WO2022161090A1 - 一种正极材料前驱体及其制备方法和应用 - Google Patents

一种正极材料前驱体及其制备方法和应用 Download PDF

Info

Publication number
WO2022161090A1
WO2022161090A1 PCT/CN2021/142369 CN2021142369W WO2022161090A1 WO 2022161090 A1 WO2022161090 A1 WO 2022161090A1 CN 2021142369 W CN2021142369 W CN 2021142369W WO 2022161090 A1 WO2022161090 A1 WO 2022161090A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
precursor
material precursor
lithium
Prior art date
Application number
PCT/CN2021/142369
Other languages
English (en)
French (fr)
Inventor
汪乾
刘婧婧
阮丁山
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to MA61505A priority Critical patent/MA61505A1/fr
Priority to ES202390063A priority patent/ES2954791R1/es
Priority to HU2200279A priority patent/HUP2200279A1/hu
Priority to GB2310079.5A priority patent/GB2617024A/en
Priority to DE112021005597.6T priority patent/DE112021005597T5/de
Publication of WO2022161090A1 publication Critical patent/WO2022161090A1/zh
Priority to US18/227,880 priority patent/US20230373814A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of battery materials, and particularly relates to a positive electrode material precursor and a preparation method and application thereof.
  • the related art discloses a preparation method of a high-power cathode material with a hollow structure, wherein the hollow structure is realized by removing the carbon sphere as the core of the precursor in a high-temperature sintering process.
  • the difference in the diameter of the carbon spheres will lead to the difference in the hollow structure of the final sintered material, which will lead to the difference in the power performance of the material; in addition, the carbon sphere will be converted into CO gas during the sintering process, which is generated from the dehydration of the precursor during the sintering process.
  • the concentrated release of water vapor will generate strong stress, resulting in the risk of cracking of the secondary spherical particles.
  • a two-step method for preparing lithium-ion battery cathode materials with both high power and long cycle is also disclosed.
  • the manganese oxide precursor is sintered with lithium source at high temperature, crushed, washed with water, dried, and coated with secondary sintering to obtain the final product.
  • the cathode material prepared by this method has excellent performance, but the process flow is complicated, and benzene and long carbon chain alkyl organic compounds need to be used as emulsifiers in the preparation process of MOFs material, which is easy to cause environmental pollution.
  • the related art also discloses a high-power cathode material with a hollow microsphere structure and a preparation method thereof.
  • Ni x Co y Mn z (OH) 2 precursor by co-precipitation method by changing the concentration of ammonium ion, a complexing agent in the nucleation and growth stage of the precursor, fine particles are prepared in the center part.
  • the outer shell layer is a precursor composed of slightly larger particles. During the high temperature sintering process with lithium salt and additives, the inner core particles shrink toward the outer shell to obtain a positive electrode material with a hollow structure.
  • the above-mentioned high-power materials all have the structural characteristics of loose and porous surfaces and hollow interiors.
  • the loose surface structure allows the electrolyte to penetrate into the hollow structure through the gaps between the particles, thereby increasing the contact area between the active material and the electrolyte; the hollow structure can effectively reduce the diffusion distance of lithium ions and reduce impedance.
  • the two complement each other to endow the cathode material with good power performance.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention proposes a positive electrode material precursor and its preparation method and application; the present invention adopts the controlled crystallization method, combined with the theoretical model of Lamer nucleation and growth to effectively control and adjust the preparation process of the precursor, and the prepared precursor It has the morphological characteristics of concentrated particle size distribution and high proportion of active crystal plane ⁇ 010 ⁇ .
  • the higher the proportion of active crystal planes the more channels can be provided for the de-intercalation of lithium ions, the charging and discharging capacity of the cathode material at high rates can be improved, and the fast charging function of lithium-ion batteries can be realized. Therefore, the lithium-ion battery cathode material has the advantages of high power and high capacity retention.
  • a positive electrode material precursor the chemical formula of the positive electrode material precursor is Ni x Co y Mn z (OH) 2 , wherein 0.2 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.6, 0.8 ⁇ x+ y+z ⁇ 1; the positive electrode material precursor is in the form of a stack of sheets, and the particle size broadening coefficient of the positive electrode material precursor is K, where K ⁇ 0.85.
  • the K (D v 90-D v 10)/D v 50.
  • the active crystal face ⁇ 010 ⁇ crystal face family of the cathode material precursor accounts for 40-80%, and the active crystal face ⁇ 010 ⁇ crystal face family in the cathode material precursor includes (010), (100), (110), active crystal face.
  • a preparation method of a positive electrode material precursor comprising the following steps:
  • the complexing agent is ammonia water; the precipitating agent is at least one of sodium hydroxide or sodium carbonate.
  • the nickel-cobalt-manganese metal salt solution is at least one of sulfate, nitrate, oxalate or hydrochloride corresponding to the nickel-cobalt-manganese metal element.
  • the concentration of the nickel-cobalt-manganese metal salt solution in the nucleation reaction is 0.5-2 mol/L, and the concentration of the nickel-cobalt-manganese metal salt solution in the growth reaction is 1.5-3 mol/L.
  • the concentration of the complexing agent in the nucleation reaction is 0.5-2.5 g/L, and the concentration of the complexing agent in the growth reaction is 2-5 g/L.
  • the time of the nucleation reaction is 24-50h, and the time of the growth reaction is 60-100h.
  • the temperature of the nucleation reaction is 40°C-70°C, and the stirring speed is 100-800 r/min.
  • a positive electrode material for a lithium ion battery is prepared from the raw material including the positive electrode material precursor.
  • the chemical formula of the lithium ion battery cathode material is Li a Ni x Co y Mn z M b O 2 , wherein 0.9 ⁇ a ⁇ 1.4, 0.2 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.6 , 0 ⁇ b ⁇ 0.1, 0.8 ⁇ x+y+z ⁇ 1, 1 ⁇ a/(x+y+z) ⁇ 1.5;
  • M is the element B, Al, Mg, Zr, Ti, Fe, Zn, Ga, At least one of Ge, Sr, Y, Zr, Nb, Mo, Sn, Sb, La, Ce, W, and Ta.
  • the positive electrode material of the lithium ion battery has good high-rate discharge performance, and the discharge capacity at a rate of 20C is higher than 90% of the discharge capacity of 0.1C.
  • a preparation method of a lithium ion battery positive electrode material comprising the following steps:
  • the positive electrode material precursor, the lithium source and the additive are mixed, sintered once, pulverized, sintered for a second time, and cooled to obtain the positive electrode material for the lithium ion battery.
  • the lithium source is at least one of lithium carbonate and lithium hydroxide.
  • the additives are oxides of elements B, Al, Mg, Zr, Ti, Fe, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Sn, Sb, La, Ce, W, Ta at least one of them.
  • the molar ratio of the metal in the precursor and the lithium in the lithium source is 1:(0.9-1.4).
  • the additive is added in an amount of 1000-6000 ppm.
  • the temperature of the primary sintering is 700°C-950°C, and the time is 20-28h; the temperature of the secondary sintering is 300°C-600°C, and the time is 3-8h.
  • a battery comprising the above-mentioned positive electrode material for a lithium ion battery.
  • Cathode materials for power lithium-ion batteries require that lithium ions still have a high diffusion and migration speed during high-rate charge and discharge. It is particularly important to ensure that lithium ions can diffuse and migrate along an ideal path.
  • Common cathode materials such as NCM, NCA, and LiCoO 2 are all layered structures with an R-3m space group structure, in which lithium ions can only diffuse along two-dimensional planes. When the direction of diffusion and migration of lithium ions is consistent with the normal direction of the particle surface, the crystal plane corresponding to the particle surface is called the active crystal plane of lithium ion diffusion. The higher the proportion of active crystal planes in the primary particles, the more effective diffusion paths for lithium ions, and the better the power performance of the material.
  • the present invention adopts the controlled crystallization method, combined with the Lamer nucleation-growth theoretical model, to adjust the concentration of transition metal ions and complexing agents in the co-precipitation reaction process, and to control the precursor crystal by controlling the time to reach the critical supersaturation concentration C s .
