WO2022160489A1 - 一种粉床3d打印的快速冷却装置及系统 - Google Patents

一种粉床3d打印的快速冷却装置及系统 Download PDF

Info

Publication number
WO2022160489A1
WO2022160489A1 PCT/CN2021/090932 CN2021090932W WO2022160489A1 WO 2022160489 A1 WO2022160489 A1 WO 2022160489A1 CN 2021090932 W CN2021090932 W CN 2021090932W WO 2022160489 A1 WO2022160489 A1 WO 2022160489A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
cooling water
substrate
cooling device
powder bed
Prior art date
Application number
PCT/CN2021/090932
Other languages
English (en)
French (fr)
Inventor
宋波
张志�
史玉升
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2022160489A1 publication Critical patent/WO2022160489A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the invention belongs to the technical field of 3D printing, and more particularly, relates to a rapid cooling device and system for powder bed 3D printing.
  • the traditional 3D printing technology preheats the substrate for 3D printing, and then naturally cools the formed parts after the manufacture is completed.
  • the long-term heating of the substrate results in a long natural cooling time, resulting in larger grain size, element segregation, and reduced strength. .
  • the above methods cannot solve the problem from the bottom layer, and start directly by heating the substrate.
  • changing the substrate to a device that can be heated or cooled can not only achieve preheating during the 3D printing process, but also achieve rapid cooling of the formed part, suppress the grain size from becoming larger, promote uniform distribution of elements, and improve the strength of the formed part. Therefore, it is necessary to propose a rapid ultra-low temperature cooling device for powder bed 3D printing.
  • the present invention provides a rapid cooling device and system for powder bed 3D printing, which utilizes the rapid cooling of the variable substrate by the cooling water tank in the device to realize simultaneous forming and cooling, Suppress the increase of grain size during forming, maintain uniform distribution of elements, and improve the strength of formed parts.
  • a rapid cooling device for powder bed 3D printing includes a base substrate, a variable substrate and a cooling water tank, wherein,
  • the base substrate is provided with a groove
  • the cooling water tank is provided in the groove
  • the variable substrate is provided on the cooling water tank as a forming table for 3D printing. Circulating cooling water is introduced into the cooling water tank to cool the variable substrate, so as to achieve timely and rapid cooling of the formed parts during the printing process.
  • the cooling water tank is provided with a water inlet and a water outlet, and the water inlet and the water outlet are connected to an external water circulation device through a cooling water pipe.
  • a through hole is provided on the base substrate as a channel for the cooling water pipe to pass through and connect with the water inlet and the water outlet.
  • the cooling water pipe is a flexible water pipe, the surface of which is heat-insulated.
  • the thermal insulation treatment adopts glass fiber weaving and mica wrapping, and then adopts glass fiber weaving for thermal insulation.
  • the base substrate is in the shape of a step, and the step is a space where the cooling water pipe is placed.
  • the material of the variable substrate is the same as the material of the forming part, and the variable substrate of different materials is replaced according to the material of the forming part.
  • the thickness of the device is the same as the thickness of the shaped substrate in the 3D printing system.
  • a powder bed 3D printing system of the above-mentioned cooling device using the above-mentioned cooling device as a forming substrate, and the cooling water pipe in the cooling device is formed from the 3D printing system
  • the position where the oxygen measuring port is placed in the cylinder is pierced, so as to avoid re-opening holes on the forming cylinder and ensure the sealing performance of the forming cylinder.
  • the rapid cooling device provided by the present invention is equivalent to the forming substrate in the 3D printing system. Since a cooling water tank is placed inside, during the printing process, circulating water is introduced to realize printing during the printing process. It is carried out at the same time as cooling to achieve rapid cooling of the formed parts, and under the premise of ensuring low thermal stress and preventing cracking during the original printing process, it also achieves the effect of grain refinement, more uniform distribution of elements, and increased strength of the parts after printing;
