WO2022161087A1 - Procédé de séparation du nickel et du fer dans un alliage nickel-fer et son utilisation - Google Patents

Procédé de séparation du nickel et du fer dans un alliage nickel-fer et son utilisation Download PDF

Info

Publication number
WO2022161087A1
WO2022161087A1 PCT/CN2021/142352 CN2021142352W WO2022161087A1 WO 2022161087 A1 WO2022161087 A1 WO 2022161087A1 CN 2021142352 W CN2021142352 W CN 2021142352W WO 2022161087 A1 WO2022161087 A1 WO 2022161087A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
iron
solution
mother liquor
acid
Prior art date
Application number
PCT/CN2021/142352
Other languages
English (en)
Chinese (zh)
Inventor
何芳
邓浩臻
乔延超
陈若葵
阮丁山
谌志新
李长东
Original Assignee
湖南邦普循环科技有限公司
广东邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南邦普循环科技有限公司, 广东邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 湖南邦普循环科技有限公司
Publication of WO2022161087A1 publication Critical patent/WO2022161087A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • C22B3/46Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • C22B23/0469Treatment or purification of solutions, e.g. obtained by leaching by chemical methods by chemical substitution, e.g. by cementation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of hydrometallurgy, and in particular relates to a method and application for separating nickel and iron from nickel-iron alloys.
  • lithium ion batteries have been widely used in various electronic devices due to their high operating voltage, high energy density, low self-discharge, long life, and no memory effect.
  • the positive and negative materials of lithium-ion batteries are still innovating and developing.
  • NCM/NCA battery cathode material
  • ternary materials occupy more than 50% of the market share, and the demand for nickel is increasing day by day.
  • nickel production capacity is gradually in short supply.
  • the supply of nickel sulfate is obviously insufficient.
  • the ternary precursor factory purchases nickel raw materials such as nickel beans, nickel powder, nickel plates, MHP (mixed nickel cobalt hydroxide), etc., and obtains battery-grade nickel sulfate through processing and refining to alleviate the shortage of raw materials. condition.
  • nickel raw materials such as nickel beans, nickel powder, nickel plates, MHP (mixed nickel cobalt hydroxide), etc.
  • MHP mixed nickel cobalt hydroxide
  • the related art discloses a method and system for extracting nickel oxide from laterite nickel ore.
  • the involved method is to melt and granulate nickel-iron alloy, then perform selective oxidation roasting, and then perform ammonia leaching-ammonia-steaming-calcining treatment to obtain oxidation Nickel products.
  • This process is feasible, which can improve the utilization value of nickel-iron alloy and reduce the production cost of nickel.
  • due to the large consumption of auxiliary materials and high energy consumption it is not easy to promote.
  • the related art also discloses using nickel-containing pig iron as a raw material, leaching ferronickel through a mixed acid of phosphoric acid and sulfuric acid/hydrochloric acid, obtaining a solution, adding an oxidant for oxidation, and adding lye to precipitate ferric phosphate to obtain a mixed solution of nickel sulfate and sodium sulfate/ammonium sulfate, The solution is then subjected to an extraction-stripping process to obtain a battery-grade nickel sulfate solution.
  • the quality of the iron phosphate obtained by this process is poor and cannot reach the battery level, and the nickel sulfate has to go through the extraction-stripping process, which has high cost, low benefit and relatively high impurity content.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention proposes a method and application for separating nickel and iron from nickel-iron alloy.
  • the method obtains iron hydroxide by acid-dissolving nickel-iron alloy, replacing sponge nickel, oxidizing iron and washing slag;
  • the battery grade nickel sulfate is obtained by evaporating and crystallization, the method has low energy consumption, low cost, simple process, and realizes the efficient resource utilization of nickel and iron.
  • the present invention adopts the following technical solutions:
  • a method for separating nickel and iron from nickel-iron alloy comprising the steps of:
  • nickel-iron alloy is dissolved in acid solution, filter, get filtrate, obtain acid nickel-iron solution;
