WO2022158442A1 - 放射性ハロゲン標識前駆体化合物 - Google Patents

放射性ハロゲン標識前駆体化合物 Download PDF

Info

Publication number
WO2022158442A1
WO2022158442A1 PCT/JP2022/001558 JP2022001558W WO2022158442A1 WO 2022158442 A1 WO2022158442 A1 WO 2022158442A1 JP 2022001558 W JP2022001558 W JP 2022001558W WO 2022158442 A1 WO2022158442 A1 WO 2022158442A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
compound
mmol
methyl
Prior art date
Application number
PCT/JP2022/001558
Other languages
English (en)
French (fr)
Inventor
浩士 田中
和弘 高橋
美穂 鈴木
Original Assignee
国立大学法人東京工業大学
公立大学法人福島県立医科大学
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 公立大学法人福島県立医科大学, 大陽日酸株式会社 filed Critical 国立大学法人東京工業大学
Priority to US18/037,038 priority Critical patent/US20240034721A1/en
Priority to EP22742564.2A priority patent/EP4282857A1/en
Publication of WO2022158442A1 publication Critical patent/WO2022158442A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/001Acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/64Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms
    • C07C309/70Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms of a carbon skeleton substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/83Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a carbon skeleton substituted by nitrogen atoms, not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/84Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a carbon skeleton substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the present invention relates to a radioactive halogen-labeled precursor compound, a compound used for producing this precursor compound, and a method for producing a radioactive halogen-labeled compound using this precursor compound.
  • a labeling reaction with a radioactive halogen such as radioactive fluorine is carried out by synthesizing a compound in which a leaving group is bound to the halogen-labeled site of the target substrate as a labeling precursor compound, and binding a radioactive halogen to this labeling precursor compound.
  • a radioactive halogen such as radioactive fluorine
  • the structure of the leaving group in the labeling precursor compound greatly affects the reactivity of the labeling reaction.
  • a trifluoromethanesulfonyloxy group, a benzenesulfonyloxy group and the like are used.
  • an object of the present invention is to provide a highly reactive and stable radioactive halogen-labeled precursor compound.
  • a radioactive halogen-labeled precursor compound containing a trifluoromethanesulfonyloxy group introduced with a hydrophobic amide tag as a leaving group exhibits high reactivity and stability.
  • the present inventors have found that the present invention has been completed.
  • the present invention provides the following (1) to (17).
  • (1) the following general formula (I) [In the formula, R 1 and R 2 each independently represent an alkyl group having 5 to 20 carbon atoms, X 1 and X 2 each independently represent a halogen atom, and X 3 represents a halogen atom. ]
  • R 1 and R 2 each independently represent an alkyl group having 5 to 20 carbon atoms, X 1 and X 2 each independently represent a halogen atom, and X 3 represents a halogen atom.
  • R 1 and R 2 each independently represent an alkyl group having 5 to 20 carbon atoms
  • X 1 and X 2 each independently represent a halogen atom
  • R 3 is derived from a sugar.
  • L in general formula (A) or (B) is an alkylene group (with the proviso that one or more —CH 2 — in the alkylene group may be substituted with —O— or a phenylene group);
  • R 4 in general formula (A) or (B) is a 4-[2,3-bis(tert-butoxycarbonyl)guanidinomethyl]phenyl group, naphthalen-2-yl group, 2-nitro-1H-
  • R 3a in general formulas (IIa) and (IIIa) is a monovalent group derived from a sugar, a monovalent group derived from a peptide, or the following general formula (A) or (B) (Wherein, L represents a divalent group that functions as a spacer, and R4 is an aryl group that may be substituted with a substituent, a heteroaryl group that may be substituted with a substituent, or protected with a protecting group. represents an aminocarbonyl group that may be substituted, and * represents a binding site.)
  • L in general formula (A) or (B) is an alkylene group (with the proviso that one or more —CH 2 — in the alkylene group may be substituted with —O— or a phenylene group); (12) The compound as described in (12).
  • R 4 in general formula (A) or (B) is 4-[2,3-bis(tert-butoxycarbonyl)guanidinomethyl]phenyl group, naphthalen-2-yl group, 2-nitro-1H-
  • a reagent for producing a labeled precursor compound containing the compound according to any one of (1) to (3).
  • a labeled precursor reagent for a radioactive halogen-labeled compound containing the compound according to any one of (4) to (8).
  • the present invention provides a novel radioactive halogen-labeled precursor compound.
  • This precursor compound is highly reactive and stable, allowing efficient production of radiohalogen-labeled compounds.
  • halogen atom includes, for example, fluorine atom, chlorine atom, bromine atom, iodine atom, astatine atom and the like.
  • radioactive halogen atom includes, for example, 18 F, 75 Br, 76 Br, 77 Br, 82 Br, 123 I, 124 I, 125 I, 131 I, 133 I, 209 At, 210 At, 211 At and the like.
  • radioactive halide ion means, for example, 18 F ⁇ , 75 Br ⁇ , 76 Br ⁇ , 77 Br ⁇ , 82 Br ⁇ , 123 I ⁇ , 124 I ⁇ , 125 I ⁇ , 131 I ⁇ , 133 I ⁇ , 209 At ⁇ , 210 At ⁇ , 211 At ⁇ and the like.
  • the "alkyl group having 5 to 20 carbon atoms” is a linear or branched alkyl group having 5 to 20 carbon atoms, such as pentyl group, hexyl group, heptyl group, octyl group, nonyl decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group and the like.
  • alkyl group having 7 to 11 carbon atoms is a linear or branched alkyl group having 7 to 11 carbon atoms, such as heptyl group, octyl group, nonyl group, decyl group, undecyl base and so on.
  • the "aryl group” is, for example, a phenyl group, a naphthalene-1-yl group, a naphthalene-2-yl group, and the like.
  • the "heteroaryl group” includes, for example, pyridin-2-yl group, pyridin-3-yl group, pyridin-4-yl group, pyrimidin-2-yl group, pyrimidin-4-yl group, pyrimidine- 5-yl group, furan-2-yl group, furan-3-yl group, thiophen-2-yl group, thiophen-3-yl group, imidazol-1-yl group, imidazol-2-yl group, imidazol-4 -yl group, imidazol-5-yl group, etc.
  • protecting group for an aminocarbonyl group includes, for example, a tert-butoxycarbonyl group (Boc), a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, a 2,2,2-trichloroethoxycarbonyl group. , allyloxycarbonyl group, trifluoroacetyl group, phthaloyl group, p-toluenesulfonyl group, 2-nitrobenzenesulfonyl group and the like.
  • Boc tert-butoxycarbonyl group
  • R 1 and R 2 each independently represent an alkyl group having 5 to 20 carbon atoms. Although R 1 and R 2 may be different groups, they are preferably the same group. R 1 and R 2 may be any of the groups described above, preferably an alkyl group having 7 to 11 carbon atoms, more preferably an alkyl group having 7 or 11 carbon atoms.
  • X 1 and X 2 each independently represent a halogen atom. Although X 1 and X 2 may be different atoms, they are preferably the same atom. X 1 and X 2 may be halogen atoms, preferably fluorine or chlorine atoms, more preferably fluorine atoms.
  • X3 represents a halogen atom.
  • X3 may be a halogen atom , preferably a fluorine atom.
  • R3 represents a monovalent group derived from sugar or a monovalent group derived from peptide.
  • a monovalent group derived from sugar means, for example, a monovalent group obtained by removing one hydrogen atom in a sugar molecule
  • a monovalent group derived from peptide A group of means, for example, a monovalent group obtained by removing one hydrogen atom in a peptide molecule.
  • Hydrogen atoms to be removed are, for example, hydrogen atoms in hydroxy groups contained in sugars and peptide molecules.
  • the types of sugars and peptides are not particularly limited, but those that have the property of accumulating in specific organs or tissues (such as cancer tissues) in vivo are preferred.
  • R 3 in general formula (II) is the following general formula (A) or (B) You may represent the group shown by.
  • L represents a divalent group that functions as a spacer.
  • L may be a group having an aromatic ring as long as it functions as a spacer.
  • a specific example of L is an alkylene group.
  • one or more —CH 2 — in the alkylene group may be substituted with —O— or a phenylene group.
  • the phenylene group may be any of 0-phenylene group, m-phenylene group and p-phenylene group.
  • L may be any of the groups described above, but is preferably -CH 2 -O-, -CH 2 -O-CH 2 -, or -CH 2 -.
  • the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 1-7, more preferably 1-3. Even when —CH 2 — is substituted with —O— or a phenylene group, —O— and the phenylene group are included in the above “carbon number of the alkylene group” as one carbon.
  • R 4 is an optionally substituted aryl group, an optionally substituted heteroaryl group, or an optionally protected amino represents a carbonyl group.
  • the aryl group is not particularly limited, it is preferably a phenyl group or a naphthalen-2-yl group.
  • the heteroaryl group is also not particularly limited, but an imidazol-1-yl group is preferred.
  • Substituents are not particularly limited either, but nitro group, 2,3-bis(tert-butoxycarbonyl)guanidinomethyl group, sulfo group and fluorine atom are preferred, nitro group and 2,3-bis(tert-butoxycarbonyl)guanidinomethyl groups are more preferred.
  • a protective group for an aminocarbonyl group is not particularly limited, but a tert-butoxycarbonyl group is preferred.
  • R 4 may be any of the groups described above, preferably 4-[2,3-bis(tert-butoxycarbonyl)guanidinomethyl]phenyl group, naphthalen-2-yl group, or 2-nitro-1H-imidazole -1-yl group.
  • R 4 is an aminocarbonyl group which may be protected with a protecting group, a functional site having an amino group can be easily attached thereto.
  • R 4 is preferably an aminocarbonyl group which may be protected by a protecting group, for example, an aminocarbonyl group protected by a tert-butoxycarbonyl group.
  • R3a in general formulas (IIa) and (IIIa) represents a monovalent group derived from a compound to be labeled with a radioactive halogen atom.
  • a monovalent group derived from a compound to be labeled with a radioactive halogen atom means, for example, a monovalent group obtained by removing one hydrogen atom in the molecule of the compound, The hydrogen atoms to be removed are, for example, the hydrogen atoms in the hydroxy groups contained in the molecule of said compound.
  • a monovalent group derived from a compound to be labeled with a radioactive halogen atom may be any group.
  • Radiopharmaceuticals e.g., PET reagents
  • the portion other than the radioactive halogen atoms of the compounds used as radiopharmaceuticals should be labeled with radioactive halogen atoms. It may be a monovalent group.
  • non-radioactive halogen atoms have the property of accumulating in specific organs and tissues (such as cancer tissues) in the body, so compounds that want to label such portions with radioactive halogen atoms It may be a monovalent group derived from Furthermore, since many moieties other than such radioactive halogen atoms have the property of stabilizing radioactive halogen atoms in vivo (for example, the structure described in WO 2019/151384), such A moiety may be a monovalent group derived from a compound to be labeled with a radioactive halogen atom. Specific examples of the monovalent group derived from the compound to be labeled with a radioactive halogen atom include the groups exemplified for R 3 above.
  • X 4 in general formula (IIIa) represents a radioactive halogen atom.
  • X 4 may be a radioactive halogen atom, preferably 18 F or 211 At, more preferably 211 At.
  • the compound represented by general formula (I) can be used as a reagent for producing a labeled precursor compound, that is, as a raw material reagent for producing a compound represented by general formula (II).
  • the labeled precursor compound-producing reagent usually consists of only the compound represented by general formula (I), but may contain other substances.
  • the production method using 2,2-difluoro-2-(fluorosulfonyl)acetic acid and dioctylamine as starting materials described in Example 1 may be modified or modified as necessary. It can be manufactured according to the method with the addition of
  • the compound represented by general formula (II) can be used as a labeling precursor reagent for radioactive halogen-labeled compounds.
  • a labeling precursor reagent for a radioactive halogen-labeled compound usually consists of only the compound represented by general formula (II), but may contain other substances.
  • the compound represented by general formula (II) is obtained by, for example, reacting the compound represented by general formula (I) with a sugar, peptide, or a compound containing a group represented by general formula (A) or (B). It can be manufactured by
  • the compound represented by general formula (II) has the following advantages as a precursor compound of a radioactive halogen-labeled compound. 1) It has higher reactivity than conventional precursor compounds (for example, precursor compounds containing a benzenesulfonyloxy group as a leaving group), and highly efficient radiohalogenation is possible. 2) They are more stable, easier to handle, and more storable than conventional precursor compounds (eg, precursor compounds containing a trifluoromethanesulfonyloxy group as a leaving group). 3) Since it contains a hydrophobic portion, it is possible to separate the target labeling compound from the unreacted precursor compound by a simple method after the reaction is completed.
  • the labeled precursor compound represented by general formula (IIa) can be produced, for example, by reacting the compound represented by general formula (I) with a compound having a hydroxy group.
  • a radioactive halogen-labeled compound represented by general formula (IIIa) can be produced by reacting a labeled precursor compound represented by general formula (IIa) with a radioactive halide ion.
  • the radiohalide ion to be used is not particularly limited, it is 18 F - or 211 At - , more preferably 211 At - .
  • Reaction conditions can be appropriately set depending on the types of precursor compounds and radioactive halide ions. A person skilled in the art can easily determine the appropriate reaction temperature, reaction time, concentration of each substance, and the like.
  • the desired product was extracted from the remaining aqueous layer with ethyl acetate.
  • the organic layer was washed with saturated saline and then dried with magnesium sulfate. After removing magnesium sulfate by filtration, the obtained solution was concentrated to obtain the title compound (7.38 g, 32.6 mmol, 52%).
  • the reaction solution was poured into ethyl acetate and water. After the aqueous layer was extracted with ethyl acetate, the organic layer was washed with saturated brine and dried over magnesium sulfate. After removing magnesium sulfate by filtration, the filtrate was concentrated under reduced pressure. The residue was purified using silica gel column chromatography to give the title compound (63.5 mg, 103 ⁇ mol, 24%).
  • the obtained organic layer was dried using magnesium sulfate, and then concentrated under reduced pressure. After the resulting residue was dissolved in ethanol (7.0 mL), sodium borohydride (316 mg, 8.53 mmol, 5.0 eq.) was added at 0°C. After reacting for 24 hours at room temperature, it was poured into methylene chloride and water. After the aqueous layer was extracted with methylene chloride, the organic layer was extracted with 1M hydrochloric acid. The aqueous layer was adjusted to pH 9 with sodium bicarbonate and potassium carbonate and extracted with dichloromethane. The obtained organic layer was filtered with magnesium sulfate and concentrated under reduced pressure to obtain the title compound (390 mg, 931 ⁇ mol, 56%).
  • reaction solution was poured into saturated aqueous ammonium chloride solution and ethyl acetate.After the aqueous layer was extracted with ethyl acetate, the organic layer was diluted with saturated sodium chloride. It was washed with water, dried over magnesium sulfate, filtered to remove magnesium sulfate, and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography to give the title compound (14.7). mg, 17 ⁇ mol, 50%).
  • Astatine-211 ( 211 At) was produced by irradiating a stable isotope of bismuth with an ⁇ -beam using a cyclotron, resulting in a nuclear reaction of 209 Bi( ⁇ ,2n) 211 At.
  • Manufactured by Isolation of 211 At from bismuth after irradiation is carried out by distilling with a 20% oxygen/nitrogen mixture as carrier gas and heating it in a furnace at 850°C. It was done by The 211 At solution thus obtained was concentrated by the method described below and used for labeling.
  • the present invention can be used in industrial fields related to medicine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