  • the cooling device provided in the present invention has the same thickness as the rear end of the forming substrate in the original printing system. After the cooling device is used to replace the original forming substrate, the structure of the original forming cylinder is basically not changed. The water pipe goes out from the installation position of the oxygen measuring port, and there is no need to open additional holes on the forming cylinder to avoid damaging the sealing performance of the original forming cylinder;
  • variable substrates are selected according to the materials of different formed parts, so as to avoid the separation of the formed parts and the substrate in the initial stage of printing, resulting in warping and bending of the formed parts and loss of the initially defined shape.
  • FIG. 1 is a schematic structural diagram of a rapid cooling device for powder bed 3D printing constructed according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a base substrate constructed according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a cooling water tank constructed according to a preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a forming cylinder of a powder bed 3D printing system constructed according to a preferred embodiment of the present invention.
  • a rapid cooling device for powder bed 3D printing includes: a basic substrate 1, a cooling water tank 4, and a variable substrate 2.
  • the basic substrate 1 is provided with a groove 3, and the groove 3 is provided with
  • circulating cooling water is introduced into the cooling water tank 4 to cool the variable substrate 2.
  • the formed parts can be cooled in time and quickly during the printing process; the device has the characteristics of forced cooling.
  • forced cooling can not only reduce thermal stress during the forming process, but also rapidly cool after forming. , reduce the grain size, maintain the uniform distribution of elements, and improve the strength of the formed parts.
  • the base substrate 1 is irregular in shape, including a base 9 and a boss 10, the base and the boss form a ladder, and a plurality of connecting holes 7 are arranged on the base for connecting with other structures.
  • the bolt radius is equal to the length, width, fillet radius, and bolt radius of the substrate in the 3D printing device, and the distance between the two bolt connection holes on the base in the base substrate is equal to the distance between the two bolt connection ports on one side of the 3D printing device.
  • the size of the conventional substrate to be replaced in the embodiment of the present invention is 123 mm ⁇ 123 mm ⁇ 50 mm, the radius of the fillet is 23 mm, the distance between the connecting holes on one side is 90 mm, and the radius of the bolt is 3.5 mm.
  • the above is the fixed size of the substrate placed in the 3D printing equipment and cannot be changed; the size of the base is 123mm ⁇ 123mm ⁇ 10mm.
  • connection holes 7 on the boss 10 There are four connection holes 7 on the boss 10, wherein the position of the connection hole on the boss 10 farthest from the connection hole on the base substrate base can be determined, and the distance is 90mm from the connection hole on the substrate in the 3D printing device. All the connecting holes 7 on the boss 10 are located near the rounded corners in the top view of the boss, and the specific performance is that the edge distances of the connecting holes 7 from the similar positions are all 16.5 mm.
  • the size of the groove 3 needs to ensure that it does not occupy the position of the connection hole 7 . In the embodiment of the present invention, the size of the groove in the base substrate is 53 mm ⁇ 90 mm ⁇ 10 mm.
  • the boss 10 is provided with a groove for placing the cooling water tank 4, and a through hole 8 is opened at the place corresponding to the water inlet 5 and the water outlet 6 of the cooling water tank, and the diameter of the through hole 8 is 1.25 ⁇ 1. 2 times; the diameter of the through hole needs to be higher than the diameter of the cooling water pipe to ensure that the cooling water pipe can be pulled freely in the through hole, and at the same time, if the diameter of the through hole is too large, the preheating effect of the substrate will be affected.
  • the cooling water pipe 11 is drawn out from the through hole 8 of the base substrate 1 and then enters the slotted position at the bottom of the forming cylinder.
  • the position of the boss is designed to take into account that the connecting hole 7 on the base 9 in the base substrate 1 cannot touch the boss, and it is necessary to ensure that It is convenient to remove the bolts on the base. On this basis, enough space is pre-stored in the part vacated between the base and the boss to store a certain length of cooling water pipe 11, which is used to ensure the expansion of the cooling water pipe when the lifting platform descends without causing pulling.
  • the size of the boss is 93 mm ⁇ 123 mm ⁇ 30 mm
  • the bolt spacing is 90 mm
