifically, the piezoelectric element 42 and the vibration sensor 43 are provided on each of the forward support member 41A and the backward support member 41B. A vibration sensor 43 provided on the support member 41A for advancement is supplied with power to the piezoelectric element 42 provided on the support member 41A for advancement, and vibration is applied to the track member 34 via the bracket 33. Detect the actual frequency or amplitude as a value.
  • the track member 34 makes an elliptical motion when viewed from the side.
  • the plurality of components 92 on the transport path R are subjected to a forward and upward external force or a rearward and upward external force depending on the rotational direction of the elliptical motion of the track member 34 .
  • the plurality of parts 92 are transported to the front side or the rear side of the track member 34 .
  • the power supply device 44 varies the frequency of power supplied to the piezoelectric element 42 and the applied voltage based on commands from the feeder control device 60, which will be described later. As a result, the frequency and amplitude of vibration applied to the track member 34 are adjusted, and the rotational direction of the elliptical motion of the track member 34 is determined.
  • the frequency and amplitude of the vibration of the track member 34 and the rotational direction of the elliptical motion due to the vibration fluctuate, the conveying speed of the parts 92 to be conveyed, the degree of dispersion of the parts 92, the conveying direction, and the like change.
  • the vibrating device 40 is preset with power supply (frequency, applied voltage) corresponding to vibration characteristics (including natural frequency) that have individual differences.
  • the bulk feeder 30 is calibrated in a state in which the track member 34 used for the feeding operation to be performed is attached, that is, in a state in which the track member 34 is locked with respect to the bracket 33 by the lock unit 35. . Details of the above calibration process will be described later.
  • Feeder controller 60 Bulk feeder 30 includes a feeder controller 60 .
  • the feeder control device 60 is mainly composed of a CPU, various memories, and a control circuit. With the bulk feeder 30 set in the slot 121 , the feeder control device 60 receives power through the connector 311 and is ready to communicate with the control device 16 of the component mounting machine 10 .
  • the feeder control device 60 has a storage section 61 as shown in FIG.
  • the storage unit 61 is configured by a flash memory or the like.
  • the storage unit 61 stores various data such as programs used for controlling the component supply process and transfer parameters.
  • the above-mentioned "conveyance parameter" is a parameter for controlling the operation of the vibrating device 40 so that the vibration applied to the track member 34 is appropriate when the component 92 is conveyed in the component supply process. It is set in advance in association with each of the 92 types.
  • the feeder control device 60 has a vibration control section 62 .
  • the vibration control section 62 controls the operation of the vibration excitation device 40 to carry out the operation of conveying the component 92 .
  • the vibration control unit 62 sends a command to the power supply device 44 of the vibration excitation device 40 when carrying out the transport operation.
  • the power supply device 44 supplies predetermined power to the piezoelectric element 42 , thereby imparting vibration to the track member 34 via the bracket 33 .
  • the component 92 on the transport path R is transported by receiving an external force so as to move in the transport direction.
  • the component supply control system 80 controls component supply using the bulk feeder 30 described above.
  • the component supply control system 80 is incorporated in the control device 16 and is configured to communicate with the bulk feeder 30 installed in the slot 121, as shown in FIG.
  • the parts supply control system 80 controls parts supply so as to maintain a good supply state of the parts 92 in the bulk feeder 30 .
  • the component supply control system 80 includes a state recognition section 81 as shown in FIG. As described above, the state recognition unit 81 recognizes the supply state of the plurality of components 92 in the supply area As of the bulk feeder 30 based on the image data D1 (see FIG. 6) acquired by imaging with the board camera 15. . More specifically, the state recognition unit 81 first detects the supply area As based on the image data D1 acquired by imaging the supply area As in a state where the bulk feeder 30 conveys the plurality of parts 92 to the supply area As by vibration. Perform state recognition processing.
  • FIG. 6 is an example of the image data D1.
  • the state recognition unit 81 determines the supply state of the parts 92 for each of a plurality of areas N preset in the supply area As.
  • the state recognizing unit 81 does not recognize the supply state of each of the individual parts 92 recognized by image processing as to whether or not they can be picked up, but for each of a plurality of sections N, It is determined whether or not the part 92 to be supplied can be picked as the supply state. Whether or not the part 92 belongs to the area N is determined by whether or not the reference portion (for example, the part center) of the part 92 is inside the area N.
  • the above-mentioned "supply state” includes a state in which the part 92 exists in the area N and can be picked up, a state in which the part 92 exists in the area N and cannot be picked up, and a state in which the part 92 does not A state in which part 92 is not present is included.
  • the positions, shapes and number of the plurality of sections N can be set arbitrarily. In this embodiment, each of the plurality of sections N is set corresponding to one cavity 51 as indicated by the dashed lines in FIG.
  • one section N is set to the position of the corresponding cavity 51 and has a rectangular shape, and is separated from the other section N.
  • one component 92 can be placed inside the area N corresponding to the cavity 51. fit.
  • the longitudinal direction of the section N vertical direction in FIG. 6
  • the longitudinal direction of the component 92 are generally aligned.
  • the state recognition unit 81 classifies the supply state into a plurality of types and determines them.
  • FIG. 7 shows area N in the supply state ("OK") with parts 92 present and available for picking in area N with hatching.
  • FIG. 7 also shows an area N in a supply state (“NG”) in which a part 92 exists in the area N and cannot be picked up, with an X mark connecting diagonal lines.
  • FIG. 7 shows zone N in the supply state (“EMP”), where there are no parts 92 in zone N, in dashed outline only.
  • the state recognition unit 81 calculates the number (V1, V2, V3) of each supply state (OK, NG, EMP) as shown in FIG.
  • a parts group U in which a plurality of parts 92 are densely packed is generated in the supply area
  • the state recognition unit 81 further determines the position and size of the parts group U as the parts group state based on the image data D1. Specifically, the state recognition unit 81 may recognize the state of contact and stacking of the parts 92 to determine the state of the parts group.
  • the state recognition unit 81 may determine the parts group state by assuming that the area including the plurality of areas N corresponds to the parts group U. . In this manner, the state recognition unit 81 determines the position Cu and size of the parts group U as the parts group state, as indicated by the dashed line in FIG.
  • the component supply control system 80 includes a transport control section 85, as shown in FIG.
  • the conveying control unit 85 controls the conveying operation of the parts 92 in the bulk feeder 30 based on the supply state of each of the plurality of areas N.
  • the conveying operation of the parts 92 in the bulk feeder 30 includes a feeding operation and a returning operation.
  • the above-mentioned "feeding operation” is an operation of conveying the parts 92 from the rear side to the front side of the track member 34, and is an operation of advancing the plurality of parts 92 from the conveying path R communicating with the supply area As to the supply area As side.
  • the "return operation” is an operation of conveying the parts 92 from the front side to the rear side of the track member 34, and is an operation of retreating the plurality of parts 92 from the supply area As to the conveying path R side.
  • the transport control unit 85 controls the number of executions of the feeding operation and the returning operation, the execution time, etc., based on the supply state of each of the plurality of areas N.
  • the transport control unit 85 performs the transport operation based on the ratio (V1:V2:V3) of the supply states (OK, NG, EMP) determined for each of the plurality of areas N by the state recognition unit 81.
  • a plurality of transport patterns are switched in the control of .
  • Various modes can be adopted for the above-described switching of the transport pattern.
  • the transport control unit 85 may simply adopt a transport pattern corresponding to the maximum number of types of supply states.
  • the transport control unit 85 based on at least one of the positions where each of the plurality of sections N is set in the supply region As and the weighting set for each of the plurality of sections N, and the ratio of the supply state, A plurality of transport patterns may be switched. Specifically, for a plurality of sections N, the closer to the tip 342 side of the track member 34, the higher the weight, and the ratio of the supply state (V1:V2:V3) may be calculated. As a result, for example, the importance of the cavities 51 closer to the substrate 91 is increased, and a transport operation with a higher priority is performed.
  • the plurality of transport patterns include normal transport, replenishment transport, and removal transport.
  • the above-mentioned "normal transport” is a transport pattern in which the feeding operation and the returning operation are performed for a predetermined period of time. In this normal transport, for example, the feeding operation and the returning operation may be alternately repeated two or more times.
  • the above-mentioned “replenishment transport” is a transport pattern in which the number of parts 92 to be advanced or the execution time of the feeding operation is increased compared to normal transport.
  • the above-mentioned "removal transport” is a transport pattern that reduces the number of parts 92 to be retracted or the execution time of the return operation compared to normal transport.
  • the transport control unit 85 determines the supply state when the number of supply states (“OK”) in which the part 92 exists in the area N and can be picked up is the largest in the supply state ratio (V1:V2:V3). "Normal transport” is set as the transport pattern. In addition, in the supply state ratio (V1:V2:V3), the transport control unit 85 determines that the supply region As "Removal Conveyance” is set as the conveyance pattern on the assumption that there are excessive parts 92 in the .
  • the transport control unit 85 determines that the parts 92 are insufficient in the supply area As when the supply state (“EMP”) in which the part 92 does not exist in the area N is the largest in the supply state ratio (V1:V2:V3). "Replenishment Conveyance" is set as the conveyance pattern.
  • EMP supply state
  • V1:V2:V3 supply state ratio
  • "Replenishment Conveyance” is set as the conveyance pattern.
  • the quantity of the parts 92 to be transported is grasped in real time, and control based on this is performed. may be adopted.
  • the transport control unit 85 may change the number of execution times or the execution time of the feed operation or return operation when switching from normal transport to replenishment transport or removal transport. Specifically, the transport control unit 85 performs the feeding operation and the returning operation once for the same amount of time during normal transport. Then, when switching from the normal transport to the replenishment transport, the transport control unit 85 may make the execution time of the feeding operation longer than that of the returning operation, and may execute it twice.