反応性及び安定性の高い放射性ハロゲン標識前駆体化合物として、下記の一般式(II) 〔式中、R1及びR2はそれぞれ独立して、炭素数5~20のアルキル基を表し、X1及びX2はそれぞれ独立して、ハロゲン原子を表し、R3は糖から誘導される一価の基などを表す。〕 で表される化合物を提供する。

Description

放射性ハロゲン標識前駆体化合物
 本発明は、放射性ハロゲン標識前駆体化合物、この前駆体化合物の製造に用いられる化合物、及びこの前駆体化合物を用いた放射性ハロゲン標識化合物の製造方法に関する。
 放射性フッ素などの放射性ハロゲンによる標識反応は、標的基質のハロゲン標識部位に脱離基を結合させた化合物を標識前駆体化合物として合成し、この標識前駆体化合物に放射性ハロゲンを結合させる反応により行われることが多い。この際、標識前駆体化合物における脱離基の構造が、標識反応の反応性などに大きな影響を与える。このような脱離基としては、トリフルオロメタンスルホニルオキシ基やベンゼンスルホニルオキシ基などが使用されている。
 最近、本発明者は、疎水性のアミドタグを導入したベンゼンスルホニルオキシ基を脱離基として含む放射性フッ素標識前駆体化合物を開発し、特許出願を行った(特許文献1、特許文献2)。この前駆体化合物は、疎水性部分を含むことから、反応終了後、目的の標識化合物を簡便な方法で未反応の前駆体化合物と分離できるという利点を有する。
国際公開第2018/164043号 特開2017-52713号公報
 放射性ハロゲンによる標識反応を効率的に行うためには、反応性の高い標識前駆体化合物を使用する必要がある。その一方、反応性は高くても、容易に分解してしまうような標識前駆体化合物では、標識反応の効率化は望めない。本発明は、このような技術的背景の下になされたものであり、反応性及び安定性の高い放射性ハロゲン標識前駆体化合物を提供することを目的とする。
 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、疎水性のアミドタグを導入したトリフルオロメタンスルホニルオキシ基を脱離基として含む放射性ハロゲン標識前駆体化合物が高い反応性と安定性を有することを見出し、本発明を完成するに至った。
 即ち、本発明は、以下の(1)~(17)を提供する。
(1)下記の一般式(I)
Figure JPOXMLDOC01-appb-C000009
〔式中、R及びRはそれぞれ独立して、炭素数5~20のアルキル基を表し、X及びXはそれぞれ独立して、ハロゲン原子を表し、Xはハロゲン原子を表す。〕
で表される化合物。
(2)一般式(I)におけるR及びRが、炭素数7~11のアルキル基である(1)に記載の化合物。
(3)一般式(I)におけるX及びXが、フッ素原子又は塩素原子である(1)又は(2)に記載の化合物。
(4)下記の一般式(II)
Figure JPOXMLDOC01-appb-C000010
〔式中、R及びRはそれぞれ独立して、炭素数5~20のアルキル基を表し、X及びXはそれぞれ独立して、ハロゲン原子を表し、Rは糖から誘導される一価の基、ペプチドから誘導される一価の基、又は下記の一般式(A)又は(B)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式中、Lはスペーサーとして機能する二価の基を表し、Rは置換基で置換されていてもよいアリール基、置換基で置換されていてもよいヘテロアリール基、又は保護基で保護されていてもよいアミノカルボニル基を表し、*は結合部位を表す。)
で示される基を表す。〕
で表される化合物。
(5)一般式(II)におけるR及びRが、炭素数7~11のアルキル基である(4)に記載の化合物。
(6)一般式(II)におけるX及びXが、フッ素原子又は塩素原子である(4)又は(5)に記載の化合物。
(7)一般式(A)又は(B)におけるLが、アルキレン基(但し、アルキレン基の1以上の-CH-は、-O-又はフェニレン基で置換されていてもよい。)である(4)乃至(6)のいずれかに記載の化合物。
(8)一般式(A)又は(B)におけるRが、4-[2,3-ビス(tert-ブトキシカルボニル)グアニジノメチル]フェニル基、ナフタレン-2-イル基、2-ニトロ-1H-イミダゾール-1-イル基、又はtert-ブトキシカルボニル基で保護されたアミノカルボニル基である(4)乃至(7)のいずれかに記載の化合物。
(9)下記の一般式(IIIa)
Figure JPOXMLDOC01-appb-C000013
〔式中、Xは放射性ハロゲン原子を表し、R3aは放射性ハロゲン原子で標識したい化合物から誘導される一価の基を表す。〕
で表される放射性ハロゲン標識化合物の製造方法であって、下記の一般式(IIa)
Figure JPOXMLDOC01-appb-C000014
〔式中、R及びRはそれぞれ独立して、炭素数5~20のアルキル基を表し、X及びXはそれぞれ独立して、ハロゲン原子を表し、R3aは上記と同じ意味である。〕
で表される標識前駆体化合物を放射性ハロゲン化物イオンと反応させ、一般式(IIIa)で表される放射性ハロゲン標識化合物を得る工程を含む方法。
(10)一般式(IIa)におけるR及びRが、炭素数7~11のアルキル基である(9)に記載の方法。
(11)一般式(IIa)におけるX及びXが、フッ素原子又は塩素原子である(9)又は(10)に記載の方法。
(12)一般式(IIa)及び(IIIa)におけるR3aが、糖から誘導される一価の基、ペプチドから誘導される一価の基、又は下記の一般式(A)又は(B)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(式中、Lはスペーサーとして機能する二価の基を表し、Rは置換基で置換されていてもよいアリール基、置換基で置換されていてもよいヘテロアリール基、又は保護基で保護されていてもよいアミノカルボニル基を表し、*は結合部位を表す。)
で示される基である(9)乃至(11)のいずれかに記載の方法。
(13)一般式(A)又は(B)におけるLが、アルキレン基(但し、アルキレン基の1以上の-CH-は、-O-又はフェニレン基で置換されていてもよい。)である(12)に記載の化合物。
(14)一般式(A)又は(B)におけるRが、4-[2,3-ビス(tert-ブトキシカルボニル)グアニジノメチル]フェニル基、ナフタレン-2-イル基、2-ニトロ-1H-イミダゾール-1-イル基、又はtert-ブトキシカルボニル基で保護されたアミノカルボニル基である(12)又は(13)に記載の化合物。
(15)一般式(IIIa)におけるXが、211Atである(9)乃至(14)のいずれかに記載の方法。
(16)(1)乃至(3)のいずれかに記載の化合物を含む標識前駆体化合物製造用試薬。
(17)(4)乃至(8)のいずれかに記載の化合物を含む放射性ハロゲン標識化合物の標識前駆体試薬。
 本明細書は、本願の優先権の基礎である日本国特許出願、特願2021-006394の明細書及び/又は図面に記載される内容を包含する。
 本発明は、新規な放射性ハロゲン標識前駆体化合物を提供する。この前駆体化合物は、反応性と安定性が高いので、放射性ハロゲン標識化合物の効率的な製造を可能にする。
反応溶液のTLCの写真(左レーン:標品(Cのヨウ素置換体)、右レーン:反応液)。
 以下、本発明を詳細に説明する。
 本発明において「ハロゲン原子」とは、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アスタチン原子などである。
 本発明において「放射性ハロゲン原子」とは、例えば、18F、75Br、76Br、77Br、82Br、123I、124I、125I、131I、133I、209At、210At、211Atなどである。
 本発明において「放射性ハロゲン化物イオン」とは、例えば、1875Br76Br77Br82Br123124125131133209At210At211Atなどである。
 本発明において「炭素数5~20のアルキル基」とは、炭素数が5以上20以下の直鎖又は分枝鎖アルキル基であり、例えば、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基などである。
 本発明において「炭素数7~11のアルキル基」とは、炭素数が7以上11以下の直鎖又は分枝鎖アルキル基であり、例えば、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基などである。
 本発明において「アリール基」とは、例えば、フェニル基、ナフタレン-1-イル基、ナフタレン-2-イル基などである。
 本発明において「ヘテロアリール基」とは、例えば、ピリジン-2-イル基、ピリジン-3-イル基、ピリジン-4-イル基、ピリミジン-2-イル基、ピリミジン-4-イル基、ピリミジン-5-イル基、フラン-2-イル基、フラン-3-イル基、チオフェン-2-イル基、チオフェン-3-イル基、イミダゾール-1-イル基、イミダゾール-2-イル基、イミダゾール-4-イル基、イミダゾール-5-イル基などである
 本発明においてアミノカルボニル基の「保護基」とは、例えば、tert-ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、アリルオキシカルボニル基、トリフルオロアセチル基、フタロイル基、p-トルエンスルホニル基、2-ニトロベンゼンスルホニル基などである。
 一般式(I)、(II)、及び(IIa)においてR及びRはそれぞれ独立して、炭素数5~20のアルキル基を表す。R及びRは異なる基であってもよいが、同一の基であることが好ましい。R及びRは前記した基であればよいが、好ましくは、炭素数7~11のアルキル基であり、より好ましくは、炭素数7又は11のアルキル基である。
 一般式(I)、(II)、及び(IIa)においてX及びXはそれぞれ独立して、ハロゲン原子を表す。X及びXは異なる原子であってもよいが、同一の原子であることが好ましい。X及びXはハロゲン原子であればよいが、好ましくは、フッ素原子又は塩素原子であり、より好ましくは、フッ素原子である。
 一般式(I)においてXはハロゲン原子を表す。Xはハロゲン原子であればよいが、好ましくは、フッ素原子である。
 一般式(II)においてRは、糖から誘導される一価の基、又はペプチドから誘導される一価の基を表す。ここで、「糖から誘導される一価の基」とは、例えば、糖分子中の一つの水素原子を除去することによって得られる一価の基を意味し、「ペプチドから誘導される一価の基」とは、例えば、ペプチド分子中の一つの水素原子を除去することによって得られる一価の基を意味する。除去される水素原子は、例えば、糖及びペプチド分子に含まれるヒドロキシ基中の水素原子である。糖やペプチドの種類は特に限定されないが、生体内の特定の臓器や組織(がん組織など)に集積する性質を持つものが好ましい。
 一般式(II)におけるRは、下記の一般式(A)又は(B)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
で示される基を表してもよい。
