WO2022162914A1 - バルクフィーダおよび部品供給制御システム - Google Patents

バルクフィーダおよび部品供給制御システム Download PDF

Info

Publication number
WO2022162914A1
WO2022162914A1 PCT/JP2021/003419 JP2021003419W WO2022162914A1 WO 2022162914 A1 WO2022162914 A1 WO 2022162914A1 JP 2021003419 W JP2021003419 W JP 2021003419W WO 2022162914 A1 WO2022162914 A1 WO 2022162914A1
Authority
WO
WIPO (PCT)
Prior art keywords
track member
vibration
frequency
bulk feeder
parts
Prior art date
Application number
PCT/JP2021/003419
Other languages
English (en)
French (fr)
Inventor
祐輔 山▲崎▼
裕司 川崎
年弘 野々村
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/003419 priority Critical patent/WO2022162914A1/ja
Priority to CN202180091061.1A priority patent/CN116803226A/zh
Priority to US18/262,476 priority patent/US20240076134A1/en
Priority to JP2022577986A priority patent/JP7487350B2/ja
Priority to EP21922928.3A priority patent/EP4287804A4/en
Publication of WO2022162914A1 publication Critical patent/WO2022162914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/043Feeding one by one by other means than belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/16Applications of devices for generating or transmitting jigging movements of vibrators, i.e. devices for producing movements of high frequency and small amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/04Load carriers other than helical or spiral channels or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/16Devices for feeding articles or materials to conveyors for feeding materials in bulk
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components
    • H05K13/028Simultaneously loading a plurality of loose objects, e.g. by means of vibrations, pressure differences, magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/04Bulk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/32Applications of devices for generating or transmitting jigging movements with means for controlling direction, frequency or amplitude of vibration or shaking movement