  • the transport control unit 85 may increase only the number of times the transport operation is performed without changing the execution time of the return operation and the transport operation. This is the same when the transport control unit 85 switches from normal transport to removal transport. That is, the execution time of the return operation may be longer than that of the forward operation, or only the number of times the return operation is executed may be increased.
  • the transport control unit 85 may change the frequency or amplitude of vibration applied to the track member 34 having the supply area As when switching from normal transport to replenishment transport or removal transport. As a result, the track member 34 is subjected to a vibration different from that for normal transportation, and the magnitude and direction of the external force applied from the track member 34 to the component 92 can be changed. As a result, it is possible to disperse the component group U and remove the component 92 that is stuck in the cavity 51 in an inappropriate posture.
  • the transport control unit 85 may control the transport operation based on the parts group status indicating the position and size of the parts group U, in addition to the supply status for each of the plurality of areas N.
  • the above-mentioned "parts group state" includes the presence or absence of the parts group U and the number thereof.
  • the transport control unit 85 acquires the component group state from the result of recognition processing by the state recognition unit 81 . Then, as shown in FIG. 6, when the parts group U is positioned on the tip portion 342 side of the track member 34 in the supply area As, for example, the transport control unit 85 causes the parts group U to move to the rear side of the supply area As. Execute the return motion to move.
  • the transport control unit 85 transfers the parts group U in the supply area As.
  • the feeding operation and the returning operation are repeatedly executed so as to reciprocate in the front-rear direction. Thereby, it is possible to try to accommodate the component 92 in the empty cavity 51 .
  • the component supply control system 80 performs feeder control according to the supply state of the bulk feeder 30 while the component mounting machine 10 is performing the mounting process.
  • the feeder control described above includes control of the conveying operation and control of the opening/closing operation of the shutter 37 .
  • the controller 16 of the component mounting machine 10 executes calibration processing and recognizes the position of the supply area As inside the machine.
  • control device 16 first instructs the feeder control device 60 to close the shutter 37 .
  • a plurality of reference marks 344 can be imaged from above.
  • the control device 16 moves the substrate camera 15 above the plurality of reference marks 344 of the bulk feeder 30 and acquires image data by imaging with the substrate camera 15 .
  • the controller 16 determines the position of the bulk feeder 30 in the machine, that is, the supply area As, based on the positions of the plurality of reference marks 344 included in the image data and the position of the board camera 15 when the image was taken by image processing. Recognize your location.
  • the transport control unit 85 instructs the bulk feeder 30 to transport the component 92 before picking up the component 92 from the bulk feeder 30 in the mounting process.
  • the bulk feeder 30 discharges the parts 92 from the parts case 70 and circulates the parts 92 to the track member 34 as necessary.
  • the bulk feeder 30 maintains the shutter 37 in the intermediate state and performs the operation of conveying the parts 92 .
  • the components 92 are accommodated in the plurality of cavities 51, and the excess components 92 are retracted from the supply area As to the transport path R side.
  • the state recognizing section 81 instructs the bulk feeder 30 to open the shutter 37 in the process of recognizing the feeding state.
  • the state recognition unit 81 moves the board camera 15 above the supply area As and obtains image data by imaging the board camera 15 . Then, as shown in FIG. 8, the state recognition unit 81 performs image processing on the image data D1 to determine the supply state of the parts 92 for each of the plurality of areas N (S11).
  • the state recognition unit 81 calculates the required number (Vn) of the parts 92 to be collected from the supply area As by a series of collection operations in one PP cycle, and the number of possible collection calculated based on the supply state for each of the plurality of areas N. It is determined whether or not the difference (V1-Vn) from (V1) is less than the reference value (Vs) (S12). The above reference value (Vs) is set to a number of 0 or more. If the number of samples that can be collected is greater than the required number and the difference is equal to or greater than the reference value (S12: No, V1-Vn ⁇ Vs), the state recognition unit 81 permits the execution of the collection operation in the PP cycle (S13 ). The controller 16 executes the picking operation in the PP cycle, followed by the loading operation.
  • the state recognition unit 81 executes update processing of the supply state recognized in S11 (S13).
  • the supply state update process the area N corresponding to the part 92 picked up by the picking operation is set to the supply state (“EMP”) where the part 92 does not exist.
  • EMP supply state
  • the number of possible samples V1
  • the state recognition unit 81 determines the number of parts 92 scheduled to be collected in the collection operation of the next PP cycle (next necessary number) and the remaining number of parts 92 that can be collected in the supply area As.
  • the determination process of S12 is executed again to determine whether or not the difference from the number of parts 92 (current number that can be collected) is equal to or greater than the reference value (Vs).
  • the state recognition unit 81 determines that the number of possible samples is insufficient, the difference (V1-Vn) is less than the reference value (Vs) (S12: Yes, V1-Vn ⁇ Vs), If the PP cycle remains (S14: Yes), execution of the picking operation in the PP cycle is not permitted, and the transport operation by the bulk feeder 30 is executed before the picking operation.
  • the transport control unit 85 updates the current supply status for each of the plurality of sections N. (S15).
  • the state recognition unit 81 omits the setting of the transport pattern (S15) and the like, and permits the execution of the collection operation.
  • the transport control unit 85 selects a plurality of transport patterns in controlling the transport operation, based on the ratio (V1:V2:V3) of the current supply states (OK, NG, EMP) determined for each of the multiple sections N. Set (S15). Thereby, the transport pattern (for example, normal transport, replenishment transport, removal transport) is switched. Then, the transport control unit 85 instructs the bulk feeder 30 to transport the component 92 according to the set transport pattern (S16). When the bulk feeder 30 is instructed to convey the parts 92, the bulk feeder 30 performs a conveying operation according to the set conveying pattern.
  • the bulk feeder 30 performs a transport operation according to the supply state of each of the multiple areas N.
  • the components 92 have been properly supplied by the initial settings, normal transport is executed, and if the number of pickable components 92 is relatively small immediately after the transport operation, replenishment transport is executed.
  • a process of discharging the parts 92 from the parts case 70 and distributing the plurality of parts 92 to the transportation path R may be executed according to the instruction of the transportation control section 85 .
  • the state recognition unit 81 again executes the processing (S11) for determining the supply state. As a result, the current supply state for each of the plurality of sections N after the transport operation is recognized.
  • the component supply control system terminates the above control process when all the PP cycles scheduled to be executed are finished and the supply of the component 92 becomes unnecessary (S14: No).
  • Embodiment 5-1 Concerning Component Supply Control System 80
  • the state recognition section 81 and the transport control section 85 of the component supply control system 80 have been described by exemplifying the configuration incorporated in the control device 16 of the component mounting machine 10 .
  • one or both of the state recognition section 81 and the transport control section 85 may be configured to be incorporated in an external device of the control device 16 .
  • the state recognition unit 81 may be provided movably integrally with the moving table 132 and incorporated in an imaging unit that controls the imaging operation of the substrate camera 15 .
  • the transport control unit 85 may be incorporated in the component supply device 12 that mediates communication between the feeders 122 installed in the plurality of slots 121 and the control device 16 .
  • the state recognition unit 81 and the transport control unit 85 may be incorporated in the feeder control device 60 of the bulk feeder 30 as self-control functions of the bulk feeder 30 .
  • the state recognition unit 81 and the transport control unit 85 may be incorporated in a host computer or dedicated equipment that is communicably connected to the component mounting machine 10 . In any aspect, the same effect as the embodiment can be obtained.
  • the track member 34 of the bulk feeder 30 is configured to include an alignment member 50 in which a plurality of cavities 51 are formed.
  • the alignment member 50 may be omitted. That is, in the supply area As of the track member 34, a concave portion where the components 92 are dispersed at a position lower than the upper surface of the transport path R and a planar portion which is uniform with the upper surface of the transport path R are formed so that the parts can be placed in a bulk state. 92 may be provided.
  • the plurality of areas N in the supply area As are set, for example, to have a size approximately equal to the outer dimensions of the part 92 to be supplied, and not to overlap each other. It can be arbitrarily set whether the plurality of areas N are adjacent to each other or separated as illustrated in the embodiment.
  • the state recognition unit 81 determines the supply state of the parts 92 for each of the multiple areas N, as in the embodiment. Then, the transport control unit 85 can control the transport operation based on the supply state of each of the multiple areas N.
  • the parts 92 are not aligned with respect to the plurality of areas N, and the processing load of the image processing for determining whether or not the parts 92 can be picked and acquiring the orientation of the parts 92 is relatively high. can be. Therefore, from the viewpoint of improving the efficiency of the component supply process and reducing the image processing load in the process of recognizing the supply state in the supply area As, the configuration illustrated in the embodiment is preferable.
  • the substrate camera 15 is used as the camera for imaging the supply area As of the bulk feeder 30 .
  • the camera that images the supply area As may be a fixed camera provided above the bulk feeder 30 .
  • the above fixed camera may be dedicated to imaging the supply area As, or may be used for other purposes as well.
  • the camera that images the supply area As may be a built-in camera of the bulk feeder 30 provided below the supply area As.
  • the feed area As of the track member 34 and the alignment member 50 are made of a transparent material.
  • the built-in camera of the bulk feeder 30 can transmit images of the components 92 accommodated in the cavities 51 through these. According to such a configuration of the fixed camera and the built-in camera, the supply area As can be imaged at any timing regardless of the position of the carriage 132. Therefore, it is possible to perform imaging processing, state recognition processing, and the like during execution of the mounting operation. can be done.
  • the aspect illustrated in the embodiment is preferable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Mechanical Engineering (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Abstract