  • the number of nucleated nuclei and the ratio of the active facet ⁇ 010 ⁇ facet group; on this basis, the growth of crystal nuclei is further controlled by adjusting the reaction time between the critical supersaturation concentration Cs and the minimum nucleation concentration Cmin.
  • a precursor with a high proportion of active crystal planes in the ⁇ 010 ⁇ crystal plane group, the proportion of active crystal planes up to 80%, and a concentrated particle size distribution are obtained.
  • the precursor with a high proportion of active crystal plane ⁇ 010 ⁇ still maintains its morphology characteristics greatly after high temperature sintering, thus providing a good source for the diffusion and migration of Li + .
  • the capacity retention rate can reach 91.33% even at a rate of 20C.
  • Example 1 is a schematic structural diagram of a precursor with a high proportion of active crystal plane ⁇ 010 ⁇ prepared in Example 1 of the present invention
  • Example 2 is a SEM image of the precursor and the high-power cathode material prepared in Example 1 of the present invention.
  • the raw materials, reagents or devices used in the following examples can be obtained from conventional commercial channels unless otherwise specified, or can be obtained by existing known methods.
  • the positive electrode material of the lithium ion battery in this embodiment is prepared from the raw material including the above-mentioned positive electrode material precursor, and its chemical formula is Li 1.15 Ni 0.5 Co 0.3 Mn 0.2 (ZrAl) 0.03 O 2 .
  • the above-mentioned positive electrode material precursor and lithium carbonate are mixed according to the molar ratio of 1:1.15, the doping element M is 1500ppm Zr and 1500ppm Al, the oxide corresponding to the doping element of the additive in the process, the mixed material is uniformly mixed in an air atmosphere 810 Sintered at °C for 27 hours, crushed and coated, sintered at 450°C for a second time in an air atmosphere, kept for 6 hours, and cooled to obtain Li 1.15 Ni 0.5 Co 0.3 Mn 0.2 (ZrAl) 0.03 O 2 , which is a positive electrode material for lithium ion batteries.
  • the microstructure is shown in Fig. 2(b).
  • Figure 1 is a schematic structural diagram of a precursor with a high proportion of active crystal plane ⁇ 010 ⁇ prepared in Example 1 of the present invention.
  • the active crystal plane has a low proportion (left image), and its active crystal plane (010) (100), (110), The sum of the area accounts for a lower surface area of the cuboid; the active crystal plane accounts for a high proportion (right picture), and its active crystal plane (010), (100), (110), The sum of the areas accounts for a higher proportion of the surface area of the cuboid, which means that more lithium ion diffusion channels can be provided.
  • Fig. 2 is a SEM image of the precursor and high-power cathode material prepared in Example 1 of the present invention. It can be seen from Fig. 2(a) that the prepared precursor has a concentrated particle size distribution, and the active crystal plane ⁇ 010 ⁇ accounts for high morphological characteristics; as can be seen from Figure 2(b), the prepared lithium-ion battery cathode material still greatly maintains the morphological characteristics of the precursor after high temperature sintering, thus providing more opportunities for the diffusion and migration of Li + channel to play high power characteristics.
  • the Li 1.15 Ni 0.5 Co 0.3 Mn 0.2 (ZrAl) 0.03 O 2 cathode material prepared in Example 1 was made into a half cell and charged and discharged at different rates to characterize its rate performance.
  • the capacity retention ratios (relative to 1C) of the prepared high-power Li 1.15 Ni 0.5 Co 0.3 Mn 0.2 (ZrAl) 0.03 O 2 cathode materials at different rates are shown in Table 1 below.
  • the positive electrode material of the lithium ion battery of this embodiment is prepared from the raw material including the above-mentioned positive electrode material precursor, and its chemical formula is Li 1.15 Ni 0.5 Co 0.3 Mn 0.2 (BSr) 0.016 O 2 .
  • the doping element M is 600 ppmB and 1000 ppm Sr
  • the oxides corresponding to the doping elements of the additives in the process and the uniformly mixed material is sintered at 790 °C in an air atmosphere 18h, after crushing, coating, secondary sintering at 550°C in an air atmosphere, holding for 5h, and cooling to obtain Li 1.25 Ni 0.5 Co 0.5 (BSr) 0.016 O 2 , a positive electrode material
  • the high-power Li 1.25 Ni 0.5 Co 0.5 (BSr) 0.016 O 2 positive electrode material prepared in Example 2 was fabricated into a half-cell and charged and discharged at different rates to characterize its rate performance.
  • the capacity retention ratios (relative to 1C) of the prepared high-power Li 1.25 Ni 0.5 Co 0.5 O 2 cathode materials at different rates are shown in Table 2 below.
  • Ni:Mn of 2:6 nickel acetate and cobalt acetate were dissolved in deionized water, and prepared into a molten metal with a concentration of 0.5mol/L.
  • switch the concentration of the molten metal to 3 mol/L and the concentration of ammonia water to 5 g/L and continue the reaction.
  • the positive electrode material of the lithium ion battery of this embodiment is prepared from the raw material including the above-mentioned positive electrode material precursor, and its chemical formula is Li 1.4 Ni 0.2 Mn 0.6 (WTa) 0.03 O 2 .
  • the Li 1.4 Ni 0.2 Mn 0.6 (WTa) 0.03 O 2 cathode material prepared in Example 3 was fabricated into a half-cell and charged and discharged at different rates to characterize its rate performance.
  • the capacity retention ratios (relative to 1C) of the prepared high-power Li 1.4 Ni 0.2 Mn 0.6 (WTa) 0.03 O 2 cathode materials at different rates are shown in Table 3 below.
  • Ni:Mn molar ratio of 8:2 nickel acetate and cobalt acetate were dissolved in deionized water, and the metal liquid with a concentration of 2mol/L was prepared.
  • the molten metal, ammonia water and NaOH were added to the reaction kettle together, the reaction temperature was controlled to be 55 °C, and the stirring speed was 300 r/min.
  • the positive electrode material of the lithium ion battery in this embodiment is prepared from the raw material including the above-mentioned positive electrode material precursor, and its chemical formula is Li 1.15 Ni 0.8 Mn 0.2 (Mo) 0.03 O 2 .
  • the Li 1.15 Ni 0.8 Mn 0.2 (Mo) 0.03 O 2 positive electrode material prepared in Example 4 was fabricated into a half-cell and charged and discharged at different rates to characterize its rate performance.
  • the capacity retention ratios (relative to 1C) of the prepared high-power Li 1.15 Ni 0.8 Mn 0.2 (Mo) 0.03 O 2 cathode materials at different rates are shown in Table 4 below.
  • Comparative Example 1 a conventional co-precipitation method was used to prepare the precursor, and the prepared precursor did not have a high proportion of ⁇ 010 ⁇ active crystal planes.
  • the preparation method of the positive electrode material of the lithium ion battery comprises the following steps:
  • the Li 1.15 Ni 0.5 Co 0.3 Mn 0.2 (ZrAl) 0.03 O 2 cathode material prepared in Comparative Example 1 was fabricated into a half-cell and charged and discharged at different rates to characterize its rate performance.
  • the capacity retention ratios (relative to 1C) of the prepared Li 1.15 Ni 0.5 Co 0.3 Mn 0.2 (ZrAl) 0.03 O 2 cathode materials at different rates are shown in Table 5 below.
  • the preparation method of the positive electrode material precursor of this comparative example includes the following steps:
  • Ni:Co molar ratio is 5:5, nickel acetate and cobalt acetate are dissolved in deionized water, and the concentration is 1mol/L.
  • the molten metal, ammonia water and NaOH were added to the reaction kettle together, the reaction temperature was controlled to be 60 °C, the stirring speed was 400 r/min, the reaction was stopped for 120 h, and then Ni was obtained after solid-liquid separation, aging, washing, drying and sieving.
  • the positive electrode material of the lithium ion battery of this comparative example is prepared from the raw material including the above-mentioned positive electrode material precursor, and its chemical formula is Li 1.15 Ni 0.5 Co 0.3 Mn 0.2 (ZrAl) 0.03 O 2 .
  • the preparation method of the lithium ion battery cathode material of this comparative example includes the following steps:
  • the high-power Li 1.25 Ni 0.5 Co 0.5 (BSr) 0.016 O 2 cathode material prepared in Comparative Example 2 was fabricated into a half-cell and charged and discharged at different rates to characterize its rate performance.
  • the capacity retention ratios (relative to 1C) of the prepared high-power Li 1.25 Ni 0.5 Co 0.5 (BSr) 0.016 O 2 cathode materials at different rates are shown in Table 6 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种正极材料前驱体及其制备方法和应用,该正极材料前驱体的化学式为Ni xCo yMn z(OH) 2,其中0.2≤x≤1,0≤y≤0.5,0≤z≤0.6,0.8≤x+y+z≤1;该正极材料前驱体呈片层堆叠状,该正极材料前驱体的粒度宽化系数为K,K≤0.85。采用控制结晶法,结合Lamer成核生长的理论模型对前驱体的制备过程进行有效控制调节,所制备的前驱体具有粒度分布集中,活性晶面{010}占比高的形貌特征,在20C的倍率下,容量保持率还能达到91.33%。