  • the cooling water tank 4 is provided with a water inlet 5 and a water outlet 6, which are connected to the circulating water device through a cooling water pipe 11.
  • the cooling water pipe 11 has the characteristics of softness and can be deformed under the action of slight external force. Insulation treatment.
  • the material of the cooling water pipe 11 is a PVC soft cooling water pipe, and the outside of the cooling water pipe is woven with glass fiber, wrapped with mica, and then woven with glass fiber.
  • the size of the cooling water tank 4 depends on the size of the groove 3, to ensure that the cooling water tank can be placed on the basis of the groove, and the height of the cooling water tank 4 is required to be the same as the height of the groove 3 to ensure that the variable substrate 2 is covered above the boss.
  • the lower surface of the variable base plate is in contact with the upper surface of the cooling water tank, which promotes good preheating and cooling effects. It is required that the cooling water tank 4 will not shake inside the groove to ensure that the preheating and cooling of different parts of the formed part will not be uneven due to the change of the position of the cooling water tank during the preheating and cooling process.
  • the width of the main part of the cooling water tank is equal to the width of the groove, which is 90 mm, and the sum of the length of the main part of the cooling water tank and the height of the connecting port of the cooling water tank is equal to the length of the groove, which is 53 mm.
  • the variable substrate 2 is prepared by using a material with the same composition as the powder to be printed, so as to prevent cracking of the printed part caused by the adhesion of dissimilar materials during the printing process.
  • the length and width of the variable substrate 2 are consistent with the length and width of the boss of the base substrate 1 , and the height of the variable substrate 2 is 5 mm to 10 mm.
  • the minimum thickness of the variable base plate 2 depends on the height of the bolt countersunk seat, to ensure that the variable base plate 2 and the base base plate 1 can be connected together by bolts, and the position of the countersunk head seat is lower than the height of the top of the variable base plate to protect the powder spreading device. Get hit. At the same time, due to the air in the water storage tank under the preheating condition, the heat transfer effect is low. In order to ensure that the variable substrate achieves the required preheating effect, the variable substrate should not be too thick. In the embodiment of the present invention, the height of the variable substrate is 5 mm.
  • the sum of the heights of the base 9 and the bosses 10 in the base substrate 1 and the height of the variable substrate 2 is equal to the height of the original formed substrate in the 3D printing device.
  • the cooling water pipe 11 in the device needs to provide a power device to provide circulating cooling water.
  • the cooling water pipe 11 and the power device are placed inside the forming cylinder and occupy a large space and cannot provide power.
  • the water pipe leads out of the forming cylinder, and the circulating water power device and the cooling switch are placed outside the forming cylinder.
  • the interior of the forming cylinder of the 3D printing equipment is a closed whole, and the cooling water pipe led out by random openings will affect the sealing effect of the forming cylinder and cause damage to the 3D printing equipment.
  • the method adopted in the present invention is to fix the base substrate of the rapid ultra-low temperature cooling device on the lifting platform between the powder spreading device 14 and the powder drop port 15, and open the bottom and side surfaces inside the forming cylinder.
  • the cooling water pipe is routed in the grooved part of the forming cylinder, and finally goes out from the oxygen measuring port 12 on the upper part of the forming cylinder.
  • the cooling water pipe enters the slotted part the water inlet pipe and the water outlet pipe of the cooling water pipe are bound as a whole to avoid space occupation caused by bending.
  • a circulating water device is installed outside the 3D printing equipment, and the cooling water pipe is provided with cooling water and circulating power through the device.
  • the cooling water pipe is led out from the through hole and enters the slot inlet of the forming cylinder to leave the size of the height to be printed. If printing a part with a height of 20mm, leave a 20mm length margin between the cooling water pipe leading out of the through hole and the slotted inlet of the forming cylinder to prevent the cooling water pipe from being broken due to the lowering of the lifting table during the printing process and damage to the 3D printing equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)