  • the nickel-iron alloy is obtained by reducing and roasting laterite nickel ore, and the nickel-iron alloy has a nickel content of 15% to 40% and an iron content of 60% to 85%; wherein, The total content of impurities is less than 2%.
  • the acid solution is at least one of sulfuric acid or hydrochloric acid.
  • the dissolving temperature is 20°C to 95°C, more preferably 50°C to 95°C, and more preferably 60°C to 85°C.
  • the concentration of H + in the acid solution is 1-12 mol/L, more preferably 2-8 mol/L, and more preferably 3-6 mol/L.
  • the solid-to-liquid ratio of the nickel-iron alloy to the acid solution is 1:(1-100) g/mL, more preferably 1:(1-50) g/mL, more preferably 1 : (1 ⁇ 30) g/mL.
  • the pH adjustment is to adjust the pH to 1.0-5.0, further preferably, the pH is 1.0-3.5, more preferably, the pH is 1.5-3.0.
  • the pH adjuster used in the process of adjusting the pH to 1.0-5.0 is at least one of nickel-iron alloy, sodium hydroxide, sodium carbonate or ammonia water. More preferably, the pH adjuster is a nickel-iron alloy. Reduce the generation of impurities and increase the leaching rate of nickel and iron.
  • the heating temperature is 30°C to 90°C, more preferably 50°C to 90°C, and more preferably 60°C to 80°C.
  • the stirring time is 0.5-20 h, more preferably 1-10 h, and more preferably 1-5 h.
  • the amount of iron powder added is 0.5 to 5 times the theoretical amount required for nickel replacement, more preferably 0.5 to 3 times, and more preferably 0.7 to 2 times.
  • the heating temperature is 30-100°C, more preferably 50-90°C, and more preferably 50-80°C.
  • the oxidant used in the process of oxidizing iron precipitation is at least one of hydrogen peroxide, oxygen, air, ozone or sodium persulfate.
  • the immersed iron mother liquor is an acidic solution containing ferric iron
  • the immersed iron mother liquor is returned to step (1) to continue cyclic leaching, and can generate ferrous iron with iron in the nickel-iron alloy.
  • the sulfuric acid concentration is 0.1-10 mol/L, more preferably 0.5-8 mol/L, and more preferably 0.5-5 mol/L.
  • the temperature of the temperature increase is 30°C to 90°C, more preferably 50°C to 80°C, and more preferably 60°C to 80°C.
  • the pH adjustment is to adjust the pH to 2-6, more preferably 3-5, and more preferably 4-5.
  • the reagent for adjusting pH includes but is not limited to at least one of sodium carbonate, nickel carbonate, ammonium carbonate or sodium hydroxide.
  • step (4) it also includes a process of evaporating and crystallizing the nickel sulfate solution to obtain battery-grade nickel sulfate.
  • the temperature of the evaporative crystallization is 30°C to 150°C, more preferably 30°C to 100°C, and more preferably 50°C to 90°C.
  • the evaporative crystallization time is 1-20 h, more preferably 2-15 h, and more preferably 3-10 h.
  • the present invention also provides the application of the above method in recovering non-ferrous metals.
  • the present invention also provides the application of the above-mentioned method in the preparation of pigments, medicines or catalysts.
  • the present invention uses acid solution to dissolve the nickel-iron alloy, replaces the nickel in the solution by iron powder to obtain sponge nickel, and generates iron hydroxide after the oxidation of the precipitation nickel mother liquor, and the nickel content in the iron hydroxide is lower than 0.4%, and the precipitation iron mother liquor is lower than 0.4%. Then it can be returned to the leaching section.
  • the sponge nickel can obtain battery-grade nickel sulfate products (the purity of nickel sulfate is above 99.5%). It exists in the form of ferric hydroxide and has certain economic value, and nickel is resourced to obtain battery-grade nickel sulfate.
  • the process of the invention is simple, the cost is low, the solution can be leached cyclically, the acid consumption is low, and the industrial application has great practicability.
  • FIG. 1 is a process flow diagram of Embodiment 1 of the present invention.
  • step (2) Add the nickel-iron leaching solution obtained in step (1) at 80°C to adjust the pH of the solution to 1.5, adjust the pH for 2 hours, and add 0.8 times the theoretical amount of iron powder required to replace nickel at 70°C , filter to obtain sponge nickel and precipitation nickel mother liquor after the replacement;
