WO2022158310A1 - 複合繊維並びにこれを含む複合混繊繊維、織編物及び衣類 - Google Patents

複合繊維並びにこれを含む複合混繊繊維、織編物及び衣類 Download PDF

Info

Publication number
WO2022158310A1
WO2022158310A1 PCT/JP2022/000301 JP2022000301W WO2022158310A1 WO 2022158310 A1 WO2022158310 A1 WO 2022158310A1 JP 2022000301 W JP2022000301 W JP 2022000301W WO 2022158310 A1 WO2022158310 A1 WO 2022158310A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
composite
thermoplastic resin
composite fiber
polyester
Prior art date
Application number
PCT/JP2022/000301
Other languages
English (en)
French (fr)
Inventor
中道慎也
稲田康二郎
松浦知彦
増田正人
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US18/269,808 priority Critical patent/US20240060217A1/en
Priority to JP2022506132A priority patent/JPWO2022158310A1/ja
Priority to CN202280009834.1A priority patent/CN116724154A/zh
Priority to KR1020237023884A priority patent/KR20230136117A/ko
Priority to EP22742434.8A priority patent/EP4283027A1/en
Publication of WO2022158310A1 publication Critical patent/WO2022158310A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/292Conjugate, i.e. bi- or multicomponent, fibres or filaments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the present invention relates to composite fibers and woven or knitted fabrics and clothing containing the same, in particular, composite fibers having high sensitivity such as delicate combed tone and deep natural appearance and functionality such as stretchability, and composite mixed fibers containing the same. It relates to textiles, textiles and clothing.
  • woven and knitted fabrics made of natural fibers such as wool generate a large amount of fiber waste during use and washing.
  • fiber waste that falls off from fibers during washing may cause various problems such as an increase in waste, waste water treatment load, and maintenance load for washing machines and the like.
  • eccentric core-sheath composite fibers such as those disclosed in Patent Document 2, are known as fibers used in stretchable fabrics.
  • Patent Document 1 also describes a case where the conjugate fiber is a conventional eccentric core-sheath type, but since the high-shrinkage component is covered by the low-shrinkage component, compared to the side-by-side type, sufficient stretchability is achieved. There is also the problem that the That is, stretchability, abrasion resistance, and a combed appearance have not been satisfied at the same time.
  • Patent Document 2 discloses an invention relating to a fabric with an excellent uniform and smooth appearance, which is the complete opposite of heathered and combed textures. Therefore, it is not possible to obtain a heathered feeling like that of natural wool. Also, as means for obtaining a heathered tone, a method of mixing fibers with components having different dyeing properties is disclosed, but this results in a large change in the heathered pitch due to the twisted yarn.
  • the present invention has been made in view of the above circumstances, and its purpose is to satisfy both stretch performance and abrasion resistance, and to achieve a delicate combed tone closer to wool, a deep and natural appearance.
  • An object of the present invention is to provide a conjugate fiber exhibiting high sensitivity, and a conjugate mixed fiber, woven or knitted fabric, and clothing containing the same.
  • the composite fiber of the present invention is composed of a polyester thermoplastic resin A and a polyester thermoplastic resin B, and satisfies the following requirements (1) to (4).
  • the difference (M A ⁇ M B ) between the weight average molecular weight M A of the thermoplastic polyester resin A and the weight average molecular weight M B of the thermoplastic polyester resin B is 2,000 to 15,000.
  • the composite fiber has an apparent thick/thin ratio (D thick /D thin ) of 1.05 to 3.00.
  • the polyester thermoplastic resin B covers the polyester thermoplastic resin A, and the minimum value t min of the thickness t of the polyester thermoplastic resin B and the thickness of the conjugate fiber (4)
  • the ratio (t min /D) to the fiber diameter D is 0.01 to 0.10 .
  • the perimeter C t is C t ⁇ 0.33C with respect to the perimeter C of the entire composite fiber.
  • the hysteresis loss rate of the conjugate fiber upon elongation recovery at a maximum load of 0.5 cN/dtex is 0 to 70%.
  • the ratio LR1 (L2/L1) between the thick length (L1) and the fine length (L2) in the fiber axis direction at a measured load of 0.00166 cN/dtex of the conjugate fiber is 0. .90 to 1.40
  • the ratio (LR2/LR1) between the thick/slenderness ratio LR2 at the measurement load of 0.11 cN/dtex and the thick/slenderness ratio LR1 at the measurement load of 0.00166cN/dtex is 1.20 to 2.10.
  • cracks are present on the surface of the conjugate fiber at least in a portion having a fiber diameter (D thick ) where the apparent thickness of the conjugate fiber is large.
  • the composite mixed fiber of the present invention is obtained by combining the composite fiber of the present invention with at least one other type of yarn.
  • the woven or knitted fabric of the present invention contains at least a portion of the conjugate fiber or the conjugate mixed fiber.
  • the clothing of the present invention contains at least a portion of the composite fiber, the composite mixed fiber, or the woven or knitted fabric.
  • the composite fiber of the present invention is excellent in both stretch performance and abrasion resistance, and is a composite mixed fiber or woven that exhibits a delicate combed tone closer to natural wool, a deep natural appearance, and high sensitivity. Knitted fabrics, items in the field of outerwear worn as women's and men's clothing, such as jackets, suits, bottoms, etc., can be used.
  • FIG. 1 is a cross-sectional view illustrating the existence form of the polyester-based thermoplastic resin A and the polyester-based thermoplastic resin B of the conjugate fiber of the present invention.
  • FIG. 2 is a perspective view illustrating one embodiment of the surface of the composite fiber of the present invention.
  • FIG. 3 is a schematic diagram of a drawing apparatus used in making the composite fibers of the present invention; 4 is a schematic diagram of a final distribution plate according to Example 1 of the composite fiber of the present invention;
  • FIG. FIG. 5 is a schematic diagram of a final distribution plate according to Comparative Example 3 of the composite fiber of the present invention.
  • the composite fiber of the present invention contains polyester thermoplastic resin A and polyester thermoplastic resin B, and satisfies the following requirements (1) to (4).
  • the difference (M A ⁇ M B ) between the weight average molecular weight M A of the thermoplastic polyester resin A and the weight average molecular weight M B of the thermoplastic polyester resin B is 2,000 to 15,000.
  • the composite fiber has an apparent thick/thin ratio (D thick /D thin ) of 1.05 to 3.00.
  • the polyester thermoplastic resin B covers the polyester thermoplastic resin A, and the minimum value t min of the thickness t of the polyester thermoplastic resin B and the thickness of the conjugate fiber
  • the ratio (t min /D) to the fiber diameter D is 0.01 to 0.10.
  • the peripheral length Ct of the portion where the thickness t satisfies 1.00t min ⁇ t ⁇ 1.05t min is C t ⁇ 0.33C with respect to the peripheral length C of the entire conjugate fiber. is.
  • the composite fiber of the present invention contains a polyester thermoplastic resin A and a polyester thermoplastic resin B.
  • polyester-based resin used in the composite fiber of the present invention include polyethylene terephthalate-based resins whose main repeating unit is ethylene terephthalate, polytrimethylene terephthalate-based resins whose main repeating unit is trimethylene terephthalate, or main repeating units.
  • a polybutylene terephthalate-based resin whose unit is butylene terephthalate is preferred. More preferably, the main repeating unit of both the thermoplastic polyester resin A and the thermoplastic polyester resin B is ethylene terephthalate.
  • the above-mentioned polyethylene terephthalate-based resin, polytrimethylene terephthalate-based resin, and polybutylene terephthalate-based resin may have a small amount (usually less than 30 mol%) of a copolymerization component as necessary.
  • the copolymerization component of the polyester-based thermoplastic resin A is 8 mol % or less, the hysteresis loss can easily be made 70% or less, which is preferable.
  • the content of the copolymer component is controlled because the molecular orientation in the composite fiber can be maintained even after dyeing.
  • both the polyester thermoplastic resin A and the polyester thermoplastic resin B contain a copolymer component of 5 mol% or less, and more preferably both the polyester thermoplastic resin A and the polyester thermoplastic resin B contain a copolymer component.
  • thermoplastic polyester resin A and the thermoplastic polyester resin B in the present invention may optionally contain a micropore-forming agent, a cationic dyeing agent, and an anti-coloring agent within a range that does not impair the object of the present invention. , a heat stabilizer, a flame retardant, a fluorescent whitening agent, a matting agent, a coloring agent, an antistatic agent, a hygroscopic agent, an antibacterial agent, inorganic fine particles, and the like.