 一般式(A)及び(B)においてLは、スペーサーとして機能する二価の基を表す。Lは、スペーサーとして機能する基であれば、芳香環を持つ基であってもよい。Lの具体例としては、アルキレン基を挙げることができる。但し、アルキレン基の1以上の-CH-は、-O-又はフェニレン基で置換されていてもよい。ここで、フェニレン基は0-フェニレン基、m-フェニレン基、p-フェニレン基のいずれであってもよい。Lは前記した基であればよいが、好ましくは、-CH-O-、-CH-O-CH-、又は-CH-である。アルキレン基の炭素数は特に限定されないが、好ましくは、1~7であり、より好ましくは、1~3である。なお、-CH-を-O-又はフェニレン基で置換した場合も、-O-やフェニレン基は1つの炭素として、前記した「アルキレン基の炭素数」に含める。
 一般式(A)及び(B)においてRは、置換基で置換されていてもよいアリール基、置換基で置換されていてもよいヘテロアリール基、又は保護基で保護されていてもよいアミノカルボニル基を表す。ここで、アリール基は特に限定されないが、フェニル基、又はナフタレン-2-イル基が好ましい。ヘテロアリール基も特に限定されないが、イミダゾール-1-イル基が好ましい。置換基も特に限定されないが、ニトロ基、2,3-ビス(tert-ブトキシカルボニル)グアニジノメチル基、スルホ基、フッ素原子が好ましく、ニトロ基、2,3-ビス(tert-ブトキシカルボニル)グアニジノメチル基がより好ましい。アミノカルボニル基の保護基は特に限定されないが、tert-ブトキシカルボニル基が好ましい。Rは前記した基であればよいが、好ましくは、4-[2,3-ビス(tert-ブトキシカルボニル)グアニジノメチル]フェニル基、ナフタレン-2-イル基、又は2-ニトロ-1H-イミダゾール-1-イル基である。また、Rが保護基で保護されていてもよいアミノカルボニル基である場合、ここにアミノ基を有する機能部位を容易に結合させることができるので、そのような機能部位を結合させたいときには、Rは保護基で保護されていてもよいアミノカルボニル基、例えば、tert-ブトキシカルボニル基で保護されたアミノカルボニル基であることが好ましい。
 一般式(IIa)及び(IIIa)におけるR3aは、放射性ハロゲン原子で標識したい化合物から誘導される一価の基を表す。ここで、「放射性ハロゲン原子で標識したい化合物から誘導される一価の基」とは、例えば、前記化合物の分子中の一つの水素原子を除去することによって得られる一価の基を意味し、除去される水素原子は、例えば、前記化合物の分子に含まれるヒドロキシ基中の水素原子である。放射性ハロゲン原子で標識したい化合物から誘導される一価の基は、どのような基であってもよい。放射性ハロゲン原子で標識された化合物は、放射性医薬品(例えばPET試薬)として用いられるので、放射性医薬品として用いられている化合物の放射性ハロゲン原子以外の部分を、放射性ハロゲン原子で標識したい化合物から誘導される一価の基としてもよい。また、このような放射性ハロゲン原子以外の部分は、生体内の特定の臓器や組織(がん組織など)に集積する性質を持つものが多いので、そのような部分を放射性ハロゲン原子で標識したい化合物から誘導される一価の基としてもよい。更に、このような放射性ハロゲン原子以外の部分は、放射性ハロゲン原子を生体内で安定化させる性質をもつものも多いので(例えば、国際公開第2019/151384号記載されている構造)、そのような部分を放射性ハロゲン原子で標識したい化合物から誘導される一価の基としてもよい。放射性ハロゲン原子で標識したい化合物から誘導される一価の基の具体例としては、前記Rとして例示された基を挙げることができる。
 一般式 (IIIa)におけるXは、放射性ハロゲン原子を表す。Xは、放射性ハロゲン原子であればよいが、好ましくは、18F、又は211Atであり、より好ましくは、211Atである。
 一般式(I)で表される化合物は、標識前駆体化合物製造用試薬、即ち、一般式(II)で表される化合物を製造するための原料試薬として使用することができる。標識前駆体化合物製造用試薬は、通常、一般式(I)で表される化合物のみからなるが、他の物質を含んでいてもよい。一般式(I)で表される化合物は、実施例1に記載した2,2-ジフルオロ-2-(フルオロスルホニル)酢酸とジオクチルアミンを原料とする製造方法に、必要に応じて、改変や修正を加えた方法に従って製造できる。
 一般式(II)で表される化合物は、放射性ハロゲン標識化合物の標識前駆体試薬として使用することができる。放射性ハロゲン標識化合物の標識前駆体試薬は、通常、一般式(II)で表される化合物のみからなるが、他の物質を含んでいてもよい。一般式(II)で表される化合物は、例えば、一般式(I)で表される化合物を、糖、ペプチド、又は一般式(A)若しくは(B)で示される基を含む化合物と反応させることにより製造できる。
 一般式(II)で表される化合物は、放射性ハロゲン標識化合物の前駆体化合物として以下のような利点を有する。
1)従来の前駆体化合物(例えば、ベンゼンスルホニルオキシ基を脱離基として含む前駆体化合物)よりも高い反応性を有し、高効率な放射性ハロゲン化が可能である。
2)従来の前駆体化合物(例えば、トリフルオロメタンスルホニルオキシ基を脱離基として含む前駆体化合物)よりも安定性が高く、取り扱いが容易で、保存が可能である。
3)疎水性部分を含むことから、反応終了後、目的の標識化合物を簡便な方法で未反応の前駆体化合物と分離可能である。
 一般式(IIa)で表される標識前駆体化合物は、例えば、一般式(I)で表される化合物を、ヒドロキシ基を有する化合物と反応させることにより製造できる。
 一般式(IIIa)で表される放射性ハロゲン標識化合物は、一般式(IIa)で表される標識前駆体化合物を放射性ハロゲン化物イオンと反応させることにより製造できる。使用する放射性ハロゲン化物イオンは特に限定されないが、18、又は211Atであり、より好適には、211Atである。反応条件は、前駆体化合物や放射性ハロゲン化物イオンの種類によって適宜設定することができる。当業者であれば、適切な反応温度、反応時間、各物質の濃度などを容易に決定することができる。
 以下に、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕 ハロゲン標識化合物の合成
(1)4-フルオロスルホニル安息香酸クロリド(2)の合成
Figure JPOXMLDOC01-appb-C000019
 2,2-ジフルオロ-2-(フルオロスルホニル)酢酸(1) (1.00 g, 5.62 mmol, 1.00 eq.)の撹拌溶液に室温で PCl5 (1.31 g, 6.29 mmol, 1.12 eq.)を加えた。60℃で3時間撹拌した後、反応混合物を蒸留し、4-フルオロスルホニル安息香酸クロリド(2) (1.03 g, 5.24 mmol, 93%)を得た。
(2)2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(3)の合成
Figure JPOXMLDOC01-appb-C000020
 CH2Cl2(2.00 mL)中のジオクチルアミン(4.40 mL、14.6 mmol、2.60 eq.)の撹拌溶液に、CH2Cl2(2.50 mL)中の4-フルオロスルホニル安息香酸クロリド(2)(1.03 g、5.24 mmol、93%)の溶液を0℃で加えた。同温度で3時間撹拌した後、反応混合物をEt2Oに注いだ。残渣を濾過し、真空中で濃縮した。残渣をトルエンを用いたシリカゲル上のカラムクロマトグラフィーで精製し、2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(3)(534 mg, 1.33 mmol 24 %)を得た。
(3)2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(4)の合成
Figure JPOXMLDOC01-appb-C000021
 CH2Cl2 (5.80 mL)中のNEt3 (3.52 mL, 25.3 mmol, 3.00 eq.)及びジドデシルアミン (3.58 g, 10.1 mmol, 1.20 eq.)の撹拌溶液に、-40℃で4-フルオロスルホニル安息香酸クロリド(2) (1.03 g, 5.24 mmol, 93%)の溶液を加えた。同温度で40分間撹拌した後、反応混合物をEt2Oに注いだ。残渣を濾取し、真空中で濃縮した。残渣をトルエンを用いたシリカゲル上のカラムクロマトグラフィーで精製し、2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(4)(961 mg, 1.87 mmol, 22 %)を得た。
(4)(E)-(5-((4-((2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(6)の合成
Figure JPOXMLDOC01-appb-C000022
 CH3CN(0.951 mL)中の2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(3)(164.9 mg, 0.414 mmol, 2.00 eq.)と(2,2-ジメチル-(E)-(5-(4-(2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)-1,3-ジオキサン-5-イル)メタノール(5) (108.3 mg, 0.207 mmol, 1.00 eq.) の撹拌溶液に、0℃でMTBD(89.7 μL, 0.621 mmol, 3.00 eq.)を添加した。同温度で20分間撹拌した後、反応混合物をNH4Cl水溶液に注ぎ、水層をEtOAcで2回抽出した。合わせた抽出物をブラインで洗浄し、MgSO4上で乾燥し、濾過し、真空中で濃縮した。残渣をヘキサン:EtOAc(80:20)を用いたシリカゲル上のカラムクロマトグラフィーで精製し、(E)-(5-((4-((2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(6)(47.4 mg, 0.0524 mmol, 25%)を得た。
(5)(E)-(5-(4-((2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル-2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(7)の合成
Figure JPOXMLDOC01-appb-C000023