部品供給制御システムは、バルクフィーダが複数の部品を振動により供給領域まで搬送した状態において供給領域を撮像して取得された画像データに基づいて、供給領域に予め設定された複数の区域ごとに部品の供給状態を割り出す状態認識部と、複数の区域ごとの供給状態に基づいて、バルクフィーダにおける部品の搬送動作を制御する搬送制御部と、を備える。

Description

部品供給制御システム
 本発明は、部品供給制御システムに関するものである。
 部品供給制御システムは、バルクフィーダを用いた部品供給を制御する。バルクフィーダは、基板に部品を装着する部品装着機に装備され、バルク状態の部品を供給する。特許文献1には、搬送路に振動を付与して複数の部品を搬送する構成が開示されている。このような搬送動作によって、バルクフィーダは、吸着ノズルが部品を採取できるように上方に開口した供給領域において部品を供給する。
特開2011-114084号公報
 このようなバルクフィーダは、例えば部品装着機の制御装置から部品供給を要求され、規定の搬送動作を実行する。しかしながら、供給領域において部品がバルク状態であることから、規定の搬送動作を実行しても採取可能な部品の数にばらつきが生じ得る。バルクフィーダを用いた部品供給を制御するシステムには、良好な部品の供給状態を維持し、生産性向上の要請がある。
 本明細書は、バルクフィーダにおける部品の供給状態を良好にし、バルクフィーダを装備された部品装着機の生産性向上を図ることができる部品供給制御システムを提供することを目的とする。
 本明細書は、バルクフィーダが複数の部品を振動により供給領域まで搬送した状態において前記供給領域を撮像して取得された画像データに基づいて、前記供給領域に予め設定された複数の区域ごとに前記部品の供給状態を割り出す状態認識部と、複数の前記区域ごとの前記供給状態に基づいて、前記バルクフィーダにおける前記部品の搬送動作を制御する搬送制御部と、を備える部品供給制御システムを開示する。
 このような構成によると、バルクフィーダの搬送動作は、供給領域における複数の区域ごとの部品の供給状態に基づいて制御される。これにより、現在の供給状態に応じた搬送動作が可能となり、供給領域において採取可能な部品を増加させることができる。このように、バルクフィーダにおける部品の供給状態を良好にすることで、部品装着機の生産性向上を図ることができる。
バルクフィーダを装備された部品装着機を模式的に示す平面図である。 バルクフィーダの外観を示す斜視図である。 バルクフィーダの要部を模式的に示す側面図である。 図2のIV方向から見た平面図である。 部品供給制御システムを適用された部品装着機を示すブロック図である。 供給領域を撮像した画像データを示す図である。 図6の画像データを対象とした供給状態の認識処理の結果を示す図である。 部品供給制御処理を示すフローチャートである。
 バルクフィーダ30を用いた部品供給を制御する部品供給制御システム80について、図面を参照して説明する。バルクフィーダ30は、例えば基板91に部品92を装着する部品装着機10に装備され、バルク状態(それぞれの姿勢が不規則なばら状態)の部品92を供給する。
 1.部品装着機10の構成
 部品装着機10は、例えば他の部品装着機10を含む複数種類の対基板作業機とともに、基板製品を生産する生産ラインを構成する。上記の生産ラインを構成する対基板作業機には、印刷機や検査装置、リフロー炉などが含まれ得る。
 1-1.基板搬送装置
 部品装着機10は、図1に示すように、基板搬送装置11を備える。基板搬送装置11は、基板91を搬送方向へと順次搬送するとともに、基板91を機内の所定位置に位置決めする。
 1-2.部品供給装置12
 部品装着機10は、部品供給装置12を備える。部品供給装置12は、基板91に装着される部品を供給する。部品供給装置12は、複数のスロット121にフィーダ122をそれぞれ装備される。フィーダ122には、例えば多数の部品が収納されたキャリアテープを送り移動させて、部品を採取可能に供給するテープフィーダが適用される。また、フィーダ122には、バルク状態で収容された部品を採取可能に供給するバルクフィーダ30が適用される。バルクフィーダ30の詳細については後述する。
 1-3.部品移載装置13
 部品装着機10は、部品移載装置13を備える。部品移載装置13は、部品供給装置12により供給された部品を基板91上の所定の装着位置に移載する。部品移載装置13は、ヘッド駆動装置131、移動台132、装着ヘッド133、および吸着ノズル134を備える。ヘッド駆動装置131は、直動機構により移動台132を水平方向(X方向およびY方向)に移動させる。装着ヘッド133は、図示しないクランプ部材により移動台132に着脱可能に固定され、機内において水平方向に移動可能に設けられる。
 装着ヘッド133は、回転可能に且つ昇降可能に複数の吸着ノズル134を支持する。吸着ノズル134は、フィーダ122により供給される部品92を採取して保持する保持部材である。吸着ノズル134は、供給される負圧エアにより、フィーダ122により供給される部品を吸着する。装着ヘッド133に取り付けられる保持部材としては、部品を把持することにより保持するチャックなどが採用され得る。
 1-4.部品カメラ14、基板カメラ15
 部品装着機10は、部品カメラ14、および基板カメラ15を備える。部品カメラ14、および基板カメラ15は、CMOSなどの撮像素子を有するデジタル式の撮像装置である。部品カメラ14、および基板カメラ15は、制御信号に基づいて撮像を行い、当該撮像により取得した画像データを送出する。部品カメラ14は、吸着ノズル134に保持された部品を下方から撮像可能に構成される。基板カメラ15は、装着ヘッド133と一体的に水平方向に移動可能に移動台132に設けられる。基板カメラ15は、基板91を上方から撮像可能に構成される。
 また、基板カメラ15は、基板91の表面を撮像対象とする他に、移動台132の可動範囲であれば種々の機器などを撮像対象にできる。例えば、基板カメラ15は、本実施形態において、図4に示すように、バルクフィーダ30が部品92を供給する供給領域Asやバルクフィーダ30の上部に設けられた基準マーク344をカメラ視野に収めて撮像することができる。このように、基板カメラ15は、種々の画像処理に用いられる画像データを取得するために、異なる撮像対象の撮像に兼用され得る。
 1-5.制御装置16
 部品装着機10は、図1に示すように、制御装置16を備える。制御装置16は、主として、CPUや各種メモリ、制御回路、および記憶装置により構成される。制御装置16は、制御装置16には、装着処理の制御に用いられる制御プログラムなどの各種データが記憶される。制御プログラムは、装着処理において基板91に装着される部品の装着位置、装着角度、および装着順序を示す。
 制御装置16は、複数の保持部材(吸着ノズル134)のそれぞれに保持された部品の保持状態の認識処理を実行する。具体的には、制御装置16は、部品カメラ14の撮像により取得された画像データを画像処理し、装着ヘッド133の基準位置に対する各部品の位置および角度を認識する。なお、制御装置16は、部品カメラ14の他に、例えば装着ヘッド133に一体的に設けられるヘッドカメラユニットなどが部品を側方、下方、または上方から撮像して取得された画像データを画像処理するようにしてもよい。
 制御装置16は、制御プログラムに基づいて、装着ヘッド133による部品の装着動作を制御して装着処理を実行する。ここで、装着処理には、採取動作と装着動作とが含まれるPPサイクル(ピックアンドプレースサイクル)を複数回に亘って繰り返す処理が含まれる。上記の「採取動作」とは、部品供給装置12により供給された部品を吸着ノズル134により採取する動作である。
 本実施形態において、制御装置16は、上記の採取動作の実行に際して、バルクフィーダ30を含む部品供給装置12の動作を制御する。バルクフィーダ30の動作を対象とした制御には、例えばバルクフィーダ30による部品92の供給動作、および後述するシャッタ37の開閉動作の制御が含まれる。
 制御装置16は、状態認識部81を備える。状態認識部81は、カメラ(本実施形態において、基板カメラ15)の撮像により取得した画像データに基づいて、バルクフィーダ30の供給領域Asにおける複数の部品92の供給状態を認識する。供給状態の認識処理には、供給領域Asに採取可能な部品92があるか否かを認識し、採取可能な部品92がある場合にはその部品92の位置および角度を認識する処理が含まれる。そして、制御装置16は、供給状態の認識処理の結果に基づいて、採取動作における装着ヘッド133の動作を制御する。本実施形態において、状態認識部81は、部品供給制御システム80を構成する。状態認識部81の詳細については後述する。
 また、上記の「装着動作」とは、採取した部品を基板91における所定の装着位置に、所定の装着角度で装着する動作である。制御装置16は、装着処理において、各種センサから出力される情報や画像処理の結果、制御プログラムなどに基づき、装着ヘッド133の動作を制御する。これにより、装着ヘッド133に支持された複数の吸着ノズル134の位置および角度が制御される。
 2.バルクフィーダ30の構成
 バルクフィーダ30は、部品装着機10に装備されて部品供給装置12の一部として機能する。バルクフィーダ30は、キャリアテープのように整列されていないバルク状態で収容された部品92を供給する。そのため、バルクフィーダ30は、テープフィーダと異なりキャリアテープを用いないため、キャリアテープの装填や使用済みテープの回収などを省略できる点でメリットがある。
 バルクフィーダ30には、例えば平面状の供給領域Asに不規則な姿勢で部品92を供給するタイプがある。しかしながら、供給領域Asにおいて部品92同士が接触するほど接近していたり堆積(上下方向に重なり合っている状態)していたり、部品92の幅方向が上下方向となるような横立ち姿勢であったりすると、部品装着機10は、これらの部品92を採取対象にすることができない。そこで、採取可能な部品92の割合を増加すべく、バルクフィーダ30には、供給領域Asにおいて部品92を整列させた状態で供給するタイプがある。本実施形態では、部品92を整列させるタイプのバルクフィーダ30を例示して説明する。
 2-1.フィーダ本体31
 バルクフィーダ30は、図2に示すように、扁平な箱状に形成されたフィーダ本体31を備える。フィーダ本体31の前部には、コネクタ311および2つのピン312が設けられる。フィーダ本体31は、部品供給装置12のスロット121にセットされると、コネクタ311を介して給電されるとともに、制御装置16と通信可能な状態となる。2つのピン312は、スロット121に設けられたガイド穴に挿入され、フィーダ本体31がスロット121にセットされる際の位置決めに用いられる。
 2-2.受容部材32