  • the conjugate fiber of the present invention is the difference between the weight average molecular weight M A of the polyester thermoplastic resin A and the weight average molecular weight M B of the polyester thermoplastic resin B (M A ⁇ M B , hereinafter simply referred to as “weight average molecular weight difference) is 2000-15000.
  • weight average molecular weight difference By setting the weight-average molecular weight difference to 2000 or more, preferably 5000 or more, it is possible to obtain a conjugate fiber with higher resilience and excellent stretchability.
  • the weight average molecular weight difference to 15,000 or less, preferably 13,000 or less, the strength of the raw yarn can be improved and stable spinning can be performed.
  • the value range of the weight average molecular weight M A of the polyester thermoplastic resin A is preferably from 20000 to 28000, and the value range of the weight average molecular weight M B of the polyester thermoplastic resin B is from 12000 to 20000. is preferably Within these ranges, the functionality and durability of the conjugate fiber are improved, and the process stability during spinning of the conjugate fiber is also improved.
  • the weight-average molecular weight in the present invention is obtained by preparing a measurement solution by completely dissolving 2.0 mg of the composite fiber in 2.5 cm 3 of tetrahydrofuran, and conducting a gel permeation chromatography test using polystyrene as a standard substance. Refers to a numerical value.
  • GPC gel permeation chromatography
  • As a gel permeation chromatography (GPC) tester for example, "TOSO GMHHR-H(S)HT" manufactured by Tosoh Corporation is used.
  • the thermoplastic polyester resin B covers the thermoplastic polyester resin A. That is, as schematically illustrated in FIG. 1, the polyester-based thermoplastic resin A and the polyester-based thermoplastic resin B are joined without being substantially separated in a cross section substantially perpendicular to the fiber axis of the composite fiber. and has a composite cross-section in which the polyester-based thermoplastic resin B covers the polyester-based thermoplastic resin A on the fiber surface.
  • it may be a short fiber or a long fiber, but from the viewpoint of fiber waste, it is preferably a long fiber.
  • the ratio of the minimum value t min of the thickness t of the polyester thermoplastic resin B covering the polyester thermoplastic resin A to the fiber diameter D of the conjugate fiber is between 0.01 and 0.10. If it is less than 0.01, the fabric quality and wear resistance due to fuzz and the like are lowered. Preferably, it is 0.02 or more. On the other hand, if it exceeds 0.10, it becomes difficult to obtain sufficient crimp development force and stretchability. It is preferably 0.08 or less.
  • the peripheral length Ct of the portion where the thickness t satisfies 1.00t min ⁇ t ⁇ 1.05t min is C t ⁇ 0.33C with respect to the peripheral length C of the entire conjugate fiber. is.
  • the ratio of the area (S A ) of the polyester thermoplastic resin A and the area (S B ) of the polyester thermoplastic resin B in the cross section is the same.
  • the centers of gravity of the regions where the respective resins are present are separated from each other, so that the obtained crimped fibers can form finer spirals, and good crimps can be developed.
  • C t ⁇ 0.40C is more preferable in order to obtain crimps suitable for woven or knitted fabrics having a worsted tone.
  • C t ⁇ C, but C t ⁇ 0.70C is preferable.
  • the composite fiber of the present invention has an apparent thick/thin ratio (D thick /D thin ) of 1.05 to 3.00.
  • the apparent thick/thin ratio (D thick /D thin ) refers to a portion of the composite fiber bundle whose width in the direction orthogonal to the fiber axis direction under a load of 0.11 cN/dtex is relatively thicker than the average value. It is the ratio of the diameter (D thick ) to the fiber diameter (D thin ) of the portion that is relatively thinner than the average value.
  • the apparent thick/thin ratio (D thick /D thin ) of the conjugate fiber of the present invention is less than 1.05, when it is made into a woven or knitted fabric, it is not possible to obtain a worsted appearance like that of a natural fiber woven or knitted fabric. . 1.25 or more is preferable, and 1.40 or more is more preferable. On the other hand, if it exceeds 3.00, it deviates from natural appearance and does not give a desirable appearance, and it is preferably 2.00 or less.
  • the specific measurement methods for the thickness t, the fiber diameter D, the thickness ratio, the circumference C, etc. are as described in Examples.
  • the cross-sectional shape of the composite fiber is not particularly limited, and a circular, elliptical, triangular, or other cross-sectional shape can be adopted. It is more preferable because the fiber can be stably spun.
  • the ratio S A : S B of the area (S A ) of the thermoplastic polyester resin A and the area (S B ) of the thermoplastic polyester resin B in the cross section is preferably 70:30 to 30:70, more preferably 60:40 to 40:60 improves physical properties. Moreover, in order to make the crimp of the conjugate fiber finer, it is preferable that S A >S B.
  • the conjugate fiber of the present invention preferably has a hysteresis loss rate of 0 to 70%, more preferably 40 to 70%, when the conjugate fiber is stretched and recovered under a maximum load of 0.5 cN/dtex.
  • the hysteresis loss rate is 70% or less, the garment made of the woven or knitted fabric using the composite fiber of the present invention has sufficient recovery property even if it is stretched according to the movement of the body, and the strain on the garment is small. preferable.
  • the hysteresis loss is 40% or more, it is more preferable because excessive tightening by clothes after stretching does not occur. Note that the hysteresis loss rate is 0% or more due to the measurement method.
  • the conjugate fiber of the present invention has a thick/slender length ratio LR1 (L2/L1) between the thick length (L1) and the fine length (L2) in the fiber axis direction at a measured load of 0.00166 cN/dtex (1.5 mg/denier) of the conjugate fiber. ) is preferably between 0.90 and 1.40. By setting the measurement load to 0.00166 cN/dtex (1.5 mg/Denier), it is possible to mainly eliminate slack when measuring the composite fiber of the present invention. By dyeing the conjugate fiber of the present invention, the details, which are normally relatively oriented, become light-colored, and the thick portions, where orientation is not so advanced, become dark-colored.
  • the woven or knitted fabric can be dyed to have an appearance having an excellent combed-tone shading. If LR1 is increased, light color portions can be increased, and if LR1 is decreased, dark color portions can be increased. Since the combed tone can be emphasized by slightly more light colors than dark colors, LR1 is more preferably 1.00 or more, further preferably 1.10 or more.
  • LR1 is 0.90 to 1.40
  • a measured load of 0.11 cN/dtex (0 .10g/Denier) and the ratio (LR2/LR1) of the thick/slenderness ratio LR2 at the measurement load of 0.00166cN/dtex (1.5mg/Denier) is 1.20 to 2.10.
  • LR2 is the ratio (L4/L3) between the thick length (L3) and the fine length (L4) in the fiber axis direction of the conjugate fiber at a measured load of 0.11 cN/dtex.
  • Worsted woven or knitted fabrics such as wool woven or knitted fabrics do not have stretchability even when used, and thus change in appearance is small.
  • the appearance was sometimes inferior during use, but the present inventors have found that this is due to changes in the appearance due to stretching.
  • the reason for setting the measurement load to 0.11 cN/dtex (0.10 g/Denier) is that the clothes made of the woven or knitted fabric using the composite fiber of the present invention are stretched according to the movement of the body. It's for.
  • the conjugate fiber of the present invention develops a coiled crimp due to the difference in shrinkage between the polyester thermoplastic resin A and the polyester thermoplastic resin B due to the heat treatment of the dyeing process, but this crimp is positively formed in the details where the structural difference is large.
  • LR2/LR1 is 1.20 to 2.10, the crimps in the details are elongated, and the stretchability is even better.
  • LR2/LR1 is 1.20 or more, more preferably 1.30 or more, more preferably 1.40 or more, the stretchability is excellent, and 2.10 or less, more preferably 2.00 or less, and still more preferably 1
  • the ratio is 0.90 or less, the fine detail ratio is maintained at the time of elongation, and an appearance excellent in combed tone shades is obtained.
  • values of the thick length and the fine length values measured by the method described in Examples are used.
  • the conjugate fiber of the present invention preferably has cracks on the surface of the conjugate fiber at least in a portion having a fiber diameter (D thick ) where the apparent thickness of the conjugate fiber is large. More preferably, cracks are formed in a direction substantially perpendicular to the longitudinal direction of the conjugate fiber. More preferably, the depth of the cracks in the direction substantially perpendicular to the conjugate fiber is formed so as to vary in the circumferential direction of the fiber. Also, the depth of cracks is preferably 0.5 to 5.0 ⁇ m. By doing so, the woven or knitted fabric using the composite fiber can have a more delicate combed tone and a deep, natural appearance.
  • the crack depth shall be measured at the deepest point of the crack.