 CH3CN(0.624 mL)中の2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(4)(103.5 mg, 0.202 mmol, 1.60 eq.)と(2,2-ジメチル-(E)-(5-(4-(2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)-1,3-ジオキサン-5-イル)メタノール(5) (66.1 mg, 0.207 mmol, 1.00 eq.)の攪拌溶液に、0℃でMTBD(54.7 μL, 0.379 mmol, 3.00 eq.)を加えた。同温度で20分間撹拌した後、反応混合物をNH4Cl水溶液に注ぎ、水層をEtOAcで2回抽出した。合わせた抽出物をブラインで洗浄し、MgSO4上で乾燥し、濾過し、真空中で濃縮した。残渣をヘキサン:EtOAc(80:20)でシリカゲル上のカラムクロマトグラフィーで精製し、(E)-(5-(4-((2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル-2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(7) (109. 8 mg, 0.108 mmol, 86 %)を得た。
(6)5-ヨードメチル-(E)-(5-((4-((2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)メチル)-2,2-ジメチル-1,3-ジオキサン(8)の合成
Figure JPOXMLDOC01-appb-C000024
 DMF(0.280 mL)中の(E)-(5-((4-((2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(7) (50.6 mg, 0.0497 mmol, 1.00 eq.)の撹拌溶液に、60℃でヨウ素カリウム(18.3 mg, 0.0995 mmol, 2.00 eq.)を加えた。同温度で1.5時間撹拌した後、反応混合物を10% Na2SO4 水溶液に注いだ。水層をEtOAcで2回抽出した。合わせた抽出物をブラインで洗浄し、MgSO4上で乾燥させ、濾過し、真空中で濃縮した。残渣をヘキサン:EtOAc(80:20)を用いたシリカゲル上のカラムクロマトグラフィーで精製し、5-ヨードメチル-(E)-(5-((4-((2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)メチル)-2,2-ジメチル-1,3-ジオキサン(8) (28.3 mg, 0.0447 mmol, 90%)を得た。
(7)1-(4-(3-ヒドロキシ-2-(ヒドロキシメチル)-2-(ヨードメチル)プロポキシ)ベンジル)グアニジン(9)の合成
Figure JPOXMLDOC01-appb-C000025
 EtOAc(0.150 mL)中の(E)-(5-((4-((2,3-ビス(tert-ブトキシカルボニル)グアニジノ)メチル)フェノキシ)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(8) (12.0.0 mg.0189 mmol, 1.00 eq.)の撹拌溶液に、60℃で3M HCl(0.150 mL)を加えた。同温度で 45 分間撹拌した後、反応混合物を MeOH に注ぎ、真空中で濃縮した。残渣を水とのボンドエルートで精製し、1-(4-(3-ヒドロキシ-2-(ヒドロキシメチル)-2-(ヨードメチル)プロポキシ)ベンジル)グアニジン(9) (4.9 mg, 0.00120 mmol, 66 %)を得た。
(8)(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)メチル2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(11)の合成
Figure JPOXMLDOC01-appb-C000026
 CH3CN(0.951 mL)中の2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(3)(328 mg, 0.818 mmol, 2.00 eq. )と(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)メタノール(10) (138 mg, 0.435 mmol, 1.00 eq.)の攪拌溶液に、0℃でMTBD(189 μL, 1.31 mmol, 3.00 eq.)を加えた。同温度で20分間撹拌した後、反応混合物をNH4Cl水溶液に注ぎ、水層をEtOAcで2回抽出した。合わせた抽出物をブラインで洗浄し、MgSO4上で乾燥し、濾過し、真空中で濃縮した。残渣をヘキサン:EtOAc(80:20)を用いたシリカゲル上のカラムクロマトグラフィーで精製し、(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)メチル2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(11)(23.1 mg, 0.0330 mmol, 8%)を得た。
(9)(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)メチル2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(12)の合成
Figure JPOXMLDOC01-appb-C000027
 CH3CN(0.624 mL)中の2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(4) (103.2 mg, 0.201 mmol, 1.50 eq.)と(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)メタノール(10) (43.0 mg, 0.134 mmol, 1.00 eq.)の撹拌溶液に、0℃でMTBD(38.7 μL, 0.268 mmol, 2.00 eq.)を加えた。同温度で20分間撹拌した後、反応混合物をNH4Cl水溶液に注ぎ、水層をEtOAcで2回抽出した。合わせた抽出物をブラインで洗浄し、MgSO4上で乾燥し、濾過し、真空中で濃縮した。残渣をトルエン:EtOAc(90:10)を用いたシリカゲル上のカラムクロマトグラフィーで精製し、(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)メチル2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(12)(84.2 mg, 0.104 mmol, 78%)を得た。
(10)5-ヨードメチル-5-((ナフタレン-2-イルメトキシ)メチル)-2,2,-ジメチル-1,3-ジオキサン(14)の合成
Figure JPOXMLDOC01-appb-C000028
 CH3CN(0.350 mL)中の(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)トリフルオロメタンスルホン酸メチル(13) (11.0 mg, 0.0245 mmol, 1.00 eq.)の撹拌溶液に、室温でヨウ素カリウム(5.20 mg, 0.0310 mmol, 1.30 eq.)を加えた。60℃で30分間撹拌した後、反応混合物を10% Na2SO3 水溶液に注ぎ、水層をEtOAcで2回抽出した。合わせた抽出物をブラインで洗浄し、MgSO4上で乾燥し、濾過し、真空中で濃縮した。残渣をヘキサン:EtOAc(80:20)でシリカゲル上のカラムクロマトグラフィーで精製し、5-ヨードメチル-5-((ナフタレン-2-イルメトキシ)メチル)-2,2,-ジメチル-1,3-ジオキサン(14)(7.8 mg, 0.0180 mmol, 75%)を得た。
(11)(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)メチル2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(16)の合成
Figure JPOXMLDOC01-appb-C000029
 CH3CN(0.725 mL)中の2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(3)(118 mg、0.294 mmol、1.50 eq. )と(2,2-ジメチル-5-((2-ニトロ-1H-イミダゾール-1-イル)メチル)-1,3-ジオキサン-5-イル)メタノール(15) (52.6 mg, 0.194 mmol, 1.00 eq.)の攪拌溶液に、0℃でMTBD(56.6 μL, 0.392 mmol, 2.00 eq.)を加えた。同温度で20分間撹拌した後、反応混合物をNH4Cl水溶液に注ぎ、水層をEtOAcで2回抽出した。合わせた抽出物をブラインで洗浄し、MgSO4上で乾燥し、濾過し、真空中で濃縮した。残渣をヘキサン:EtOAc(80:20)を用いたシリカゲル上のカラムクロマトグラフィーで精製し、(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)メチル2-(ジオクチルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(16)(55.9 mg, 0.0856 mmol, 44 %)を得た。
(12)(2,2-ジメチル-5-((ナフタレン-2-イルメトキシ)メチル)-1,3-ジオキサン-5-イル)メチル2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(12)の合成
Figure JPOXMLDOC01-appb-C000030
 CH3CN(0.702 mL)中の2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホニルフルオリド(4) (124 mg, 0.241 mmol, 1.50 eq. )と(2,2-ジメチル-5-((2-ニトロ-1H-イミダゾール-1-イル)メチル)-1,3-ジオキサン-5-イル)メタノール(15) (43.7 mg, 0.161 mmol, 1.00 eq.)の攪拌溶液に、0℃でMTBD(46.4 μL, 0.321 mmol, 2.00 eq.)を加えた。同温度で20分間撹拌した後、反応混合物をNH4Cl水溶液に注ぎ、水層をEtOAcで2回抽出した。合わせた抽出物をブラインで洗浄し、MgSO4上で乾燥し、濾過し、真空中で濃縮した。残渣をトルエン:EtOAc(90:10)でシリカゲル上のカラムクロマトグラフィーで精製し、(2,2-ジメチル-5-((2-ニトロ-1H-イミダゾール-1-イル)メチル)-1,3-ジオキサン-5-イル)メチル2-(ジドデシルアミノ)-1,1-ジフルオロ-2-オキソエタン-1-スルホネート(17) (73.3 mg, 0.0958 mmol, 60%)を得た。
(13)5-ヨードメチル-5-((ナフタレン-2-イルメトキシ)メチル)-2,2,-ジメチル-1,3-ジオキサン(19)の合成
Figure JPOXMLDOC01-appb-C000031