Abstract

一种粉床3D打印的快速冷却装置,包括:基础基板(1)、可变基板(2)和冷却水箱(4),基础基板上设置有凹槽(3),冷却水箱设置于凹槽中,可变基板设置在冷却水箱上。作为3D打印的成形台面,在3D打印过程中,在冷却水箱中通入循环冷却水,对可变基板进行冷却,以此实现打印过程中成形件的及时且快速冷却。还提供了利用这种冷却装置的3D打印系统,实现成形和冷却的同时进行,抑制成形中晶粒尺寸变大,保持元素分布均匀,提高成形件强度。

Description

一种粉床3D打印的快速冷却装置及系统 【技术领域】
本发明属于3D打印相关技术领域,更具体地,涉及一种粉床3D打印的快速冷却装置及系统。
【背景技术】
随着科技的不断进步,对工业产品的要求也不断提高,因此加工零件也向着精密化、复杂化、一体化的方向发展。然而,传统制造方法,如铸造、锻压等加工手段已经不能满足现如今的工业需求,3D打印技术应运而生,3D打印具备模型数字化处理分层,逐层扫描打印的技术特点,可生产精密化零件。
传统的3D打印技术对基板进行预热处理后进行3D打印,成形件制造结束后进行自然冷却,然而,基板长时间加热造成自然冷却时间长,因此造成晶粒尺寸变大,元素偏析,强度降低。这是目前3D打印不可避免的缺点,因此有必要给出一种方法摒除传统3D打印技术的缺点,如打印粉末材料中添加陶瓷相等,然而以上方法并不能从底层解决问题,直接从加热基板入手,变更基板为可加热亦可冷却的装置,不仅可以在3D打印过程中实现预热,还可实现成形件的快速冷却,抑制晶粒尺寸变大,促使元素分布均匀,提高成形件强度。因此,有必要提出一种粉床3D打印的快速超低温冷却装置。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种粉床3D打印的快速冷却装置及系统,利用该装置中冷却水箱对可变基板的快速冷却,实现成形和冷却的同时进行,抑制成形中晶粒尺寸变大,保持元素分布均匀,提高成形件强度。
为实现上述目的,按照本发明的一个方面,提供了一种粉床3D打印的 快速冷却装置,该装置包括基础基板、可变基板和冷却水箱,其中,
所述基础基板上设置有凹槽,该凹槽中设置有所述冷却水箱,所述可变基板设置在所述冷却水箱上,作为3D打印的成形台面,在3D打印过程中,在所述冷却水箱中通入循环冷却水,对可变基板进行冷却,以此实现打印过程中成形件的及时且快速冷却。
进一步优选地,所述冷却水箱上设置有入水口和出水口,该入水口和出水口通过冷却水管与外界的水循环装置连接。
进一步优选地,所述基础基板上设置有通孔,作为所述冷却水管穿过与所述入水口和出水口连接的通道。
进一步优选地,所述冷却水管为柔性水管,其表面进行隔热处理。
进一步优选地,所述隔热处理采用玻璃纤维编织、云母绕包后再采用玻璃纤维编织进行隔热。
进一步优选地,所述基础基板呈阶梯状,阶梯处为所述冷却水管安放的空间。
进一步优选地,所述可变基板的材料与成形件的材料相同,根据成形件材料的不同更换不同材料的可变基板。
进一步优选地,所述装置的厚度与3D打印系统中的成形基板厚度相同。
按照本发明的另一个方面,提供了一种上述所述的冷却装置的粉床3D打印系统,采用上述所述的冷却装置作为成形基板,该冷却装置中的冷却水管从所述3D打印系统成形缸放置测氧口的位置穿出,以此避免重新在所述成形缸上开设孔洞,保证成形缸的密封性。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具备下列有益效果:
1.本发明提供的快速冷却装置在3D打印系统中,相当于3D打印系统中的成形基板,由于其内部放置有冷却水箱,在打印过程中,通过通入循环水,实现在打印过程中打印和冷却的同时进行,实现成形件的快速冷却,保证原 有打印过程中低热应力、防止开裂的前提下,还实现打印结束后零件晶粒细化、元素分布更均匀、强度增加的效果;
2.本发明中提供的冷却装置,其厚度与原打印系统中的成形基板后端相同,在采用该冷却装置替换原成形基板后,基本不改变原有成形缸的结构,同时,通过将冷却水管从测氧口的安装位置穿出,也无需在成形缸上额外开设孔洞,避免破坏原有成形缸的密封性;
3.本发明中根据不同成形件的材料选择不同的可变基板,避免打印初始阶段中成形件与基板分离,造成成形件翘曲弯曲,失去起始定义的形状。
【附图说明】
图1是按照本发明的优选实施例所构建的粉床3D打印的快速冷却装置的结构示意图;