 フィーダ本体31には、複数の部品92をバルク状態で収容する部品ケース70が受容部材32を介して着脱可能に取り付けられる。部品ケース70は、バルクフィーダ30の外部機器である。フィーダ本体31には、種々のタイプの部品ケース70から装着処理に適合する1つが選択されて取り付けられる。部品ケース70の前部には、外部へ部品92を排出する排出口71が形成される。
 受容部材32は、フィーダ本体31に対して振動可能に設けられ、取り付けられた部品ケース70を支持する。受容部材32は、部品ケース70から排出された部品92を受容する受容領域Arを形成される。本実施形態において、受容部材32は、受容領域Arにおいて水平面に対して前側に傾斜した傾斜部321を有する。この傾斜部321は、部品ケース70の排出口71の下方に位置し、且つ平面状をなす。受容部材32は、受容領域Arの上方に延伸する部品92の流路を形成され、この流路が上方に開口する送出部322を形成される。
 2-3.ブラケット33、軌道部材34、ロックユニット35
 バルクフィーダ30は、ブラケット33および軌道部材34を備える。ブラケット33は、フィーダ本体31に対して振動可能に設けられる。ブラケット33は、フィーダ本体31の前後方向に延伸するブロック状に形成され、上面に軌道部材34を取り付けられる。ブラケット33は、後述する加振装置40の支持部材41により支持される。軌道部材34は、複数の部品92が搬送される搬送路R、および搬送路Rに連通して複数の部品92を採取可能に上方に開口する供給領域Asを形成される。
 バルクフィーダ30は、ロックユニット35を備える。ロックユニット35は、軌道部材34がブラケット33に取り付けられた状態で、軌道部材34をロックする。軌道部材34は、ロックユニット35によりロックされると、フィーダ本体31に対してブラケット33と一体的に振動する状態となる。軌道部材34は、ロックユニット35のアンロックによりブラケット33から取り外し可能な状態となる。
 2-4.軌道部材34の詳細構成、カバー36、シャッタ37、連結部材38
 軌道部材34は、フィーダ本体31の前後方向(図4の左右方向)に延伸するように形成される。軌道部材34の幅方向(図4の上下方向)の両縁には、上方に突出する一対の側壁341が形成される。一対の側壁341は、軌道部材34の先端部342とともに搬送路Rの周縁を囲い、搬送路Rを搬送される部品92の漏出を防止する。先端部342の上面には、供給領域Asの基準位置を示す円形の基準マーク344が左右一対で付される。
 本実施形態において、軌道部材34には、整列部材50が交換可能に取り付けられる。整列部材50は、複数の部品92を個々に収容する複数のキャビティ51を有する。詳細には、複数のキャビティ51は、供給領域Asにおいてマトリックス状に配列される。例えば、整列部材50は、規則的に搬送方向に8個、搬送路Rの幅方向に10個それぞれ配列された計80個のキャビティ51を有する。複数のキャビティ51のそれぞれは、上方に開口し、部品92の厚み方向が上下方向となる姿勢で部品92を収容する。
 キャビティ51の開口は、上方視における部品92の外形状よりも僅かに大きくなる寸法に設定される。キャビティ51の深さは、部品92の種類(形状、質量など)に応じて設定される。軌道部材34には、種々のタイプの軌道部材34から、部品92の種類や、キャビティ51の必要数、機能性に基づいて選択された1つが取り付けられる。
 ここで、軌道部材34の「供給領域As」とは、部品92をバルク状態で供給する領域であって、装着ヘッド133に支持された吸着ノズル134により部品92を採取可能な領域である。また、軌道部材34の「搬送路R」とは、受容領域Arから軌道部材34へと流通した部品92が供給領域Asへと搬送される部品92の通り道である。
 バルクフィーダ30は、カバー36を備える。カバー36は、軌道部材34に固定され、搬送路Rの上方を覆う。カバー36は、上面に複数の排気口361が形成されている。排気口361には、目地が部品92の外形寸法より小さいメッシュが張られている。このような構成により、カバー36は、搬送路Rからの部品92の飛び出しを防止しつつ、排気口361からエアを外部に排出することができるように構成されている。
 バルクフィーダ30は、軌道部材34の上部に設けられ、供給領域Asの開口を閉塞可能なシャッタ37を備える。バルクフィーダ30は、シャッタ37を開閉することによって部品92の飛び出しや供給領域Asへの異物混入を防止することができる。本実施形態において、シャッタ37は、開閉動作により開状態、閉状態、および中間状態を切り換えられる。シャッタ37の閉状態とは、シャッタ37が軌道部材34に接触し、供給領域Asの開口が完全に閉塞された状態である。このとき、シャッタ37は、図4の破線で示すように、軌道部材34の一対の基準マーク344よりもフィーダ本体31の後側に位置し、上方視において一対の基準マーク344を視認および撮像可能とする。
 また、シャッタ37の開状態とは、供給領域Asの開口が閉塞されておらず、且つ供給領域Asの主要範囲(本実施形態において複数のキャビティ51が設けられた範囲)を露出させた状態である。このとき、吸着ノズル134は、何れのキャビティ51に対して部品92の採取動作を実行することができる。シャッタ37の中間状態とは、閉状態と開状態の間の状態であって、シャッタ37が軌道部材34から少なくとも加振装置40の加振により振動する軌道部材34の振幅よりも離間し且つ供給領域Asの開口から部品92の飛び出しを規制する状態である。シャッタ37は、図略の駆動装置により開閉動作を行い、駆動装置の駆動状態に応じて閉状態、開状態、および中間状態とされる。
 軌道部材34は、後部において下方に延伸する部品92の流路を形成され、この流路が下方に開口する導入部343を有する。導入部343は、受容部材32の送出部322と上下方向に対向する。バルクフィーダ30は、管状をなす連結部材38を備える。連結部材38は、受容部材32の送出部322および軌道部材34の導入部343を連結する。本実施形態において、連結部材38は、密着コイルばねであり、全体として可撓性を有する。
 上記のような構成により、連結部材38は、受容領域Arと搬送路Rとの間を複数の部品92を流通可能に連結する。また、連結部材38は、フィーダ本体31に対する受容部材32の振動および軌道部材34の振動に応じて変形することにより振動を吸収する。連結部材38は、互いに独立して振動する受容部材32および軌道部材34の間で伝達される振動を軽減または遮断する。
 2-5.エア供給装置39
 バルクフィーダ30は、エア供給装置39を備える。エア供給装置39は、受容領域Arの下方から正圧エアを供給して、受容部材32から連結部材38を介して軌道部材34まで複数の部品92を流通させる。本実施形態において、エア供給装置39は、外部から供給される正圧エアを、後述するフィーダ制御装置60の指令に基づいて受容領域Arの下方から供給または遮断する。
 エア供給装置39が正圧エアを供給すると、受容領域Arに滞留していた複数の部品92は、正圧エアにより上方に吹き上げられる。正圧エアおよび複数の部品92は、受容部材32の送出部322、連結部材38、および導入部343の順に流通し、軌道部材34の搬送路Rに到達する。ここで、正圧エアは、カバー36の排気口361から外部に排気される。また、複数の部品92は、自重により軌道部材34の搬送路Rに落下する。
 2-6.加振装置40
 バルクフィーダ30は、フィーダ本体31に設けられる加振装置40を備える。加振装置40は、複数の部品92が搬送路Rに沿って搬送されるように軌道部材34に振動を付与する。具体的には、加振装置40は、複数の支持部材41、複数の圧電素子42、振動センサ43、および給電装置44を有する。複数の支持部材41は、フィーダ本体31とブラケット33を直接的または間接的に連結して、ブラケット33を支持する。
 本実施形態において、複数の支持部材41には、部品92の前側搬送に用いられる前進用支持部材41Aと、後側搬送に用いられる後退用支持部材41Bとがある。前進用支持部材41Aおよび後退用支持部材41Bは、それぞれ鉛直方向に対する傾斜方向が互いに相違する。複数の圧電素子42は、給電装置44から給電される電力に応じた周波数で振動する振動子である。複数の圧電素子42は、複数の支持部材41のそれぞれに貼付されている。
 複数の圧電素子42の少なくとも一部が振動すると、ブラケット33を介して軌道部材34に振動が付与される。また、圧電素子42に印加する電圧に応じて、軌道部材34の振幅が変動する。振動センサ43は、加振装置40の加振により振動する軌道部材34の振動状態を示す振動値を検出する。上記の振動状態を示す振動値としては、振幅や周波数、減衰時間、振動軌跡などを適用することができる。本実施形態において、振動センサ43は、圧電素子42が給電されて振動したときに、軌道部材34の実際の振動の周波数または振幅を検出する。
 本実施形態において、振動センサ43は、軌道部材34と一体的に振動するブラケット33を支持する複数の支持部材41にそれぞれ設けられている。より詳細には、圧電素子42および振動センサ43は、前進用支持部材41Aおよび後退用支持部材41Bのそれぞれに設けられている。前進用支持部材41Aに設けられた振動センサ43は、この前進用支持部材41Aに設けられた圧電素子42が給電され、ブラケット33を介して軌道部材34に振動を付与している際に、振動値として実際の周波数または振幅を検出する。
 ここで、加振装置40が軌道部材34に振動を付与すると、軌道部材34は、側方視において楕円運動する。これにより、搬送路Rにある複数の部品92は、軌道部材34の楕円運動の回転方向に応じて前方且つ上方の外力、または後方且つ上方の外力を加えられる。これにより、複数の部品92は、軌道部材34の前側に搬送されたり、後側に搬送されたりすることになる。
 給電装置44は、後述するフィーダ制御装置60の指令に基づいて、圧電素子42に供給する電力の周波数、および印加電圧を変動させる。これにより、軌道部材34に付与される振動の周波数および振幅が調整され、軌道部材34の楕円運動の回転方向が定まる。軌道部材34の振動の周波数や振幅、振動による楕円運動の回転方向が変動すると、搬送される部品92の搬送速度、部品92の分散度合い、および搬送方向などが変動する。
 そこで、加振装置40は、搬送効率を向上させるために、個体差のある振動特性(固有振動数を含む)に対応した電力供給(周波数、印加電圧)を予め設定される。例えば、バルクフィーダ30は、実行予定の供給動作に用いられる軌道部材34が取り付けられた状態、即ちブラケット33に対して軌道部材34がロックユニット35によりロックされた状態において、校正処理を実行される。上記の校正処理の詳細については後述する。
 2-7.フィーダ制御装置60