 CH3CN(0.651 mL)中の(2,2-ジメチル-5-((2-ニトロ-1H-イミダゾール-1-イル)メチル)-1,3-ジオキサン-5-イル)メチル4-メチルベンゼンスルホン酸(18) (48.8 mg, 0.115 mmol, 1.00 eq.)の撹拌溶液に、室温でヨウ素カリウム(86.0 mg, 0.518 mmol, 4.50 eq.)を加えた。60℃で30分間撹拌した後、反応混合物を10% Na2SO3 水溶液に注ぎ、水層をEtOAcで2回抽出した。合わせた抽出物をブラインで洗浄し、MgSO4上で乾燥し、濾過し、真空中で濃縮した。残渣をヘキサン:EtOAc(50:50)でシリカゲル上のカラムクロマトグラフィーで精製し、5-ヨードメチル-5-((ナフタレン-2-イルメトキシ)メチル)-2,2,-ジメチル-1,3-ジオキサン(19)(24.2 mg, 0.0635 mmol, 55%)を得た。
(14)2-(ヨードメチル)-2-((2-ニトロ-1H-イミダゾール-1-イル)メチル)プロパン-1,3-ジオール(20)の合成
Figure JPOXMLDOC01-appb-C000032
 MeOH(0.262 mL)中の1-((5-(ヨードメチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル)-2-ニトロ-1H-イミダゾール(19) (10.0 mg, 0.0262 mmol, 1.00 eq.)の撹拌溶液に、0℃でTFA(0.606 μL)を加えた。60℃で1.5時間撹拌した後、反応混合物をトルエン中に注ぎ、そして、真空中で濃縮した。残渣をクロロホルム:MeOH(90:10)を用いたシリカゲル上のカラムクロマトグラフィーにより精製し、2-(ヨードメチル)-2-((2-ニトロ-1H-イミダゾール-1-イル)メチル)プロパン-1,3-ジオール(20) (8.9 mg, 0.0260 mmol, 99 %)を得た。
〔実施例2〕 ハロゲン標識前駆体化合物の合成
(1)(5-(ベンジルオキメチル)-2,2-ジメチル-1,3-ジオキシラン-5-イル)メタノールの合成
Figure JPOXMLDOC01-appb-C000033
(1-1)4-(ヒドロキシメチル)-1-メチル-2,6,7-トリオキサビシクロ[2.2.2]オクタンの合成
 ペンタエリスリトール(10.0 g, 73.4 mmol)と1,1,1-トリメトキシエタン(28.7 mL, 220 mmol, 3.00 eq.)と P-トルエンスルホン酸 一水和物(140 mg, 0.734 mmol, 0.01 eq.)のトルエン(36.5 mL)溶液を、0℃で12時間反応させた後、ペンタエリスリトール (10.0 g, 73.4 mmol, 1.00 eq.)を加えて、130℃で3時間反応させたのち、トリエチルアミン(1.0mL)をいれて中和した。生成物を減圧下濃縮した後、トルエンとジエチルエーテルとヘキサンをもちいて再結晶することにより、標題化合物 (4.98 g, 31.1 mmol, 43% )を白色結晶として得た。 
Figure JPOXMLDOC01-appb-C000034
1H NMR (400 MHz, CDCl3) δ 4.05 (s, 6H, H-b), 3.46 (s, 2H, H-a,), 1.45 (s, 3H, H-c);
(1-2)2-(ベンジルオキシメチル)-2-(ヒドロキシメチル)プロパン-1,3-ジオールの合成
 水素化ナトリウム(3.17 g, 132 mmol, 2.12 eq.)を乾燥ヘキサンを用いて洗浄した後、乾燥N,N-ジメチルスルホルムアミド(15.5mL)を加えた後、4-(ヒドロキシメチル)-1-メチル-2,6,7-トリオキサビシクロ[2.2.2]オクタンの乾燥N,N-ジメチルスルホルムアミド(15.5mL)の溶液を0℃で加えた。室温下、一時間撹拌した後に、臭化ベンジル(11.1 mL, 93.7 mmol, 1.50 eq.)を0℃で加えた。室温下2時間反応させた後、メタノール(5.0 ml)を加えた後、酢酸エチルと水に注いだ。水層を酢酸エチルで抽出した後、飽和食塩水で有機層を洗浄し、硫酸マグネシウムを用いて乾燥させた。濾過により硫酸マグネシウムを除いた溶液を減圧下濃縮した。得られた残渣をメタノール(100mL)で希釈した後に、カンファースルホン酸(1.45 g ,6.24 mmol, 0.01 eq.)を加えて、室温下12時間反応させた。反応溶液を水に空けた後、ヘキサン/酢酸エチル=(9:1)で洗浄した後に、残った水層より酢酸エチルを用いて目的物を抽出した。有機層を飽和食塩水にて洗浄した後、硫酸マグネシウムを用いて乾燥させた。濾過にて硫酸マグネシウムを除去した後、得られた溶液を濃縮することにより、標題化合物(7.38 g, 32.6 mmol, 52% )を得た。
Figure JPOXMLDOC01-appb-C000035
1H NMR (400 MHz, CDCl3) δ 7.26-7.36 (m, 5H, H-aromatic), 4.48 (s, 2H, H-a), 3.68 (s, 6H, H-c), 3.47 (s, 2H, H-b), 2.17 (s, 3H, H-d);
(1-3)(5-(ベンジルオキメチル)- 2,2-ジメチル-1,3-ジオキシラン-5-イル)メタノールの合成
 2-(ベンジルオキシメチル)-2-(ヒドロキシメチル)プロパン-1,3-ジオール(7.34 g, 32.4 mmol, 1.0 eq. )とカンファースルホン酸(7.54 mg, 0.0324mmol, 0.001 eq.)のN,N-ジメチルホルムアミド(16.2 mL)溶液に、2,2-ジメトキシプロパン(4.8 mL, 38.9 mmol, 1.20 eq.)を室温下加えた。その反応溶液を60℃、40分反応させた後、トリエチルアミンを用いて中和し、水と酢酸エチルの中に注いだ。水層を酢酸エチルを用いて抽出し、得られた有機層を飽和食塩水で洗浄した後に、硫酸マグネシウムを用いて乾燥させた。濾過にて硫酸マグネシウムを除去した後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーを用いて精製した後、ヘキサンと酢酸エチルを用いて再結晶することにより、標題化合物(6.30 g, 23.6 mmol, 73%)を得た。
Figure JPOXMLDOC01-appb-C000036
1H NMR (400 MHz, CDCl3) δ 7.28-7.38 (m, 5H, H-aromatic), 4.54 (s, 2H, H-a), 3.73 (m, 4H, H-d), 3.68(d, 2H, H-e, J = 6.0 Hz ), 3.58 (s, 2H, H-c), 2.35 (t, 1H, H-e, J = 6.0 Hz), 1.41 (d, 6H, H-f, J = 5.6 Hz);
(2)tert-ブチル 2-((5-((ベンジルオキシメチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メトキシ)アセタートの合成
Figure JPOXMLDOC01-appb-C000037
 水素化ナトリウム(1.75 g, 43.7 mmol, 2.00 eq.)を乾燥ヘキサンで洗浄した後に、乾燥N,N-ジメチルスルホルムアミド(16.4 ml)を加えた。続いて、tert-ブチル 2-ブロモアセタート(4.81 mL, 32.8 mmol, 1.50 eq.)を0℃で加えた。室温下一時間反応させた後、エタノールを加え反応を停止した後に、酢酸エチルと水に注いだ。水層を酢酸エチルを用いて抽出した後に有機層を飽和食塩水で洗浄し、硫酸マグネシウムを用いて乾燥させた。濾過にて、硫酸マグネシウムを除去したのに、減圧下濃縮した。得られた残渣をメタノール(42mL)で希釈した後に、炭酸カリウム(5.83 g 42.2 mmol, 2.0 eq.)と水(0.761 mL, 42.2 mmol, 2.0 eq.)を0℃で加えた。室温下,2.5時間反応させた後に反応溶液を減圧下濃縮した。得られた残渣を乾燥N,N-ジメチルホルムアミド(60 mL)に希釈した後に、炭酸カリウム(11.7 g 84.5 mmol, 4.0 eq.) とヨードメタン(3.96 mL, 63.4 mmol, 3.0 eq.)を加えた。室温下2時間反応させた後、飽和塩化アンモニウム水溶液に反応溶液を注いだ。水層を酢酸エチルで抽出した後に、有機層を飽和食塩水による洗浄および硫酸マグネシウムを用いて乾燥させた。硫酸マグネシウムを濾過にて除いた後、溶液を減圧下濃縮した。得られた残渣をシリカゲルクロマトグラフィーにて精製することにより表題化合物(2.84 g, 8.39 mmol, 40%)を得た。
Figure JPOXMLDOC01-appb-C000038
1H NMR (400 MHz, CDCl3) δ 7.26-7.36 (m, 5H, H-aromatic), 4.52 (s, 2H, H-a), 4.07(s, 2H, H-d), 3.80 (s, 4H, H-c), 3.73 (s, 3H, H-f), 3.58 (s, 2H, H-b), 3.51 (s, 2H, H-g),1.41 (d, 6H, H-e, J = 4.4 Hz);
(3)2-((5-((ヒドロキシメチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メトキシ)アセタミドの合成
Figure JPOXMLDOC01-appb-C000039
(3-1)2- ((5-((ベンジルオキシメチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メトキシ)アセタミドの合成
 tert-ブチル 2-((5-((ベンジルオキシメチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メトキシ)アセタート (8.75 g, 25.9 mmol, 1.0 eq. ) のメタノール(13.5 mL) 溶液に、アンモニア(13.5 mL) をマイナス30℃で加えた。封管下後、室温下12時間反応させた。開封後室温下撹拌することにより、アンモニアを除去した後、減圧下メタノールを除去した。得られた残渣をシリカゲルカラムクロマトグラフィーを用いて精製することにより、標題化合物 (7.48 g, 23.1 mmol, 89%)を得た。
Figure JPOXMLDOC01-appb-C000040
1H NMR (400 MHz, CDCl3) δ 7.28-7.38 (m, 5H, H-aromatic), 6.77 (br, 1H, N-H), 5.35 (br, 1H, N-H), 4.51 (s, 2H, H-a), 3.94 (s, 2H, H-d), 3.74 (m, 4H, H-c), 3.60 (s, 2H, H-b), 3.48 (s, 2H, H-g), 1.41 (d, 6H, H-e, J = 6.4 Hz);
(3-2)2-((5-((ヒドロキシメチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メトキシ)アセタミドの合成