Description

一种正极材料前驱体及其制备方法和应用 技术领域
本发明属于电池材料技术领域,具体涉及一种正极材料前驱体及其制备方法和应用。
背景技术
传统的镍氢、铅酸电源有效地实现了化学能向电能的转变,为各行各业的发展进步做出了举足轻重的贡献,但同时也不可避免地产生了严重的环境问题。鉴于此,欧洲于2007年就提出了禁止携带含有汞铅镉等金属物质金属进入欧洲的ROSH规范,以抑制镍、镉等造成的环境污染。我国2016年发布的《“十三五”国家战略性新兴产业发展规划》也明确指出,继续推进节能、环保、资源循环利用产业体系建设。现阶段,以能量密度高、无记忆效应、使用寿命长兼具绿色环保的锂离子电池全面替代传统的化学电池已是势在必行。要以混合动力汽车(HEV)、插电式混合动力汽车(PHEV)取代传统的燃油车。这就要求锂离子动力电池必须具备为汽车运行尤其是启动提供足够大的输出功率的能力,同样对电源系统具有高功率输出特性需求的还包括快速启停的电动工具、水中兵器及定向能武器设备等。与能量型正极材料不同,高功率型正极材料要求材料在大倍率充放电时具有较高的输出功率,适用于高倍率充放电。
相关技术公开了一种中空结构的高功率正极材料的制备方法,其中空结构是通过将作为前驱体核心的碳球在高温烧结过程中去除后实现的。显然,碳球直径的不同会导致最终烧结后材料的空心结构的差异,从而导致材料的功率性能的不同;此外,碳球在烧结过程中会转化成CO 2气体,与前驱体烧结过程脱水产生的水蒸气集中释放会产生较强的应力,导致二次球颗粒有开裂的风险。目前还公开了一种两步法制备兼具高功率和长循环的锂离子电池正极材料的方法,其关键是先以改性MOFs(金属有机骨架化合物)材料为模板制备高功率型的镍钴锰氧化物前驱体,再与锂源经高温烧结、破碎、水洗、烘干、包覆二烧得到最终的成品。采用该方法制备的为正极材料性能优良,但工艺流程繁杂,而且MOFs材料制备过程中需要使用苯类、长碳链烷基有机物作为乳化剂,容易造成环境污染。相关技术还有公开了一种具有中空微球结构的高功率正极材料及其制备方法。有别于其他方法,在共沉淀法合成Ni xCo yMn z(OH) 2前驱体的过程中通过改变前驱体成核与生长阶段络合剂铵根离子的浓度制备出中心部分为细小粒子外部壳层为稍大粒子的构成的前驱体,在与锂盐、添加剂在高温烧结 过程中内核粒子向外壳方向收缩,得到具有中空结构的正极材料。
不难发现,上述的高功率材料均具有表面疏松多孔、内部中空的结构特点。表面疏松的结构使得电解液能够通过颗粒间的间隙渗透到中空结构内部,从而增大活性物质与电解液的接触面积;而中空结构则能够有效降低锂离子的扩散距离,降低阻抗。两者相辅相成从而赋予正极材料良好的功率性能。
目前,制备高功率材料的合成过程中,因前驱体存在内外结构差异,在烧结过程中易产生扁塌。且由于此种材料为中空结构,其振实密度及压实密度较低,粒子强度不高,在极片辊压时正极材料容易碎裂,这将破坏材料原有的结构并影响到材料的电性能。同时,由于材料比表面积较大,虽有利于其输出功率的提高,但材料与电解液接触面积增大,副反应增加而导致容量保持率低。
因此,亟需提供一种既具有高功率,又具有高的容量保持率的正极材料前驱体及锂离子电池正极材料。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种正极材料前驱体及其制备方法和应用;本发明采用控制结晶法,结合Lamer成核生长的理论模型对前驱体的制备过程进行有效控制调节,所制备的前驱体具有粒度分布集中,活性晶面{010}占比高的形貌特征。活性晶面比例越高,从而可以为锂离子的脱嵌提供更多的通道,提升正极材料在高倍率下的充放电能力,进而实现锂离子电池的快充功能。因此,该锂离子电池正极材料具有高功率、高容量保持率的优点。
一种正极材料前驱体,所述正极材料前驱体的化学式为Ni xCo yMn z(OH) 2,其中0.2≤x≤1,0≤y≤0.5,0≤z≤0.6,0.8≤x+y+z≤1;所述正极材料前驱体呈片层堆叠状,所述正极材料前驱体的粒度宽化系数为K,K≤0.85。
优选地,所述K=(D v90-D v10)/D v50。
优选地,所述正极材料前驱体的活性晶面{010}晶面族占比为40~80%,所述正极材料前驱体中活性晶面{010}晶面族是包括(010),
Figure PCTCN2021142369-appb-000001
(100),(110),
Figure PCTCN2021142369-appb-000002
的活性晶面。
一种正极材料前驱体的制备方法,包括以下步骤:
配制镍钴锰的金属盐溶液,加入络合剂,再加入沉淀剂进行成核反应,调节镍钴锰的金属盐溶液和络合剂的浓度,继续进行生长反应,过滤,陈化,干燥,即得所述正极材料前驱 体。
优选地,所述络合剂为氨水;所述沉淀剂为氢氧化钠或碳酸钠中的至少一种。
优选地,所述镍钴锰的金属盐溶液为镍钴锰金属元素对应的硫酸盐、硝酸盐、草酸盐或盐酸盐中的至少一种。
优选地,所述成核反应中镍钴锰的金属盐溶液的浓度为0.5~2mol/L,所述生长反应中镍钴锰的金属盐溶液的浓度为1.5~3mol/L。
优选地,所述成核反应中络合剂的浓度为0.5-2.5g/L,所述生长反应中络合剂的浓度为2-5g/L。
优选地,所述成核反应的时间为24-50h,所述生长反应的时间为60-100h。
优选地,所述成核反应的温度为40℃-70℃,搅拌速度为100-800r/min。
一种锂离子电池正极材料,由包括所述的正极材料前驱体的原料制得。