  • ferric hydroxide can be generated by hydrolysis after oxidizing ferrous iron in the solution to ferric iron, filtering to obtain ferric hydroxide slag and precipitation iron mother liquor, and the obtained nickel
  • the iron mother liquor returns to step (1) and continues to dissolve the nickel-iron alloy
  • step (4) at 70 DEG C, the crude product nickel sulfate solution that step (4) is obtained, adding mass concentration is that the sodium carbonate solution of 25% adjusts pH to about 4.0, and filters to obtain impurity removal slag and nickel sulfate solution;
  • step (6) Evaporating and crystallizing the nickel sulfate solution obtained in step (5) at 80° C. for 8 hours to obtain battery-grade nickel sulfate crystals.
  • Fig. 1 is the process flow diagram of the embodiment of the present invention 1, can be obtained from Fig. 1, use acid solution to carry out acid-dissolving to nickel-iron alloy, after obtaining the acid nickel-iron solution with higher nickel-iron concentration, use iron powder to dissolve in the solution Nickel ions are replaced with sponge nickel, and the obtained nickel precipitation mother solution is oxidized to generate iron hydroxide slag; sponge nickel is dissolved in dilute sulfuric acid, impurity removal, and evaporative crystallization to prepare battery-grade nickel sulfate crystals.
  • step (2) adding sodium carbonate to the acidic nickel-iron leaching solution obtained in step (1) at 70° C. to adjust the pH of the solution to 1.8, adjusting the pH for 3 hours, and adding 0.9 times the theoretical amount of iron required to replace nickel at 60° C. Powder, filter to obtain sponge nickel and nickel sink mother liquor after replacement;
  • step (3) oxygen is passed through the nickel precipitation mother liquor obtained in step (2), the ferrous iron in the solution can be oxidized to trivalent iron and then hydrolyzed to generate ferric hydroxide, and the ferric hydroxide slag and the precipitation iron mother liquor are obtained by filtration, and the obtained nickel
  • the iron mother liquor returns to step (1) and continues to dissolve the nickel-iron alloy;
  • step (4) adding the crude product nickel sulfate solution obtained in step (4) at 80° C., adding mass concentration of 5% sodium hydroxide solution to adjust pH to about 4.5, and filtering to obtain impurity removal slag and nickel sulfate solution;
  • step (6) Evaporating and crystallizing the nickel sulfate solution obtained in step (5) at 85° C. for 6 hours to obtain battery-grade nickel sulfate crystals.
  • step (2) Add the acidic nickel-iron leaching solution obtained in step (1) at 80°C to adjust the pH of the solution to 2.0, adjust the pH for 4h, add 0.85 times the theoretical amount of iron powder required for nickel replacement at 65°C, and replace After finishing, filter to obtain sponge nickel and nickel sinking mother liquor;
  • step (3) passing the precipitation nickel mother liquor obtained in step (2) into the air, the ferrous iron in the solution can be oxidized to ferric iron and then hydrolyzed to generate ferric hydroxide, and the ferric hydroxide slag and the precipitation iron mother liquor are obtained by filtration, and the ferronickel mother liquor Return to step (1) and continue to dissolve the nickel-iron alloy;
  • step (4) adding the crude product nickel sulfate solution obtained in step (4) at 75° C., adding mass concentration of 30% ammonium carbonate solution to adjust pH to about 4.2, and filtering to obtain impurity removal residue and nickel sulfate solution;
  • step (6) Evaporating and crystallizing the nickel sulfate solution obtained in step (5) at 90° C. for 3 hours to obtain battery-grade nickel sulfate crystals.
  • step (2) Add the nickel-iron leaching solution obtained in step (1) at 70°C to adjust the pH of the solution to 2.5, adjust the pH for 5h, add iron powder 1.0 times the theoretical amount required for nickel replacement at 70°C, and replace After finishing, filter to obtain sponge nickel and nickel sinking mother liquor;
  • step (3) adding sodium persulfate to the nickel precipitation mother liquor obtained in step (2), after the ferrous iron in the solution can be oxidized to ferric iron and then hydrolyzed to generate ferric hydroxide, filtered to obtain ferric hydroxide slag and precipitation iron mother liquor, ferronickel Mother liquor returns to step (1) and continues to dissolve nickel-iron alloy;