Definitions

  • the present invention relates to bulk feeders and parts supply control systems.
  • the parts supply control system controls parts supply using bulk feeders.
  • a bulk feeder is installed in a component mounting machine that mounts components on a substrate, and supplies bulk components.
  • Patent Literature 1 discloses a configuration for conveying a plurality of components by imparting vibration to a conveying path. With such a transport operation, the bulk feeder supplies components in a supply area that opens upward so that the suction nozzle can pick up the components.
  • Such a bulk feeder is requested to supply components, for example, by the control device of a component mounting machine, and executes a prescribed transport operation.
  • components for example, by the control device of a component mounting machine, and executes a prescribed transport operation.
  • the bulk feeder performs a preset operation in response to an external command, good component supply is not always maintained.
  • the present specification aims at improving the productivity of a bulk feeder equipped with a bulk feeder capable of obtaining useful information about actual feeding operations, and improving the supply state of parts in the bulk feeder. It is an object of the present invention to provide a parts supply control system capable of
  • the present specification includes a feeder body, a track member provided to be able to vibrate with respect to the feeder body and having a transport path along which a plurality of parts are transported, and a track member in which the plurality of parts are transported along the transport path.
  • a bulk feeder comprising: a vibrating device that applies vibration to the track member so that the track member is vibrated by the vibrating device; do.
  • the present specification provides a bulk feeder, a frequency specifying unit that specifies the natural frequency of a vibrating body including the track member based on the detection result of the vibration sensor, and based on the specifying result of the frequency specifying unit, the and a conveying control unit that controls the conveying operation of the components in the bulk feeder.
  • FIG. 4 is a plan view schematically showing a component mounting machine equipped with a bulk feeder; It is a perspective view which shows the external appearance of a bulk feeder. It is a side view which shows the principal part of a bulk feeder typically.
  • FIG. 3 is a plan view seen from the IV direction of FIG. 2; 1 is a block diagram showing a component mounting machine to which a component supply control system is applied;
  • FIG. 4 is a graph showing the relationship between the frequency and amplitude of a vibrating body; 7 is a flowchart showing component supply control processing; 4 is a flowchart showing calibration processing;
  • a component supply control system 80 that controls component supply using the bulk feeder 30 will be described with reference to the drawings.
  • the bulk feeder 30 is installed in, for example, a component mounting machine 10 that mounts components 92 on a substrate 91, and supplies the components 92 in a bulk state (discrete state in which each posture is irregular).
  • the component mounting machine 10 constitutes a production line for producing board products together with a plurality of types of board-facing work machines including other component mounting machines 10, for example.
  • a printing machine, an inspection device, a reflow furnace, etc. can be included in the work machine for the board that constitutes the above production line.
  • Board Transfer Apparatus The component mounting machine 10 includes a board transfer apparatus 11 as shown in FIG.
  • the substrate conveying device 11 sequentially conveys the substrates 91 in the conveying direction and positions the substrates 91 at predetermined positions within the apparatus.
  • the component mounting machine 10 includes a component supply device 12 .
  • the component supply device 12 supplies components to be mounted on the board 91 .
  • the component supply device 12 is equipped with feeders 122 in a plurality of slots 121, respectively.
  • feeders 122 for example, a tape feeder that feeds and moves a carrier tape containing a large number of components and supplies the components so as to be picked up is applied.
  • the feeder 122 is applied with a bulk feeder 30 that supplies components stored in a bulk state in a collectable manner. Details of the bulk feeder 30 will be described later.
  • the component mounting machine 10 includes a component transfer device 13 .
  • the component transfer device 13 transfers the component supplied by the component supply device 12 to a predetermined mounting position on the board 91 .
  • the component transfer device 13 includes a head driving device 131 , a moving table 132 , a mounting head 133 and a suction nozzle 134 .
  • the head driving device 131 moves the moving table 132 in the horizontal direction (X direction and Y direction) by a linear motion mechanism.
  • the mounting head 133 is detachably fixed to the moving table 132 by a clamp member (not shown), and is horizontally movable in the apparatus.
  • the mounting head 133 supports a plurality of suction nozzles 134 rotatably and vertically.
  • the suction nozzle 134 is a holding member that picks up and holds the component 92 supplied by the feeder 122 .
  • the suction nozzle 134 sucks the component supplied by the feeder 122 with the supplied negative pressure air.
  • a chuck or the like that holds the component by gripping it can be adopted.
  • Component camera 14, board camera 15 The component mounting machine 10 has a component camera 14 and a substrate camera 15 .
  • the component camera 14 and the substrate camera 15 are digital imaging devices having imaging elements such as CMOS.
  • the component camera 14 and the board camera 15 perform imaging based on the control signal, and send out image data acquired by the imaging.
  • the component camera 14 is configured to be able to image the component held by the suction nozzle 134 from below.
  • the substrate camera 15 is provided on the moving table 132 so as to be horizontally movable integrally with the mounting head 133 .
  • the board camera 15 is configured to be able to image the board 91 from above.
  • the substrate camera 15 can image various devices within the movable range of the moving table 132 .
  • the substrate camera 15 of the present embodiment is configured such that the supply area As where the bulk feeder 30 supplies the components 92 and the reference mark 344 provided on the upper portion of the bulk feeder 30 are included in the field of view of the camera. It can be imaged.
  • the substrate camera 15 can be used for imaging different imaging targets in order to acquire image data used for various image processing.
  • the control device 16 executes the mounting process by controlling the component mounting operation by the mounting head 133 based on the control program.
  • the mounting process includes a process of repeating a PP cycle (pick-and-place cycle) including a collection operation and a mounting operation a plurality of times.
  • the above-mentioned “collection operation” is an operation of collecting the component supplied by the component supply device 12 by the suction nozzle 134 .
  • control device 16 controls the operation of the component supply device 12 including the bulk feeder 30 when executing the above collection operation.
  • the control for the operation of the bulk feeder 30 includes, for example, the operation of supplying the parts 92 by the bulk feeder 30 and the control of the opening/closing operation of the shutter 37, which will be described later.
  • the control device 16 has a state recognition section 81 .
  • the state recognition unit 81 recognizes the supply state of the plurality of components 92 in the supply area As of the bulk feeder 30 based on the image data acquired by the camera (the board camera 15 in this embodiment).
  • the supply state recognition processing includes a process of recognizing whether or not there is a part 92 that can be picked up in the supply area As, and recognizing the position and angle of the part 92 if there is a part 92 that can be picked up. .
  • the control device 16 controls the operation of the mounting head 133 in the collection operation based on the result of the supply state recognition processing.
  • the above-mentioned “mounting operation” is an operation of mounting the collected component at a predetermined mounting position on the substrate 91 at a predetermined mounting angle.
  • the control device 16 controls the operation of the mounting head 133 based on information output from various sensors, results of image processing, control programs, and the like. Thereby, the positions and angles of the plurality of suction nozzles 134 supported by the mounting head 133 are controlled.
  • the bulk feeder 30 includes, for example, a type that supplies parts 92 in an irregular posture to a planar supply area As. However, if the parts 92 are so close to each other that they are in contact with each other in the supply area As, or if the parts 92 are piled up (overlapping in the vertical direction), or if the parts 92 are in a sideways posture such that the width direction of the parts 92 is the vertical direction. , the component mounting machine 10 cannot pick up these components 92 . Therefore, in order to increase the ratio of the parts 92 that can be collected, the bulk feeder 30 has a type that supplies the parts 92 in a state of being aligned in the supply area As. In this embodiment, the bulk feeder 30 of the type that aligns the parts 92 will be described as an example.
  • the bulk feeder 30 includes a feeder body 31 formed in a flat box shape, as shown in FIG.
  • a connector 311 and two pins 312 are provided at the front of the feeder body 31 .
  • the two pins 312 are inserted into guide holes provided in the slot 121 and used for positioning when the feeder body 31 is set in the slot 121 .
  • a component case 70 that accommodates a plurality of components 92 in a bulk state is detachably attached to the feeder body 31 via the receiving member 32 .
  • a component case 70 is an external device of the bulk feeder 30 .
  • One of various types of component cases 70 suitable for the mounting process is selected and attached to the feeder body 31 .
  • a discharge port 71 for discharging the component 92 to the outside is formed in the front portion of the component case 70 .
  • the receiving member 32 is vibrated with respect to the feeder body 31 and supports the attached component case 70 .
  • the receiving member 32 is formed with a receiving area Ar for receiving the component 92 ejected from the component case 70 .
  • the receiving member 32 has an inclined portion 321 that is inclined forward with respect to the horizontal plane in the receiving area Ar.
  • the inclined portion 321 is positioned below the discharge port 71 of the component case 70 and has a planar shape.
  • the receiving member 32 is formed with a channel for the component 92 extending above the receiving area Ar, and is formed with a delivery portion 322 opening upward from the channel.
  • Bulk feeder 30 includes bracket 33 and track member 34 .
  • the bracket 33 is provided so as to vibrate with respect to the feeder body 31 .
  • the bracket 33 is formed in a block shape extending in the front-rear direction of the feeder body 31, and has a track member 34 attached to its upper surface.
  • the bracket 33 is supported by a support member 41 of a vibrating device 40 which will be described later.
  • the track member 34 is formed with a transport path R along which a plurality of parts 92 are transported, and a supply area As that communicates with the transport path R and opens upward so that a plurality of parts 92 can be picked up.
  • track member 34 is formed so as to extend in the front-rear direction of the feeder body 31 (left-right direction in FIG. 4).
  • a pair of side walls 341 projecting upward are formed on both edges of the track member 34 in the width direction (the vertical direction in FIG. 4).
  • the pair of side walls 341 surrounds the periphery of the transport path R together with the tip portion 342 of the track member 34 to prevent the component 92 transported on the transport path R from leaking out.
  • a pair of left and right circular reference marks 344 indicating the reference position of the supply area As are provided on the upper surface of the tip portion 342 .
  • the alignment member 50 is replaceably attached to the track member 34 .
  • Alignment member 50 has a plurality of cavities 51 that individually accommodate a plurality of components 92 .
  • the plurality of cavities 51 are arranged in a matrix in the supply area As.
  • the aligning member 50 has a total of 80 cavities 51, 8 of which are regularly arranged in the conveying direction and 10 of which are arranged in the width direction of the conveying path R, respectively.
  • Each of the plurality of cavities 51 opens upward and accommodates the component 92 in a posture in which the thickness direction of the component 92 is the vertical direction.
  • the opening of the cavity 51 is set to a dimension that is slightly larger than the external shape of the component 92 when viewed from above.
  • the depth of the cavity 51 is set according to the type (shape, mass, etc.) of the component 92 .
  • the track member 34 is attached with one selected from various types of track members 34 based on the type of parts 92, the required number of cavities 51, and functionality.
  • the "supply area As" of the track member 34 is an area in which the parts 92 are supplied in bulk and in which the parts 92 can be picked up by the suction nozzle 134 supported by the mounting head 133.
  • the “conveyance path R” of the track member 34 is a path along which the components 92 circulated from the receiving area Ar to the track member 34 are conveyed to the supply area As.
  • the bulk feeder 30 includes a cover 36.
  • the cover 36 is fixed to the track member 34 and covers the transport path R from above.
  • the cover 36 has a plurality of exhaust ports 361 formed on its upper surface.
  • the exhaust port 361 is covered with a mesh whose joints are smaller than the external dimensions of the part 92 .
  • the cover 36 is configured to prevent the component 92 from jumping out of the transport path R and to discharge air to the outside from the exhaust port 361 .
  • the bulk feeder 30 has a shutter 37 provided on the upper part of the track member 34 and capable of closing the opening of the supply area As. By opening and closing the shutter 37, the bulk feeder 30 can prevent the component 92 from jumping out and foreign matter from entering the supply area As.
  • the shutter 37 can be switched between an open state, a closed state, and an intermediate state by opening and closing operations.
  • the closed state of the shutter 37 is a state in which the shutter 37 contacts the track member 34 and the opening of the supply area As is completely closed. At this time, the shutter 37 is positioned on the rear side of the feeder body 31 relative to the pair of reference marks 344 of the track member 34, as indicated by the dashed lines in FIG. and
  • the open state of the shutter 37 is a state in which the opening of the supply area As is not closed and the main range of the supply area As (the range in which the plurality of cavities 51 are provided in this embodiment) is exposed. be. At this time, the suction nozzle 134 can pick up the component 92 from any cavity 51 .
  • the intermediate state of the shutter 37 is a state between the closed state and the open state, in which the shutter 37 is separated from the track member 34 by at least the amplitude of the track member 34 vibrated by the vibration of the vibrating device 40 and supplied. This is a state in which projection of the component 92 from the opening of the region As is restricted.
  • the shutter 37 is opened and closed by a driving device (not shown), and is brought into a closed state, an open state, and an intermediate state according to the driving state of the driving device.
  • the track member 34 is formed with a flow path for the component 92 extending downward at the rear portion, and has an introduction portion 343 in which this flow path opens downward.
  • the introduction portion 343 vertically faces the delivery portion 322 of the receiving member 32 .
  • the bulk feeder 30 includes a connecting member 38 having a tubular shape.
  • the connecting member 38 connects the delivery portion 322 of the receiving member 32 and the introduction portion 343 of the track member 34 .
  • the connecting member 38 is a tight coil spring and has flexibility as a whole.
  • the connecting member 38 connects the plurality of components 92 between the receiving area Ar and the transport path R so as to be able to flow.
  • the connecting member 38 absorbs vibration by deforming in accordance with the vibration of the receiving member 32 and the track member 34 with respect to the feeder body 31 .
  • the connecting member 38 reduces or blocks vibrations transmitted between the independently vibrating receiving member 32 and track member 34 .
  • Air supply device 39 The bulk feeder 30 has an air supply device 39 .
  • the air supply device 39 supplies positive pressure air from below the receiving area Ar to circulate the plurality of components 92 from the receiving member 32 to the track member 34 via the connecting member 38 .
  • the air supply device 39 supplies or cuts off the positive pressure air supplied from the outside from below the receiving area Ar based on a command from the feeder control device 60, which will be described later.
  • the air supply device 39 supplies positive pressure air
  • the plurality of parts 92 staying in the receiving area Ar are blown upward by the positive pressure air.
  • the positive pressure air and the plurality of parts 92 flow through the sending portion 322 of the receiving member 32 , the connecting member 38 and the introducing portion 343 in this order, and reach the transport path R of the track member 34 .
  • the positive pressure air is exhausted to the outside from the exhaust port 361 of the cover 36 .
  • the plurality of components 92 drop onto the transport path R of the track member 34 due to their own weight.
  • the plurality of support members 41 include an advance support member 41A used for front-side transportation of the component 92 and a retreat support member 41B used for rear-side transportation.
  • the forward support member 41A and the backward support member 41B are different from each other in the direction of inclination with respect to the vertical direction.
  • the plurality of piezoelectric elements 42 are vibrators that vibrate at a frequency corresponding to power supplied from the power supply device 44 .
  • a plurality of piezoelectric elements 42 are attached to each of the plurality of support members 41 .