图2是按照本发明的优选实施例所构建的基础基板的结构示意图;
图3是按照本发明的优选实施例所构建的冷却水箱的结构示意图;
图4是按照本发明的优选实施例所构建的粉床3D打印系统成形缸的结构示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-基础基板,2-可变基板,3-凹槽,4-冷却水箱,5-入水口,6-出水口,7-连接孔,8-通孔,9-底座,10-凸台,11-冷却水管,12-测氧口,13-封装盖,14-铺粉装置,15-落粉口。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1和2所示,一种粉床3D打印的快速冷却装置,包括:基础基板 1、冷却水箱4、可变基板2,基础基板1上设置有凹槽3,该凹槽3中设置有冷却水箱4,可变基板2设置在所述冷却水箱4上,作为3D打印的成形台面,在3D打印过程中,在冷却水箱4中通入循环冷却水,对可变基板2进行冷却,以此实现打印过程中成形件的及时且快速冷却;该装置具备强制冷却的特点,在成形件制备完成后进行强制冷却,不仅实现成形过程中减小热应力,而且可在成形结束后快速冷却,减小晶粒尺寸、保持元素分布均匀、提高成形件强度。
基础基板1为不规则形状,包括底座9和凸台10,底座和凸台形成阶梯,底座上面设置有多个连接孔7,用于与其它结构连接,该底座长、宽、圆角半径、螺栓半径等于3D打印设备中基板的长、宽、圆角半径、螺栓半径,基础基板中底座上两个螺栓连接孔的距离等于3D打印设备中一条边上两个螺栓连接口的距离。本发明实施例中所替代的传统基板尺寸为123mm×123mm×50mm,圆角半径为23mm,一条边上连接孔的间距为90mm,螺栓半径为3.5mm。以上为安置在3D打印设备中基板的固定尺寸,不可更改;底座尺寸为123mm×123mm×10mm。
凸台10上存在四个连接孔7,其中凸台10上距离基础基板底座上面连接孔最远的连接孔位置可以确定,距离为3D打印设备中基板上连接孔的距离为90mm。凸台10上所有连接孔7均位于凸台俯视图下圆角位置附近,具体表现为连接孔7距离相近位置的边距离均为16.5mm。凹槽3的尺寸需确保不占据连接孔7的位置,本发明实施例中基础基板中凹槽的尺寸为53mm×90mm×10mm。
凸台10上开设有凹槽,用于放置冷却水箱4,在与冷却水箱入水口5和出水口6对应的地方开设有通孔8,通孔8的直径大小为冷却水管11直径的1.25~2倍;通孔的直径需高于冷却水管的直径,保证冷却水管可在通孔中自由拉动,同时通孔直径过大影响基板的预热效果。本发明实施例中通孔直径d 2=5mm。
冷却水管11从基础基板1的通孔8中引出后进入成形缸底部开槽位置,凸台的位置设计是考虑到基础基板1中底座9上的连接孔7不可接触到凸台,还要保证方便拆卸底座上的螺栓,在此基础上,底座和凸台之间空出的部分预存足够的空间存储一定长度的冷却水管11,用于升降台下降时保证冷却水管的展开,并不引起拉扯进入到成形缸底部开槽部位的冷却水管。本发明实施例中凸台的尺寸为93mm×123mm×30mm,螺栓间距为90mm,螺栓半径为r 1=3.5mm。
如图3所示,冷却水箱4上设置有入水口5和出水口6,通过冷却水管11与循环水装置连接,冷却水管11具备柔软特点,可在轻微外力作用下变形,冷却水管11外部做隔热处理。本发明的一个实施例中,冷却水管11的材质为PVC软质冷却水管,冷却水管外部采用玻璃纤维编织、云母绕包后再采用玻璃纤维编织。得到的冷却水管直径d 1=4mm,最终该冷却水管可承受500℃的外部温度,可用于预热温度为200℃的条件。
冷却水箱4的尺寸取决于凹槽的3尺寸,确保冷却水箱可安置于凹槽中的基础上,要求冷却水箱4的高度和凹槽3高度一致,保证可变基板2覆盖于凸台上方时可变基板下表面和冷却水箱上表面接触,促使预热效果和冷却效果良好。要求冷却水箱4在凹槽内部不会发生晃动,保证预热和冷却过程中不会因为冷却水箱位置变化造成成形件不同部位预热和冷却不均的现象。本发明实施例中冷却水箱主体部位宽度等于凹槽宽度,为90mm,冷却水箱主体部位长度和冷却水箱连接口的高度总和等于凹槽长度,为53mm。
可变基板2使用与将要打印的粉末成分一致的材料制备而成,防止打印过程中异种材料的粘接导致打印件开裂。可变基板2长、宽与基础基板1凸台长、宽一致,可变基板2的高度为5mm~10mm。