  • step (4) at 70 DEG C, the crude product nickel sulfate solution obtained in step (4) is added with nickel carbonate solution to adjust pH to about 4.5, and filtered to obtain impurity removal slag and nickel sulfate solution;
  • step (6) Evaporating and crystallizing the nickel sulfate solution obtained in step (5) at 80° C. for 7 hours to obtain battery-grade nickel sulfate crystals.
  • step (2) adding sodium hydroxide to the nickel-iron leaching solution obtained in step (1) at 75°C to adjust the pH of the solution to 2.7, adjusting the pH for 5h, and adding 0.9 times the theoretical amount of iron powder required to replace nickel at 60°C, After the replacement, filter to obtain sponge nickel and nickel sinking mother liquor;
  • step (3) adding hydrogen peroxide to the precipitation nickel mother liquor obtained in step (2), ferrous iron in the solution can be oxidized to ferric iron and then hydrolyzed to generate ferric hydroxide, filtered to obtain ferric hydroxide slag and precipitation iron mother liquor, and the ferronickel mother liquor returns Step (1) continues to dissolve nickel-iron alloy;
  • step (2) (4) adding 0.8mol/L sulfuric acid to the sponge nickel obtained in step (2) and dissolving, after filtration, obtain a crude product nickel sulfate solution;
  • step (4) at 60 DEG C, the crude product nickel sulfate solution obtained in step (4), adding a sodium carbonate solution with a mass concentration of 25% to adjust pH to about 5, and filtering to obtain impurity removal slag and nickel sulfate solution;
  • step (6) Evaporating and crystallizing the nickel sulfate solution obtained in step (5) at 85° C. for 6 hours to obtain battery-grade nickel sulfate crystals.
  • Example 1 Ni Fe Co Mn Cu Al
  • Example 2 22.274 0.0008 0.0162 0.0015 0.0009 0.0006
  • Example 2 22.258 0.0007 0.0121 0.0009 0.0005 0.0003
  • Example 3 22.219 0.0008 0.0174 0.0013 0.0007 0.0007
  • Example 4 22.235 0.0009 0.0169 0.0011 0.0009 0.0007
  • Example 5 22.261 0.0007 0.0155 0.0008 0.0008 0.0005 Ca Mg Cd Cr Zn Pb
  • Example 1 0.0025 0.0011 0.0001 0.0001 0.0001 0.0000
  • Example 2 0.0016 0.0009 0.0000 0.0000 0.0000
  • Example 3 0.0027 0.0010 0.0002 0.0001 0.0001 0.0000
  • Example 4 0.0020 0.0012 0.0001 0.0001 0.0002 0.0000
  • Example 5 0.0013 0.0008 0.0001 0.0000 0.0001 0.0000
  • the various impurity contents of the nickel sulfate crystal obtained by the preparation method of the present invention all meet the industry standard of battery grade nickel sulfate.
  • the nickel content in the iron hydroxide slag prepared in Examples 1-5 of the present invention is relatively low, all below 0.4%, the loss of nickel is very small, and the content of other elements is lower, especially copper and aluminum If it is lower than 0.01, the iron hydroxide slag can be used in industries such as pigments, medicines and catalysts after further impurity removal and purification.
  • the method for preparing nickel sulfate solution and battery-grade iron phosphate from nickel-containing pig iron of this comparative example includes the following steps:
  • step (2) acid leaching treatment, using mixed acid to carry out normal pressure acid leaching on the undersize obtained in step (1), and obtaining filtrate after solid-liquid separation, the acid leaching temperature is 50 ⁇ 90 °C, and the acid leaching time is 3 ⁇ 8 hours ;
  • step (3) precipitation treatment, under the condition of using a precipitant to maintain the pH value of the filtrate in step (2), adding an oxidant simultaneously to oxidize the ferrous iron in the filtrate, adopting a controlled crystallization method to prepare iron phosphate precipitation, and filtering and washing after the reaction Then obtain nickel-containing filtrate and iron phosphate precipitation;
  • step (3) nickel-containing filtrate extraction treatment, collecting the nickel-containing filtrate in step (3), using the diluted extractant to extract nickel, standing, and separating to obtain a nickel-containing extraction organic phase and an impurity-containing raffinate.
  • Table 3 shows the nickel sulfate solution obtained in Comparative Example 1, in which the concentrations of Mg, Ca, and Cr are relatively high. There will be high content of impurity ions, which do not meet the standard of battery-grade nickel sulfate.