  • the vibration sensor 43 is provided on each of the plurality of support members 41 that support the bracket 33 that vibrates integrally with the track member 34 . More specifically, the piezoelectric element 42 and the vibration sensor 43 are provided on each of the forward support member 41A and the backward support member 41B. A vibration sensor 43 provided on the support member 41A for advancement is supplied with power to the piezoelectric element 42 provided on the support member 41A for advancement, and vibration is applied to the track member 34 via the bracket 33. Detect the actual frequency or amplitude as a value.
  • the track member 34 makes an elliptical motion when viewed from the side.
  • the plurality of components 92 on the transport path R are subjected to a forward and upward external force or a rearward and upward external force depending on the rotational direction of the elliptical motion of the track member 34 .
  • the plurality of parts 92 are transported to the front side or the rear side of the track member 34 .
  • the power supply device 44 varies the frequency of power supplied to the piezoelectric element 42 and the applied voltage based on commands from the feeder control device 60, which will be described later. As a result, the frequency and amplitude of vibration applied to the track member 34 are adjusted, and the rotational direction of the elliptical motion of the track member 34 is determined.
  • the frequency and amplitude of the vibration of the track member 34 and the rotational direction of the elliptical motion due to the vibration fluctuate, the conveying speed of the parts 92 to be conveyed, the degree of dispersion of the parts 92, the conveying direction, and the like change.
  • the vibrating device 40 is preset with power supply (frequency, applied voltage) corresponding to vibration characteristics (including natural frequency) that have individual differences.
  • the bulk feeder 30 is calibrated in a state in which the track member 34 used for the feeding operation to be performed is attached, that is, in a state in which the track member 34 is locked with respect to the bracket 33 by the lock unit 35. . Details of the calibration process will be described later.
  • Feeder controller 60 Bulk feeder 30 includes a feeder controller 60 .
  • the feeder control device 60 is mainly composed of a CPU, various memories, and a control circuit. With the bulk feeder 30 set in the slot 121 , the feeder control device 60 receives power through the connector 311 and is ready to communicate with the control device 16 of the component mounting machine 10 .
  • the feeder control device 60 has a vibration control section 62 .
  • the vibration control section 62 controls the operation of the vibration excitation device 40 to carry out the operation of conveying the component 92 .
  • the vibration control unit 62 sends a command to the power supply device 44 of the vibration excitation device 40 when carrying out the transport operation.
  • the power supply device 44 supplies predetermined power to the piezoelectric element 42 , thereby imparting vibration to the track member 34 via the bracket 33 .
  • the component 92 on the transport path R is transported by receiving an external force so as to move in the transport direction.
  • the component supply control system 80 controls component supply using the bulk feeder 30 described above.
  • the component supply control system 80 is incorporated in the control device 16 and is configured to communicate with the bulk feeder 30 installed in the slot 121, as shown in FIG.
  • the parts supply control system 80 controls parts supply so as to maintain a good supply state of the parts 92 in the bulk feeder 30 .
  • the state recognition unit 81 recognizes the supply state as to whether or not it is possible to pick up each of the individual parts 92 recognized by the image processing. Alternatively, the state recognition unit 81 recognizes the supply state for each of the multiple cavities 51 .
  • the "supply state” includes a state in which the component 92 exists in the cavity 51 and can be picked up, a state in which the component 92 exists in the cavity 51 and cannot be picked up, and a state in which the component 92 does not exist in the cavity 51. included.
  • a part group in which a plurality of parts 92 are densely packed may be formed due to, for example, excessive parts 92 being conveyed relative to the number of cavities 51 .
  • the state recognition unit 81 may further determine the position and size of the parts group as the parts group state based on the image data.
  • Frequency specifying unit 82 The component supply control system 80 includes a frequency specifying section 82, as shown in FIG.
  • the frequency specifying unit 82 specifies the natural frequency of the vibrating body including the track member 34 based on the detection result of the vibration sensor 43 .
  • the vibrating body is an assembly of members that vibrate integrally with the track member 34 by being vibrated by the vibrating device 40 .
  • the vibrating body is composed of track member 34 , bracket 33 , lock unit 35 and cover 36 .
  • Curves L1 and L2 in FIG. 6 show the relationship between the frequency of vibration applied by the vibrating device 40 and the actual amplitude of vibration of the track member 34 .
  • the vibration of track member 34 has maximum amplitude Max1 at predetermined frequency Fn1.
  • the natural frequency may also fluctuate over several Hz due to changes in the structure of the members (connecting member 38, etc.) that come into contact with the vibrating body and the vibrating device 40.
  • the vibrating device 40 exemplified in the present embodiment has an advancing support member 41A used for front-side transportation and a retreating support member 41B used for rear-side transportation. Electric power is supplied to the piezoelectric element 42 to vibrate it. Therefore, for example, the retreating support member 41B is a member that contacts the bracket 33, and thus affects the vibration of the vibrating body during the forward transportation.
  • Curves L1 and L2 in FIG. 6 show that the natural frequencies (frequencies Fn1 and Fn2) of the vibrating body are different between front-side transportation and rear-side transportation.
  • the frequency specifying unit 82 causes the vibrating device 40 to apply vibrations corresponding to the front side transportation and the rear side transportation to the track member 34, respectively, and the vibrations are used for the transportation operations of the front side transportation and the rear side transportation, respectively.
  • Two types of natural frequencies (frequencies Fn1 and Fn2) are specified.
  • the natural frequency of the vibrator may fluctuate as the track member 34 and the alignment member 50 are replaced. Therefore, the frequency specifying unit 82 may specify the natural frequency of the vibrating body when the bulk feeder 30 is powered on, for example. In addition, the natural frequency of the vibrator may gradually fluctuate due to aging of the bulk feeder 30 . Therefore, the frequency specifying unit 82 determines the natural frequency of the vibrator when a predetermined time has passed since the bulk feeder 30 was powered on, or when the bulk feeder 30 has carried the parts 92 more than a predetermined number of times. may be specified.
  • the frequency specifying unit 82 may perform the process of specifying the natural frequency during the idle period of the component supply device 12, which does not affect the mounting process.
  • the frequency identifying section 82 executes at least part of the identifying process of identifying the natural frequency while the board 91 is being loaded into or unloaded from the component mounting machine 10 .
  • the frequency specifying unit 82 causes the controller 16 to store the specified natural frequencies of the vibrating bodies (for forward movement and backward movement).
  • the component supply control system 80 includes a calibration section 83 as shown in FIG.
  • the calibration unit 83 executes calibration processing for calibrating the operation of the vibrating device 40 .
  • the calibration unit 83 adjusts the power supplied to the oscillator (piezoelectric element 42) based on the natural frequency specified by the frequency specifying unit 82, and adjusts the power supplied to the oscillator (piezoelectric element 42) when the track member 34 vibrates at the natural frequency.
  • the power supplied to the element 42) (in other words, the current value with respect to the applied voltage) is obtained. If the natural frequency of the vibrating body is specified for forward movement and backward movement, the calibration section 83 acquires power corresponding to each.
  • the calibration unit 83 first acquires from the control device 16 the natural frequency, which is the vibration characteristic when the vibrating body including the track member 34 is vibrated integrally by the vibration of the vibrating device 40 . . Next, the calibration unit 83 instructs the power supply device 44 of the vibrating device 40 to supply predetermined power to the piezoelectric element 42 for a predetermined period. As a result, the frequency of the actual vibration of the track member 34 is measured based on the value detected by the vibration sensor 43 during the period described above.
  • the calibration unit 83 adjusts the power supplied from the power supply device 44 to the piezoelectric element 42 based on the frequency as the measurement result of vibration. At this time, the calibration unit 83 adjusts the power to the piezoelectric element 42 based on the difference between the measured actual frequency and the previously acquired natural frequency. By repeating the above-described measurement and adjustment, the calibration unit 83 acquires the power supplied to the piezoelectric element 42 when the vibrating body vibrates at the natural frequency.
  • the calibration unit 83 may instruct, for example, to change stepwise the power supplied during a predetermined period, and the frequency measured in each period and the known natural frequency can be compared with Then, the calibration unit 83 acquires the power supplied during the period when the frequency is closest to the natural frequency. In this manner, the calibration unit 83 acquires the power required to vibrate the bulk feeder 30 at the natural frequency in the current configuration of the bulk feeder 30 .
  • the calibration unit 83 sets the above electric power to the bulk feeder 30 as the reference electric power for conveying the component 92 (stores it in the storage unit 61).
  • the bulk feeder 30 controls the power feeding device 44 to supply the set reference power to the piezoelectric element 42 when the part 92 is conveyed based on the command from the outside.
  • the bulk feeder 30 may add a predetermined correction or the like to the reference power in accordance with the form of the conveying operation (feeding operation, returning operation, etc.).
  • the natural frequency of the vibrator is unique to each bulk feeder 30 as described above, and can vary according to the track member 34 and alignment member 50 attached to the bulk feeder 30 . Therefore, at least after the track member 34 is replaced, it is preferable to carry out the process of specifying the natural frequency.
  • the current natural frequency of the bulk feeder 30 is specified and the electric power to be supplied is obtained.
  • the vibrating body may not vibrate at the specified natural frequency even when the acquired power is supplied.
  • the component supply control system 80 includes a transport control section 85, as shown in FIG.
  • the transport control unit 85 controls the transport operation of the parts 92 in the bulk feeder 30 .
  • the conveying operation of the parts 92 in the bulk feeder 30 includes a feeding operation and a returning operation.
  • the above-mentioned "feeding operation” is an operation of conveying the parts 92 from the rear side to the front side of the track member 34, and is an operation of advancing the plurality of parts 92 toward the supply area As from the conveyance path R communicating with the supply area As. is.
  • the "returning operation” is an operation of conveying the parts 92 from the front side to the rear side of the track member 34, and is an operation of retreating the plurality of parts 92 from the supply area As to the conveying path R side.
  • the frequency specifying unit 82 specifies the natural frequency Fn1 used for the transport operation of the front transport (S11). After that, the frequency specifying unit 82 specifies the natural frequency Fn2 used for rear-side transportation (S12).
  • the track members 34 are subjected to vibrations of a plurality of frequencies different by 0.25 Hz from the lower limit to the upper limit of a predetermined frequency band. Then, the frequency specifying unit 82 acquires the amplitude of the track member 34 to which vibration of each frequency is applied, and sets the frequency of vibration with the maximum amplitude as the natural frequency.
  • the frequency specifying unit 82 stores the two types of natural frequencies (for forward movement and for backward movement) of the specified vibrating body in the control device 16 and the storage unit 61 of the bulk feeder 30 (S13).
  • the frequency specifying unit 82 executes the process of specifying the natural frequency when the bulk feeder 30 is powered on as described above. Further, the frequency identification unit 82 executes the natural frequency identification process when the track member 34 or the alignment member 50 is replaced, or when the number of conveying operations of the parts 92 by the bulk feeder 30 exceeds a predetermined number of times. good. Note that even if the bulk feeder 30 is powered on, if the track member 34 and the alignment member 50 are not replaced while the power is off, the frequency specifying unit 82 executes the process of specifying the natural frequency. May be omitted.
  • the transport control unit 85 commands the bulk feeder 30 to transport the parts 92 before picking up the parts 92 from the bulk feeder 30 in the mounting process. Thereby, the bulk feeder 30 discharges the parts 92 from the parts case 70 and circulates the parts 92 to the track member 34 as necessary. After that, the bulk feeder 30 maintains the shutter 37 in the intermediate state and performs the operation of conveying the parts 92 . Thereby, the components 92 are accommodated in the plurality of cavities 51, and the excess components 92 are retracted from the supply area As to the transport path R side.
  • the control device 16 commands the bulk feeder 30 to open the shutter 37 immediately before executing the collection operation in the PP cycle. Further, the control device 16 instructs the bulk feeder 30 to convey the component 92 according to the set conveyance pattern during the period in which the picking operation is completed and the mounting operation in the PP cycle is executed. When the bulk feeder 30 is instructed to convey the parts 92, the bulk feeder 30 performs a conveying operation according to the set conveying pattern.
  • the state recognition unit 81 executes the state recognition process again after the bulk feeder 30 finishes conveying the parts 92 . As a result, the current supply state of the supply area As after the transport operation is recognized. Further, the calibration unit 83 executes calibration processing at a predetermined timing. For example, after the bulk feeder 30 is powered on and the execution of the process of specifying the natural frequency is omitted, the calibration unit 83 executes the calibration process as necessary.
  • the calibration unit 83 instructs the power supply device 44 of the vibrating device 40 to supply a specified power to the piezoelectric element 42 for a predetermined period (S21).
  • Reference power is set as an initial value for the specified power.
  • vibration is applied to the track member 34 during the period described above.
  • the calibration unit 83 determines whether or not the difference between the actual vibration frequency of the track member 34 measured based on the value detected by the vibration sensor 43 and the natural frequency of the vibrator is within the allowable range. (S22).
  • the calibration unit 83 sets the above electric power to the bulk feeder 30 as the reference electric power for conveying the parts 92 (S24). That is, the calibration unit 83 causes the storage unit 61 of the bulk feeder 30 to store the electric power to be supplied to the piezoelectric element 42 when applying vibration at the natural frequency as the calibration result. For example, when the slot 121 in which the bulk feeder 30 is installed is changed, or when a certain period of time has passed since the execution of the previous calibration process, the calibration unit 83 determines that the calibration process is necessary and executes it. .
  • the component supply control system ends the above control process when all the PP cycles scheduled to be executed are completed and the supply of the component 92 becomes unnecessary.
  • the component supply control system 80 it is possible to improve the supply state of the components 92 in the bulk feeder 30 by controlling the conveying operation based on the natural frequency of the vibrating body including the track member 34. Therefore, the productivity of the component mounting machine 10 equipped with the bulk feeder 30 can be improved.
  • the frequency specifying unit 82 may acquire the frequency and amplitude of the track member 34 by analyzing the amount of displacement of the track member 34 measured by the vibration sensor 43 and the change over time of the amount of displacement. . In addition, the frequency specifying unit 82 determines the vibration damping time from when the power supply to the piezoelectric element 42 is cut off until the track member 34 stops, and the movement trajectory of the specific part of the track member 34 to which vibration is applied. The natural frequency of the vibrating body may be identified based on the different frequencies of each type.
  • the track member 34 of the bulk feeder 30 is configured to include an alignment member 50 in which a plurality of cavities 51 are formed.
  • the alignment member 50 may be omitted. That is, in the supply area As of the track member 34, a concave portion where the components 92 are dispersed at a position lower than the upper surface of the transport path R and a planar portion which is uniform with the upper surface of the transport path R are formed so that the parts can be stored in a bulk state. 92 may be provided.
  • the configuration exemplified in the embodiment is preferable from the viewpoint of improving the efficiency of the component supply process and reducing the image processing load in the process of recognizing the supply state in the supply area As.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Jigging Conveyors (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