  • substantially perpendicular to the longitudinal direction of the conjugate fiber means that cracks are formed along the circumference of the conjugate fiber substantially perpendicular to the longitudinal direction of the conjugate fiber, as schematically illustrated in FIG. .
  • the length of such cracks in the circumferential direction of the composite fiber is not particularly limited, it is preferable that the cracks be 1/2 or more of the outer circumference of the composite fiber when the woven or knitted fabric is used, as in the case of using natural fibers. It is more preferable because it can have a natural combed appearance.
  • the depth and length of cracks are observed using an electron microscope, and the average value obtained by measuring 10 cracks in one composite fiber is used. A specific measuring method is as described in Examples.
  • the average fiber diameter D ave of the conjugate fiber in the present invention is preferably 10 ⁇ m to 30 ⁇ m. Within this range, it is possible to obtain firmness, stiffness and stretchability when made into a woven or knitted fabric, and a soft feel closer to that of a natural wool material.
  • the average fiber diameter D ave is a value calculated from the fineness of the composite fiber.
  • the conjugate fiber of the present invention preferably takes the form of flat yarn, crimped yarn, air-jet processed yarn, air-entangled yarn, twisted yarn, etc., according to the desired purpose.
  • the composite mixed fiber of the present invention is obtained by combining the composite fiber of the present invention with at least one other yarn.
  • the woven or knitted fabric of the present invention contains at least a portion of the conjugate fiber and/or conjugate mixed fiber of the present invention. By doing so, as described above, it is possible to obtain an appearance having a natural combed tone as if natural fibers were used.
  • the woven or knitted fabric of the present invention can be composed only of the composite fiber or the composite mixed fiber. is preferable in that a more natural combed tone and heathered feel can be obtained.
  • the other yarn is not particularly limited as long as it is different from the composite fiber of the present invention, but among others, it has good crimp and mechanical properties, and excellent dimensional stability against humidity and temperature changes. Therefore, it is preferable to use a polyester-based resin.
  • the polyester resin include polyethylene terephthalate resin whose main repeating unit is ethylene terephthalate, polytrimethylene terephthalate resin whose main repeating unit is trimethylene terephthalate, or polybutylene whose main repeating unit is butylene terephthalate.
  • a terephthalate-based resin is preferred.
  • the above polyethylene terephthalate-based resin or polybutylene terephthalate-based resin may contain a small amount (usually less than 30 mol %) of a copolymerization component as necessary.
  • the other yarn conjugated with the conjugated fiber of the present invention has a yarn length difference from that of the conjugated fiber of the present invention after dyeing, because the swelling is further excellent.
  • the yarn length difference there are a method of physically adjusting the supply amount of each fiber at the time of conjugation, a method of mixing fibers with lower shrinkage characteristics than the composite fiber of the present invention, and a method of conjugating by false twisting. be done.
  • the yarn length difference is preferably 10% or more so that the swelling can be easily felt, and preferably 30% or less in consideration of the physical properties of the woven or knitted product.
  • a specific method for measuring the yarn length difference is as described in Examples.
  • the thick/thin ratio of the conjugate fiber of the present invention is It is more preferable because it can express a heather out of phase and the combed tone becomes more natural.
  • the ratio of the conjugated fiber and/or the conjugated mixed fiber of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more, relative to the mass of the woven or knitted fabric. It is also a preferred embodiment that all of the fibers constituting the woven or knitted fabric are composed of the composite fiber and/or the composite mixed fiber of the present invention.
  • the fabric structure of the woven or knitted fabric of the present invention is a woven fabric or a knitted fabric.
  • the woven fabric is selected from plain weave, twill weave, satin weave, and variations thereof depending on the texture and design.
  • a multi-weave structure such as a double weave may be used.
  • the knitting structure may be selected according to the desired texture and design, and the weft knitting includes jersey knitting, rubber knitting, pearl knitting, tuck knitting, floating knitting, lace knitting, and their variations.
  • warp knitting single Denby, single Bandyke, single chord, Berlin, Dagul Denby, Atlas, cord, half tricot, satin, sharkskin, and their variations, etc. are mentioned.
  • relatively simple weave structures such as plain weave or its modified structure, twill weave or its modified structure, satin weave, etc. are more preferable in order to provide a delicate combed tone and deep natural appearance.
  • the clothing of the present invention contains at least a part of the composite fiber or composite mixed fiber of the present invention, or a woven or knitted fabric. By doing so, it is possible to obtain a garment that exhibits the delicate combed tone close to natural wool, deep natural appearance and high sensitivity, which are possessed by the composite fiber, composite mixed fiber, or woven or knitted fabric of the present invention. can be done.
  • the clothing of the present invention refers to items in the field of outwear worn as women's and men's clothing, particularly jackets, suits, bottoms, and parts thereof such as front body, back body, collar, sleeves, chest Includes pockets and side pockets.
  • the garment of the present invention is post-treated by washing, air blowing or air suction after sewing.
  • the garment of the present invention is post-treated by washing, air blowing or air suction after sewing.
  • the fiber waste generated during washing is collected by conducting a washing test of the woven or knitted fabric or clothing and collecting the fiber waste using a collection bag (filter) attached to the drain hose of the washing machine. can be evaluated.
  • a collection bag filter
  • the washing method is not particularly limited, for example, there is a method of washing the washing machine by washing according to ISO 6330 (2012) without putting the washing object or detergent into the washing machine.
  • the washing process and the spin-drying process are carried out one or more times without putting in the washing object and the detergent.
  • the conditions are set to be the same as the washing conditions to be evaluated.
  • the washing machine uses a C-type standard washing machine specified in ISO 6330 (2012).
  • washing is carried out according to the 4N method of the C-type standard washing machine specified in ISO 6330 (2012).
  • a collector is attached to the drain hose of the washing machine to collect the fiber waste discharged from the drain port of the washing machine.
  • a “nylon screen” NY10-HC purchased from Flon Kogyo Co., Ltd., catalog value: opening 10 ⁇ m
  • opening 10 ⁇ m is used. If it is difficult to obtain a “nylon screen” NY10-HC (manufactured by Flon Kogyo Co., Ltd., catalog value: opening 10 ⁇ m), use an equivalent product within the opening range of 10 ⁇ m ⁇ 2 ⁇ m.
  • the fiber waste collected by the collector is sucked and filtered using a filter whose weight has been measured after absolute drying.
  • a polycarbonate membrane K040A047A manufactured by Advantech Toyo Co., Ltd.
  • the filter after filtration and the fiber waste are dried at 105° C. for 1 hour and weighed, and the difference between the weight before filtration is defined as the amount of fiber waste. After heating at 105° C. for 1 hour, the temperature and humidity are controlled at 20° C. and 65% RH, and then the weight is measured.
  • the woven and knitted fabrics and clothing of the present invention can achieve 150 (mg/one piece of textile product) or less as the amount of fiber waste collected after the main test, and in a preferred embodiment, 100 (mg/fiber product) 1) It is also possible to achieve the following:
  • the conjugate fiber of the present invention can be produced by winding the extruded thermoplastic resin as an undrawn yarn or a half-drawn yarn, followed by thick and thin drawing.
  • it is a composite fiber obtained by a process of drawing after winding as a semi-drawn yarn, it is made into a woven or knitted fabric due to the difference in orientation between the polyester thermoplastic resin A and the polyester thermoplastic resin B, and is particularly stretched when dyed.
  • the highly oriented polyester resin A provides excellent resistance to embrittlement due to alkali weight loss.
  • thermoplastic polyester resin A and the thermoplastic polyester resin B are melted and discharged from a spinneret, preferably at 1400 m/min to 3800 m/min. It is wound up as undrawn yarn or half-drawn yarn at the spinning speed.
  • the present invention it is preferable to convert the semi-stretched yarn into the composite textured yarn of the present invention because it is easy to reduce the hysteresis loss to 70% or less. Since the half-drawn yarn is more crystallized than the undrawn yarn, plastic deformation due to load can be suppressed.
  • the spinning temperature is preferably +20° C. to +50° C. with respect to the melting point (T mA , T mB ) of the thermoplastic polyester resin A and the thermoplastic polyester resin B.
  • (T mA , T mB ) is +20° C. or higher, it is possible to prevent the molten polyester thermoplastic resin A and polyester thermoplastic resin B from solidifying and clogging in the pipes of the spinning machine.
  • the temperature is (T mA , T mB )+50° C. or less, thermal deterioration of the molten polyester thermoplastic resin A and polyester thermoplastic resin B can be suppressed.