Abstract

La présente invention appartient au domaine de l'hydrométallurgie. Sont divulgués un procédé de séparation du nickel et du fer dans un alliage nickel-fer et son utilisation. Le procédé comprend les étapes suivantes : la dissolution d'un alliage nickel-fer dans une solution acide, le filtrage et la collecte du filtrat pour obtenir une solution acide de nickel-fer ; l'ajustement du pH de la solution acide de nickel-fer, le chauffage, l'agitation et l'ajout de poudre de fer, et la poursuite du chauffage et de l'agitation pour obtenir une liqueur mère de précipitation de nickel et de nickel spongieux ; la soumission de la liqueur mère de précipitation de nickel à une oxydation et à une précipitation de fer pour obtenir un laitier d'hydroxyde de fer et une liqueur mère de précipitation de fer ; et la dissolution du nickel spongieux dans de l'acide sulfurique, le filtrage, la collecte du filtrat, l'élévation de la température et l'ajustement du pH, de manière à obtenir une solution de sulfate de nickel. Dans la présente invention, après dissolution de l'alliage nickel-fer à l'aide de la solution acide, le nickel dans la solution est déplacé par la poudre de fer pour obtenir le nickel spongieux, la liqueur mère de précipitation de nickel est oxydée pour produire de l'hydroxyde de fer, la teneur en nickel est inférieure à 0,4 %, la liqueur mère de précipitation de fer peut être renvoyée à une section de lixiviation, et le nickel spongieux peut être soumis à une dissolution d'acide, à une élimination d'impuretés et à une cristallisation par évaporation pour obtenir un produit de sulfate de nickel de qualité batterie.
PCT/CN2021/142352 2021-01-29 2021-12-29 Procédé de séparation du nickel et du fer dans un alliage nickel-fer et son utilisation WO2022161087A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110124518.6A CN112941314B (zh) 2021-01-29 2021-01-29 一种从镍铁合金中分离镍和铁的方法和应用
CN202110124518.6 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022161087A1 true WO2022161087A1 (fr) 2022-08-04

Family

ID=76239342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142352 WO2022161087A1 (fr) 2021-01-29 2021-12-29 Procédé de séparation du nickel et du fer dans un alliage nickel-fer et son utilisation

Country Status (2)