优选地,所述锂离子电池正极材料的化学式为Li aNi xCo yMn zM bO 2,其中0.9≤a≤1.4,0.2≤x≤1,0≤y≤0.5,0≤z≤0.6,0≤b≤0.1,0.8≤x+y+z≤1,1≤a/(x+y+z)≤1.5;M为元素B、Al、Mg、Zr、Ti、Fe、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Sn、Sb、La、Ce、W、Ta中的至少一种。
优选地,所述锂离子电池正极材料具有良好的高倍率放电性能,20C倍率下放电容量高于0.1C放电容量的90%以上。
一种锂离子电池正极材料的制备方法,包括以下步骤:
将所述正极材料前驱体、锂源和添加剂混合,进行一次烧结,粉碎,再进行二次烧结,冷却,即得所述锂离子电池正极材料。
优选地,所述锂源为碳酸锂、氢氧化锂中的至少一种。
优选地,所述添加剂为元素B、Al、Mg、Zr、Ti、Fe、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Sn、Sb、La、Ce、W、Ta的氧化物中的至少一种。
优选地,所述前驱体中的金属和锂源中锂的摩尔比为1:(0.9-1.4)。
优选地,以前驱体重量计,所述添加剂的添加量为1000~6000ppm。
优选地,所述一次烧结的温度为700℃-950℃,时间为20-28h;所述二次烧结的温度为300℃-600℃,时间为3-8h。
一种电池,包括上述的锂离子电池正极材料。
功率型锂离子电池正极材料要求高倍率充放电时锂离子仍具有较高的扩散迁移速度,确保锂离子能够沿着理想的路径扩散迁移就尤为重要。常见的正极材料如NCM、NCA、LiCoO 2均为层状结构,具有R-3m空间群结构,其中锂离子只能沿着二维平面进行扩散。当锂离子扩散迁移方向与颗粒表面法向方向一致时,颗粒表面对应的晶面称之为锂离子扩散的活性晶面。一次颗粒中活性晶面的比例越高,锂离子有效的扩散路径越多,材料的功率性越好,这一观点已由大量的科技文献证实。此外,在R-3m结构的层状正极材料中,锂离子扩散迁移的方向是与(003)晶面平行的,而镍钴锰氢氧化物中的垂直于(001)晶面取向的{010}晶面族是有利于锂离子扩散的活性晶面。考虑到烧结过程中前驱体的形貌具有继承性,不难推断出前驱体中活性晶面的比例越高,高温烧结产物中锂离子扩散的有效路径就越多。由此可知,获得具有良好的高功率特性的正极材料的关键在于制备具有活性晶面占比高的前驱体。
相对于现有技术,本发明的有益效果如下:
1、本发明采用控制结晶法,结合Lamer成核-生长理论模型,调节共沉淀反应过程中过渡金属离子、络合剂的浓度,通过对到达临界过饱和浓度C s的时间来控制前驱体晶核的成核数量及所含活性晶面{010}晶面族的比例;在此基础上进一步通过调节临界过饱和浓度Cs与最低成核浓度Cmin之间的反应时间控制晶核的生长,最终获得具有{010}晶面族活性晶面占比高,活性晶面占比高达80%,粒度分布集中的前驱体。
2、由于前驱体在烧结过程中的形貌具有继承性,活性晶面{010}占比高的前驱体经过高温烧结后仍极大地保持其形貌特征,从而为Li +的扩散迁移提供了更多的通道,发挥高功率特性,即使在20C的倍率下,容量保持率还能达到91.33%。
附图说明
图1为本发明实施例1制备的具有高占比活性晶面{010}的前驱体的结构示意图;
图2为本发明实施例1中制备的前驱体及高功率正极材料的SEM图。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者 可以通过现有已知方法得到。
实施例1
本实施例的正极材料前驱体,其化学式为Ni 0.5Co 0.3Mn 0.2(OH) 2;前驱体呈明显的片层堆叠状,前驱体的粒度宽化系数为K,K=0.75。
本实施例的正极材料前驱体的制备方法,包括以下步骤:
按照Ni:Co:Mn摩尔比为5:3:2将硫酸镍、硫酸钴、硫酸锰溶于去离子水,配置成浓度为0.5mol/L的金属液,调节络合剂氨水浓度为0.5g/L,并通过蠕动泵将金属液、氨水、NaOH一起加到反应釜中,控制反应温度为70℃,搅拌速度为200r/min,反应48h后将金属液浓度切换至2mol/L、氨水浓度至2g/L,继续反应72h后停止,再经过固液分离、陈化、洗涤、干燥与过筛后即得Ni 0.5Co 0.3Mn 0.2(OH) 2前驱体,前驱体的粒度宽化系数K=0.75,微观形貌如图2(a)所示。
本实施例的锂离子电池正极材料,由包括上述的正极材料前驱体的原料制得,其化学式为Li 1.15Ni 0.5Co 0.3Mn 0.2(ZrAl) 0.03O 2
本实施例的锂离子电池正极材料的制备方法,包括以下步骤:
(1)将上述正极材料前驱体与碳酸锂按照摩尔比1:1.15进行混合,掺杂元素M为1500ppmZr和1500ppmAl,过程中添加剂的掺杂元素对应的氧化物,混合均匀的物料在空气气氛810℃下烧结27h,经粉碎、包覆,在空气气氛下450℃二次烧结,保温6h,冷却后,即得到锂离子电池正极材料Li 1.15Ni 0.5Co 0.3Mn 0.2(ZrAl) 0.03O 2,其微观形貌如图2(b)所示。
图1为本发明实施例1制备的具有高占比活性晶面{010}的前驱体的结构示意图,活性晶面占比低(左图),其活性晶面(010),
Figure PCTCN2021142369-appb-000003
(100),(110),
Figure PCTCN2021142369-appb-000004
面积之和占长方体的表面积偏低;活性晶面占比高(右图),其活性晶面(010),
Figure PCTCN2021142369-appb-000005
(100),(110),