可变基板2的最小厚度取决于螺栓沉头座的高度,保证可变基板2和基础基板1可以通过螺栓连接在一起后沉头座的位置低于可变基板顶部高度,保护铺粉装置不收撞击。同时基于预热条件下储水箱中为空气,传热效果低, 为了保证可变基板达到所需预热效果,可变基板不可过厚。本发明实施例中可变基板高度为5mm。
基础基板1中底座9和凸台10的高度与可变基板2的高度总和等于3D打印设备中原成形基板的高度。
将成形基板置换为快速超低温冷却装置后,装置中冷却水管11需提供动力装置提供循环冷却水,冷却水管11及动力装置等置于成形缸内部占据空间大,且无法提供电源,唯有将冷却水管引出成形缸,循环水动力装置及冷却开关放置在成形缸外部,然而3D打印设备成形缸内部是一个封闭的整体,随意开孔引出冷却水管影响成形缸密闭效果,造成3D打印设备的损坏。
如图4所示,本发明中采用的方法是将快速超低温冷却装置的基础基板固定在介于铺粉装置14和落粉口15之间的升降台上,在成形缸内部的下面和侧面开槽,冷却水管在成形缸开槽部位走线,最终从成形缸上部的测氧口12走出。在冷却水管进入开槽部位时,将冷却水管的入水管和出水管捆绑为一个整体,避免弯曲造成空间占据,本发明实施例中开槽的宽度为12mm,可以容纳循环捆绑后的冷却水管;在3D打印设备外部加装循环水装置,通过该装置给冷却水管提供冷却水及循环动力。
在冷却水管穿出位置放置封装盖13,保护冷却水管并避免粉末落入穿出位置;冷却水管从通孔引出进入成形缸体开槽入口之间留出需打印件高度的尺寸。如打印高度为20mm的零件,则冷却水管从通孔引出到成形缸体开槽入口之间留出20mm长度的余量,防止打印过程中升降台下降造成拉断冷却水管,损毁3D打印设备。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种粉床3D打印的快速冷却装置,其特征在于,该装置包括基础基板(1)、可变基板(2)和冷却水箱(4),其中,
    所述基础基板(1)上设置有凹槽(3),该凹槽中设置有所述冷却水箱(4),所述可变基板(2)设置在所述冷却水箱上,作为3D打印的成形台面,在3D打印过程中,在所述冷却水箱(4)中通入循环冷却水,对可变基板(2)进行冷却,以此实现打印过程中成形件的及时且快速冷却。
  2. 如权利要求1所述的一种粉床3D打印的快速冷却装置,其特征在于,所述冷却水箱(4)上设置有入水口(5)和出水口(6),该入水口和出水口通过冷却水管与外界的水循环装置连接。
  3. 如权利要求2所述的一种粉床3D打印的快速冷却装置,其特征在于,所述基础基板(5)上设置有通孔(8),作为所述冷却水管穿过与所述入水口(5)和出水口(6)连接的通道。
  4. 如权利要求2所述的一种粉床3D打印的快速冷却装置,其特征在于,所述冷却水管(11)为柔性水管,其表面进行隔热处理。
  5. 如权利要求4所述的一种粉床3D打印的快速冷却装置,其特征在于,所述隔热处理采用玻璃纤维编织、云母绕包后再采用玻璃纤维编织进行隔热。
  6. 如权利要求2所述的一种粉床3D打印的快速冷却装置,其特征在于,所述基础基板(1)呈阶梯状,阶梯处为所述冷却水管安放的空间。
  7. 如权利要求1所述的一种粉床3D打印的快速冷却装置,其特征在于,所述可变基板(2)的材料与成形件的材料相同,根据成形件材料的不同更换不同材料的可变基板。
  8. 如权利要求1所述的一种粉床3D打印的快速冷却装置,其特征在于,所述装置的厚度与3D打印系统中的成形基板厚度相同。
  9. 一种利用权利要求1-8任一项所述的冷却装置的粉床3D打印系统, 其特征在于,采用权利要求1-8任一项所述的冷却装置作为成形基板,该冷却装置中的冷却水管从所述3D打印系统成形缸放置测氧口的位置穿出,以此避免重新在所述成形缸上开设孔洞,保证成形缸的密封性。
PCT/CN2021/090932 2021-01-26 2021-04-29 一种粉床3d打印的快速冷却装置及系统 WO2022160489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110103253.1A CN112936854A (zh) 2021-01-26 2021-01-26 一种粉床3d打印的快速冷却装置及系统
CN202110103253.1 2021-01-26