 バルクフィーダ30は、フィーダ制御装置60を備える。フィーダ制御装置60は、主として、CPUや各種メモリ、制御回路により構成される。フィーダ制御装置60は、バルクフィーダ30がスロット121にセットされた状態において、コネクタ311を介して給電され、また部品装着機10の制御装置16と通信可能な状態となる。
 フィーダ制御装置60は、図2に示すように、記憶部61を有する。記憶部61は、フラッシュメモリなどにより構成される。記憶部61には、部品供給処理の制御に用いられるプログラムや搬送パラメータなどの各種データが記憶される。上記の「搬送パラメータ」は、部品供給処理において部品92を搬送する際に、軌道部材34に付与する振動が適正となるように加振装置40の動作を制御するためのパラメータであり、例えば部品92の種類ごとに関連付けて予め設定される。
 フィーダ制御装置60は、加振制御部62を有する。加振制御部62は、加振装置40の動作を制御して、部品92の搬送動作を実行する。詳細には、加振制御部62は、搬送動作を実行する場合に、加振装置40の給電装置44に対して指令を送出する。これにより、給電装置44が圧電素子42に所定の電力を供給することにより、ブラケット33を介して軌道部材34に振動が付与される。そして、搬送路R上の部品92が搬送方向に移動するように外力を受けて搬送される。
 3.部品供給制御システム80の構成
 部品供給制御システム80は、上記のバルクフィーダ30を用いた部品供給を制御する。
本実施形態において、部品供給制御システム80は、図5に示すように、制御装置16に組み込まれ、スロット121に装備されたバルクフィーダ30と通信可能に構成される。部品供給制御システム80は、バルクフィーダ30における良好な部品92の供給状態の維持を図るべく、部品供給を制御する。
 3-1.状態認識部81
 部品供給制御システム80は、図5に示すように、状態認識部81を備える。状態認識部81は、上記のように、基板カメラ15の撮像により取得した画像データD1(図6を参照)に基づいて、バルクフィーダ30の供給領域Asにおける複数の部品92の供給状態を認識する。より詳細には、状態認識部81は、先ず、バルクフィーダ30が複数の部品92を振動により供給領域Asまで搬送した状態において供給領域Asを撮像して取得された画像データD1に基づいて、供給状態の認識処理を行う。
 図6は、画像データD1の一例である。このように、供給領域Asには、バルク状態の部品92が多数存在し、例えばキャビティ51に正常な姿勢で収容されるもの、キャビティ51の外部にあるもの、互いに接触したり堆積したりするもの、横立ち姿勢であるものなどが存在し得る。そして、状態認識部81は、供給領域Asに予め設定された複数の区域Nごとに部品92の供給状態を割り出す。
 つまり、状態認識部81は、画像処理によって認識される個々の部品92それぞれについて、採取可能であるか否かの供給状態を認識するのではなく、複数の区域Nごとに、その区域Nに存在する部品92が採取可能であるか否かを供給状態として割り出す。なお、区域Nに部品92が属するか否かは、部品92の基準部位(例えば部品中心)がその区域Nの内部であるか否かにより定める。
 また、本実施形態において、上記の「供給状態」には、区域Nに部品92が存在し且つ採取可能である状態、区域Nに部品92が存在し且つ採取不可である状態、および区域Nに部品92が存在しない状態が含まれる。なお、複数の区域Nの位置、形状および数は、任意に設定され得る。本実施形態において、複数の区域Nのそれぞれは、図6の破線で示すように、一のキャビティ51に対応して設定される。
 具体的には、一の区域Nは、対応するキャビティ51の位置、および矩形状に設定され、他の区域Nと離間している。これにより、所定のキャビティ51に部品92が正常な姿勢で収容され、且つ他の部品との接触や堆積がない場合には、キャビティ51に対応する区域Nの内部には、一つの部品92が収まる。このとき、区域Nの長手方向(図6の上下方向)と部品92の長手方向とが概ね一致する。
 また、状態認識部81は、図7に示すように、供給状態を複数種類に分類して割り出す。図7は、区域Nに部品92が存在し且つ採取可能である供給状態(「OK」)の区域Nに斜線を付して示す。また、図7は、区域Nに部品92が存在し且つ採取不可である供給状態(「NG」)の区域Nに対角線を結ぶXマークを付して示す。さらに、図7は、区域Nに部品92が存在しない供給状態(「EMP」)の区域Nを破線の外形のみで示す。状態認識部81は、図7に示すように、各供給状態(OK、NG、EMP)の数(V1、V2、V3)を算出する。
 ここで、供給領域Asには、例えばキャビティ51の数に対して過剰に部品92が搬送されることなどに起因して、図6に示すように、複数の部品92が密集した部品群Uが形成されることがある。本実施形態において、状態認識部81は、画像データD1に基づいて、部品群Uの位置および大きさを部品群状態としてさらに割り出す。具体的には、状態認識部81は、部品92の接触、堆積の状態を認識して、部品群状態を割り出してもよい。
 また、状態認識部81は、供給状態「NG」が規定数以上に亘り連続する場合に、その複数の区域Nを包含する領域が部品群Uに相当するとして、部品群状態を割り出してもよい。このように、状態認識部81は、図7の一点鎖線で示すように、部品群状態として、部品群Uの位置Cuおよび大きさを割り出す。
 3-2.搬送制御部85
 部品供給制御システム80は、図5に示すように、搬送制御部85を備える。搬送制御部85は、複数の区域Nごとの供給状態に基づいて、バルクフィーダ30における部品92の搬送動作を制御する。ここで、バルクフィーダ30における部品92の搬送動作には、送り動作および戻し動作が含まれる。上記の「送り動作」は、軌道部材34の後側から前側に部品92を搬送する動作であって、供給領域Asに連通する搬送路Rから複数の部品92を供給領域As側に前進させる動作である。また、「戻し動作」は、軌道部材34の前側から後側に部品92を搬送する動作であって、供給領域Asから複数の部品92を搬送路R側に後退させる動作である。
 搬送制御部85は、複数の区域Nごとの供給状態に基づいて、上記の送り動作および戻し動作の実行回数、実行時間などを制御する。本実施形態において、搬送制御部85は、状態認識部81により複数の区域Nごとに割り出された供給状態(OK、NG、EMP)の割合(V1:V2:V3)に基づいて、搬送動作の制御において複数の搬送パターンを切り換える。上記の搬送パターンの切り換えについては、種々の態様を採用し得る。例えば、搬送制御部85は、単に最大数である供給状態の種類に応じた搬送パターンを採用してもよい。
 また、搬送制御部85は、供給領域Asにおいて複数の区域Nのそれぞれが設定された位置、および複数の区域Nのそれぞれに設定された重み付けの少なくとも一方と、供給状態の割合とに基づいて、複数の搬送パターンを切り換えてもよい。具体的には、複数の区域Nについて、軌道部材34の先端部342側に近いほど重みを高くし、供給状態の割合(V1:V2:V3)が算出されるようにしてもよい。これにより、例えば基板91により近いキャビティ51の重要度を上げて、優先度の高い搬送動作が実行される。
 ここで、上記の複数の搬送パターンには、通常搬送と、補給搬送と、除去搬送とが含まれる。上記の「通常搬送」とは、予め設定された一定時間だけ送り動作および戻し動作を実行する搬送パターンである。この通常搬送では、例えば送り動作と戻し動作が交互に2回以上繰り返し実行されることがある。上記の「補給搬送」とは、通常搬送より前進させる部品92の数量または送り動作の実行時間を多くする搬送パターンである。また、上記の「除去搬送」とは、通常搬送より後退させる部品92の数量または戻し動作の実行時間を少なくする搬送パターンである。
 一例として、搬送制御部85は、供給状態の割合(V1:V2:V3)において、区域Nに部品92が存在し且つ採取可能である供給状態(「OK」)が最も多い場合に、供給状態が良好であるとして、搬送パターンとして「通常搬送」を設定する。また、搬送制御部85は、供給状態の割合(V1:V2:V3)において、区域Nに部品92が存在し且つ採取不可である供給状態(「NG」)が最も多い場合に、供給領域Asに部品92が過剰に存在するとして、搬送パターンとして「除去搬送」を設定する。
 さらに、搬送制御部85は、供給状態の割合(V1:V2:V3)において、区域Nに部品92が存在しない供給状態(「EMP」)が最も多い場合に、供給領域Asにおける部品92が不足しているとして、搬送パターンとして「補給搬送」を設定する。ここで、補給搬送や除去搬送において、通常搬送よりも搬送される部品92を多くしたり少なくしたりするには、例えば、搬送される部品92の数量をリアルタイムに把握して、これに基づく制御を実行する手法を採用してもよい。
 また、上記の手法に換えて、搬送制御部85は、通常搬送から補給搬送または除去搬送に切り換える場合に、送り動作または戻し動作の実行回数または実行時間を変更させてもよい。具体的には、搬送制御部85は、通常搬送において送り動作および戻し動作を同じ時間だけ1回ずつ実行するものとする。そして、搬送制御部85は、通常搬送から補給搬送に切り換える場合に、戻し動作よりも送り動作の実行時間を長くし、且つ2回ずつ実行するようにしてもよい。
 または、搬送制御部85は、通常搬送から補給搬送に切り換える場合に、戻し動作と送り動作の実行時間は変更せずに、送り動作の実行回数のみ増加させるようにしてもよい。これは、搬送制御部85が通常搬送から除去搬送に切り換える場合においても同様である。即ち、送り動作より戻し動作の実行時間を長くしたり、戻し動作の実行回数のみ増加させたりするようにしてもよい。
 さらに、搬送制御部85は、通常搬送から補給搬送または除去搬送に切り換える場合に、供給領域Asを形成された軌道部材34に付与される振動の周波数または振幅を変更させるようにしてもよい。これにより、通常搬送とは異なる振動が軌道部材34に付与され、部品92に軌道部材34から加えられる外力の大きさや方向を変化させることができる。結果として、部品群Uを分散させたり、キャビティ51に不適な姿勢で嵌まり込んだ部品92を除去したりすることができる。
 ここで、搬送制御部85は、複数の区域Nごとの供給状態に加えて、部品群Uの位置および大きさを示す部品群状態に基づいて、搬送動作を制御してもよい。上記の「部品群状態」には、部品群Uの有無および数が含まれる。搬送制御部85は、状態認識部81による認識処理の結果から部品群状態を取得する。そして、搬送制御部85は、図6に示すように、例えば部品群Uが供給領域Asのうち軌道部材34の先端部342側に位置する場合に、部品群Uが供給領域Asより後側に移動するように戻し動作を実行させる。
 また、搬送制御部85は、部品群Uが存在し、且つ空のキャビティ51(供給状態の種類=EMP)の数(V3)が所定数以上である場合に、供給領域Asにおいて部品群Uを前後方向に往復移動させるように送り動作と戻し動作を繰り返し実行させる。これにより、空のキャビティ51への部品92の収容を試行することができる。