Figure PCTCN2021142369-appb-000006
面积之和占长方体的表面积比例更高,意味着可以提供更多的锂离子扩散通道。
图2为本发明实施例1中制备的前驱体及高功率正极材料的SEM图,从图2(a)中可以看出,制备的前驱体具有粒度分布集中,活性晶面{010}占比高的形貌特征;从图2(b)中可以看出,制备的锂离子电池正极材料经过高温烧结后仍极大地保持前驱体的形貌特征,从而为Li +的扩散迁移提供了更多的通道,发挥高功率特性。
高倍率下正极材料的放电容量保持率越高,其功率性能越好。故将实施例1制备的 Li 1.15Ni 0.5Co 0.3Mn 0.2(ZrAl) 0.03O 2正极材料制作成半电池在并在不同倍率下进行充放电测试以表征其倍率性能。所制备的高功率型Li 1.15Ni 0.5Co 0.3Mn 0.2(ZrAl) 0.03O 2正极材料在不同倍率下的容量保持率(相对于1C)如下表1所示。
表1
倍率 2C/1C 5C/1C 10C/1C 20C/1C
容量保持率(%) 98.21 95.84 92.37 88.19
从表1可以看出,实施例1的锂离子电池正极材料即使在20C下,其容量保持率还能达到88.19%,说明其具有高功率特性。
实施例2
本实施例的正极材料前驱体,其化学式为Ni 0.5Co 0.5(OH) 2;前驱体呈明显的片层堆叠状,前驱体的粒度宽化系数为0.72,0.72=(D v90-D v10)/D v50。
本实施例的正极材料前驱体的制备方法,包括以下步骤:
按照Ni:Co摩尔比为5:5将醋酸镍、醋酸钴溶于去离子水,配置成浓度为1mol/L的金属液,调节络合剂氨水浓度为0.8g/L,并通过蠕动泵将金属液、氨水、NaOH一起加到反应釜中,控制反应温度为60℃,搅拌速度为400r/min,反应30h后将金属液浓度切换至1.5mol/L、氨水浓度至2.5g/L,继续反应60h后停止,再经过固液分离、陈化、洗涤、干燥与过筛后即得Ni 0.5Co 0.5(OH) 2前驱体,前驱体的粒度宽化系数K=0.72。
本实施例的锂离子电池正极材料,由包括上述的正极材料前驱体的原料制得,其化学式为Li 1.15Ni 0.5Co 0.3Mn 0.2(BSr) 0.016O 2
本实施例的锂离子电池正极材料的制备方法,包括以下步骤:
(1)将前驱体与碳酸锂按照摩尔比1:1.25进行混合,掺杂元素M为600ppmB和1000ppmSr,过程中添加剂的掺杂元素对应的氧化物,混合均匀的物料在空气气氛790℃下烧结18h,经粉碎、包覆,在空气气氛下550℃二次烧结,保温5h,冷却后,即得到锂离子电池正极材料Li 1.25Ni 0.5Co 0.5(BSr) 0.016O 2
将实施例2制备的高功率型Li 1.25Ni 0.5Co 0.5(BSr) 0.016O 2正极材料制作成半电池在并在不同倍率下进行充放电测试以表征其倍率性能。所制备的高功率型Li 1.25Ni 0.5Co 0.5O 2正极材料在 不同倍率下的容量保持率(相对于1C)如下表2所示。
表2
倍率 2C/1C 5C/1C 10C/1C 20C/1C
容量保持率(%) 98.76 97.88 94.93 91.33
从表2可以看出,实施例2的锂离子电池正极材料即使在20C下,其容量保持率还能达到91.33%,说明其具有高功率特性。
实施例3
本实施例的正极材料前驱体,其化学式为Ni 0.2Mn 0.6(OH) 2;前驱体呈明显的片层堆叠状,前驱体的粒度宽化系数为0.73,0.73=(D v90-D v10)/D v50。
本实施例的正极材料前驱体的制备方法,包括以下步骤:
按照Ni:Mn摩尔比为2:6将醋酸镍、醋酸钴溶于去离子水,配置成浓度为0.5mol/L的金属液,调节络合剂氨水浓度为2.5g/L,并通过蠕动泵将金属液、氨水、NaOH一起加到反应釜中,控制反应温度为40℃,搅拌速度为100r/min,反应48h后将金属液浓度切换至3mol/L、氨水浓度至5g/L,继续反应100h后停止,再经过固液分离、陈化、洗涤、干燥与过筛后即得Ni 0.2Mn 0.6(OH) 2前驱体,前驱体的粒度宽化系数K=0.73。
本实施例的锂离子电池正极材料,由包括上述的正极材料前驱体的原料制得,其化学式为Li 1.4Ni 0.2Mn 0.6(WTa) 0.03O 2
本实施例的锂离子电池正极材料的制备方法,包括以下步骤:
(1)将前驱体与碳酸锂按照摩尔比1:1.4进行混合,掺杂元素M为2000ppmW和1000ppmTa,过程中添加剂的掺杂元素对应的氧化物,混合均匀的物料在空气气氛950℃下烧结20h,经粉碎、包覆,在空气气氛下450℃二次烧结,保温5h,冷却后,即得到锂离子电池正极材料Li 1.4Ni 0.2Mn 0.6(WTa) 0.03O 2
将实施例3制备的Li 1.4Ni 0.2Mn 0.6(WTa) 0.03O 2正极材料制作成半电池在并在不同倍率下进行充放电测试以表征其倍率性能。所制备的高功率型Li 1.4Ni 0.2Mn 0.6(WTa) 0.03O 2正极材料在不同倍率下的容量保持率(相对于1C)如下表3所示。
表3
倍率 2C/1C 5C/1C 10C/1C 20C/1C
容量保持率(%) 95.72 92.57 90.43 87.59
从表3可以看出,实施例3的锂离子电池正极材料即使在20C下,其容量保持率还能达到87.59%,说明其具有高功率特性。
实施例4
本实施例的正极材料前驱体,其化学式为Ni 0.8Mn 0.2(OH) 2;前驱体呈明显的片层堆叠状,前驱体的粒度宽化系数为0.68,0.68=(D v90-D v10)/D v50。