Publications (1)

Publication Number Publication Date
WO2022160489A1 true WO2022160489A1 (zh) 2022-08-04

Family

ID=76236923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090932 WO2022160489A1 (zh) 2021-01-26 2021-04-29 一种粉床3d打印的快速冷却装置及系统

Country Status (2)

Country Link
CN (1) CN112936854A (zh)
WO (1) WO2022160489A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117680713A (zh) * 2024-02-01 2024-03-12 西安赛隆增材技术股份有限公司 一种粉床电子束增材制造设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116213906B (zh) * 2023-05-09 2023-07-28 中国航空制造技术研究院 一种降低电子束熔丝成形过程中变形的成形装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108556356A (zh) * 2018-05-30 2018-09-21 芜湖聚网信息技术有限公司 多功能3d打印成型台
CN108582788A (zh) * 2018-05-30 2018-09-28 芜湖聚网信息技术有限公司 带冷却机构的3d打印成型台
KR20190009451A (ko) * 2017-07-18 2019-01-29 범진아이엔디(주) 접착제로 결합된 3차원 냉각 사출금형 및 그 제작방법
CN210062039U (zh) * 2019-05-24 2020-02-14 杭州捷诺飞生物科技股份有限公司 3d打印平台以及3d打印装置
CN210615120U (zh) * 2019-09-24 2020-05-26 江苏铭亚科技有限公司 一种用于金属3d打印机带有防护功能的堆积台
CN211730269U (zh) * 2019-12-17 2020-10-23 江苏华疆三维科技有限公司 一种汽车3d打印自动调平平台
CN212219302U (zh) * 2020-03-26 2020-12-25 芜湖西通三维技术有限公司 一种可对模型进行快速冷却的3d打印用载物台