 4.部品供給制御システム80によるフィーダ制御
 部品供給制御システム80は、部品装着機10による装着処理の実行中に、バルクフィーダ30による供給状態に応じたフィーダ制御を行う。上記のフィーダ制御には、搬送動作の制御、およびシャッタ37の開閉動作の制御が含まれる。ここで、部品装着機10の制御装置16は、バルクフィーダ30がスロット121にセットされた後に、キャリブレーション処理を実行し、機内における供給領域Asの位置を認識する。
 詳細には、制御装置16は、先ずフィーダ制御装置60に対してシャッタ37を閉状態とするように指令する。これにより、複数の基準マーク344が上方から撮像可能な状態となる。制御装置16は、基板カメラ15をバルクフィーダ30の複数の基準マーク344の上方に移動させて、基板カメラ15の撮像により画像データを取得する。そして、制御装置16は、画像処理により画像データに含まれる複数の基準マーク344の位置、および撮像した際の基板カメラ15の位置に基づいて、機内におけるバルクフィーダ30の位置、即ち供給領域Asの位置を認識する。
 続いて、搬送制御部85は、装着処理においてバルクフィーダ30から部品92を採取する前に、バルクフィーダ30に部品92の搬送を指令する。これにより、バルクフィーダ30は、必要に応じて部品ケース70から部品92を排出させるとともに軌道部材34まで部品92を流通させる。その後に、バルクフィーダ30は、シャッタ37を中間状態に維持し、部品92の搬送動作を行う。これにより、複数のキャビティ51に部品92が収容され、余分な部品92が供給領域Asから搬送路R側へと退避される。
 上記のような部品供給制御処理に詳細について、図8を参照して説明する。状態認識部81は、供給状態の認識処理に際して、バルクフィーダ30にシャッタ37を開状態にするように指令する。状態認識部81は、基板カメラ15を供給領域Asの上方に移動させて、基板カメラ15の撮像により画像データを取得する。そして、状態認識部81は、図8に示すように、画像データD1を対象とした画像処理により、複数の区域Nごとに部品92の供給状態を割り出す(S11)。
 状態認識部81は、1回のPPサイクルにおける一連の採取動作により供給領域Asから採取する部品92の必要数(Vn)と、複数の区域Nごとの供給状態に基づいて算出される採取可能数(V1)との差分(V1-Vn)が基準値(Vs)未満であるか否かを判定する(S12)。上記の基準値(Vs)は、0以上の数に設定される。必要数より採取可能数が多く、上記の差分が基準値以上である場合に(S12:No、V1-Vn≧Vs)、状態認識部81は、PPサイクルにおける採取動作の実行を許容する(S13)。制御装置16は、PPサイクルにおける採取動作を実行し、その後に装着動作を実行する。
 また、状態認識部81は、S11にて認識された供給状態の更新処理を実行する(S13)。供給状態の更新処理では、採取動作によって採取された部品92に対応する区域Nを部品92が存在しない供給状態(「EMP」)とする。また、供給状態の更新処理では、採取可能数(V1)。から採取数(上記の必要数Vn)を減算し、現在の採取可能数とする(V1’=V1-Vn)。さらに、供給状態の更新処理では、空のキャビティ51の数(V3)に採取数(上記の必要数Vn)を加算し、現在の空のキャビティ51の数とする(V3’=V3+Vn)。
 状態認識部81は、供給状態の更新処理(S13)の実行後に、次回のPPサイクルの採取動作で採取する予定の部品92の数(次回の必要数)と、供給領域Asにおいて採取可能な残りの部品92の数(現在の採取可能数)との差分が基準値(Vs)以上であるか否かを判定すべく、S12の判定処理を再度実行する。状態認識部81は、S12において、採取可能数が不足しており、上記の差分(V1-Vn)が基準値(Vs)未満であり(S12:Yes、V1-Vn<Vs)、実行予定のPPサイクルが残存している場合に(S14:Yes)、PPサイクルにおける採取動作の実行を許容せず、採取動作の実行前にバルクフィーダ30による搬送動作を実行させる。
 なお、S12の判定処理では、採取可能数と必要数の差分と基準値を比較したが、必要数に対する採取可能数の割合と基準値を比較してもよい。上記のように、供給状態の更新処理(S13)の実行後に、または採取可能数が不足している場合(S12:No)に、搬送制御部85は、現在の複数の区域Nごとの供給状態の割合に基づいて、搬送パターンの設定を行う(S15)。なお、2回目のPPサイクルの採取動作で採取する予定の部品92の数(必要数)と、供給領域Asにおいて採取可能な残りの部品92の数(採取可能数)との差分が基準値(Vs)以上であれば、状態認識部81は、搬送パターンの設定(S15)などを省略し、採取動作の実行を許容する。
 搬送制御部85は、複数の区域Nごとに割り出された現在の供給状態(OK、NG、EMP)の割合(V1:V2:V3)に基づいて、搬送動作の制御において複数の搬送パターンを設定する(S15)。これにより、搬送パターン(例えば、通常搬送、補給搬送、除去搬送)が切り換えられる。そして、搬送制御部85は、バルクフィーダ30に対して、設定した搬送パターンにて部品92の搬送を指令する(S16)。バルクフィーダ30は、部品92の搬送を指令された場合には、設定された搬送パターンの搬送動作を行う。
 このように、バルクフィーダ30は、複数の区域Nごとの供給状態に応じた搬送動作を行うことになる。これにより、初期設定により良好に部品92が供給された状態であれば通常搬送が実行され、また搬送動作の直後において採取可能な部品92が比較的少ない場合には補給搬送が実行される。なお、この補給搬送では、併せて部品ケース70から部品92を排出し、搬送路Rまで複数の部品92を流通させる処理が搬送制御部85の指令に応じて実行されることがある。
 さらに、複数の区域Nごとの現在の供給状態が部品92の過剰補給を示している場合、または部品群Uが存在している場合には、除去搬送が実行される。これにより、供給領域Asにおける部品92の数量が適宜調整される。このような搬送動作は、部品92がキャビティ51に適正な姿勢で収容されることを促進し、供給領域Asにおいて採取可能な部品92を増加させることができる。このように、バルクフィーダ30における部品92の供給状態を良好にすることで、部品装着機10の生産性向上を図ることができる。
 状態認識部81は、バルクフィーダ30による部品92の搬送動作が終了した後に、供給状態を割り出す処理(S11)を再度実行する。これにより、搬送動作後における複数の区域Nごとの現在の供給状態が認識される。部品供給制御システムは、実行予定のPPサイクルが全て終了して部品92の供給が不要となった場合に(S14:No)、上記の制御処理を終了する。
 5.実施形態の変形態様
 5-1.部品供給制御システム80について
 実施形態において、部品供給制御システム80の状態認識部81および搬送制御部85は、部品装着機10の制御装置16に組み込まれる構成を例示して説明した。これに対して、状態認識部81および搬送制御部85の一方または両方は、制御装置16の外部装置に組み込まれる構成としてもよい。例えば、状態認識部81は、移動台132に一体的に移動可能に設けられ、基板カメラ15の撮像動作を制御する撮像ユニットに組み込まれる構成としてもよい。
 また、搬送制御部85は、複数のスロット121に装備されたフィーダ122と、制御装置16との通信を仲介する部品供給装置12に組み込まれてもよい。その他に、状態認識部81および搬送制御部85は、バルクフィーダ30の自己制御機能として、バルクフィーダ30のフィーダ制御装置60に組み込まれてもよい。さらに、状態認識部81および搬送制御部85は、部品装着機10と通信可能に接続されるホストコンピュータや専用機器などに組み込まれてもよい。何れの態様においても実施形態と同様の効果を奏する。
 5-2.軌道部材34について
 実施形態において、バルクフィーダ30の軌道部材34は、複数のキャビティ51を形成された整列部材50を備える構成とした。これに対して、整列部材50を省略した構成としてもよい。つまり、軌道部材34の供給領域Asには、搬送路Rの上面より低い位置で部品92が分散される凹状部や、搬送路Rの上面と均一な平面状部が形成され、バルク状態で部品92が供給されるようにしてもよい。
 このような構成において、供給領域Asにおける複数の区域Nは、例えば供給対象の部品92の外形寸法程度の大きさであり、且つ互いに重複しないように設定される。複数の区域N同士が隣接するか、実施形態にて例示したように離間するかは任意に設定することができる。このような態様において、状態認識部81は、実施形態と同様に、複数の区域Nごとに部品92の供給状態を割り出す。そして、搬送制御部85は、複数の区域Nごとの供給状態に基づいて、搬送動作を制御することができる。
 但し、上記のような態様では、複数の区域Nに対して部品92が整列されておらず、採取可能か否かの判定、および部品92の姿勢を取得する画像処理の処理負荷が比較的高くなり得る。よって、部品供給処理の効率化や、供給領域Asにおける供給状態の認識処理における画像処理の負荷を軽減する観点からは、実施形態にて例示した構成が好適である。
 5-3.カメラについて
 実施形態において、バルクフィーダ30の供給領域Asを撮像するカメラは、基板カメラ15である構成とした。これに対して、供給領域Asを撮像するカメラは、バルクフィーダ30の上方に設けられる固定カメラとしてもよい。上記の固定カメラは、供給領域Asの撮像に専用であっても、別の用途にも使用される兼用であってもよい。
 または、供給領域Asを撮像するカメラは、供給領域Asの下方に設けられるバルクフィーダ30の内蔵カメラとしてもよい。この態様において、軌道部材34の供給領域Asおよび整列部材50が透明な材料で形成される。バルクフィーダ30の内蔵カメラは、これらを透過してキャビティ51に収容された部品92を撮像することができる。このような固定カメラおよび内蔵カメラの構成によると、移動台132の位置に関わらず任意のタイミングで供給領域Asを撮像できるので、装着動作の実行中に撮像処理や状態認識処理などを実行することができる。但し、設備コスト低減の観点からは、実施形態にて例示した態様が好適である。
 10:部品装着機、 12:部品供給装置、 13:部品移載装置、 15:基板カメラ、 16:制御装置、 30:バルクフィーダ、 31:フィーダ本体、 34:軌道部材、 40:加振装置、 41:支持部材、 41A:前進用支持部材、 41B:後退用支持部材、 42:圧電素子(振動子)、 43:振動センサ、 44:給電装置、 50:整列部材、 51:キャビティ、 60:フィーダ制御装置、 80:部品供給制御システム、 81:状態認識部、 85:搬送制御部、 91:基板、 92:部品、As:供給領域、 R:搬送路、 N:区域、 U:部品群、 D1:画像データ