バルクフィーダは、フィーダ本体と、フィーダ本体に対して振動可能に設けられ、複数の部品が搬送される搬送路を形成された軌道部材と、複数の部品が搬送路に沿って搬送されるように軌道部材に振動を付与する加振装置と、加振装置の加振により振動する軌道部材の振動状態を示す振動値を検出する振動センサと、を備える。

Description

バルクフィーダおよび部品供給制御システム
 本発明は、バルクフィーダおよび部品供給制御システムに関するものである。
 部品供給制御システムは、バルクフィーダを用いた部品供給を制御する。バルクフィーダは、基板に部品を装着する部品装着機に装備され、バルク状態の部品を供給する。特許文献1には、搬送路に振動を付与して複数の部品を搬送する構成が開示されている。このような搬送動作によって、バルクフィーダは、吸着ノズルが部品を採取できるように上方に開口した供給領域において部品を供給する。
特開2011-114084号公報
 このようなバルクフィーダは、例えば部品装着機の制御装置から部品供給を要求され、規定の搬送動作を実行する。しかしながら、バルクフィーダの動作環境の変動などに起因して、バルクフィーダが外部指令に応じて予め設定された動作を行ったとしても、良好な部品供給が維持されるとは限らない。また、バルクフィーダを用いた部品供給を制御するシステムには、良好な部品の供給状態を維持し、生産性向上の要請がある。
 本明細書は、実際の供給動作に関する有用な情報を取得することができるバルクフィーダ、およびバルクフィーダにおける部品の供給状態を良好にし、バルクフィーダを装備された部品装着機の生産性向上を図ることができる部品供給制御システムを提供することを目的とする。
 本明細書は、フィーダ本体と、前記フィーダ本体に対して振動可能に設けられ、複数の部品が搬送される搬送路を形成された軌道部材と、複数の前記部品が前記搬送路に沿って搬送されるように前記軌道部材に振動を付与する加振装置と、前記加振装置の加振により振動する前記軌道部材の振動状態を示す振動値を検出する振動センサと、を備えるバルクフィーダを開示する。
 本明細書は、バルクフィーダと、前記振動センサによる検出結果に基づいて、前記軌道部材を含む振動体の固有振動数を特定する周波数特定部と、前記周波数特定部による特定結果に基づいて、前記バルクフィーダにおける前記部品の搬送動作を制御する搬送制御部と、を備える部品供給制御システムを開示する。
 このような構成によると、加振された軌道部材の実際の振動状態を示す振動値を検出することによって、実際の供給動作に関する有用な情報を取得することができる。また、このようなバルクフィーダを備え、軌道部材を含む振動体の固有振動数に基づいて搬送動作を制御することによって、バルクフィーダにおける部品の供給状態を良好にできる。よって、バルクフィーダを装備された部品装着機の生産性向上を図ることができる。
バルクフィーダを装備された部品装着機を模式的に示す平面図である。 バルクフィーダの外観を示す斜視図である。 バルクフィーダの要部を模式的に示す側面図である。 図2のIV方向から見た平面図である。 部品供給制御システムを適用された部品装着機を示すブロック図である。 振動体の周波数と振幅との関係を示すグラフである。 部品供給制御処理を示すフローチャートである。 校正処理を示すフローチャートである。
 バルクフィーダ30を用いた部品供給を制御する部品供給制御システム80について、図面を参照して説明する。バルクフィーダ30は、例えば基板91に部品92を装着する部品装着機10に装備され、バルク状態(それぞれの姿勢が不規則なばら状態)の部品92を供給する。
 1.部品装着機10の構成
 部品装着機10は、例えば他の部品装着機10を含む複数種類の対基板作業機とともに、基板製品を生産する生産ラインを構成する。上記の生産ラインを構成する対基板作業機には、印刷機や検査装置、リフロー炉などが含まれ得る。
 1-1.基板搬送装置
 部品装着機10は、図1に示すように、基板搬送装置11を備える。基板搬送装置11は、基板91を搬送方向へと順次搬送するとともに、基板91を機内の所定位置に位置決めする。
 1-2.部品供給装置12
 部品装着機10は、部品供給装置12を備える。部品供給装置12は、基板91に装着される部品を供給する。部品供給装置12は、複数のスロット121にフィーダ122をそれぞれ装備される。フィーダ122には、例えば多数の部品が収納されたキャリアテープを送り移動させて、部品を採取可能に供給するテープフィーダが適用される。また、フィーダ122には、バルク状態で収容された部品を採取可能に供給するバルクフィーダ30が適用される。バルクフィーダ30の詳細については後述する。
 1-3.部品移載装置13
 部品装着機10は、部品移載装置13を備える。部品移載装置13は、部品供給装置12により供給された部品を基板91上の所定の装着位置に移載する。部品移載装置13は、ヘッド駆動装置131、移動台132、装着ヘッド133、および吸着ノズル134を備える。ヘッド駆動装置131は、直動機構により移動台132を水平方向(X方向およびY方向)に移動させる。装着ヘッド133は、図示しないクランプ部材により移動台132に着脱可能に固定され、機内において水平方向に移動可能に設けられる。
 装着ヘッド133は、回転可能に且つ昇降可能に複数の吸着ノズル134を支持する。吸着ノズル134は、フィーダ122により供給される部品92を採取して保持する保持部材である。吸着ノズル134は、供給される負圧エアにより、フィーダ122により供給される部品を吸着する。装着ヘッド133に取り付けられる保持部材としては、部品を把持することにより保持するチャックなどが採用され得る。
 1-4.部品カメラ14、基板カメラ15
 部品装着機10は、部品カメラ14、および基板カメラ15を備える。部品カメラ14、および基板カメラ15は、CMOSなどの撮像素子を有するデジタル式の撮像装置である。部品カメラ14、および基板カメラ15は、制御信号に基づいて撮像を行い、当該撮像により取得した画像データを送出する。部品カメラ14は、吸着ノズル134に保持された部品を下方から撮像可能に構成される。基板カメラ15は、装着ヘッド133と一体的に水平方向に移動可能に移動台132に設けられる。基板カメラ15は、基板91を上方から撮像可能に構成される。
 また、基板カメラ15は、基板91の表面を撮像対象とする他に、移動台132の可動範囲であれば種々の機器などを撮像対象にできる。例えば、基板カメラ15は、本実施形態において、図4に示すように、バルクフィーダ30が部品92を供給する供給領域Asやバルクフィーダ30の上部に設けられた基準マーク344をカメラ視野に収めて撮像することができる。このように、基板カメラ15は、種々の画像処理に用いられる画像データを取得するために、異なる撮像対象の撮像に兼用され得る。
 1-5.制御装置16
 部品装着機10は、図1に示すように、制御装置16を備える。制御装置16は、主として、CPUや各種メモリ、制御回路、および記憶装置により構成される。制御装置16は、制御装置16には、装着処理の制御に用いられる制御プログラムなどの各種データが記憶される。制御プログラムは、装着処理において基板91に装着される部品の装着位置、装着角度、および装着順序を示す。
 制御装置16は、複数の保持部材(吸着ノズル134)のそれぞれに保持された部品の保持状態の認識処理を実行する。具体的には、制御装置16は、部品カメラ14の撮像により取得された画像データを画像処理し、装着ヘッド133の基準位置に対する各部品の位置および角度を認識する。なお、制御装置16は、部品カメラ14の他に、例えば装着ヘッド133に一体的に設けられるヘッドカメラユニットなどが部品を側方、下方、または上方から撮像して取得された画像データを画像処理するようにしてもよい。
 制御装置16は、制御プログラムに基づいて、装着ヘッド133による部品の装着動作を制御して装着処理を実行する。ここで、装着処理には、採取動作と装着動作とが含まれるPPサイクル(ピックアンドプレースサイクル)を複数回に亘って繰り返す処理が含まれる。上記の「採取動作」とは、部品供給装置12により供給された部品を吸着ノズル134により採取する動作である。
 本実施形態において、制御装置16は、上記の採取動作の実行に際して、バルクフィーダ30を含む部品供給装置12の動作を制御する。バルクフィーダ30の動作を対象とした制御には、例えばバルクフィーダ30による部品92の供給動作、および後述するシャッタ37の開閉動作の制御が含まれる。
 制御装置16は、状態認識部81を備える。状態認識部81は、カメラ(本実施形態において、基板カメラ15)の撮像により取得した画像データに基づいて、バルクフィーダ30の供給領域Asにおける複数の部品92の供給状態を認識する。供給状態の認識処理には、供給領域Asに採取可能な部品92があるか否かを認識し、採取可能な部品92がある場合にはその部品92の位置および角度を認識する処理が含まれる。そして、制御装置16は、供給状態の認識処理の結果に基づいて、採取動作における装着ヘッド133の動作を制御する。
 また、上記の「装着動作」とは、採取した部品を基板91における所定の装着位置に、所定の装着角度で装着する動作である。制御装置16は、装着処理において、各種センサから出力される情報や画像処理の結果、制御プログラムなどに基づき、装着ヘッド133の動作を制御する。これにより、装着ヘッド133に支持された複数の吸着ノズル134の位置および角度が制御される。
 2.バルクフィーダ30の構成
 バルクフィーダ30は、部品装着機10に装備されて部品供給装置12の一部として機能する。バルクフィーダ30は、キャリアテープのように整列されていないバルク状態で収容された部品92を供給する。そのため、バルクフィーダ30は、テープフィーダと異なりキャリアテープを用いないため、キャリアテープの装填や使用済みテープの回収などを省略できる点でメリットがある。
 バルクフィーダ30には、例えば平面状の供給領域Asに不規則な姿勢で部品92を供給するタイプがある。しかしながら、供給領域Asにおいて部品92同士が接触するほど接近していたり堆積(上下方向に重なり合っている状態)していたり、部品92の幅方向が上下方向となるような横立ち姿勢であったりすると、部品装着機10は、これらの部品92を採取対象にすることができない。そこで、採取可能な部品92の割合を増加すべく、バルクフィーダ30には、供給領域Asにおいて部品92を整列させた状態で供給するタイプがある。本実施形態では、部品92を整列させるタイプのバルクフィーダ30を例示して説明する。
 2-1.フィーダ本体31
 バルクフィーダ30は、図2に示すように、扁平な箱状に形成されたフィーダ本体31を備える。フィーダ本体31の前部には、コネクタ311および2つのピン312が設けられる。フィーダ本体31は、部品供給装置12のスロット121にセットされると、コネクタ311を介して給電されるとともに、制御装置16と通信可能な状態となる。2つのピン312は、スロット121に設けられたガイド穴に挿入され、フィーダ本体31がスロット121にセットされる際の位置決めに用いられる。
 2-2.受容部材32
 フィーダ本体31には、複数の部品92をバルク状態で収容する部品ケース70が受容部材32を介して着脱可能に取り付けられる。部品ケース70は、バルクフィーダ30の外部機器である。フィーダ本体31には、種々のタイプの部品ケース70から装着処理に適合する1つが選択されて取り付けられる。部品ケース70の前部には、外部へ部品92を排出する排出口71が形成される。