  • the spinneret used in the method for producing the conjugate fiber of the present invention may have any known internal structure as long as it enables spinning with stable quality and operation.
  • thermoplastic polyester resin A is completely covered with the thermoplastic polyester resin B in the cross section of the conjugate fiber as described above.
  • thermoplastic polyester resin B By using such a cross section of the composite fiber, it is possible to suppress the bending of the discharged line caused by the difference in the flow speed of the two types of thermoplastic resins discharged from the die, which is a problem when manufacturing the composite fiber. You can.
  • the minimum value t min of the thickness t of the polyester thermoplastic resin B covering the polyester thermoplastic resin A as described above and the thickness t in the cross section of the conjugate fiber are 1.00 t min ⁇ It is preferable to precisely control the peripheral length C t of the portion that satisfies t ⁇ 1.05t min .
  • a spinning method using a distribution plate is preferably used. By using such a distribution plate, t min can be set within the range described above, and the exposure of the polyester thermoplastic resin A that occurs as a result of an excessively small t min can be suppressed. It is possible to suppress the whitening phenomenon and fluff of the knitted fabric.
  • the cross-sectional form of the single yarn can be controlled by arranging the distribution holes in the final distribution plate installed furthest downstream among the plurality of distribution plates.
  • the yarn manufactured through the above spinning process is drawn using a drawing device as illustrated in FIG. Form.
  • a desired thick and thin yarn can be obtained.
  • a half-drawn yarn obtained by composite spinning at a spinning speed of 2600 m/min is drawn at a draw ratio of 1.5 times, a hot pin temperature of 70 ° C., a set temperature of 150 ° C., and a yarn speed of 300 m / min.
  • a yarn having a fineness ratio of 1.05 to 3.00 can be obtained.
  • the ratio (LR2/LR1) of the thick/slenderness ratio LR1 of the conjugate fiber described above in the dyeing process described later and the thick/slenderness ratio LR2 when a load of 0.11 cN/dtex is applied is reduced. It becomes easy to adjust within the scope of the present invention. If the heat shrinkage after the stretching step greatly affects the subsequent steps, it is desirable to perform some kind of heat setting after the stretching step in order to suppress the heat shrinkage. At this time, it is also preferable to perform false twisting by a standard method. This drawn yarn can also be used as the composite fiber of the present invention.
  • another yarn may be composited with a mixed fiber to form a composite mixed fiber.
  • the method of mixing fibers is not particularly limited, and ordinary methods such as interlace mixing and taslan mixing can be used without any problem, and heat setting, false twisting, and twisting can also be performed after mixing.
  • the conjugate fiber obtained in the drawing process is used as a woven fabric or a knitted fabric.
  • Woven fabrics are woven using an air jet loom, water jet loom, rapier loom, projectile loom, shuttle loom, or the like.
  • we used weft knitting machines such as flat knitting machines, old fashion knitting machines, circular knitting machines, computer jacquard knitting machines, sock knitting machines, tubular knitting machines, tricot knitting machines, Russell knitting machines, air jet looms, and Milanese knitting machines. Knit using a warp knitting machine.
  • the woven or knitted fabric obtained in the above woven or knitted fabric forming step is optionally subjected to alkali weight reduction treatment so that the alkali weight reduction rate is 5% or more, more preferably 10 to 15%.
  • the entire surface of the conjugate fiber can be made to have cracks.
  • a continuous debulking process is also preferred to avoid embrittlement due to selective debulking.
  • the axial direction of the composite fiber of the present invention overfeed within 10% in equipment such as roll to roll, which can control the feed amount, and excessive tension in the progress method in batch type jet dyeing machines. It is desirable to control the liquid volume and flow rate so that it is not applied.
  • Dyeing is carried out using a disperse dye or a cationic dye, preferably in a dyeing solution at 110 to 130° C., depending on the dyeability of the thermoplastic resin constituting the composite fiber or other yarns to be composited.
  • the present invention will be specifically described based on examples. However, the present invention is not limited only to these examples. In addition, in the measurement of each physical property, if there is no particular description, the measurement was performed based on the method described above.
  • the fiber diameter D from all the single yarns in the observation image, the perimeter length C of each from there, and the thickness t of the polyester thermoplastic resin B were measured. . 10 sets of obtained fiber diameter D, circumference C, and thickness t are arranged, and the average is obtained. The fiber diameter is D, the circumference is C, and the thickness is t.
  • Hysteresis loss rate A composite fiber is extracted from the woven or knitted fabric after the dyeing process (finishing heat setting), and a Tensilon tensile tester is used according to the constant speed elongation conditions shown in JISL1013 (2010) 8.5.1 standard time test. After stretching from an initial load of 0.1 cN / dtex to a maximum stress of 0.5 cN / dtex at a sample length of 20 cm and a tensile speed of 20 cm / min, recover to the original test length position at the same speed.
  • a fine portion is defined as a portion thinner than the average value of all measured data
  • a thick portion is defined as a thicker portion than the average value of all measured data. gone.
  • the boundary from the detail to the thick part is the third point where three consecutive points are 1.05 times thicker than the detail. It was the third point in a row.
  • the apparent thick/thin ratio was calculated to two decimal places by rounding off the third decimal place.
  • the thick part and the detailed length are measured continuously at 50 points each, the measurement direction is reversed at the time of measuring 50 points, and the same part is measured continuously at 50 thick parts and detailed lengths, Let the average of 100 locations be L thick and L thin .
  • the thick part and the fine part were determined according to the above (5). The measurement results were rounded off to the third decimal place and calculated to two decimal places.
  • one sheet of the textile product to be evaluated was placed in a washing machine and washed under the washing conditions of the ISO 6330 C4N method. However, detergent and load cloth were not used.
  • the fiber waste adhering to the "nylon screen” was suction-filtered using a pre-weighed polycarbonate membrane ("K040A047A” manufactured by Advantec Toyo Co., Ltd.). After filtration, the polycarbonate membrane and fiber waste were dried at 105° C. for 1 hour and weighed, and the difference between the weight before filtration was defined as the amount of fiber waste generated. The weight was rounded to the third decimal place and calculated to two decimal places.
  • Example 1 The polyester thermoplastic resin A is polyethylene terephthalate having a weight average molecular weight of 25000, the polyester thermoplastic resin B is polyethylene terephthalate having a weight average molecular weight of 15000, the spinning temperature is 290 ° C., the polyester thermoplastic resin A and the polyester thermoplastic resin B are mixed. It was flowed into a composite fiber spinneret having 12 discharge holes so that the mass composite ratio was 50:50.
  • the arrangement of the distribution holes in the final distribution plate, which is installed most downstream among the plurality of distribution plates, is as shown in FIG. Composite cross section of eccentric core-sheath type (Fig.
  • polyester-based thermoplastic resin A in which polyester-based thermoplastic resin A is included in polyester-based thermoplastic resin B, in which the mass composite ratio of thermoplastic resin A and polyester-based thermoplastic resin B is 50:50.
  • the yarn extruded from the spinneret was cooled by an air cooling device, applied with an oil solution, and then wound by a winder at a speed of 2600 m/min to be stably wound as a half-stretched yarn having a total fineness of 100 dtex and a single filament number of 12 filaments.
  • the obtained semi-drawn yarn was sent to a drawing device at a speed of 300 m/min, and drawn at a draw ratio of 1.50 times using a drawing device as shown in FIG.
  • a drawn yarn having an apparent thick/thin ratio (D thick /D thin ) of 1.40 was obtained.
  • S A : S B 50:50.
  • a drawn yarn obtained by a conventional method with a twist of 1200 T/m was used as warp and weft.
  • a twill weave fabric was produced.
  • this fabric was subjected to scouring, intermediate heat setting, and alkali weight reduction processing (weight reduction rate of 10%). Thereafter, as a dyeing step, the disperse dye "Dystar Navy Blue S-GL" was used at a concentration of 1.0 owf% and dyed at a temperature of 130°C for 30 minutes, followed by final heat setting at 160°C. Table 1 shows the results.
  • Example 2 In the drawing step, the drawing ratio in the drawing device was set to 1.30 times, and a drawn yarn having an apparent thick/thin ratio (D thick /D thin ) of 1.25 was obtained. got Table 1 shows the results.
  • Example 3 In the drawing step, the drawing ratio in the drawing device was set to 1.40 times, and a drawn yarn having an apparent thick/thin ratio (D thick /D thin ) of 1.30 was obtained. got Table 1 shows the results.