Country Link
CN (1) CN112941314B (fr)
WO (1) WO2022161087A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652106A (zh) * 2022-12-22 2023-01-31 金川镍钴研究设计院有限责任公司 一种从镍铁中选择性浸出镍的方法
CN117191507A (zh) * 2023-07-27 2023-12-08 长沙矿冶院检测技术有限责任公司 红土镍矿中不同物相中镍的分离方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941314B (zh) * 2021-01-29 2022-12-13 湖南邦普循环科技有限公司 一种从镍铁合金中分离镍和铁的方法和应用
CN113430394A (zh) * 2021-06-23 2021-09-24 广东佳纳能源科技有限公司 镍铁合金分离镍和铁的方法和制备电池级硫酸镍的方法
CN113620356A (zh) * 2021-07-08 2021-11-09 四川顺应动力电池材料有限公司 一种以镍铁合金为原料生产电池级硫酸镍的方法
CN113667825B (zh) * 2021-07-20 2022-11-15 广东邦普循环科技有限公司 镍铁湿法处理方法及其应用
CN113772751B (zh) * 2021-07-29 2023-02-14 广东邦普循环科技有限公司 一种利用低镍锍直接制备硫酸镍的方法、硫酸镍及其应用
CN113800578B (zh) * 2021-08-03 2022-11-15 广东邦普循环科技有限公司 一种利用低镍型的镍铁制备硫酸镍的方法
CN113802001B (zh) * 2021-08-13 2022-11-22 广东邦普循环科技有限公司 一种镍铁中回收并提纯镍的方法
CN113942986B (zh) * 2021-09-27 2023-06-16 荆门市格林美新材料有限公司 一种从镍铁合金中回收镍和铁的方法
CN113860397B (zh) * 2021-10-22 2022-08-26 江西佳纳能源科技有限公司 硫酸镍的制备方法
CN114314700A (zh) * 2021-12-28 2022-04-12 四川顺应动力电池材料有限公司 一种含铁、镍和/或钴合金料资源化综合利用的方法
CN116409762A (zh) * 2021-12-29 2023-07-11 荆门市格林美新材料有限公司 一种利用镍铁合金制备电池材料的方法
CN114438327B (zh) * 2021-12-29 2023-01-24 中南大学 一种含铁合金中铁的碘化分离方法
CN116574923B (zh) * 2023-07-14 2023-11-03 中国恩菲工程技术有限公司 一种镍铁合金选择性的浸出方法及制备高纯镍盐的方法
CN117003212B (zh) * 2023-08-07 2024-04-05 上海天汉环境资源有限公司 一种电池级材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008241353A1 (en) * 2007-04-19 2008-10-30 Metallica Minerals Ltd Treatment of nickel-containing solutions
CN103290222A (zh) * 2013-04-08 2013-09-11 惠州学院 一种从电镀污泥中回收铜和镍的方法
KR20140043001A (ko) * 2012-09-28 2014-04-08 주식회사 포스코 니켈 제련 공정 중의 잔사 슬러지 수세액을 이용한 페로니켈 회수 방법
CN103966446A (zh) * 2014-05-08 2014-08-06 南京大学 一种从电镀污泥中分离回收铜、镍、铁的方法
CN105271632A (zh) * 2015-10-29 2016-01-27 中国科学院过程工程研究所 一种电镀污泥综合回收的方法
CN107287429A (zh) * 2017-07-05 2017-10-24 盛隆资源再生(无锡)有限公司 一种铁含量高、铜镍含量低的电镀污泥的回收处理方法
CN112941314A (zh) * 2021-01-29 2021-06-11 湖南邦普循环科技有限公司 一种从镍铁合金中分离镍和铁的方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4216626B2 (ja) * 2003-03-20 2009-01-28 新日本製鐵株式会社 ニッケル含有廃液スラッジからの硫酸ニッケルの回収方法
JP6459797B2 (ja) * 2015-06-24 2019-01-30 住友金属鉱山株式会社 廃ニッケル水素電池からのフェロニッケル製造用原料の回収方法及びその回収装置
JP7042719B2 (ja) * 2018-06-21 2022-03-28 日揮グローバル株式会社 硫酸ニッケル化合物の製造方法
CN111424172A (zh) * 2020-06-01 2020-07-17 中国恩菲工程技术有限公司 红土镍矿的湿法处理工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008241353A1 (en) * 2007-04-19 2008-10-30 Metallica Minerals Ltd Treatment of nickel-containing solutions
KR20140043001A (ko) * 2012-09-28 2014-04-08 주식회사 포스코 니켈 제련 공정 중의 잔사 슬러지 수세액을 이용한 페로니켈 회수 방법
CN103290222A (zh) * 2013-04-08 2013-09-11 惠州学院 一种从电镀污泥中回收铜和镍的方法
CN103966446A (zh) * 2014-05-08 2014-08-06 南京大学 一种从电镀污泥中分离回收铜、镍、铁的方法
CN105271632A (zh) * 2015-10-29 2016-01-27 中国科学院过程工程研究所 一种电镀污泥综合回收的方法
CN107287429A (zh) * 2017-07-05 2017-10-24 盛隆资源再生(无锡)有限公司 一种铁含量高、铜镍含量低的电镀污泥的回收处理方法
CN112941314A (zh) * 2021-01-29 2021-06-11 湖南邦普循环科技有限公司 一种从镍铁合金中分离镍和铁的方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115652106A (zh) * 2022-12-22 2023-01-31 金川镍钴研究设计院有限责任公司 一种从镍铁中选择性浸出镍的方法
CN115652106B (zh) * 2022-12-22 2024-03-05 金川镍钴研究设计院有限责任公司 一种从镍铁中选择性浸出镍的方法
CN117191507A (zh) * 2023-07-27 2023-12-08 长沙矿冶院检测技术有限责任公司 红土镍矿中不同物相中镍的分离方法
CN117191507B (zh) * 2023-07-27 2024-04-12 长沙矿冶院检测技术有限责任公司 红土镍矿中不同物相中镍的分离方法