 Pd/C (6.93 g, 0.3g/mmol, 10%) のテトラヒドロフラン(348 mL)の懸濁液に、2- ((5-((ベンジルオキシメチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メトキシ)アセタミド (7.48 g, 23.1 mmol, 1.0 eq. ) を加えた。反応容器を常圧下水素雰囲気下にした後、室温下2時間反応させた。反応溶液を濾過した後、濾液を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーを用いて精製することにより標題化合物を(4.13 g, 17.7 mmol, 76%)得た。
Figure JPOXMLDOC01-appb-C000041
1H NMR (400 MHz, CDCl3) δ 6.76 (br, 1H, N-H), 5.41 (br, 1H, N-H), 4.01 (s, 2H, H-d), 3.74 (m, 4H, H-c), 3.70 (d, 2H, H-a, J = 5.2 Hz ), 3.64 (s, 2H, H-b), 1.42 (d, 6H, H-e, J = 6.4 Hz);
(4)(5-((2-(ビス(tert-ブトキシカルボニル)アミノ)-2-オキソエチル)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル 2-(ジオクチルアミノ)-1,1-ジフロロ-2-オキソエタン-1-スルホナートの合成
Figure JPOXMLDOC01-appb-C000042
(4-1)(5-((2-アミノ-2-オキサエトキシ)メチル)-2,2-ジメチル-1,3-オキシラン-5-イル)メチル 2-(ジジオクチルアミノ)-1,1-ジフロロ-2-オキサエタン-1-スルホナートの合成
 2-((5-(ヒドロキシメチル)-2,2-ジメチル-1,3-ジオキシラン-5-イル)メトキシ)アセタミド (100 mg, 429 μmol, 1.0 eq.) の乾燥アセトニトリル溶液 (1.0 mL) に7-メチル-1,5,7-チロアザビシクロ[4.4.0]デク-5-エン (124 μL, 857 μmol, 2.0 eq.) と 2-(ジオクチルアミノ)-1,1-ジフロロ-2-オキサエタン-1-スルホニルフルオリド(258 mg, 643 μmol, 1.5 eq.) の乾燥アセトニトリル溶液 (1.0 mL) を 0℃で加えた。氷冷下、1時間半反応させた後、反応溶液を酢酸エチルと水に注いだ。水層を酢酸エチルを用いて抽出した後、有機層を飽和食塩水で洗浄した後、硫酸マグネシウムを用いて乾燥させた。濾過にて硫酸マグネシウムを除去した後、濾液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーを用いて精製することにより、標題化合物を (63.5 mg, 103 μmol, 24%)得た。
Figure JPOXMLDOC01-appb-C000043
1H NMR (400 MHz, CDCl3) δ 6.71 (br, 1H, N-H), 5.49 (br, 1H, N-H), 4.61 (s, 2H, H-d), 4.00 (s, 2H, H-a), 3.75 (m, 4H, H-c), 3.57 (s, 2H, H-b ), 3.36 (m, 4H, H-g), 1.42 (d, 6H, H-e, J = 2.5 Hz), 1.27 (m, 24H, H-h), 0.881(m, 6H, H-i);
19F NMR (400 MHz, CDCl3) δ -98.0 (s, 2F, F-1)
(4-2)(5-((2-(ビス(tert-ブトキシカルボニル)アミノ)-2-オキソエチル)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル 2-(ジオクチルアミノ)-1,1-ジフロロ-2-オキソエタン-1-スルホナートの合成
 (5-((2-アミノ-2-オキサエトキシ)メチル)-2,2-ジメチル-1,3-オキシラン-5-イル)メチル 2-(ジジオクチルアミノ)-1,1-ジフロロ-2-オキサエタン-1-スルホナート (40 mg, 65 μmol, 1.0 eq.) の乾燥ジクロロメタン( 2.0 mL) 溶液に二炭酸ジ-tert-ブチルの 30% 1,4-ジオキサン溶液(110 μL, 160 μmol, 2.5 eq.) と、N,N-ジメチルアミノピリジン (7.9 mg, 65 μmol, 1.0 eq.) を 0℃で加えた。室温下、二時間反応させた後、酢酸エチルと水の混合溶液に注いだ。水層を酢酸エチルを用いて抽出し、有機層を飽和食塩水で洗浄した後に、硫酸マグネシウムを用いて乾燥させた。濾過にて硫酸マグネシウムを除いた濾液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーにて精製したところ、標題化合物を(47 mg, 58 μmol, 89%)を得た。
Figure JPOXMLDOC01-appb-C000044
1H NMR (400 MHz, CDCl3) δ 4.70 (s, 2H, H-d), 4.52 (s, 2H, H-a), 3.81 (m, 4H, H-c), 3.53 (s, 2H, H-b ), 3.39 (m, 4H, H-g), 1.53 (s, 18H, H-f ), 1.41 (d, 6H, H-e, J = 4.5 Hz), 1.27 (m, 24H, H-h), 0.881(m, 6H, H-i);
19F NMR (400 MHz, CDCl3) δ -98.1 (s, 2F, F-1)
(5)(2R,3R)-5,7-ジメトキシ-8-((N-メチルアミノ)メチル)-2-(3,4,5-トリメトキシフェニル)クロマン-3-オールの合成
Figure JPOXMLDOC01-appb-C000045
(5-1)(2R,3R)-5,7-ジメトキシ-2-(3,4,5-トリフェノキシフェニル)クロマン-3-イル 3,4,5-トリメトキシベンゾアートの合成
 (2R,3R)-5,7-ジヒドロキシ-2-(3,4,5-トリヒドロキシ)クロマン-3-イル 3,4,5-トリヒドロキシベンゾアート(5.00 g, 10.9 mmol, 1.0 eq.) の 乾燥N,N,-ジメチルホルアミド (50 mL) 溶液に、炭酸カリウム(18.1 g, 131 mmol, 12.0 eq.) とヨードメタン (6.79 mL, 109 mmol, 10.0 eq.) を0℃で加えた。室温下12時間反応させた後、酢酸エチルと飽和塩化アンモニウムの混合液の中に注いだ。水層を酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄した。得られた有機層を硫酸マグネシウムで乾燥させた後、濾過にて硫酸マグネシウムを除去した濾液を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製することにより、標題化合物を得た (5.28 g, 925 mmol, 85%)。
Figure JPOXMLDOC01-appb-C000046
1H NMR (400 MHz, CDCl3) δ 7.18 (s, 2H, H-d), 6.70 (s, 2h, H-b), 6.23 (d, 1H, H-6, J =2.4Hz), 6.12 (d, 1H, H-8, J =2.0Hz), 5.67 (br, 1H, H-3), 5.09 (s, 1H, H-2), 3.86-3.70 (m, 24H, H-Me), 3.05 (d, 2H, H-4, J = 3.6Hz);
(5-2)(2R,3R)-8-ホルミル-5,7-ジメトキシ-2-(3,4,5-トリメトキシ)クロマン-3-ニル 3,4,5-トリメトキシベンゾアートの合成
 乾燥N,N,-ジメチルホルムアミド (4.28 mL) に塩化ホスホリル(180 μL, 1.93 mmol, 1.1 eq.) を0℃で加えた。室温下30分反応させて後、(2R,3R)-5,7-ジメトキシ-2-(3,4,5-トリフェノキシフェニル)クロマン-3-イル 3,4,5-トリメトキシベンゾアート (1.00 g, 1.75 mmol, 1.0 eq.) の乾燥N,N-ジメチルホルムアミド溶液を0℃で加えた。室温下さらに2時間撹拌した後に、反応溶液を重曹水と酢酸エチルに0℃で注いだ。水層を酢酸エチルで抽出した後に、有機層を飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥させた。濾過により硫酸マグネシウムを除去した濾液を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製することにより、標題化合物を得た(788 mg, 1.29 mmol, 73%)。
Figure JPOXMLDOC01-appb-C000047
1H NMR (400 MHz, CDCl3) δ 10.5 (s, 1H, H-CHO), 7.11 (s, 2H, H-d), 6.86 (s, 2H, H-b), 6.10 (s, 1H, H-6), 5.73 (br, 1H, H-3), 5.24 (s, 1H, H-2), 3.94-3.70 (m, 24H, H-Me), 3.08 (m, 2H, H-4);
(5-3)(2R,3R)-5,7-ジメトキシ-8-((N-メチルアミノ)メチル)-2-(3,4,5-トリメトキシフェニル)クロマン-3-オールの合成
 (2R,3R)-8-ホルミル-5,7-ジメトキシ-2-(3,4,5-トリメトキシ)クロマン-3-ニル 3,4,5-トリメトキシベンゾアート ( 1.00 g, 1.67 mmol,) を40% メチルアミン水溶液 (20 mL, 0.24 mol) 中で室温下24時間反応させた。反応溶液を塩化メチレンと水の混合物に注ぎ、有機層を水で洗浄した。得られた有機層を硫酸マグネシウムを用いて乾燥させた後、減圧下濃縮した。得られた残渣をエタノール(7.0 mL)に溶解させた後に、水素化ホウ素ナトリウム(316 mg, 8.53 mmol, 5.0 eq.) を0℃で加えた。室温下24時間反応させた後に、塩化メチレンと水の中に注いだ。水層を塩化メチレンによって抽出した後に、有機層を1Mの塩酸で抽出した。水層を炭酸水素ナトリウムと炭酸カリウムをつかってpH 9に調整し、ジクロロメタンを用いて抽出した。得られた有機層を硫酸マグネシウムで濾過し、減圧下濃縮することによって、標題化合物を得た (390 mg, 931μmol, 56%)。
Figure JPOXMLDOC01-appb-C000048
1H NMR (400 MHz, CDCl3) δ 10.5 (s, 1H, H-CHO), 6.78 (s, 2h, H-b), 6.12 (s, 1H, H-6), 4.94 (s, 1H, H-2), 4.28 (br, 1H, H-3), 3.90-3.84 (m, 24H, H-Me), 3.00 (d, 2H, H-a, J = 3.0 Hz), 2.89 (m, 2H, H-4), 2.39 (s, 3H, H-NHMe);
(6)3,4,5-トリス(メトキシメチル)安息香酸の合成