 受容部材32は、フィーダ本体31に対して振動可能に設けられ、取り付けられた部品ケース70を支持する。受容部材32は、部品ケース70から排出された部品92を受容する受容領域Arを形成される。本実施形態において、受容部材32は、受容領域Arにおいて水平面に対して前側に傾斜した傾斜部321を有する。この傾斜部321は、部品ケース70の排出口71の下方に位置し、且つ平面状をなす。受容部材32は、受容領域Arの上方に延伸する部品92の流路を形成され、この流路が上方に開口する送出部322を形成される。
 2-3.ブラケット33、軌道部材34、ロックユニット35
 バルクフィーダ30は、ブラケット33および軌道部材34を備える。ブラケット33は、フィーダ本体31に対して振動可能に設けられる。ブラケット33は、フィーダ本体31の前後方向に延伸するブロック状に形成され、上面に軌道部材34を取り付けられる。ブラケット33は、後述する加振装置40の支持部材41により支持される。軌道部材34は、複数の部品92が搬送される搬送路R、および搬送路Rに連通して複数の部品92を採取可能に上方に開口する供給領域Asを形成される。
 バルクフィーダ30は、ロックユニット35を備える。ロックユニット35は、軌道部材34がブラケット33に取り付けられた状態で、軌道部材34をロックする。軌道部材34は、ロックユニット35によりロックされると、フィーダ本体31に対してブラケット33と一体的に振動する状態となる。軌道部材34は、ロックユニット35のアンロックによりブラケット33から取り外し可能な状態となる。
 2-4.軌道部材34の詳細構成、カバー36、シャッタ37、連結部材38
 軌道部材34は、フィーダ本体31の前後方向(図4の左右方向)に延伸するように形成される。軌道部材34の幅方向(図4の上下方向)の両縁には、上方に突出する一対の側壁341が形成される。一対の側壁341は、軌道部材34の先端部342とともに搬送路Rの周縁を囲い、搬送路Rを搬送される部品92の漏出を防止する。先端部342の上面には、供給領域Asの基準位置を示す円形の基準マーク344が左右一対で付される。
 本実施形態において、軌道部材34には、整列部材50が交換可能に取り付けられる。整列部材50は、複数の部品92を個々に収容する複数のキャビティ51を有する。詳細には、複数のキャビティ51は、供給領域Asにおいてマトリックス状に配列される。例えば、整列部材50は、規則的に搬送方向に8個、搬送路Rの幅方向に10個それぞれ配列された計80個のキャビティ51を有する。複数のキャビティ51のそれぞれは、上方に開口し、部品92の厚み方向が上下方向となる姿勢で部品92を収容する。
 キャビティ51の開口は、上方視における部品92の外形状よりも僅かに大きくなる寸法に設定される。キャビティ51の深さは、部品92の種類(形状、質量など)に応じて設定される。軌道部材34には、種々のタイプの軌道部材34から、部品92の種類や、キャビティ51の必要数、機能性に基づいて選択された1つが取り付けられる。
 ここで、軌道部材34の「供給領域As」とは、部品92をバルク状態で供給する領域であって、装着ヘッド133に支持された吸着ノズル134により部品92を採取可能な領域である。また、軌道部材34の「搬送路R」とは、受容領域Arから軌道部材34へと流通した部品92が供給領域Asへと搬送される部品92の通り道である。
 バルクフィーダ30は、カバー36を備える。カバー36は、軌道部材34に固定され、搬送路Rの上方を覆う。カバー36は、上面に複数の排気口361が形成されている。排気口361には、目地が部品92の外形寸法より小さいメッシュが張られている。このような構成により、カバー36は、搬送路Rからの部品92の飛び出しを防止しつつ、排気口361からエアを外部に排出することができるように構成されている。
 バルクフィーダ30は、軌道部材34の上部に設けられ、供給領域Asの開口を閉塞可能なシャッタ37を備える。バルクフィーダ30は、シャッタ37を開閉することによって部品92の飛び出しや供給領域Asへの異物混入を防止することができる。本実施形態において、シャッタ37は、開閉動作により開状態、閉状態、および中間状態を切り換えられる。シャッタ37の閉状態とは、シャッタ37が軌道部材34に接触し、供給領域Asの開口が完全に閉塞された状態である。このとき、シャッタ37は、図4の破線で示すように、軌道部材34の一対の基準マーク344よりもフィーダ本体31の後側に位置し、上方視において一対の基準マーク344を視認および撮像可能とする。
 また、シャッタ37の開状態とは、供給領域Asの開口が閉塞されておらず、且つ供給領域Asの主要範囲(本実施形態において複数のキャビティ51が設けられた範囲)を露出させた状態である。このとき、吸着ノズル134は、何れのキャビティ51に対して部品92の採取動作を実行することができる。シャッタ37の中間状態とは、閉状態と開状態の間の状態であって、シャッタ37が軌道部材34から少なくとも加振装置40の加振により振動する軌道部材34の振幅よりも離間し且つ供給領域Asの開口から部品92の飛び出しを規制する状態である。シャッタ37は、図略の駆動装置により開閉動作を行い、駆動装置の駆動状態に応じて閉状態、開状態、および中間状態とされる。
 軌道部材34は、後部において下方に延伸する部品92の流路を形成され、この流路が下方に開口する導入部343を有する。導入部343は、受容部材32の送出部322と上下方向に対向する。バルクフィーダ30は、管状をなす連結部材38を備える。連結部材38は、受容部材32の送出部322および軌道部材34の導入部343を連結する。本実施形態において、連結部材38は、密着コイルばねであり、全体として可撓性を有する。
 上記のような構成により、連結部材38は、受容領域Arと搬送路Rとの間を複数の部品92を流通可能に連結する。また、連結部材38は、フィーダ本体31に対する受容部材32の振動および軌道部材34の振動に応じて変形することにより振動を吸収する。連結部材38は、互いに独立して振動する受容部材32および軌道部材34の間で伝達される振動を軽減または遮断する。
 2-5.エア供給装置39
 バルクフィーダ30は、エア供給装置39を備える。エア供給装置39は、受容領域Arの下方から正圧エアを供給して、受容部材32から連結部材38を介して軌道部材34まで複数の部品92を流通させる。本実施形態において、エア供給装置39は、外部から供給される正圧エアを、後述するフィーダ制御装置60の指令に基づいて受容領域Arの下方から供給または遮断する。
 エア供給装置39が正圧エアを供給すると、受容領域Arに滞留していた複数の部品92は、正圧エアにより上方に吹き上げられる。正圧エアおよび複数の部品92は、受容部材32の送出部322、連結部材38、および導入部343の順に流通し、軌道部材34の搬送路Rに到達する。ここで、正圧エアは、カバー36の排気口361から外部に排気される。また、複数の部品92は、自重により軌道部材34の搬送路Rに落下する。
 2-6.加振装置40
 バルクフィーダ30は、フィーダ本体31に設けられる加振装置40を備える。加振装置40は、複数の部品92が搬送路Rに沿って搬送されるように軌道部材34に振動を付与する。具体的には、加振装置40は、複数の支持部材41、複数の圧電素子42、振動センサ43、および給電装置44を有する。複数の支持部材41は、フィーダ本体31とブラケット33を直接的または間接的に連結して、ブラケット33を支持する。
 本実施形態において、複数の支持部材41には、部品92の前側搬送に用いられる前進用支持部材41Aと、後側搬送に用いられる後退用支持部材41Bとがある。前進用支持部材41Aおよび後退用支持部材41Bは、それぞれ鉛直方向に対する傾斜方向が互いに相違する。複数の圧電素子42は、給電装置44から給電される電力に応じた周波数で振動する振動子である。複数の圧電素子42は、複数の支持部材41のそれぞれに貼付されている。
 複数の圧電素子42の少なくとも一部が振動すると、ブラケット33を介して軌道部材34に振動が付与される。また、圧電素子42に印加する電圧に応じて、軌道部材34の振幅が変動する。振動センサ43は、加振装置40の加振により振動する軌道部材34の振動状態を示す振動値を検出する。上記の振動状態を示す振動値としては、振幅や周波数、減衰時間、振動軌跡(振動に伴う特定部位の移動軌跡)などを適用することができる。本実施形態において、振動センサ43は、圧電素子42が給電されて振動したときに、軌道部材34の実際の振動の周波数または振幅を検出する。
 本実施形態において、振動センサ43は、軌道部材34と一体的に振動するブラケット33を支持する複数の支持部材41にそれぞれ設けられている。より詳細には、圧電素子42および振動センサ43は、前進用支持部材41Aおよび後退用支持部材41Bのそれぞれに設けられている。前進用支持部材41Aに設けられた振動センサ43は、この前進用支持部材41Aに設けられた圧電素子42が給電され、ブラケット33を介して軌道部材34に振動を付与している際に、振動値として実際の周波数または振幅を検出する。
 ここで、加振装置40が軌道部材34に振動を付与すると、軌道部材34は、側方視において楕円運動する。これにより、搬送路Rにある複数の部品92は、軌道部材34の楕円運動の回転方向に応じて前方且つ上方の外力、または後方且つ上方の外力を加えられる。これにより、複数の部品92は、軌道部材34の前側に搬送されたり、後側に搬送されたりすることになる。
 給電装置44は、後述するフィーダ制御装置60の指令に基づいて、圧電素子42に供給する電力の周波数、および印加電圧を変動させる。これにより、軌道部材34に付与される振動の周波数および振幅が調整され、軌道部材34の楕円運動の回転方向が定まる。軌道部材34の振動の周波数や振幅、振動による楕円運動の回転方向が変動すると、搬送される部品92の搬送速度、部品92の分散度合い、および搬送方向などが変動する。
 そこで、加振装置40は、搬送効率を向上させるために、個体差のある振動特性(固有振動数を含む)に対応した電力供給(周波数、印加電圧)を予め設定される。例えば、バルクフィーダ30は、実行予定の供給動作に用いられる軌道部材34が取り付けられた状態、即ちブラケット33に対して軌道部材34がロックユニット35によりロックされた状態において、校正処理を実行される。上記の校正処理の詳細については後述する。
 2-7.フィーダ制御装置60
 バルクフィーダ30は、フィーダ制御装置60を備える。フィーダ制御装置60は、主として、CPUや各種メモリ、制御回路により構成される。フィーダ制御装置60は、バルクフィーダ30がスロット121にセットされた状態において、コネクタ311を介して給電され、また部品装着機10の制御装置16と通信可能な状態となる。
 フィーダ制御装置60は、図2に示すように、記憶部61を有する。記憶部61は、フラッシュメモリなどにより構成される。記憶部61には、部品供給処理の制御に用いられるプログラムや搬送パラメータなどの各種データが記憶される。上記の「搬送パラメータ」は、部品供給処理において部品92を搬送する際に、軌道部材34に付与する振動が適正となるように加振装置40の動作を制御するためのパラメータであり、例えば部品92の種類ごとに関連付けて予め設定される。
 フィーダ制御装置60は、加振制御部62を有する。加振制御部62は、加振装置40の動作を制御して、部品92の搬送動作を実行する。詳細には、加振制御部62は、搬送動作を実行する場合に、加振装置40の給電装置44に対して指令を送出する。これにより、給電装置44が圧電素子42に所定の電力を供給することにより、ブラケット33を介して軌道部材34に振動が付与される。そして、搬送路R上の部品92が搬送方向に移動するように外力を受けて搬送される。