  • Example 2 In Example 1, the spinneret used was replaced from the spinneret of the distribution plate type to the spinneret of the type described in Japanese Patent Application Laid-Open No. 09-157941. A composite fiber and a woven fabric were obtained in the same manner as in Example 1, except that a side-by-side type composite fiber was used. The resulting woven fabric was of poor quality and inferior in texture, worsted tone and heathered feel. Table 1 shows the results.
  • Example 3 In Example 1, the distribution hole of the final distributor plate of the spinneret used so that the minimum value t min of the thickness t of the polyester-based thermoplastic resin B covering the polyester-based thermoplastic resin A is 10 times. The arrangement of is changed from FIG. 4 to FIG. 5, and a core-sheath type composite fiber made of polyester thermoplastic resin A and polyester thermoplastic resin B and having (t min /D) of 0.20 Composite fibers and woven fabrics were obtained in the same manner as in Example 1 except that Table 1 shows the results.
  • the draw ratio in the drawing device is set to 1.90 times, and the drawn yarn having an apparent thick/thin ratio (D thick /D thin ) of 1.00 (that is, the swollen portion (thick portion) of the conjugate fiber
  • Composite fibers and woven fabrics were obtained in the same manner as in Example 1, except that a yarn having a uniform fiber diameter and having no converged portions (details) was obtained. Table 1 shows the results.
  • Example 4 A polyethylene terephthalate fiber (74dtex-48f) having an apparent thick/thin ratio (D thick /D thin ) of 1.15 was further entangled and mixed with an interlace nozzle to the drawn yarn produced in Example 1 so as to be 42% by mass.
  • a woven fabric was obtained in the same manner as in Example 1 except that the warp density was 82/inch and the weft density was 75/inch. Table 1 shows the results.
  • Example 5 A composite fiber was produced in the same manner as in Example 1 except that the spinning speed was set to 1400 m/min and the yarn was not drawn. Composite fibers and woven fabrics were obtained. The obtained woven fabric had a low elongation rate, but was excellent in texture and combed feeling. Table 1 shows the results.
  • Example 6 Composite fibers and woven fabrics were obtained in the same manner as in claim 1 except that a polyester having a weight average molecular weight of 20,000 obtained by copolymerizing 10 mol % of isophthalic acid (IPA) with respect to the acid component was used as the polyester thermoplastic resin A. Table 1 shows the results.
  • IPA isophthalic acid
  • Polyester thermoplastic resin A 2 Polyester thermoplastic resin B 3: Composite fiber 4: Crack 5: Semi-drawn yarn 6: Guide 7: First feed roller 8: Hot pin 9: Second feed roller 10: Heater 11: Third feed roller 12: Composite fiber having thick/thin ratio 13: Winding part 14: Among the distribution holes in the final distribution plate, distribution holes for polyester thermoplastic resin A 15: Among distribution holes in the final distribution plate, distribution holes for polyester thermoplastic resin B 16: Polyester thermoplastic resin Thickness t of polyester thermoplastic resin B covering A

Abstract

ストレッチ性能と耐摩耗性の両特性を満足し、よりウールに近い繊細な梳毛調、深みのあるナチュラルな外観と高感性を発現する複合繊維並びにこれを含む織編物及び衣類を提供するため、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとからなり、以下の(1)~(4)の要件を満たす。 (1)ポリエステル系前記熱可塑性樹脂Aの重量平均分子量MAとポリエステル系前記熱可塑性樹脂Bの重量平均分子量MBとの差(MA-MB)が2000~15000である。 (2)前記複合繊維において、前記複合繊維の見かけの太細比(Dthick/Dthin)が1.05~3.00である。 (3)前記複合繊維の断面において、前記ポリエステル系熱可塑性樹脂Bが前記熱可塑性樹脂Aを覆っており、前記熱可塑性樹脂Bの厚みtの最小値tminと前記複合繊維の繊維直径Dとの比(tmin/D)が0.01~0.10である。 (4)前記複合繊維の断面において、厚みtが1.00tmin≦t≦1.05tminを満たす部分の周囲長Ctが前記複合繊維全体の周囲長Cに対し、Ct≧0.33である。

Description

複合繊維並びにこれを含む複合混繊繊維、織編物及び衣類
 本発明は、複合繊維並びにこれを含む織編物及び衣類に関し、特に、繊細な梳毛調、深みのあるナチュラルな外観といった高感性とストレッチ性といった機能性とを有する複合繊維並びにこれを含む複合混繊繊維、織編物及び衣類に関するものである。
 従来からウール素材のようなふくらみのあるソフトな風合いと、ハリ、コシといった高反発性を再現した梳毛調布帛が求められている。特に、近年では布帛を衣類等に使用した場合における着用者の束縛感を抑制し、動作に対する追従性を有する布帛、すなわち、ウール素材と同等の梳毛調の外観を有しながら、ストレッチ性能にも優れた布帛が要求されている。
 また、ウール等の天然繊維からなる織編物は、使用時や洗濯等による繊維屑の発生量が多い。特に洗濯時において繊維から脱落する繊維屑は、廃棄物増大や、排水処理負荷、洗濯機等のメンテナンス負荷等、様々な問題の可能性がある。
 これまで、梳毛調を有する布帛として、例えば特許文献1に開示されるような、ウールの繊維表面に形成されている鱗辺状組織(スケール)を模倣して、シックアンドシン加工を施した複合繊維からなる梳毛調布帛が提案されている。
 一方で、ストレッチ性を有する布帛に用いられる繊維として、例えば特許文献2に開示されるような、偏心芯鞘複合繊維が知られている。
特開2003-328248号公報 国際公開第2018/110523号