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211890438U (zh) * 2020-03-28 2020-11-10 林莎莎 一种具有冷却循环机构的机械加工平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190009451A (ko) * 2017-07-18 2019-01-29 범진아이엔디(주) 접착제로 결합된 3차원 냉각 사출금형 및 그 제작방법
CN108556356A (zh) * 2018-05-30 2018-09-21 芜湖聚网信息技术有限公司 多功能3d打印成型台
CN108582788A (zh) * 2018-05-30 2018-09-28 芜湖聚网信息技术有限公司 带冷却机构的3d打印成型台
CN210062039U (zh) * 2019-05-24 2020-02-14 杭州捷诺飞生物科技股份有限公司 3d打印平台以及3d打印装置
CN210615120U (zh) * 2019-09-24 2020-05-26 江苏铭亚科技有限公司 一种用于金属3d打印机带有防护功能的堆积台
CN211730269U (zh) * 2019-12-17 2020-10-23 江苏华疆三维科技有限公司 一种汽车3d打印自动调平平台
CN212219302U (zh) * 2020-03-26 2020-12-25 芜湖西通三维技术有限公司 一种可对模型进行快速冷却的3d打印用载物台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117680713A (zh) * 2024-02-01 2024-03-12 西安赛隆增材技术股份有限公司 一种粉床电子束增材制造设备
CN117680713B (zh) * 2024-02-01 2024-04-26 西安赛隆增材技术股份有限公司 一种粉床电子束增材制造设备

Also Published As

Publication number Publication date
CN112936854A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022160489A1 (zh) 一种粉床3d打印的快速冷却装置及系统
TW201208994A (en) Float bath for manufacturing float glass and cooling method of the same
CN202571181U (zh) 一种中空冒口套
CN114409233B (zh) 玻璃块料成型装置及其成型方法
CN206069980U (zh) 一种铜材退火保护装置
JP2556567B2 (ja) ガラス板の製造装置
CN114436512B (zh) 玻璃块料成型装置及其成型方法
JP2016113343A (ja) 湾曲板ガラスの成形装置、湾曲板ガラスの成形方法
CN115710084A (zh) 一种玻璃板定向拉伸装置及拉伸方法
CN213623831U (zh) 一种吊装式保温装置
FI83072C (fi) Foerfarande och anordning foer att foerhindra boejningen av glasskivor i en med valsar foersedd ugn i en horisontalhaerdningsanordning.
CN212217048U (zh) 一种钣金件压铸成型模具
CN210399787U (zh) 一种筒瓦生产使用的干燥设备
CN113770379A (zh) 基于slm的金属构件3d打印方法
US2205650A (en) Mold drying method and apparatus
US1846614A (en) Tunnel kiln car and refractory slab therefor
CN219429888U (zh) 一种玻璃钢化用预热炉
CN112374737A (zh) 玻璃钢化炉可调式吹风冷却结构
CN203855685U (zh) 热处理装置
CN202039097U (zh) 一种侧喷式铝箔退火炉
JP5489676B2 (ja) 連続鋳造型および連続鋳造方法
CN217834742U (zh) 一种3d打印机恒温仓结构
CN214392258U (zh) 冒口及铸件模
CN115070016B (zh) 一种带有连续熔池保温炉的低压铸造设备
CN103610551A (zh) 婴儿培养箱用加热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922087

Country of ref document: EP

Kind code of ref document: A1