 上記のようなバルクフィーダ30の構成によると、加振された軌道部材34の実際の振動状態を示す振動値を検出することによって、バルクフィーダ30における実際の供給動作に関する有用な情報を取得することができる。この振動値は、バルクフィーダ30が意図した動作を行っているか否かの診断に用いることができるとともに、以下に示すように、効率的な供給動作を行うために軌道部材34に付与すべき振動の周波数の特定に用いることができる。さらには、振動値は、振動環境の変化に対応するために実行されるバルクフィーダ30の校正処理に用いることができる。各処理の詳細については後述する。
 3.部品供給制御システム80の構成
 部品供給制御システム80は、上記のバルクフィーダ30を用いた部品供給を制御する。本実施形態において、部品供給制御システム80は、図5に示すように、制御装置16に組み込まれ、スロット121に装備されたバルクフィーダ30と通信可能に構成される。部品供給制御システム80は、バルクフィーダ30における良好な部品92の供給状態の維持を図るべく、部品供給を制御する。
 3-1.状態認識部81
 部品供給制御システム80は、図5に示すように、状態認識部81を備える。状態認識部81は、上記のように、基板カメラ15の撮像により取得した画像データに基づいて、バルクフィーダ30の供給領域Asにおける複数の部品92の供給状態を認識する。より詳細には、状態認識部81は、先ず、バルクフィーダ30が複数の部品92を振動により供給領域Asまで搬送した状態において供給領域Asを撮像して取得された画像データに基づいて、供給状態の認識処理を行う。
 供給領域Asには、バルク状態の部品92が多数存在し、例えばキャビティ51に正常な姿勢で収容されるもの、キャビティ51の外部にあるもの、互いに接触したり堆積したりするもの、横立ち姿勢であるものなどが存在し得る。そして、状態認識部81は、画像処理によって認識される個々の部品92それぞれについて、採取可能であるか否かの供給状態を認識する。または、状態認識部81は、複数のキャビティ51ごとに供給状態を認識する。
 上記の「供給状態」には、キャビティ51に部品92が存在し且つ採取可能である状態、キャビティ51に部品92が存在し且つ採取不可である状態、およびキャビティ51に部品92が存在しない状態が含まれる。ここで、供給領域Asには、例えばキャビティ51の数に対して過剰に部品92が搬送されることなどに起因して、複数の部品92が密集した部品群が形成されることがある。状態認識部81は、画像データに基づいて、部品群の位置および大きさを部品群状態としてさらに割り出してもよい。
 3-2.周波数特定部82
 部品供給制御システム80は、図5に示すように、周波数特定部82を備える。周波数特定部82は、振動センサ43による検出結果に基づいて、軌道部材34を含む振動体の固有振動数を特定する。ここで、上記の振動体とは、加振装置40による加振によって軌道部材34と一体的に振動する部材の集合体である。本実施形態において、振動体は、軌道部材34、ブラケット33、ロックユニット35、およびカバー36により構成される。
 ここで、本明細書における「固有振動数」は、振動体が支持部材41に支持され、連結部材38などの他部材と接触している組み付け状態を前提とした振動数であり、外力(加振装置40による加振)により共振が発生した際の振動数に相当する。本実施形態において、周波数特定部82は、加振装置40に異なる複数種類の周波数の振動を軌道部材34にそれぞれ付与させ、振動センサ43により検出された軌道部材34の振幅が最大となったときの振動数を固有振動数とする。
 加振装置40が振動を付与した際の振動体は、例えば連結部材38から反作用を受けるものの、このような抵抗力も含めた振動環境において、上記の固有振動数で共振する。図6の曲線L1,L2は、加振装置40が付与する振動の周波数と、軌道部材34の実際の振動の振幅との関係を示す。例えば、図6の曲線L1に示すように、所定の周波数Fn1で軌道部材34の振動は、最大の振幅Max1となる。
 本実施形態において、周波数特定部82は、先ず軌道部材34(振動体)に異なる複数種類の周波数の振動を付与する。この複数種類の周波数は、所定の周波数帯を規定数で等分した周波数であってもよいし、設計上の周波数を基準に所定数だけ加算または減算した周波数であってもよい。周波数特定部82は、それぞれの周波数の振動を付与された軌道部材34の振幅を取得し、最大の振幅Max1で振動した周波数Fn1を固有振動数とする。上記の周波数は、現在の振動環境において、振動体に共振を発生させる周波数である。
 なお、固有振動数は、振動体に接触する部材(連結部材38など)、および加振装置40の構造の変更によっても数Hzに亘り変動し得る。具体的には、本実施形態にて例示する加振装置40は、前側搬送に用いられる前進用支持部材41Aと、後側搬送に用いられる後退用支持部材41Bとを有し、それぞれに設けられた圧電素子42に給電して加振する。そのため、例えば後退用支持部材41Bは、ブラケット33に接触する部材であるため、前側搬送の際の振動体の振動に影響する。
 図6の曲線L1,L2は、前側搬送と後側搬送とでは振動体の固有振動数(周波数Fn1,Fn2)が相違することを示す。なお、それぞれの振動体の構成が実質的に相違する場合には、図6に示すように、それぞれの固有振動数(周波数Fn1,Fn2)における振動体の最大の振幅Max1,Max2は、互いに相違し得る。そこで、本実施形態において、周波数特定部82は、加振装置40に前側搬送および後側搬送に対応した振動を軌道部材34にそれぞれ付与させ、前側搬送および後側搬送の搬送動作にそれぞれ用いられる二種類の固有振動数(周波数Fn1,Fn2)を特定する。
 ここで、振動体の固有振動数は、軌道部材34や整列部材50の交換に伴って変動し得る。そこで、周波数特定部82は、例えばバルクフィーダ30に電源が投入されたときに振動体の固有振動数を特定してもよい。また、振動体の固有振動数は、バルクフィーダ30の経年変化によって徐々に変動し得る。そこで、周波数特定部82は、バルクフィーダ30に電源が投入されてから所定時間が経過したとき、またはバルクフィーダ30による部品92の搬送動作が所定回数を超えたときに、振動体の固有振動数を特定してもよい。
 また、固有振動数の特定処理には、軌道部材34に実際に振動を付与する必要があり、任意のタイミングで実行すると部品装着機10における装着処理の実行に影響し得る。そこで、周波数特定部82は、装着処理に影響しない部品供給装置12の休止期間に固有振動数の特定処理を実行するとよい。本実施形態において、周波数特定部82は、部品装着機10に対して基板91が搬入または搬出されている期間に、固有振動数を特定する特定処理の少なくとも一部を実行する。周波数特定部82は、特定した振動体の固有振動数(前進用および後退用)を制御装置16に記憶させる。
 3-3.校正部83
 部品供給制御システム80は、図5に示すように、校正部83を備える。校正部83は、加振装置40の動作を校正する校正処理を実行する。校正部83は、周波数特定部82により特定された固有振動数に基づいて振動子(圧電素子42)に供給する電力を調整し、軌道部材34が固有振動数で振動する際に振動子(圧電素子42)に供給される電力(換言すると、印加電圧に対する電流値)を取得する。校正部83は、振動体の固有振動数が前進用および後退用のそれぞれで特定されている場合には、それぞれに対応する電力を取得する。
 具体的には、校正部83は、先ず、軌道部材34を含む振動体が加振装置40の加振により一体的に振動する際の振動特性としての固有振動数を、制御装置16より取得する。次に、校正部83は、所定の電力を所定の期間だけ圧電素子42に供給するように加振装置40の給電装置44に指令する。これにより、上記の期間において、振動センサ43による検出値に基づいて軌道部材34の実際の振動の周波数が測定される。
 続いて、校正部83は、振動に関する測定結果としての周波数に基づいて、給電装置44による圧電素子42への電力を調整する。このとき、校正部83は、測定された実際の周波数と、先に取得した固有振動数との差分に基づいて、圧電素子42への電力を調整する。校正部83は、上記のような測定と調整を繰り返すことにより、振動体が固有振動数で振動する際に圧電素子42に供給される電力を取得する。
 なお、上記のような手法の他に、校正部83は、例えば所定の期間に供給される電力を段階的に変更するように指令し、それぞれの期間で測定された周波数と既知の固有振動数とを比較してもよい。そして、校正部83は、固有振動数に最も近い振動数となった期間において供給されていた電力を取得する。このようにして、校正部83は、現在のバルクフィーダ30の構成において、固有振動数で振動させるために必要な電力を取得する。
 そして、校正部83は、上記の電力を部品92の搬送時における基準電力として、バルクフィーダ30に設定する(記憶部61に記憶させる)。これにより、バルクフィーダ30は、外部からの指令に基づいて部品92の搬送動作を行う場合に、設定された基準電力を給電装置44が圧電素子42に供給するように制御する。なお、バルクフィーダ30は、搬送動作の形態(送り動作、戻り動作など)に応じて、基準電力に所定の補正などを加えることがある。
 なお、振動体の固有振動数は、上記のようにバルクフィーダ30ごとに固有であり、バルクフィーダ30に取り付けられる軌道部材34や整列部材50に応じて変動し得る。そのため、少なくとも軌道部材34が交換された後には、上記の固有振動数の特定処理を行うことが好ましい。この固有振動数の特定処理によって、現在のバルクフィーダ30の固有振動数が特定され、且つ供給すべき電力が取得される。しかしながら、その他の外乱に起因して、取得された電力を供給しても振動体が特定された固有振動数で振動しないことがある。
 例えば、バルクフィーダ30における振動体の振動状態は、スロット121によるバルクフィーダ30の固定状態に応じて変動する。つまり、バルクフィーダ30は、何れのスロット121に装備されるかによって、同一の電力を圧電素子42に供給しても振動体の実際の周波数が変動することがある。さらには、バルクフィーダ30の稼働時間などによって、適正な電力が変動し得ることを考慮して、校正部83は、例えば一定の期間経過後や電源投入時に、現状に対応すべく校正処理を実行することが好ましい。
 3-4.搬送制御部85
 部品供給制御システム80は、図5に示すように、搬送制御部85を備える。搬送制御部85は、バルクフィーダ30における部品92の搬送動作を制御する。ここで、バルクフィーダ30における部品92の搬送動作には、送り動作および戻し動作が含まれる。上記の「送り動作」は、軌道部材34の後側から前側に部品92を搬送する動作であって、供給領域Asに連通する搬送路Rから複数の部品92を供給領域As側に前進させる動作である。また、「戻し動作」は、軌道部材34の前側から後側に部品92を搬送する動作であって、供給領域Asから複数の部品92を搬送路R側に後退させる動作である。
 搬送制御部85は、状態認識部81により認識された供給領域Asにおける部品92の供給状態に基づいて、上記の送り動作および戻し動作の実行回数、実行時間などを制御する。例えば、搬送制御部85は、供給領域Asにおいて採取可能な部品92の数、および供給領域Asにおいて採取の可否に関係なく存在する部品92の概数に基づいて、搬送動作の制御において複数の搬送パターンを切り換える。上記の複数の搬送パターンには、通常搬送と、補給搬送と、除去搬送とが含まれる。
 上記の「通常搬送」とは、予め設定された一定時間だけ送り動作および戻し動作を実行する搬送パターンである。この通常搬送では、例えば送り動作と戻し動作が交互に2回以上繰り返し実行されることがある。上記の「補給搬送」とは、通常搬送より前進させる部品92の数量または送り動作の実行時間を多くする搬送パターンである。また、上記の「除去搬送」とは、通常搬送より後退させる部品92の数量または戻し動作の実行時間を少なくする搬送パターンである。