 繊維脱落抑制手段の1つとして、長繊維で梳毛調布帛を得る手段が考えられる。しかし特許文献1に開示されるような技術において、複合繊維がサイドバイサイド型である場合には、摩擦や衝撃によって界面において剥離が生じ、部分的に白い筋状の白化現象や毛羽立ちなどで布帛品位が低下してしまう。さらに、アルカリ処理時のクラックが表面の片側のみに入るため、繊細な梳毛調が十分に発現しないという課題がある。特許文献1には複合繊維が従来の偏心芯鞘型である場合の記載もあるが、高収縮成分を低収縮成分が覆ってしまうこととなるため、サイドバイサイド型に比べた場合、十分なストレッチ性能が発揮されないという課題もある。すなわち、ストレッチ性、耐摩耗性、梳毛調を有する外観、を同時に満足することができていなかった。
 また、特許文献2には、杢感や梳毛調とは真逆の、均一でなめらかな外観に優れた布帛に関する発明が開示されている。従って、天然ウールのような杢感が得られるものではない。また、杢調を得る手段として染色性の異なる成分と混繊する手段も開示されているが、これは撚糸による杢ピッチの変化が大きいものである。
 本発明は、上記の事情に鑑みてなされたものであって、その目的は、ストレッチ性能と耐摩耗性の両特性を満足し、よりウールに近い繊細な梳毛調、深みのあるナチュラルな外観と高感性を発現する複合繊維並びにこれを含む複合混繊繊維、織編物及び衣類を提供することにある。
 本発明の複合繊維は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとからなり、以下の(1)~(4)の要件を満たす。
(1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。
(2)前記複合繊維において、前記複合繊維の見かけの太細比(Dthick/Dthin)が1.05~3.00である。
(3)前記複合繊維の断面において、前記ポリエステル系熱可塑性樹脂Bが前記ポリエステル系熱可塑性樹脂Aを覆っており、前記ポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと前記複合繊維の繊維直径Dとの比(tmin/D)が0.01~0.10である
(4)前記複合繊維の断面において、厚みtが1.00tmin≦t≦1.05tminを満たす部分の周囲長Cが前記複合繊維全体の周囲長Cに対し、C≧0.33Cである。
 本発明の複合繊維の好ましい様態によれば、前記複合繊維の最大荷重0.5cN/dtexにおける伸長回復時のヒステリシスロス率が0~70%である。
 本発明の複合繊維の好ましい様態によれば、複合繊維の測定荷重0.00166cN/dtexにおける繊維軸方向の太部長(L1)と細部長(L2)の太細長比LR1(L2/L1)が0.90~1.40であり、測定荷重0.11cN/dtexの太細長比LR2と測定荷重0.00166cN/dtexの太細長比LR1との比(LR2/LR1)が1.20~2.10である。
 本発明の複合繊維の好ましい態様によれば、少なくとも複合繊維の見掛け太さが太い繊維直径(Dthick)を有する部分において、前記複合繊維の表面にクラックを有する。
 また、本発明の複合混繊繊維は、本発明の複合繊維にさらに少なくとも1種の他の糸条が複合されている。
 また、本発明の織編物は、前記複合繊維又は前記複合混繊繊維を少なくとも一部に含む。
 さらに、本発明の衣類は、前記複合繊維若しくは前記複合混繊繊維、又は前記織編物を少なくとも一部に含む。
 本発明によれば、ふくらみのあるソフトな風合いとハリ、コシといった高反発性をもった複合繊維が得られる。特に、本発明の複合繊維は、ストレッチ性能と耐摩耗性の両特性に優れ、より天然のウールに近い繊細な梳毛調、深みのあるナチュラルな外観と高感性を発現する複合混繊繊維や織編物、婦人・紳士衣料として着用されるアウトウエア分野のアイテム、例えば、ジャケット、スーツ、ボトムス等の衣類にすることができる。
図1は、本発明の複合繊維のポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとの存在形態を例示する断面図である。 図2は、本発明の複合繊維の表面の一実施態様を例示する斜視図である。 図3は、本発明の複合繊維を製造する際に使用される延伸装置の概略図である。 図4は、本発明の複合繊維の実施例1に係る最終分配プレートの概略図である。 図5は、本発明の複合繊維の比較例3に係る最終分配プレートの概略図である。
 本発明の複合繊維は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の(1)~(4)の要件を満たす。
(1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。
(2)前記複合繊維において、前記複合繊維の見かけの太細比(Dthick/Dthin)が1.05~3.00である。
(3)前記複合繊維の断面において、前記ポリエステル系熱可塑性樹脂Bが前記ポリエステル系熱可塑性樹脂Aを覆っており、前記ポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと前記複合繊維の繊維直径Dとの比(tmin/D)が0.01~0.10である。
(4)前記複合繊維の断面において、厚みtが1.00tmin≦t≦1.05tminを満たす部分の周囲長Cが前記複合繊維全体の周囲長Cに対し、C≧0.33Cである。
 以下に、本発明について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。
 [ポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂B]
 本発明の複合繊維は、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含む。
 本発明の複合繊維に用いられるポリエステル系樹脂の具体例としては、主たる繰り返し単位がエチレンテレフタレートであるポリエチレンテレフタレート系樹脂、又は主たる繰り返し単位がトリメチレンテレフタレートであるポリトリメチレンテレフタレート系樹脂、又は主たる繰り返し単位がブチレンテレフタレートであるポリブチレンテレフタレート系樹脂が好ましい。さらに好ましくはポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bともに主たる繰り返し単位がエチレンテレフタレートである。
 上記のポリエチレンテレフタレート系樹脂、ポリトリメチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂は、必要に応じて少量(通常30mol%未満)の共重合成分を有していてもよい。ポリエステル系熱可塑性樹脂Aの共重合成分が8mol%以下であると、ヒステリシスロスを70%以下とすることが容易となり好ましい。さらに、共重合成分を8mol%以下とすることで、染色加工後でも複合繊維中の分子配向が維持できる等により寸法安定性が向上する。また、好ましくはポリエステル系熱可塑性樹脂Aおよびポリエステル系熱可塑性樹脂Bともに共重合成分が5mol%以下であり、さらに好ましくはポリエステル系熱可塑性樹脂Aおよびポリエステル系熱可塑性樹脂Bともに共重合成分が含まれない。
 なお、本発明におけるポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bには、本発明の目的を損なわない範囲内で、必要に応じて、微細孔形成剤、カチオン可染剤、着色防止剤、熱安定剤、難燃剤、蛍光増白剤、艶消剤、着色剤、帯電防止剤、吸湿剤、抗菌剤、無機微粒子等が1種又は2種以上含まれていてもよい。
 本発明の複合繊維は、ポリエステル系熱可塑性樹脂Aの重量平均分子量Mとポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M、以降、単に「重量平均分子量の差」と称することがある)は2000~15000である。重量平均分子量の差を2000以上、好ましくは5000以上とすることで、より高反発性、ストレッチ性に優れた複合繊維を得ることが出来る。一方、重量平均分子量の差を15000以下、好ましくは13000以下とすることで、原糸の強度を向上させることができ、かつ安定した紡糸を行うことができる。
 また、ポリエステル系熱可塑性樹脂Aの重量平均分子量Mの値の範囲としては20000~28000であることが好ましく、ポリエステル系熱可塑性樹脂Bの重量平均分子量Mの値の範囲としては12000~20000であることが好ましい。それぞれこの範囲とすると、複合繊維の機能性と耐久性が向上し、複合繊維を紡糸する際の工程安定性も良好となる。
 なお、本発明における重量平均分子量は、複合繊維2.0mgをテトラヒドロフラン2.5cmに完全溶解させた測定溶液を調製し、標準物質をポリスチレンとしてゲル透過クロマトグラフィー試験を行って得られる値を整数値で表記したものを指す。ゲル透過クロマトグラフィー(GPC)試験機には、例えば、東ソー株式会社製“TOSO GMHHR-H(S)HT”が用いられる。
 [複合繊維]
 本発明の複合繊維は、ポリエステル系熱可塑性樹脂Bがポリエステル系熱可塑性樹脂Aを覆っている。すなわち、図1に模式的に例示するように、複合繊維の繊維軸に略垂直となる断面においてポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとが実質的に分離せず接合された状態で存在し、繊維表面においてポリエステル系熱可塑性樹脂Bがポリエステル系熱可塑性樹脂Aを覆っている複合断面を有している。また、短繊維であっても長繊維であっても良いが、繊維屑の観点からは長繊維であることが好ましい。
 このとき、複合繊維の断面において、ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと、複合繊維の繊維直径Dとの比(tmin/D)は、0.01~0.10である。0.01未満であると、毛羽等による布帛品位や耐摩耗性が低下する。好ましくは、0,02以上である。また、0.10を超えると十分な捲縮発現力とストレッチ性能を得ることが困難になる。好ましくは0.08以下である。