本实施例的正极材料前驱体的制备方法,包括以下步骤:
按照Ni:Mn摩尔比为8:2将醋酸镍、醋酸钴溶于去离子水,配置成浓度为2mol/L的金属液,调节络合剂氨水浓度为0.5g/L,并通过蠕动泵将金属液、氨水、NaOH一起加到反应釜中,控制反应温度为55℃,搅拌速度为300r/min,反应40h后将金属液浓度切换至2.5mol/L、氨水浓度至4g/L,继续反应80h后停止,再经过固液分离、陈化、洗涤、干燥与过筛后即得Ni 0.8Mn 0.2(OH) 2前驱体,前驱体的粒度宽化系数K=0.68。
本实施例的锂离子电池正极材料,由包括上述的正极材料前驱体的原料制得,其化学式为Li 1.15Ni 0.8Mn 0.2(Mo) 0.03O 2
本实施例的锂离子电池正极材料的制备方法,包括以下步骤:
(1)将前驱体与碳酸锂按照摩尔比1:1.15进行混合,掺杂元素M为3000ppm Mo,过程中添加剂的掺杂元素对应的氧化物,混合均匀的物料在空气气氛750℃下烧结30h,经粉碎、包覆,在空气气氛下300℃二次烧结,保温8h,冷却后,即得到锂离子电池正极材料Li 1.15Ni 0.8Mn 0.2(Mo) 0.03O 2
将实施例4制备的Li 1.15Ni 0.8Mn 0.2(Mo) 0.03O 2正极材料制作成半电池在并在不同倍率下进行充放电测试以表征其倍率性能。所制备的高功率型Li 1.15Ni 0.8Mn 0.2(Mo) 0.03O 2正极材料在不同倍率下的容量保持率(相对于1C)如下表4所示。
表4
倍率 2C/1C 5C/1C 10C/1C 20C/1C
容量保持率(%) 97.90 96.83 93.53 90.19
从表4可以看出,实施例4的锂离子电池正极材料即使在20C下,其容量保持率还能达到90.19%,说明其具有高功率特性。
对比例1
对比例1采用常规的共沉淀法制备前驱体,所制备的前驱体不具有高占比的{010}活性晶面。
其锂离子电池正极材料制备方法包括如下步骤:
(1)按照Ni:Co:Mn摩尔比为5:3:2将硫酸镍、硫酸钴、硫酸锰溶于去离子水,配置成浓度为2mol/L的金属液,调节络合剂氨水浓度为2g/L,并通过蠕动泵将金属液、氨水、NaOH一起加到反应釜中,控制反应温度为70℃,搅拌速度为200r/min,反应120h后停止,再经过固液分离、陈化、洗涤、干燥与过筛后即得Ni 0.5Co 0.3Mn 0.2(OH) 2前驱体,前驱体的粒度宽化系数K=0.87;
(2)上述前驱体与碳酸锂按照摩尔比1:1.15进行混合,掺杂元素M为1500ppmZr和1500ppmAl,过程中添加剂的掺杂元素对应的氧化物,混合均匀的物料在空气气氛810℃下烧结27h,经粉碎、包覆,在空气气氛下450℃二次烧结,保温6h,冷却后,即得到Zr和Al共掺杂的Li 1.15Ni 0.5Co 0.3Mn 0.2(ZrAl) 0.03O 2正极材料。
将对比例1制备的Li 1.15Ni 0.5Co 0.3Mn 0.2(ZrAl) 0.03O 2正极材料制作成半电池在并在不同倍率下进行充放电测试以表征其倍率性能。所制备的Li 1.15Ni 0.5Co 0.3Mn 0.2(ZrAl) 0.03O 2正极材料在不同倍率下的容量保持率(相对于1C)如下表5所示。
表5
倍率 2C/1C 5C/1C 10C/1C 20C/1C
容量保持率(%) 86.37 82.44 76.49 67.23
从表5可以看出,对比例1的锂离子电池正极材料在20C下,其容量保持率只有67.23%,说明其不具有高功率特性。
对比例2
本对比例的正极材料前驱体,其化学式为Ni 0.5Co 0.5(OH) 2;前驱体呈明显的片层堆叠状,前驱体的粒度宽化系数为0.90,0.90=(D v90-D v10)/D v50。
本对比例的正极材料前驱体的制备方法,包括以下步骤:
将Ni:Co摩尔比为5:5将醋酸镍、醋酸钴溶于去离子水,配置成浓度为1mol/L的金属液,调节络合剂氨水浓度为0.8g/L,并通过蠕动泵将金属液、氨水、NaOH一起加到反应釜中,控制反应温度为60℃,搅拌速度为400r/min,反应120h停止,再经过固液分离、陈化、洗涤、干燥与过筛后即得Ni 0.5Co 0.5(OH) 2前驱体,前驱体的粒度宽化系数K=0.90。
本对比例的锂离子电池正极材料,由包括上述的正极材料前驱体的原料制得,其化学式为Li 1.15Ni 0.5Co 0.3Mn 0.2(ZrAl) 0.03O 2
本对比例的锂离子电池正极材料的制备方法,包括以下步骤:
(1)将前驱体与碳酸锂按照摩尔比1:1进行混合,掺杂元素M为600ppmB和1000ppmSr,过程中添加剂的掺杂元素对应的氧化物,混合均匀的物料在空气气氛790℃下烧结18h,经粉碎、包覆,在空气气氛下550℃二次烧结,保温5h,冷却后,即得到锂离子电池正极材料Li 1.25Ni 0.5Co 0.5(BSr) 0.016O 2
将对比例2制备的高功率型Li 1.25Ni 0.5Co 0.5(BSr) 0.016O 2正极材料制作成半电池在并在不同倍率下进行充放电测试以表征其倍率性能。所制备的高功率型Li 1.25Ni 0.5Co 0.5(BSr) 0.016O 2正极材料在不同倍率下的容量保持率(相对于1C)如下表6所示。
表6
倍率 2C/1C 5C/1C 10C/1C 20C/1C
容量保持率(%) 94.29 91.36 88.49 83.20
从表1可以看出,实施例1的锂离子电池正极材料即使在20C下,其容量保持率还能达到83.20%,说明其具有高功率特性。