Claims (10)

  1.  バルクフィーダが複数の部品を振動により供給領域まで搬送した状態において前記供給領域を撮像して取得された画像データに基づいて、前記供給領域に予め設定された複数の区域ごとに前記部品の供給状態を割り出す状態認識部と、
     複数の前記区域ごとの前記供給状態に基づいて、前記バルクフィーダにおける前記部品の搬送動作を制御する搬送制御部と、
     を備える部品供給制御システム。
  2.  前記供給状態には、前記区域に前記部品が存在し且つ採取可能である状態、前記区域に前記部品が存在し且つ採取不可である状態、および前記区域に前記部品が存在しない状態が含まれる、請求項1に記載の部品供給制御システム。
  3.  前記バルクフィーダは、前記供給領域において前記部品を収容する複数のキャビティを有し、
     複数の前記区域のそれぞれは、一の前記キャビティに対応して設定される、請求項1または2に記載の部品供給制御システム。
  4.  前記状態認識部は、前記供給状態を複数種類に分類して割り出し、
     前記搬送制御部は、複数の前記区域ごとに割り出された前記供給状態の割合に基づいて、前記搬送動作の制御において複数の搬送パターンを切り換える、請求項1-3の何れか一項に記載の部品供給制御システム。
  5.  前記搬送制御部は、前記供給領域において複数の前記区域のそれぞれが設定された位置、および複数の前記区域のそれぞれに設定された重み付けの少なくとも一方と、前記供給状態の割合とに基づいて、複数の前記搬送パターンを切り換える、請求項4に記載の部品供給制御システム。
  6.  前記搬送制御部は、前記搬送動作の制御において複数の搬送パターンを切り換え、
     複数の前記搬送パターンには、前記供給領域に連通する搬送路から複数の前記部品を前進させる送り動作および前記供給領域から複数の前記部品を後退させる戻し動作を実行する通常搬送と、前記通常搬送より前進させる前記部品の数量または前記送り動作の実行時間を多くする補給搬送と、前記通常搬送より後退させる前記部品の数量または前記戻し動作の実行時間を少なくする除去搬送とが含まれる、請求項1-5の何れか一項に記載の部品供給制御システム。
  7.  前記搬送制御部は、前記通常搬送から前記補給搬送または前記除去搬送に切り換える場合に、前記送り動作または前記戻し動作の実行回数または実行時間を変更させる、請求項6に記載の部品供給制御システム。
  8.  前記搬送制御部は、前記通常搬送から前記補給搬送または前記除去搬送に切り換える場合に、前記供給領域を形成された部材に付与される振動の周波数または振幅を変更させる、請求項6または7に記載の部品供給制御システム。
  9.  前記状態認識部は、前記画像データに基づいて、前記供給領域において複数の前記部品が密集した部品群の位置および大きさを部品群状態としてさらに割り出し、
     前記搬送制御部は、複数の前記区域ごとの前記供給状態および前記部品群状態に基づいて、前記搬送動作を制御する、請求項1-8の何れか一項に記載の部品供給制御システム。
  10.  前記搬送制御部は、一連の採取動作により前記供給領域から採取する前記部品の必要数と、複数の前記区域ごとの前記供給状態に基づいて算出される採取可能数との差分が基準値未満である場合、または前記必要数に対する前記採取可能数の割合が基準値未満である場合に、前記一連の採取動作の実行前に前記搬送動作を実行させる、請求項1-9の何れか一項に記載の部品供給制御システム。
PCT/JP2021/003423 2021-01-29 2021-01-29 部品供給制御システム WO2022162918A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112021006946.2T DE112021006946T5 (de) 2021-01-29 2021-01-29 Steuersystem zur Bauteilzuführung
JP2022577990A JPWO2022162918A1 (ja) 2021-01-29 2021-01-29
US18/261,951 US20240083692A1 (en) 2021-01-29 2021-01-29 Component supply control system
PCT/JP2021/003423 WO2022162918A1 (ja) 2021-01-29 2021-01-29 部品供給制御システム
CN202180088076.2A CN116671272A (zh) 2021-01-29 2021-01-29 元件供给控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003423 WO2022162918A1 (ja) 2021-01-29 2021-01-29 部品供給制御システム