 なお、搬送制御部85は、周波数特定部82による特定結果に基づいて、バルクフィーダ30における部品92の搬送動作を制御する。例えば、搬送制御部85は、搬送動作を指令する際に、搬送パターンおよび周波数(または圧電素子42に供給する電力)を指定してもよい。または、周波数特定部82による特定結果を予めバルクフィーダ30の記憶部61に記憶させ、搬送制御部85は、単に搬送パターンのみを指定してもよい。これにより、搬送制御部85は、バルクフィーダ30における部品92の搬送動作において、周波数特定部82により特定された固有振動数の振動が軌道部材34に付与されるように制御する。
 4.部品供給制御システム80によるフィーダ制御
 部品供給制御システム80は、部品装着機10による装着処理の実行中に、バルクフィーダ30による供給状態に応じたフィーダ制御を行う。上記のフィーダ制御には、搬送動作の制御、およびシャッタ37の開閉動作の制御が含まれる。ここで、部品装着機10の制御装置16は、バルクフィーダ30がスロット121にセットされた後に、キャリブレーション処理を実行し、機内における供給領域Asの位置を認識する。
 詳細には、制御装置16は、先ずフィーダ制御装置60に対してシャッタ37を閉状態とするように指令する。これにより、複数の基準マーク344が上方から撮像可能な状態となる。制御装置16は、基板カメラ15をバルクフィーダ30の複数の基準マーク344の上方に移動させて、基板カメラ15の撮像により画像データを取得する。そして、制御装置16は、画像処理により画像データに含まれる複数の基準マーク344の位置、および撮像した際の基板カメラ15の位置に基づいて、機内におけるバルクフィーダ30の位置、即ち供給領域Asの位置を認識する。
 続いて、周波数特定部82は、図7に示すように、前側搬送の搬送動作に用いられる固有振動数Fn1を特定する(S11)。その後に、周波数特定部82は、後側搬送に用いられる固有振動数Fn2を特定する(S12)。上記の固有振動数の特定処理では、例えば、所定の周波数帯の下限から上限まで0.25Hzずつ異なる複数種類の周波数の振動を、軌道部材34にそれぞれ付与する。そして、周波数特定部82は、それぞれの周波数の振動を付与された軌道部材34の振幅を取得し、最大の振幅で振動した周波数を固有振動数とする。周波数特定部82は、特定した振動体の二種類の固有振動数(前進用および後退用)を制御装置16およびバルクフィーダ30の記憶部61に記憶させる(S13)。
 周波数特定部82は、上記のようにバルクフィーダ30に電源が投入されたときに固有振動数の特定処理を実行する。また、周波数特定部82は、軌道部材34や整列部材50が交換されたり、バルクフィーダ30による部品92の搬送動作が所定回数を超えたりしたときに、固有振動数の特定処理を実行してもよい。なお、周波数特定部82は、バルクフィーダ30に電源が投入されたとしても、電源の遮断中に軌道部材34や整列部材50が交換されていない場合には、固有振動数の特定処理の実行を省略してもよい。
 搬送制御部85は、装着処理においてバルクフィーダ30から部品92を採取する前に、バルクフィーダ30に部品92の搬送を指令する。これにより、バルクフィーダ30は、必要に応じて部品ケース70から部品92を排出させるとともに軌道部材34まで部品92を流通させる。その後に、バルクフィーダ30は、シャッタ37を中間状態に維持し、部品92の搬送動作を行う。これにより、複数のキャビティ51に部品92が収容され、余分な部品92が供給領域Asから搬送路R側へと退避される。
 状態認識部81は、供給状態の認識処理に際して、バルクフィーダ30にシャッタ37を開状態にするように指令する。状態認識部81は、基板カメラ15を供給領域Asの上方に移動させて、基板カメラ15の撮像により画像データを取得する。そして、状態認識部81は、画像データを対象とした画像処理により、採取可能な部品92の位置および角度を供給状態として認識する。
 制御装置16は、PPサイクルにおける採取動作を実行する直前に、バルクフィーダ30にシャッタ37を開状態にするように指令する。また、制御装置16は、採取動作が終了し、PPサイクルにおける装着動作を実行する期間にバルクフィーダ30に対して、設定した搬送パターンにて部品92の搬送を指令する。バルクフィーダ30は、部品92の搬送を指令された場合には、設定された搬送パターンの搬送動作を行う。
 このように、バルクフィーダ30は、供給領域Asにおける部品92の供給状態に応じた搬送動作を行うことになる。これにより、初期設定により良好に部品92が供給された状態であれば通常搬送が実行され、また搬送動作の直後において採取可能な部品92が比較的少ない場合には補給搬送が実行される。なお、この補給搬送では、併せて部品ケース70から部品92を排出し、搬送路Rまで複数の部品92を流通させる処理が搬送制御部85の指令に応じて実行されることがある。
 さらに、現在の供給状態が部品92の過剰補給を示している場合、または部品群が存在している場合には、除去搬送が実行される。これにより、供給領域Asにおける部品92の数量が適宜調整される。このような搬送動作は、部品92がキャビティ51に適正な姿勢で収容されることを促進し、供給領域Asにおいて採取可能な部品92を増加させることができる。このように、バルクフィーダ30における部品92の供給状態を良好にすることで、部品装着機10の生産性向上を図ることができる。
 状態認識部81は、バルクフィーダ30による部品92の搬送動作が終了した後に、状態認識処理を再度実行する。これにより、搬送動作後における供給領域Asの現在の供給状態が認識される。また、校正部83は、所定のタイミングで校正処理を実行する。例えば、校正部83は、バルクフィーダ30に電源が投入された後であって、且つ固有振動数の特定処理の実行が省略された場合に、必要に応じて校正処理を実行する。
 校正部83は、図8に示すように、規定の電力を所定の期間だけ圧電素子42に供給するように加振装置40の給電装置44に指令する(S21)。上記の規定の電力は、初期値として基準電力が設定される。これにより、上記の期間において軌道部材34に振動が付与される。次に、校正部83は、振動センサ43による検出値に基づいて測定された軌道部材34の実際の振動の周波数と、振動体の固有振動数との差分が許容範囲にあるか否かを判定する(S22)。
 校正部83は、上記の差分が許容範囲にない場合に(S22:No)、給電装置44が次に供給する規定の電力を調整する(S23)。具体的には、校正部83は、例えば固有振動数と実際の振動数の大小関係に基づいて、基準電力をインクリメントまたはデクリメントさせて規定の電力とする。校正部83は、上記のS21-S23を繰り返し、実際の振動の周波数と振動体の固有振動数との差分が許容範囲にある場合に(S22:Yes)、その際に圧電素子42に供給される電力を取得する。
 校正部83は、上記の電力を部品92の搬送時における基準電力として、バルクフィーダ30に設定する(S24)。つまり、校正部83は、校正結果として固有振動数で振動を付与する際に圧電素子42に供給すべき電力を、バルクフィーダ30の記憶部61に記憶させる。なお、校正部83は、例えばバルクフィーダ30が装備されるスロット121の変更、前回の校正処理の実行時から一定期間が経過している場合に、校正処理が必要であると判定して実行する。部品供給制御システムは、実行予定のPPサイクルが全て終了して部品92の供給が不要となった場合に、上記の制御処理を終了する。
 このような部品供給制御システム80の構成によると、軌道部材34を含む振動体の固有振動数に基づいて搬送動作を制御することによって、バルクフィーダ30における部品92の供給状態を良好にできる。よって、バルクフィーダ30を装備された部品装着機10の生産性向上を図ることができる。
 5.実施形態の変形態様
 5-1.部品供給制御システム80について
 実施形態において、部品供給制御システム80の各部81-83,85(状態認識部81、周波数特定部82、校正部83、および搬送制御部85)は、部品装着機10の制御装置16に組み込まれる構成を例示して説明した。これに対して、各部81-83,85の一部または全部は、制御装置16の外部装置に組み込まれる構成としてもよい。例えば、状態認識部81は、移動台132に一体的に移動可能に設けられ、基板カメラ15の撮像動作を制御する撮像ユニットに組み込まれる構成としてもよい。
 また、周波数特定部82、校正部83、および搬送制御部85は、複数のスロット121に装備されたフィーダ122と、制御装置16との通信を仲介する部品供給装置12に組み込まれてもよい。その他に、各部81-83,85は、バルクフィーダ30の自己制御機能として、バルクフィーダ30のフィーダ制御装置60に組み込まれてもよい。さらに、各部81-83,85は、部品装着機10と通信可能に接続されるホストコンピュータや専用機器などに組み込まれてもよい。何れの態様においても実施形態と同様の効果を奏する。
 なお、部品供給制御システム80は、校正部83を有しない構成を採用することができる。このような態様において、周波数特定部82は、実施形態において例示したように校正部83による校正処理を実行するタイミングで、振動体の固有振動数を特定する処理を実行する。これにより、現状における固有振動数および圧電素子42(振動子)に供給すべき電力を取得することができる。但し、スロット121の変更など固有振動数の変動がないまたは少ない場合には、実施形態にて例示したように、校正処理を実行可能とすべく校正部83を備える構成が好適である。
 5-2.振動センサ43および周波数特定部82について
 実施形態において、振動センサ43は、振動値として実際の周波数または振幅を検出するものとした。この振動センサ43は、外力に応じた電気信号を出力するものである。よって、電気信号を解析することによって、実際の周波数および振幅を測定することができる。これに対して、振動センサ43は、上記のような構成の他に、例えば振動する軌道部材34の変位量を測定する変位計であるものとしてもよい。
 上記のような態様において、周波数特定部82は、振動センサ43により測定された軌道部材34の変位量および変位量の時間変化を解析して、軌道部材34の周波数や振幅を取得してもよい。また、周波数特定部82は、圧電素子42への給電が遮断されてから軌道部材34が停止するまでの振動の減衰時間や、振動を付与された軌道部材34の特定部位の移動軌跡が、複数種類の周波数ごとに相違することに基づいて、振動体の固有振動数を特定してもよい。
 5-3.軌道部材34について
 実施形態において、バルクフィーダ30の軌道部材34は、複数のキャビティ51を形成された整列部材50を備える構成とした。これに対して、整列部材50を省略した構成としてもよい。つまり、軌道部材34の供給領域Asには、搬送路Rの上面より低い位置で部品92が分散される凹状部や、搬送路Rの上面と均一な平面状部が形成され、バルク状態で部品92が供給されるようにしてもよい。但し、部品供給処理の効率化や、供給領域Asにおける供給状態の認識処理における画像処理の負荷を軽減する観点からは、実施形態にて例示した構成が好適である。
 10:部品装着機、 12:部品供給装置、 13:部品移載装置、 15:基板カメラ、 16:制御装置、 30:バルクフィーダ、 31:フィーダ本体、 34:軌道部材、 40:加振装置、 41:支持部材、 41A:前進用支持部材、 41B:後退用支持部材、 42:圧電素子(振動子)、 43:振動センサ、 44:給電装置、 50:整列部材、 51:キャビティ、 60:フィーダ制御装置、 80:部品供給制御システム、 81:状態認識部、 82:周波数特定部、 83:校正部、 85:搬送制御部、 91:基板、 92:部品、As:供給領域、 R:搬送路