Claims (10)

  1. 一种正极材料前驱体,其特征在于,所述正极材料前驱体的化学式为Ni xCo yMn z(OH) 2,其中0.2≤x≤1,0≤y≤0.5,0≤z≤0.6,0.8≤x+y+z≤1;所述正极材料前驱体呈片层堆叠状,所述正极材料前驱体的粒度宽化系数为K,K≤0.85。
  2. 根据权利要求1所述的正极材料前驱体,其特征在于,所述正极材料前驱体的活性晶面{010}晶面族占比为40%~80%,所述正极材料前驱体中活性晶面{010}晶面族是包括(010),
    Figure PCTCN2021142369-appb-100001
    (100),(110),
    Figure PCTCN2021142369-appb-100002
    的活性晶面。
  3. 权利要求1-2任一项所述的正极材料前驱体的制备方法,其特征在于,包括以下步骤:
    配制镍钴锰的金属盐溶液,加入络合剂,再加入沉淀剂进行成核反应,调节镍钴锰的金属盐溶液和络合剂的浓度,继续进行生长反应,过滤,陈化,干燥,即得所述正极材料前驱体。
  4. 根据权利要求3所述的制备方法,其特征在于,所述络合剂为碱性含氮物质,所述碱性含氮物质为氨水;所述沉淀剂为氢氧化钠或碳酸钠中的至少一种;所述镍钴锰的金属盐溶液为镍钴锰金属元素对应的硫酸盐、硝酸盐、草酸盐或盐酸盐中的至少一种。
  5. 根据权利要求3所述的制备方法,其特征在于,所述成核反应中镍钴锰的金属盐溶液的浓度为0.5~2mol/L,所述生长反应中镍钴锰的金属盐溶液的浓度为1.5~3mol/L;所述成核反应中络合剂的浓度为0.5-2.5g/L,所述生长反应中络合剂的浓度为2-5g/L;所述成核反应的时间为24-50h,所述生长反应的时间为60-100h。
  6. 一种锂离子电池正极材料,其特征在于,由包括权利要求1-2任一项所述的正极材料前驱体的原料制得。
  7. 根据权利要求6所述的锂离子电池正极材料,其特征在于,所述锂离子电池正极材料的化学式为Li aNi xCo yMn zM bO 2,其中0.9≤a≤1.4,0.2≤x≤1,0≤y≤0.5,0≤z≤0.6,0≤b≤0.1,0.8≤x+y+z≤1,1≤a/(x+y+z)≤1.5;M为元素B、Al、Mg、Zr、Ti、Fe、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Sn、Sb、La、Ce、W、Ta中的至少一种。
  8. 权利要求6-7任一项所述的锂离子电池正极材料的制备方法,其特征在于,包括以下步骤:
    将所述正极材料前驱体、锂源和添加剂混合,进行一次烧结,粉碎,再进行二次烧结,冷却,即得所述锂离子电池正极材料。
  9. 根据权利要求8所述的制备方法,其特征在于,所述锂源为碳酸锂或氢氧化锂中的至少一种;所述添加剂为元素B、Al、Mg、Zr、Ti、Fe、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Sn、Sb、La、Ce、W、Ta的氧化物中的至少一种。
  10. 一种电池,其特征在于,包括权利要求6或7所述的锂离子电池正极材料。
PCT/CN2021/142369 2021-01-28 2021-12-29 一种正极材料前驱体及其制备方法和应用 WO2022161090A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MA61505A MA61505A1 (fr) 2021-01-28 2021-12-29 Précurseur de matériau d'électrode positive, son procédé de préparation et son application
ES202390063A ES2954791R1 (es) 2021-01-28 2021-12-29 Precursor de material de catodo y metodo de preparacion y aplicacion del mismo
HU2200279A HUP2200279A1 (hu) 2021-01-28 2021-12-29 Katódanyag-prekurzor, annak elõállítási eljárása és felhasználása
GB2310079.5A GB2617024A (en) 2021-01-28 2021-12-29 Positive electrode material precursor, preparation method therefor and application thereof
DE112021005597.6T DE112021005597T5 (de) 2021-01-28 2021-12-29 Kathodenmaterialvorläufer und herstellungsverfahren dafür und anwendung davon
US18/227,880 US20230373814A1 (en) 2021-01-28 2023-07-28 Cathode material precursor and preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110120828.0 2021-01-28
CN202110120828.0A CN112919553B (zh) 2021-01-28 2021-01-28 一种正极材料前驱体及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/227,880 Continuation US20230373814A1 (en) 2021-01-28 2023-07-28 Cathode material precursor and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2022161090A1 true WO2022161090A1 (zh) 2022-08-04