Publications (1)

Publication Number Publication Date
WO2022162918A1 true WO2022162918A1 (ja) 2022-08-04

Family

ID=82654379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003423 WO2022162918A1 (ja) 2021-01-29 2021-01-29 部品供給制御システム

Country Status (5)

Country Link
US (1) US20240083692A1 (ja)
JP (1) JPWO2022162918A1 (ja)
CN (1) CN116671272A (ja)
DE (1) DE112021006946T5 (ja)
WO (1) WO2022162918A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208325A1 (ja) * 2016-05-31 2017-12-07 富士機械製造株式会社 部品供給システム
WO2018225151A1 (ja) * 2017-06-06 2018-12-13 ヤマハ発動機株式会社 部品実装装置
WO2020178887A1 (ja) * 2019-03-01 2020-09-10 株式会社Fuji 作業機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5406682B2 (ja) 2009-11-25 2014-02-05 日東工業株式会社 電子部品供給装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208325A1 (ja) * 2016-05-31 2017-12-07 富士機械製造株式会社 部品供給システム
WO2018225151A1 (ja) * 2017-06-06 2018-12-13 ヤマハ発動機株式会社 部品実装装置
WO2020178887A1 (ja) * 2019-03-01 2020-09-10 株式会社Fuji 作業機

Also Published As

Publication number Publication date
US20240083692A1 (en) 2024-03-14
JPWO2022162918A1 (ja) 2022-08-04
CN116671272A (zh) 2023-08-29
DE112021006946T5 (de) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2022230158A1 (ja) バルクフィーダ
CN114651537B (zh) 散装供料器及元件安装机
CN107006142B (zh) 作业机及收纳方法
WO2022162918A1 (ja) 部品供給制御システム
CN108136595B (zh) 元件供给系统及分散元件的拾取装置
WO2022230157A1 (ja) バルクフィーダおよび部品供給制御システム
WO2021095220A1 (ja) バルクフィーダ
WO2022162914A1 (ja) バルクフィーダおよび部品供給制御システム
WO2022162915A1 (ja) バルクフィーダおよび部品装着機
JP7261314B2 (ja) 部品装着機
CN114651536B (zh) 散装供料器及元件安装机
WO2023181342A1 (ja) 部品装着機および部品装着方法
WO2022162919A1 (ja) フィーダ管理システム
WO2023238407A1 (ja) バルクフィーダおよびバルクフィーダの整列部材
WO2022201355A1 (ja) はんだボール供給装置およびはんだボール供給方法
JP2019197929A (ja) 部品保持装置、および吸着ノズル決定方法
WO2018211657A1 (ja) 部品供給装置
WO2023188107A1 (ja) 部品装着機および部品装着方法
JP6854372B2 (ja) ばら部品のピッキング装置、ばら部品のピッキング方法
JP6866522B2 (ja) ばら部品のピッチング装置、ばら部品のピッキング方法
JP2018170513A (ja) ばら部品供給装置、部品実装装置およびばら部品供給方法
WO2022190201A1 (ja) メンテナンス装置
JP7110318B2 (ja) 部品実装システム及び、部品保持方法
CN114074833A (zh) 碗式供料器
JP2020080354A (ja) 作業機、および載置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577990

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180088076.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18261951

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021006946

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922932

Country of ref document: EP

Kind code of ref document: A1