Also Published As

Publication number Publication date
CN112941314A (zh) 2021-06-11
CN112941314B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
WO2022161087A1 (fr) Procédé de séparation du nickel et du fer dans un alliage nickel-fer et son utilisation
CN112441572B (zh) 一种废旧磷酸铁锂正极材料的回收方法
CN107267759B (zh) 一种锂离子电池正极材料的综合回收方法
CN111733328B (zh) 一种回收废旧锂离子电池中有价金属的方法
CN104229898B (zh) 一种利用废旧锌锰电池为原料制备高纯硫酸锰和硫酸锌的方法
CN109052492B (zh) 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN104659438A (zh) 一种利用废电池制备三元正极材料前驱体的方法
WO2023035636A1 (fr) Procédé de préparation de sulfate de nickel à partir de matte à faible teneur en nickel
CN111471864A (zh) 一种废旧锂离子电池浸出液中回收铜、铝、铁的方法
WO2022052670A1 (fr) Procédé de purification d'une solution de lixiviation de nickel-cobalt-manganèse
CN113106257A (zh) 锂电池废料的回收利用方法及其应用
US11952289B2 (en) Method for preparing nickel sulfate from nickel-iron-copper alloy
CN103274470A (zh) 一种利用钨矿碱浸出渣制备电子级硫酸锰的方法
CN112499686A (zh) 一种利用废锰液制备掺铝型电池级羟基氧化锰的方法
CN116190843A (zh) 一种废旧磷酸铁锂电池正极粉料的再回收方法
CN114933291A (zh) 一种利用镍铁合金制备高纯磷酸铁锂的方法
CN112342383B (zh) 三元废料中镍钴锰与锂的分离回收方法
CN113979415A (zh) 一种生产磷酸铁的方法
CN116646633B (zh) 一种回收锂离子正极材料中的活性物质的方法
CN111455171A (zh) 一种海底多金属结核提取有价金属并联产锂电正极材料前驱体及掺钛正极材料的方法
CN113122725A (zh) 一种提升废旧锂电池金属回收率及纯度的方法
CN103221557B (zh) 含镍酸性溶液的制造方法
CN114988382B (zh) 一种废旧磷酸铁锂电池粉料的回收方法
CN115784188A (zh) 回收制备电池级磷酸铁的方法
CN112481492A (zh) 一种从废旧锂电池钴酸锂正极材料中回收有价金属的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922675

Country of ref document: EP

Kind code of ref document: A1