Figure JPOXMLDOC01-appb-C000049
(6-1)メチル 3,4,5-トリス(メトキシメチル)ベンゾアートの合成
 メチル3,4,5-トリヒドロキシベンゾアート(1.00 g, 5.43 mmol, 1.0 eq.) のジクロロメタン溶液 (54 mL) に ジイソプロピルエチルアミン (7.1 mL, 40.7 mmol, 7.5 eq.) とクロロ(メトキシ)メタン(1.86 mL, 24.4 mmol, 4.5 eq.) を 0℃で加えた。室温下2時間反応させた後、飽和塩化アンモニウム水溶液と酢酸エチルに注いだ。水層を酢酸エチルを用いて抽出した。得られた有機層を飽和食塩水で洗浄した後、硫酸マグネシウムを用いて乾燥させた。濾過にて、硫酸マグネシウムを除去した濾液を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーにて精製することにより、標題化合物を得た(1.64 g, 5.21 mmol, 96%)。
Figure JPOXMLDOC01-appb-C000050
1H NMR (400 MHz, CDCl3) δ 7.54 (s, 2H, H-b), 5.25 (s, 4H, H-c), 5.22 (s, 2H, H-d), 3.89 (s, 3H, H-a), 3.61 (s, 3H, H-f), 3.51 (s, 6H, H-e);
(6-2)3,4,5-トリス(メトキシメチル)安息香酸の合成
 メチル 3,4,5-トリス(メトキシメチル)ベンゾアート (2-34) (623 mg, 1.97 mmol, 1.0 eq.) の メタノール溶液 (3.2 mL) に炭酸カリウム(544 mg, 3.94 mmol, 2.0 eq.) と水(3.2 mL) を室温で加えた。70℃で2時間反応させた後、反応溶液を、塩化アンモニウムと1M塩酸と、酢酸エチルに注いだ。水層を酢酸エチルで抽出した後、飽和炭酸水素ナトリウム水溶液で洗浄し、硫酸マグネシウムで乾燥させた。得られた残渣をクロロホルムとヘキサンをつかって再結晶することによって、標題化合物を得た(518 mg, 1.71 mmol, 87%)。
Figure JPOXMLDOC01-appb-C000051
1H NMR (400 MHz, CDCl3) δ 7.59 (s, 2H, H-b), 5.26 (s, 4H, H-c), 5.24 (s, 2H, H-d), 3.58 (s, 3H, H-f), 3.52 (s, 6H, H-e);
(7)(2R,3R)-8-((2-((5-((((2-(N,N-ジオクチルアミノ)-1,1-ジフロロロ-2-オキソエチル)スルホニル)オキシ)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メトキシ)-N-メチルアセタミド)メチル)-5,7-ジメトキシ-2-(3,4,5-トリメトキシフェニル)クロマン-3-イル 3,4,5-トリス(メトキシメチル)ベンゾアートの合成
Figure JPOXMLDOC01-appb-C000052
(7-1)(5-((2-((((2R,3R)-3-ヒドロキシ-5,7-ジメトキシ-2-(3,4,5-トリメトキシフェニル)クロマン-8-イル)メチル)(N-メチルアミノ)-2-オキソエチル)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル 2-(N, N-ジオクチルアミノ)-1,1-ジフロロ-2-オキソエタン-1-スルホナートの合成
 (5-((2-(ビス(tert-ブトキシカルボニル)アミノ)-2-オキソエチル)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル 2-(N,N-ジオクチルアミノ)-1,1-フロロ-2-オキソエタン-1-スルホナート(40 mg, 48 μmol, 1.0 eq.) の乾燥ジクロロメタン溶液 (1.0 mL) に(2R,3R)-5,7-ジメトキシ-8-((N-メチルアミノ)メチル)-2-(3,4,5-トリメトキシ)クロマン-3-オール (24 mg, 58 μmol, 1.2 eq.) とN,N-ジメチルアミノピリジン(5.9 mg, 48 μmol, 1.0 eq.) を0℃で加えた。室温下、2時間反応させた後に、酢酸エチルと水に注いで、水層を酢酸エチルを用いて抽出した。有機層を飽和食塩水を用いて洗浄した後、硫酸マグネシウムを用いて乾燥させた。硫酸マグネシウムをろ別した後、減圧下濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーを用いて精製したところ標題化合物を得た(19.3 mg, 19.0 μmol, 40%)。
Figure JPOXMLDOC01-appb-C000053
1H NMR (400 MHz, CDCl3) δ 6.75, 6.69 (s, 2H, H-B), 6.15, 6.14 (s, 1H, H-6), 4.97,4.95 (s, 1H, H-2), 4.70, 4.68 (s, 2H, H-d), 4.34 (s, 2H, H-a), 4.24 (br, 1H, H-3), 4.12 (m, 4H, H-c), 3.92-3.82 (m, 15H, H-Me), 3.82 (m, 2H, H-A), 3.76-3.71 (m, 3H, H-NMe- ), 3.41 (s, 2H, H-b ), 3.41-3.34 (m, 4H, H-g), 3.02-2.87 (m, 2H, H-4), 2.79 (s, 3H, H-NHMe), 1.40 (d, 6H, H-e, J = 3.5 Hz), 1.27- 1.24(m, 24H, H-h), 0.883 - 0.856 (m, 6H, H-i);
19F NMR (400 MHz, CDCl3) δ -98.1 (s, 2F, F-1)
(7-2)(2R,3R)-8-((2-((5-((((2-(N,N-ジオクチルアミノ)-1,1-ジフロロロ-2-オキソエチル)スルホニル)オキシ)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メトキシ)-N-メチルアセタミド)メチル)-5,7-ジメトキシ-2-(3,4,5-トリメトキシフェニル)クロマン-3-イル 3,4,5-トリス(メトキシメチル)ベンゾアートの合成
 (5-((2-((((2R,3R)-3-ヒドロキシ-5,7-ジメトキシ-2-(3,4,5-トリメトキシフェニル)クロマン-8-イル)メチル)(N-メチルアミノ)-2-オキソエチル)メチル)-2,2-ジメチル-1,3-ジオキサン-5-イル)メチル 2-(N, N-ジオクチルアミノ)-1,1-ジフロロ-2-オキソエタン-1-スルホナート (23 mg, 23 μmol, 1.0 eq.) の乾燥ジクロロメタン溶液 (1.0 mL) に、3,4,5-トリス (メトキシメチル)安息香酸(10 mg, 34μmol, 1.5 eq.)とブロモ-トリス-ピロリジノ-ホスホニウム ヘキサフルオロホスファート(21 mg, 45μmol, 2.0 eq.) とN,N,-ジメチルアミノピリジン(2.8 mg, 23 μmol, 1.0 eq.) を0℃で加えた。室温した15分間撹拌した後に、飽和塩化アンモニウム水溶液と酢酸エチルに反応溶液を注いだ。水層を酢酸エチルで抽出した後に、有機層を飽和食塩水で洗浄し、硫酸マグネシウムをもちいて乾燥させた。濾過にて硫酸マグネシウムを除いた後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーで精製することにより標題化合物を得た(14.7 mg, 17 μmol, 50%)。
Figure JPOXMLDOC01-appb-C000054
1H NMR (400 MHz, CDCl3) δ 7.37,7.35 (s, 2H, H-D), 6.71,6.67 (s, 2H, H-B), 6.13 (s, 1H, H-6), 5.61, 5.64 (br, 1H, H-3), 5.20~5.11(m, 6H, H-j,k), 5.05 (s, 1H, H-2), 4.71, 4.67 (s, 2H, H-d), 4.51~4.34(m, 4H, H-c), 3.84 ~3.74 (m,19H,H-a,A,Me), 3.56 (s, 3H, H-m), 3.44 (s, 6H, H-l), 3.42 (s, 2H, H-b ), 3.40-3.34 (m, 4H, H-g), 3.06-3.00 (m, 2H, H-4), 2.86 (s, 3H, H-NHMe), 1.40 (d, 6H, H-e, J = 4.0 Hz), 1.28- 1.24(m, 24H, H-h), 0.921 - 0.854 (m, 6H, H-i);
19F NMR (400 MHz, CDCl3) δ -98.1 (s, 2F, F-1)
〔実施例3〕 211At標識時の反応性及び安定性
 アスタチン-211(211At)は、サイクロトロンによりビスマスの安定同位体にαビームを照射し、209Bi(α,2n)211Atの核反応により製造した。照射後のビスマスからの211Atの単離は20%酸素/窒素の混合ガスをキャリアガスとして850℃の炉で加熱することにより蒸留し、下流の捕捉用チューブを任意の溶媒で洗浄回収することにより行った。こうして得られた211At溶液を下記の方法で濃縮し、標識に用いた。
(1) 炭酸塩を用いた211At溶液の濃縮
 以前の検討では、メタノールで回収した211At溶液100 μLにナトリウム、カリウム、セシウムなどの炭酸水素および炭酸塩72.4 μmolを加えておくことで、211Atの揮発を最小限にしつつ窒素ガスで溶媒を除去可能であると確認された。本検討では、炭酸カリウム及び炭酸セシウムをメタノールで溶解し、3.6 μmolの炭酸塩を液体状態で211At溶液と混合した。その後、活性炭と接続した通気針を取り付け、窒素ガスで溶媒を除去した。溶媒除去前後のバイアルの211Atの放射能を測定し、211At残存率を求めた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000055
(2) 新規脱離基を有する標識前駆体の211At標識
 表1下段の2つの液状炭酸塩3.6 μmolの条件濃縮した211Atの溶媒除去後、無水アセトニトリルに溶解させた標識前駆体A,B(2.2 μmol / 100 μL)を加え、ボルテックスミキサーによりよく混合した。標識前駆体を室温および60℃で作用させ、211At標識化合物(C)の生成率をTLCにより求めた。経時的に反応液をTLCに1μLスポットし、2分経過後ヘキサン:酢エチ= 4:1にて展開し、オートラジオグラフィーによりCの生成率を測定した。その結果を表2に示す。また、Bを用いた場合、Aを使用した場合よりも前駆体の損傷が少ないことを確認するため、254 nmのUVを当てた際のTLCのスポットの変化を確認した(図1)。
Figure JPOXMLDOC01-appb-C000056