Claims (9)

  1.  フィーダ本体と、
     前記フィーダ本体に対して振動可能に設けられ、複数の部品が搬送される搬送路を形成された軌道部材と、
     複数の前記部品が前記搬送路に沿って搬送されるように前記軌道部材に振動を付与する加振装置と、
     前記加振装置の加振により振動する前記軌道部材の振動状態を示す振動値を検出する振動センサと、
     を備えるバルクフィーダ。
  2.  前記加振装置は、
     前記軌道部材を支持する支持部材と、
     前記支持部材に設けられ、供給される電力に応じて振動する振動子と、を有し、
     前記振動センサは、前記支持部材に設けられ、前記軌道部材の実際の振動の周波数または振幅を前記振動値として検出する、請求項1に記載のバルクフィーダ。
  3.  請求項1または2に記載のバルクフィーダと、
     前記振動センサによる検出結果に基づいて、前記軌道部材を含む振動体の固有振動数を特定する周波数特定部と、
     前記周波数特定部による特定結果に基づいて、前記バルクフィーダにおける前記部品の搬送動作を制御する搬送制御部と、
     を備える部品供給制御システム。
  4.  前記加振装置は、
     前記軌道部材を支持する支持部材と、
     前記支持部材に設けられ、供給される電力に応じて振動する振動子と、を有し、
     前記振動センサは、前記支持部材に設けられ、前記軌道部材の実際の振動の振幅を前記振動値として検出し、
     前記周波数特定部は、前記加振装置に異なる複数種類の周波数の振動を前記軌道部材にそれぞれ付与させ、前記振動センサにより検出された前記軌道部材の振幅が最大となったときの振動数を前記固有振動数とする、請求項3に記載の部品供給制御システム。
  5.  前記支持部材には、前記搬送路の前側に前記部品を搬送させる前側搬送に用いられる前進用支持部材と、前記搬送路の後側に前記部品を搬送させる後側搬送に用いられる後退用支持部材が含まれ、
     前記振動子および前記振動センサは、前記前進用支持部材および前記後退用支持部材のそれぞれに設けられ、
     前記周波数特定部は、前記加振装置に前記前側搬送および前記後側搬送に対応した振動を前記軌道部材にそれぞれ付与させ、前記前側搬送および前記後側搬送の搬送動作にそれぞれ用いられる二種類の前記固有振動数を特定する、請求項4に記載の部品供給制御システム。
  6.  前記周波数特定部により特定された前記固有振動数に基づいて前記振動子に供給する電力を調整し、前記軌道部材が前記固有振動数で振動する際に前記振動子に供給される電力を取得する校正部をさらに備える、請求項4または5に記載の部品供給制御システム。
  7.  前記周波数特定部は、前記バルクフィーダに電源が投入されたとき、前記バルクフィーダに電源が投入されてから所定時間が経過したとき、または前記バルクフィーダによる前記部品の搬送動作が所定回数を超えたときに、前記固有振動数を特定する、請求項3-6の何れか一項に記載の部品供給制御システム。
  8.  前記周波数特定部は、前記バルクフィーダにより供給された前記部品を基板に装着する部品装着機に対して前記基板が搬入または搬出されている期間に、前記固有振動数を特定する特定処理の少なくとも一部を実行する、請求項3-7の何れか一項に記載の部品供給制御システム。
  9.  前記搬送制御部は、前記バルクフィーダにおける前記部品の搬送動作において、前記周波数特定部により特定された前記固有振動数の振動が前記軌道部材に付与されるように制御する、請求項3-8の何れか一項に記載の部品供給制御システム。
PCT/JP2021/003419 2021-01-29 2021-01-29 バルクフィーダおよび部品供給制御システム WO2022162914A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/003419 WO2022162914A1 (ja) 2021-01-29 2021-01-29 バルクフィーダおよび部品供給制御システム
CN202180091061.1A CN116803226A (zh) 2021-01-29 2021-01-29 散装供料器及元件供给控制系统
US18/262,476 US20240076134A1 (en) 2021-01-29 2021-01-29 Bulk feeder and parts supply control system
JP2022577986A JP7487350B2 (ja) 2021-01-29 2021-01-29 部品供給制御システム
EP21922928.3A EP4287804A4 (en) 2021-01-29 2021-01-29 BULK FEEDER AND PARTS FEED CONTROL SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003419 WO2022162914A1 (ja) 2021-01-29 2021-01-29 バルクフィーダおよび部品供給制御システム

Publications (1)

Publication Number Publication Date
WO2022162914A1 true WO2022162914A1 (ja) 2022-08-04

Family

ID=82654363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003419 WO2022162914A1 (ja) 2021-01-29 2021-01-29 バルクフィーダおよび部品供給制御システム

Country Status (5)

Country Link
US (1) US20240076134A1 (ja)
EP (1) EP4287804A4 (ja)
JP (1) JP7487350B2 (ja)
CN (1) CN116803226A (ja)
WO (1) WO2022162914A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128261A (ja) * 2000-10-23 2002-05-09 Ykk Corp 電磁式パーツフィーダの制御方法と装置
JP4134075B2 (ja) * 2005-03-14 2008-08-13 株式会社豊田自動織機 音波浮揚装置
WO2009078273A1 (ja) * 2007-12-14 2009-06-25 Ishida Co., Ltd. 振動搬送装置
JP2011088707A (ja) * 2009-10-22 2011-05-06 Nippon Tekunaa:Kk 電磁方式フィーダー
JP2011114084A (ja) 2009-11-25 2011-06-09 Nitto Kogyo Co Ltd 電子部品供給装置
JP2013252961A (ja) * 2012-06-08 2013-12-19 Sinfonia Technology Co Ltd ワーク分別システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037462B2 (ja) * 2008-09-12 2012-09-26 日東工業株式会社 電子部品供給装置
CH713047A1 (de) * 2016-10-14 2018-04-30 K Tron Tech Inc Verfahren zur Regelung der Vibrationsbewegung eines Vibrationsförderers und einen Vibrationsförderer.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128261A (ja) * 2000-10-23 2002-05-09 Ykk Corp 電磁式パーツフィーダの制御方法と装置
JP4134075B2 (ja) * 2005-03-14 2008-08-13 株式会社豊田自動織機 音波浮揚装置
WO2009078273A1 (ja) * 2007-12-14 2009-06-25 Ishida Co., Ltd. 振動搬送装置
JP2011088707A (ja) * 2009-10-22 2011-05-06 Nippon Tekunaa:Kk 電磁方式フィーダー
JP2011114084A (ja) 2009-11-25 2011-06-09 Nitto Kogyo Co Ltd 電子部品供給装置
JP2013252961A (ja) * 2012-06-08 2013-12-19 Sinfonia Technology Co Ltd ワーク分別システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4287804A4

Also Published As

Publication number Publication date
EP4287804A4 (en) 2024-03-13
US20240076134A1 (en) 2024-03-07
CN116803226A (zh) 2023-09-22
JPWO2022162914A1 (ja) 2022-08-04
JP7487350B2 (ja) 2024-05-20
EP4287804A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2022162916A1 (ja) バルクフィーダ
WO2016046897A1 (ja) 部品供給システム
JP7546152B2 (ja) バルクフィーダ
WO2021095218A1 (ja) バルクフィーダおよび部品装着機
WO2022162914A1 (ja) バルクフィーダおよび部品供給制御システム
WO2022162915A1 (ja) バルクフィーダおよび部品装着機
WO2022162918A1 (ja) 部品供給制御システム
JP7303898B2 (ja) バルクフィーダ
WO2022230157A1 (ja) バルクフィーダおよび部品供給制御システム
WO2022162917A1 (ja) バルクフィーダおよびフィーダ管理装置
JP7340032B2 (ja) 部品装着機
WO2023181342A1 (ja) 部品装着機および部品装着方法
WO2023238407A1 (ja) バルクフィーダおよびバルクフィーダの整列部材
WO2022201355A1 (ja) はんだボール供給装置およびはんだボール供給方法
WO2023188107A1 (ja) 部品装着機および部品装着方法
WO2022190201A1 (ja) メンテナンス装置
CN112753292B (zh) 元件供给装置
JP7110318B2 (ja) 部品実装システム及び、部品保持方法
CN114074833A (zh) 碗式供料器
JP2023070876A (ja) メンテナンス装置およびメンテナンス方法
JP2024081909A (ja) バルクフィーダ
KR20200049665A (ko) 부품 공급 장치의 픽업 위치에서 부품들의 위치 적응식 제공
JP2020080354A (ja) 作業機、および載置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577986

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091061.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18262476

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021922928

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021922928

Country of ref document: EP

Effective date: 20230829