 また、本発明の複合繊維における断面において、厚みtが1.00tmin≦t≦1.05tminを満たす部分の周囲長Cが複合繊維全体の周囲長Cに対し、C≧0.33Cである。このようにすることで、断面におけるポリエステル系熱可塑性樹脂Aの面積(S)とポリエステル系熱可塑性樹脂Bの面積(S)の比率が同一である従来の偏心芯鞘複合繊維と比較して、それぞれの樹脂が存在する領域の重心が離れることとなるため、得られる捲縮繊維がより微細なスパイラルを形成させることができ、良好な捲縮を発現させることができる。さらに、梳毛調を有する織編物に好適な捲縮を得るため、C≧0.40Cとすることがより好ましい。また、原理的にC<Cとなるが、C≦0.70Cが好ましい。
 さらに、本発明の複合繊維は、見掛けの太細比(Dthick/Dthin)が1.05~3.00である。本発明において、見掛けの太細比(Dthick/Dthin)とは、荷重0.11cN/dtexにおける複合繊維束の繊維軸方向に直交する方向の幅が平均値より相対的に太い部分の繊維直径(Dthick)と平均値より相対的に細い部分の繊維直径(Dthin)との比のことである。本発明の複合繊維の見かけの太細比(Dthick/Dthin)が1.05未満であると、織編物としたときに、天然繊維織編物のような梳毛調を有する外観が得られない。1.25以上が好ましく、1.40以上がより好ましい。また、3.00を超えるとナチュラルな外観から逸脱し好ましい外観にならず、好ましくは2.00以下である。なお、上記の厚みtや繊維直径D、太細比、周囲長Cなど、具体的な測定方法は実施例に記載したとおりである。
 本発明では上述した要件(1)~(4)を同時に満たすことにより、梳毛調やナチュラルな外観と、サイドバイサイド型複合繊維で課題となっていた耐摩耗性、一般的な偏心芯鞘型で課題となっていたストレッチ性とを一挙に解決することが出来る。
 また、前記複合繊維の断面形状は特に限定されず、円形、楕円形、三角形、などの断面形状を採用することができるが、円形であることが、要件(1)~(4)を満たす複合繊維を安定的に紡糸することができるためより好ましい。
 本発明の複合繊維において、断面におけるポリエステル系熱可塑性樹脂Aの面積(S)とポリエステル系熱可塑性樹脂Bの面積(S)との比S:Sが、好ましくは70:30~30:70、より好ましくは60:40~40:60であると、物理特性が向上する。また、複合繊維の捲縮をより微細なものとするためには、さらにS>Sであることが好ましい。
 次に、本発明の複合繊維は前記複合繊維の最大荷重0.5cN/dtexの伸長回復時のヒステリシスロス率が0~70%であることが好ましく、40~70%であることがより好ましい。ヒステリシスロス率が70%以下であると、本発明の複合繊維を用いた織編物からなる衣服が身体の動きに合わせて伸長しても十分な回復性を有し、衣服へのひずみが小さいため好ましい。また、ヒステリシスロスが40%以上であると伸長後の衣服による過度な締め付けがないためさらに好ましい。なお、ヒステリシスロス率は測定方法上、0%以上である。
 本発明の複合繊維は、複合繊維の測定荷重0.00166cN/dtex(1.5mg/Denier)における繊維軸方向の太部長(L1)と細部長(L2)との太細長比LR1(L2/L1)が0.90~1.40であることが好ましい。測定荷重0.00166cN/dtex(1.5mg/Denier)とすることで、主として本発明の複合繊維を測定する際のたるみを除くことができる。本発明の複合繊維は染色加工により、通常は相対的に配向が進んでいる細部が淡色になり、配向が進んでいない太部が濃色となる。LR1を0.90~1.40とすることで、織編物を染色した際により優れた梳毛調の濃淡杢を有する外観とすることができる。LR1を大きくすると淡色部を多くでき、LR1を小さくすると濃色部が多くできる。梳毛調は濃色より淡色がやや多い方が強調できるため、LR1は1.00以上がより好ましく、1.10以上がさらに好ましい。
 但し、ストレッチ性能のある複合繊維において、より優れた梳毛調を得るためには、上記したLR1が0.90~1.40であることに加えて、同時に、測定荷重0.11cN/dtex(0.10g/Denier)の太細長比LR2と測定荷重0.00166cN/dtex(1.5mg/Denier)の太細長比LR1との比(LR2/LR1)が1.20~2.10であることが好ましい。ここで、LR2は複合繊維の測定荷重0.11cN/dtexにおける繊維軸方向への太部長(L3)と細部長(L4)との比(L4/L3)である。ウール織編物等の梳毛調織編物は使用時においてもストレッチ性がないため、外観変化が少ない。一方でストレッチ性と梳毛調を有する布帛においては、使用時に外観が劣る場合があったが、本発明者らの検討によると、これは伸縮による外観変化が理由であることがわかった。上記した本発明の範囲とすることで、織編物を伸長させた際の過度な濃淡杢のバランス変化を抑制し自然な外観を付与することができる。測定荷重0.11cN/dtex(0.10g/Denier)とした理由は、本発明の複合繊維を用いた織編物からなる衣服が身体の動きに合わせて伸長した状態等を想定した応力に対応させるためである。本発明の複合繊維は染色加工の熱処理によりポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの収縮差によってコイル状捲縮を発現するが、この捲縮は構造差の大きい細部で積極的に発現する。さらに、LR2/LR1が1.20~2.10であると、細部の捲縮が伸長しており、よりストレッチ性にも優れる。LR2/LR1が1.20以上、より好ましくは1.30以上、さらに好ましくは1.40以上とすることでストレッチ性に優れ、2.10以下、より好ましくは2.00以下、さらに好ましくは1.90以下とすることで伸長時の細部比率を維持して梳毛調の濃淡杢に優れた外観となる。なお、上記太部長や細部長などの値は、実施例に記載した方法により測定した値を用いる。
 次に、本発明の複合繊維は、少なくとも複合繊維の見掛け太さが太い繊維直径(Dthick)を有する部分において、前記複合繊維の表面にクラックが有することが好ましい。より好ましくは、複合繊維の長手方向とほぼ垂直方向にクラックが形成されていることである。さらに好ましくは、複合繊維とほぼ垂直方向のクラックの深さが繊維周長方向で変化するように形成されていることである。また、クラックの深さは0.5~5.0μmであることが好ましい。このようにすることによって、複合繊維を用いた織編物を、より繊細な梳毛調と深みのあるナチュラルな外観とすることができる。
 ここで、クラックの深さは、クラックの最も深い個所を測定するものとする。また、複合繊維の長手方向とほぼ垂直方向とは、図2に模式的に例示されるように、クラックが複合繊維の長手方向とほぼ垂直に、円周に沿って形成されるということである。かかるクラックの、複合繊維の周方向の長さは特に限定されないが、複合繊維外周の長さの1/2以上であることが、織編物としたときに、天然繊維を用いたときのようなナチュラルな梳毛調を有する外観とすることができるため、より好ましい。本発明において、クラックの深さ、長さは電子顕微鏡を用いて観察し、一本の複合繊維内で10個のクラックを測定した平均値を用いるものとする。具体的な測定方法は、実施例に記載のとおりである。
 本発明における複合繊維の平均繊維直径Daveは、10μm~30μmであることが好ましい。この範囲とすることで、織編物とした際のハリ、コシとストレッチ性、天然のウール素材により近いソフトな触感を得ることが出来る。本発明において、平均繊維直径Daveとは、複合繊維の繊度から算出した値である。
 また、本発明の複合繊維は、所望の目的に合わせて、フラットヤーン、捲縮糸、エアジェット加工糸、空気交絡糸、撚糸などの形態をとることも好ましい。
 [複合繊維を含む複合混繊繊維、織編物、衣類]
 本発明の複合混繊繊維は、本発明の複合繊維に、さらに少なくとも1種の他の糸条が複合されている。また、本発明の織編物は、本発明の複合繊維および/または複合混繊繊維を少なくとも一部に含む。このようにすることで、上述したとおり、天然繊維を用いたときのようなナチュラルな梳毛調を有する外観とすることができる。また本発明の織編物においては、複合繊維または複合混繊繊維のみで織編物を構成することもできるが、他の糸条との混繊糸、複合仮撚糸、合撚糸等の形態として織編物を構成することで、よりナチュラルな梳毛調や杢感が得られる点で好ましい。本発明において、他の糸条としては本発明の複合繊維と異なるものであれば特に限定されないが、なかでも、良好な捲縮と力学特性を有し、湿度や気温変化に対する寸法安定性に優れることから、ポリエステル系樹脂からなることが好ましい。ポリエステル系樹脂の具体例としては、主たる繰り返し単位がエチレンテレフタレートであるポリエチレンテレフタレート系樹脂、又は主たる繰り返し単位がトリメチレンテレフタレートであるポリトリメチレンテレフタレート系樹脂、又は主たる繰り返し単位がブチレンテレフタレートであるポリブチレンテレフタレート系樹脂が好ましい。なお、上記のポリエチレンテレフタレート系樹脂又はポリブチレンテレフタレート系樹脂は、必要に応じて少量(通常30mol%未満)の共重合成分を有していてもよい。
 また、本発明の複合繊維と複合した他の糸条は、染色加工後に本発明の複合繊維と糸長差を有することが更に膨らみに優れるため好ましい。糸長差を得るためには複合時に物理的にそれぞれの繊維の供給量を調整する方法や、本発明の複合繊維よりも収縮特性の低い繊維を混繊する方法、仮撚によって複合するが挙げられる。糸長差は膨らみを容易に実感できる10%以上が好ましく、織編物の物性を考慮し30%以下が好ましい。糸長差の具体的な測定方法は、実施例記載のとおりである。
 さらに、本発明の複合繊維と混繊した他の糸条は見かけの太細比(Dthick/Dthin)が1.05~3.00であると、本発明の複合繊維の太細比と位相のずれた杢を表現することができ梳毛調が更にナチュラルになるため、より好ましい。