Figure JPOXMLDOC01-appb-T000057
 今回開発した標識前駆体Bの脱離基(CDf8)はAの脱離基であるトリフラートよりも低く、トシルよりも高い酸性度を有すると考え、設計された(酸性度pKa:トリフラート=-14、トシル=0.7)。そのため、標識前駆体Bはトシル基を有する場合よりも反応性が高く、トリフラート基を有する場合より適度に安定な前駆体となると期待される。本検討ではTLC分析により、標識前駆体BのAt標識化が十分に進行することが確認された。また、トリフラート基を有するAでは経時的にTLC上のスポットが多数確認され分解が認められたのに対し(図1上)、Bでは前駆体の損壊が少ないことが明らかとなった(図1下)。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書にとり入れるものとする。
 放射性ハロゲン標識化合物は、医薬に利用することができるので、本発明は、医薬に関連する産業分野において利用可能である。

Claims (17)

  1.  下記の一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R及びRはそれぞれ独立して、炭素数5~20のアルキル基を表し、X及びXはそれぞれ独立して、ハロゲン原子を表し、Xはハロゲン原子を表す。〕
    で表される化合物。
  2.  一般式(I)におけるR及びRが、炭素数7~11のアルキル基である請求項1に記載の化合物。
  3.  一般式(I)におけるX及びXが、フッ素原子又は塩素原子である請求項1又は2に記載の化合物。
  4.  下記の一般式(II)
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R及びRはそれぞれ独立して、炭素数5~20のアルキル基を表し、X及びXはそれぞれ独立して、ハロゲン原子を表し、Rは糖から誘導される一価の基、ペプチドから誘導される一価の基、又は下記の一般式(A)又は(B)
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式中、Lはスペーサーとして機能する二価の基を表し、Rは置換基で置換されていてもよいアリール基、置換基で置換されていてもよいヘテロアリール基、又は保護基で保護されていてもよいアミノカルボニル基を表し、*は結合部位を表す。)
    で示される基を表す。〕
    で表される化合物。
  5.  一般式(II)におけるR及びRが、炭素数7~11のアルキル基である請求項4に記載の化合物。
  6.  一般式(II)におけるX及びXが、フッ素原子又は塩素原子である請求項4又は5に記載の化合物。
  7.  一般式(A)又は(B)におけるLが、アルキレン基(但し、アルキレン基の1以上の-CH-は、-O-又はフェニレン基で置換されていてもよい。)である請求項4乃至6のいずれか一項に記載の化合物。
  8.  一般式(A)又は(B)におけるRが、4-[2,3-ビス(tert-ブトキシカルボニル)グアニジノメチル]フェニル基、ナフタレン-2-イル基、2-ニトロ-1H-イミダゾール-1-イル基、又はtert-ブトキシカルボニル基で保護されたアミノカルボニル基である請求項4乃至7のいずれか一項に記載の化合物。
  9.  下記の一般式(IIIa)
    Figure JPOXMLDOC01-appb-C000005
    〔式中、Xは放射性ハロゲン原子を表し、R3aは放射性ハロゲン原子で標識したい化合物から誘導される一価の基を表す。〕
    で表される放射性ハロゲン標識化合物の製造方法であって、下記の一般式(IIa)
    Figure JPOXMLDOC01-appb-C000006
    〔式中、R及びRはそれぞれ独立して、炭素数5~20のアルキル基を表し、X及びXはそれぞれ独立して、ハロゲン原子を表し、R3aは上記と同じ意味である。〕
    で表される標識前駆体化合物を放射性ハロゲン化物イオンと反応させ、一般式(IIIa)で表される放射性ハロゲン標識化合物を得る工程を含む方法。
  10.  一般式(IIa)におけるR及びRが、炭素数7~11のアルキル基である請求項9に記載の方法。
  11.  一般式(IIa)におけるX及びXが、フッ素原子又は塩素原子である請求項9又は10に記載の方法。
  12.  一般式(IIa)及び(IIIa)におけるR3aが、糖から誘導される一価の基、ペプチドから誘導される一価の基、又は下記の一般式(A)又は(B)
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (式中、Lはスペーサーとして機能する二価の基を表し、Rは置換基で置換されていてもよいアリール基、置換基で置換されていてもよいヘテロアリール基、又は保護基で保護されていてもよいアミノカルボニル基を表し、*は結合部位を表す。)
    で示される基である請求項9乃至11のいずれか一項に記載の方法。
  13.  一般式(A)又は(B)におけるLが、アルキレン基(但し、アルキレン基の1以上の-CH-は、-O-又はフェニレン基で置換されていてもよい。)である請求項12に記載の化合物。
  14.  一般式(A)又は(B)におけるRが、4-[2,3-ビス(tert-ブトキシカルボニル)グアニジノメチル]フェニル基、ナフタレン-2-イル基、2-ニトロ-1H-イミダゾール-1-イル基、又はtert-ブトキシカルボニル基で保護されたアミノカルボニル基である請求項12又は13に記載の化合物。
  15.  一般式(IIIa)におけるXが、211Atである請求項9乃至14のいずれか一項に記載の方法。
  16.  請求項1乃至3のいずれか一項に記載の化合物を含む標識前駆体化合物製造用試薬。
  17.  請求項4乃至8のいずれか一項に記載の化合物を含む放射性ハロゲン標識化合物の標識前駆体試薬。
PCT/JP2022/001558 2021-01-19 2022-01-18 放射性ハロゲン標識前駆体化合物 WO2022158442A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/037,038 US20240034721A1 (en) 2021-01-19 2022-01-18 Radioactive halogen labeling precursor compound
EP22742564.2A EP4282857A1 (en) 2021-01-19 2022-01-18 Radioactive halogen-labeled precursor compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-006394 2021-01-19
JP2021006394A JP2022110777A (ja) 2021-01-19 2021-01-19 放射性ハロゲン標識前駆体化合物

Publications (1)

Publication Number Publication Date
WO2022158442A1 true WO2022158442A1 (ja) 2022-07-28

Family

ID=82549450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001558 WO2022158442A1 (ja) 2021-01-19 2022-01-18 放射性ハロゲン標識前駆体化合物

Country Status (4)

Country Link
US (1) US20240034721A1 (ja)
EP (1) EP4282857A1 (ja)
JP (1) JP2022110777A (ja)
WO (1) WO2022158442A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500688A (ja) * 2003-07-31 2007-01-18 ジーイー・ヘルスケア・リミテッド 固相合成による2−18f−2−デオキシ−d−グルコースの製造
WO2011099480A1 (ja) * 2010-02-12 2011-08-18 国立大学法人東京工業大学 18f標識化合物の製造方法及びその方法に用いる高分子化合物
JP2017052713A (ja) 2015-09-08 2017-03-16 日本メジフィジックス株式会社 放射性フッ素標識前駆体化合物及びそれを用いた放射性フッ素標識化合物の製造方法
WO2018164043A1 (ja) 2017-03-07 2018-09-13 日本メジフィジックス株式会社 放射性フッ素標識前駆体化合物及びそれを用いた放射性フッ素標識化合物の製造方法
WO2019151384A1 (ja) 2018-01-31 2019-08-08 国立大学法人千葉大学 放射性医薬
JP2021006394A (ja) 2019-06-28 2021-01-21 セイコーエプソン株式会社 プリントヘッド、及び液体吐出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500688A (ja) * 2003-07-31 2007-01-18 ジーイー・ヘルスケア・リミテッド 固相合成による2−18f−2−デオキシ−d−グルコースの製造
WO2011099480A1 (ja) * 2010-02-12 2011-08-18 国立大学法人東京工業大学 18f標識化合物の製造方法及びその方法に用いる高分子化合物
JP2017052713A (ja) 2015-09-08 2017-03-16 日本メジフィジックス株式会社 放射性フッ素標識前駆体化合物及びそれを用いた放射性フッ素標識化合物の製造方法
WO2018164043A1 (ja) 2017-03-07 2018-09-13 日本メジフィジックス株式会社 放射性フッ素標識前駆体化合物及びそれを用いた放射性フッ素標識化合物の製造方法
WO2019151384A1 (ja) 2018-01-31 2019-08-08 国立大学法人千葉大学 放射性医薬
JP2021006394A (ja) 2019-06-28 2021-01-21 セイコーエプソン株式会社 プリントヘッド、及び液体吐出装置

Also Published As

Publication number Publication date
JP2022110777A (ja) 2022-07-29
EP4282857A1 (en) 2023-11-29
US20240034721A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
KR102040382B1 (ko) Ask1 억제제의 제조 방법
ES2923412T3 (es) Sales de 6-(2,4-diclorofenil)-5-[4-[(3S)-1-(3-fluoropropil)pirrolidin-3-il]oxifenil]-8,9-dihidro-7H-benzo[7]anuleno-2-carboxilato de metilo y proceso de preparación de las mismas
CN102712585B (zh) 中性内肽酶抑制剂中间体和其制备方法
JP2021178872A (ja) 抗ウイルス化合物を調製するためのプロセス
US8604213B2 (en) Fluorination of aromatic ring systems
KR20160095161A (ko) 포스파티딜이노시톨 3-키나제 억제제의 가공 방법
KR20200131241A (ko) 2종의 4-{[(2s)-2-{4-[5-클로로-2-(1h-1,2,3-트리아졸-1-일)페닐]-5-메톡시-2-옥소피리딘-1(2h)-일}부타노일]아미노}-2-플루오로벤즈아미드 유도체의 제조 방법
BRPI0706735B1 (pt) processo para a alquilação assimétrica de um grupo carbonila e composto
JP2017502971A (ja) 放射性ヨウ素化化合物
US20110190505A1 (en) Iodonium Cyclophanes for SECURE Arene Functionalization
KR102181155B1 (ko) 이온성 액체를 매개로 한 에피나코나졸의 신규 제조방법
JP2016503401A (ja) ジアリールヨードニウム塩を製造するための方法及び試薬
WO2022158442A1 (ja) 放射性ハロゲン標識前駆体化合物
JP2015523985A (ja) ジアリールヨードニウム塩を製造するための方法及び反応剤
KR101996683B1 (ko) 글루타메이트 유도체의 신규 전구체
US6465661B1 (en) Methods of making HIV-protease inhibitors and intermediates for making HIV-protease inhibitors
KR20130133248A (ko) 전구체 화합물을 위한 공정 단순화
CN107629039B (zh) 氘代丙烯酰胺的制备方法和中间体
EP3564219B1 (en) Process for preparing oxadiazacyclo compound and use thereof
KR100514819B1 (ko) 키랄 글리시딜 유도체의 제조방법
DK2655321T3 (en) PURIFICATION OF STARTING MATERIAL BY CRYSTALLIZATION
CN108191741A (zh) 一种用于抗细菌感染药物中间体的合成方法
KR20130140041A (ko) Pet 전구체의 제조
KR102137001B1 (ko) 선택적 아자이드 치환반응과 전구체 제거화를 이용한 플루오린-18이 표지 된 플루오르메틸 치환 방사성의약품의 제조방법
JP4617643B2 (ja) フッ素含有光学活性四級アンモニウム塩、その製造方法、並びにそれを用いた光学活性α−アミノ酸誘導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037038

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742564

Country of ref document: EP

Effective date: 20230821