Family

ID=76168169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142369 WO2022161090A1 (zh) 2021-01-28 2021-12-29 一种正极材料前驱体及其制备方法和应用

Country Status (8)

Country Link
US (1) US20230373814A1 (zh)
CN (1) CN112919553B (zh)
DE (1) DE112021005597T5 (zh)
ES (1) ES2954791R1 (zh)
GB (1) GB2617024A (zh)
HU (1) HUP2200279A1 (zh)
MA (1) MA61505A1 (zh)
WO (1) WO2022161090A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112919553B (zh) * 2021-01-28 2022-10-18 广东邦普循环科技有限公司 一种正极材料前驱体及其制备方法和应用
CN113443659B (zh) * 2021-06-25 2022-05-03 浙江帕瓦新能源股份有限公司 湿法掺杂与碳包覆共修饰的四元正极材料及其制备方法
CN114388777A (zh) * 2021-12-15 2022-04-22 广东邦普循环科技有限公司 高峰强比的正极材料及其制备方法和应用
CN115072804B (zh) * 2022-07-08 2024-02-02 金驰能源材料有限公司 前驱体(101)和(001)晶面的xrd衍射强度比值的调控方法
CN116143198B (zh) * 2023-04-18 2023-09-22 新乡天力锂能股份有限公司 一种通过阴离子调控层状正极材料前驱体(010)晶面面积的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106374100A (zh) * 2016-12-02 2017-02-01 洛阳理工学院 一种锂离子电池镍钴锰酸锂正极材料及其制备方法
CN108025925A (zh) * 2015-09-30 2018-05-11 住友金属矿山株式会社 含镍锰的复合氢氧化物及其制造方法
CN108269995A (zh) * 2016-12-30 2018-07-10 广东天劲新能源科技股份有限公司 晶体结构可调控的三元前驱体、正极材料及其制备方法
JP2019077577A (ja) * 2017-10-23 2019-05-23 住友金属鉱山株式会社 遷移金属複合水酸化物粒子およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
CN112086616A (zh) * 2020-10-19 2020-12-15 四川工程职业技术学院 一种大(010)晶面镍钴锰/铝层状正极材料的制备方法
CN112850807A (zh) * 2019-11-28 2021-05-28 惠州比亚迪电池有限公司 一种三元前驱体及制备方法、一种三元材料及锂离子电池
CN112919553A (zh) * 2021-01-28 2021-06-08 广东邦普循环科技有限公司 一种正极材料前驱体及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108025925A (zh) * 2015-09-30 2018-05-11 住友金属矿山株式会社 含镍锰的复合氢氧化物及其制造方法
CN106374100A (zh) * 2016-12-02 2017-02-01 洛阳理工学院 一种锂离子电池镍钴锰酸锂正极材料及其制备方法
CN108269995A (zh) * 2016-12-30 2018-07-10 广东天劲新能源科技股份有限公司 晶体结构可调控的三元前驱体、正极材料及其制备方法
JP2019077577A (ja) * 2017-10-23 2019-05-23 住友金属鉱山株式会社 遷移金属複合水酸化物粒子およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
CN112850807A (zh) * 2019-11-28 2021-05-28 惠州比亚迪电池有限公司 一种三元前驱体及制备方法、一种三元材料及锂离子电池
CN112086616A (zh) * 2020-10-19 2020-12-15 四川工程职业技术学院 一种大(010)晶面镍钴锰/铝层状正极材料的制备方法
CN112919553A (zh) * 2021-01-28 2021-06-08 广东邦普循环科技有限公司 一种正极材料前驱体及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI ZUOWEI, LAI JING;XIANG WEI;WU ZHEN-GUO;GUO XIAO-DONG;ZHONG BEN-HE: "Study on Morphology Regulation and Electrochemical Performance of High-nickel LiNi0.9Co0.05Mn0.05O2 Cathode Material", GUANGZHOU CHEMICAL INDUSTRY, vol. 48, no. 22, 30 November 2020 (2020-11-30), XP055954191, ISSN: 1001-9677 *

Also Published As

Publication number Publication date
DE112021005597T5 (de) 2023-08-03
GB2617024A (en) 2023-09-27
ES2954791A2 (es) 2023-11-24
MA61505A1 (fr) 2023-12-29
GB202310079D0 (en) 2023-08-16
CN112919553A (zh) 2021-06-08
US20230373814A1 (en) 2023-11-23
ES2954791R1 (es) 2024-03-18
HUP2200279A1 (hu) 2022-11-28
CN112919553B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2022161090A1 (zh) 一种正极材料前驱体及其制备方法和应用
CN111628157B (zh) 正极材料、其制备方法及锂离子电池
CN106410157B (zh) 一种高倍率长寿命正极材料及其制备方法
CN110233253B (zh) 一种二元掺杂的单晶三元正极材料及其制备方法
JP4000041B2 (ja) リチウム二次電池用正極活物質
US20190386293A1 (en) Ternary material and preparation method thereof, battery slurry, positive electrode and lithium battery
CN111916687B (zh) 一种正极材料及其制备方法和锂离子电池
WO2023169591A1 (zh) 含钠氧化物正极材料及其制备方法与应用、正极片及其应用
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN109616664B (zh) 镍钴锰前驱体、镍钴锰三元材料的制备方法及锂离子电池
US20150118563A1 (en) Lithium-rich positive electrode material, lithium battery positive electrode, and lithium battery
KR102357836B1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN102844914A (zh) 非水电解质二次电池用正极活性物质、其制造方法、和使用了该正极活性物质的非水电解质二次电池
WO2021175233A1 (zh) 一种富锂锰基材料及其制备方法和应用
CN112670492B (zh) 正极材料及其制备方法以及电化学装置
WO2021136490A1 (zh) 一种富锂锰基材料及其制备方法和应用
WO2010139142A1 (zh) 二次锂电池正极材料及其制备方法
CN112952085B (zh) 梯度高镍单晶三元材料及其制备方法和使用该材料的电池
CN110265642B (zh) 一种内部具有微孔结构ncm三元正极材料的制备方法
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
JP4989682B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池
CN111009645A (zh) 一种石墨烯基/AlPO4复合包覆改性高镍三元正极材料的方法
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
CN102315437A (zh) 动力锂离子电池高比容量富锂复合正极材料及其合成方法
CN114031123A (zh) 核壳结构三元前驱体及其制备方法,四元正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310079

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211229

122 Ep: pct application non-entry in european phase

Ref document number: 21922678

Country of ref document: EP

Kind code of ref document: A1