 本発明の織編物において、本発明の複合繊維および/または複合混繊繊維が使用される割合は、織編物の質量に対して30質量%以上が好ましく、40質量%以上がより好ましい。織編物を構成する繊維の全てが本発明の複合繊維および/または複合混繊繊維からなることも好ましい態様である。
 本発明の織編物の布帛構造は、織物または編物である。織物組織としては、風合いや意匠性に合わせて、平織り、綾織り、繻子織りやそれらの変化組織から選択される。さらに、二重織りなどの多重織り組織としてもよい。編物組織としては、所望する風合いや意匠性に合わせて選択すればよく、緯編では、天竺編、ゴム編、パール編、タック編、浮き編、レース編やそれらの変化組織などが挙げられ、経編では、シングル・デンビー編、シングル・バンダイク編、シングル・コード編、ベルリン編、ダグル・デンビー編、アトラス編、コード編、ハーフ・トリコット編、サテン編、シャークスキン編やそれらの変化組織などが挙げられる。これらの中でも、繊細な梳毛調と深みのあるナチュラルな外観を有させるために、平織もしくはその変化組織、綾織もしくはその変化組織、サテン織等の比較的単純な織編構造がより好ましい。
 また、本発明の衣類は、本発明の複合繊維若しくは複合混繊繊維、又は織編物を少なくとも一部に含む。このようにすることで、本発明の複合繊維若しくは複合混繊繊維、又は織編物が有する、天然のウールに近い繊細な梳毛調、深みのあるナチュラルな外観と高感性を発揮した衣類とすることができる。本発明の衣類とは、婦人・紳士衣料として着用されるアウトウエア分野のアイテム、特に、ジャケット、スーツ、ボトムス、及び、これらの一部分、たとえば、前身頃、後身頃、襟部、袖部、胸ポケット、サイドポケットを含むものである。
 また、本発明の衣類は縫製後に、洗浄、エアー吹付けまたはエアー吸引のいずれかの後処理を実施することが好ましい。これにより、布帛裁断部および布帛表面に付着した繊維屑を事前に脱落させ、洗濯等における繊維屑発生量をさらに抑制することができる。
 本発明の織編物または衣類において、洗濯時に発生する繊維屑は、織編物または衣類の洗濯試験を実施し、洗濯機の排水ホースに取り付けた捕集袋(フィルター)を用いて繊維屑を捕集し評価することができる。なお、評価の前に行った洗濯による繊維屑等の影響がある場合、洗濯機を洗浄しておく。洗浄方法としては特に限定されないが、例えば、洗濯機に被洗物や洗剤を入れずにISO 6330(2012)に従い洗濯を行い、洗濯機を洗浄する方法がある。洗濯機の洗浄は、被洗物、洗剤を入れずに、すすぎと脱水工程をそれぞれ1回以上行う。条件は評価する洗濯条件と同一に設定する。
 このとき、洗濯機はISO 6330(2012)に規定されるC型基準洗濯機を使用する。また洗濯は、ISO 6330(2012)に規定されるC型基準洗濯機の4N法で実施する。洗濯機排水口から排出される繊維屑は、洗濯機の排水ホースに捕集体を取り付けて捕集する。本評価では、“ナイロンスクリーン”NY10-HC(株式会社フロン工業から購入、カタログ値:目開き10μm)を使用する。なお、“ナイロンスクリーン”NY10-HC(株式会社フロン工業製、カタログ値:目開き10μm)の入手が困難な場合は、目開き10μm±2μmの範囲内で同等品を使用する。
 織編物または衣類の洗濯時に発生する繊維屑発生量の評価方法においては、捕集体を取り付けた状態で、評価する繊維製品1枚を洗濯機に入れ、上記の洗濯機および洗濯条件により、洗濯を行う。ただし、洗剤と負荷布は使用しない。洗濯後、捕集体に付着した繊維屑の重量を測定する。なお、繊維製品1枚とは、形状や大きさ、重量を問わず1枚という意味である。
 捕集体で回収した繊維屑は、あらかじめ絶乾後に重量を測定したフィルターを用いて吸引濾過する。本評価では、ポリカーボネートメンブレン(K040A047A 株式会社アドバンテック東洋製)を使用する。濾過後のフィルターと繊維屑を105℃で1時間乾燥、重量を測定し、濾過前の重量との差を繊維屑量とする。絶乾、重量測定の条件は105℃で1時間加熱した後、20℃、65%RHで調温調湿してから重量測定を行う。
 本発明の織編物及び衣類は、本試験後に捕集された繊維屑量として、150(mg/繊維製品1枚)以下を達成することも可能であり、好ましい態様においては100(mg/繊維製品1枚)以下を達成することも可能である。
 [複合繊維、織編物の製造方法]
 次に、本発明の複合繊維、複合混繊繊維、織編物の好ましい製造方法の一例について述べる。
 本発明の複合繊維は吐出された熱可塑性樹脂を未延伸糸又は半延伸糸として巻き取った後にシックアンドシン(Thick&Thin)延伸する工程で製造できる。特に半延伸糸として巻き取った後に延伸する工程で得られた複合繊維とすると、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの配向差により、織編物とし、染色加工した際に特にストレッチ性に優れ、また、ポリエステル樹脂Aが高配向化することによりアルカリ減量による耐脆化に優れるため好ましい。
 [紡出工程]
 本発明の複合繊維の製造方法においては、まずポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとをそれぞれ溶融し、これらを紡糸口金から吐出して、好ましくは1400m/分~3800m/分の紡糸速度にて未延伸糸又は半延伸糸として巻き取る。
 本発明においては、半延伸糸から本発明の複合加工糸とすると、ヒステリシスロスを70%以下にすることが容易であるため好ましい。半延伸糸は未延伸糸に比べ結晶化が進んでいるため、荷重負荷による塑性変形を抑制することができる。
 紡糸温度は、ポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bの融点(TmA、TmB)に対し、+20℃~+50℃であることが好ましい。(TmA、TmB)+20℃以上であることによって、溶融したポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bが紡糸機配管内で固化して閉塞することを防ぐことができる。一方、(TmA、TmB)+50℃以下であることによって、溶融したポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bが熱劣化してしまうことを抑制することができる。
 本発明の複合繊維の製造方法において用いられる口金は、品質および操業安定的に紡糸することが可能であれば、公知のいずれの内部構造のものであっても良い。
 ここで、本発明の複合繊維は、上記のとおり複合繊維の断面において、ポリエステル系熱可塑性樹脂Aがポリエステル系熱可塑性樹脂Bで完全に覆われている。このような複合繊維の断面とすることで、複合繊維の製造時において課題となっている、口金から吐出される2種類の熱可塑性樹脂の流速差を起因とする吐出線曲がりを抑制することもできるのである。
 本発明の複合繊維は、上記のようにポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと、複合繊維の断面における厚みtが1.00tmin≦t≦1.05tminを満たす部分の周囲長Cとを精密に制御することが好ましく、特開2011-174215号公報や特開2011-208313号公報、特開2012-136804号公報に例示されるような、分配プレートを用いた紡糸方法が好適に用いられる。このような分配プレートを用いることによって、tminを上述した範囲内にすることができ、tminが過剰に小さくなった結果として発生するポリエステル系熱可塑性樹脂Aの露出を抑制し、さらには織編物の白化現象や毛羽を抑制することができる。あるいは、tminが過剰に大きくなることを抑制でき、複合繊維の捲縮を好適な範囲で発現させて、織編物のストレッチ性を向上させることもできる。このような分配プレートを用いた方法では、複数枚で構成される分配プレートの内、最も下流に設置された最終分配プレートにおける分配孔の配置により、単糸の断面形態を制御することができる。
 [延伸工程]
 次に、上記の紡出工程を経て製造された糸を、この糸の自然延伸倍率を越えない範囲の延伸倍率で、図3に例示するような延伸装置を用いて延伸加工し、延伸糸を形成する。この工程によって、所望の太細糸(シックアンドシン糸)を得ることが出来る。たとえば、紡糸速度2600m/分で複合紡糸して得た半延伸糸を、延伸倍率1.5倍、ホットピン温度70℃、セット温度150℃、糸速300m/分でピン延伸することで見かけの太細比で1.05以上3.00以下の糸を得ることが出来る。また、自然延伸倍率の下限×1.2倍~上限×0.8倍の領域で延伸することが好ましい。上記範囲で延伸した複合繊維とすることで、後述する染色工程等で上述した複合繊維の太細長比LR1と0.11cN/dtex荷重負荷時の太細長比LR2との比(LR2/LR1)を本発明の範囲に調整することが容易となる。延伸工程後の熱収縮が後工程に大きく悪影響を及ぼす場合には、熱収縮を抑制するために、延伸工程後に何らかの熱セットを行うことが望ましい。また、この際に定法により仮撚加工を行うことも好ましい。この延伸糸を本発明の複合繊維として用いることもできる。
 また、この延伸された複合繊維に対して巻取り前もしくは巻取り後に、他の糸条を混繊などで複合して複合混繊繊維としてもよい。混繊方法としては特に限定されず、インターレース混繊、タスラン混繊等の一般的な方法でも問題なく、混繊後に熱セット、仮撚加工、撚糸加工を行うこともできる。
 [織編物の形成工程]
 延伸工程で得た複合繊維を織物あるいは編物とする。織物の場合は、エアジェット織機、ウォータージェット織機、レピア織機、プロジェクタイル織機、シャトル織機などを使用して製織する。編物の場合は、横編機、古ファッション編機、丸編機、コンピュータージャガード編機、ソックス編機、筒編み機といった緯編み機や、トリコット編機、ラッセル編機エアジェット織機、ミラニーズ編機とった経編み機を使用して編成する。
 [アルカリ減量工程]
 さらに、上記の織編物の形成工程で得られた織編物を、必要に応じて、アルカリ減量率5%以上、より好ましくは10~15%となるようにアルカリ減量加工処理する。この工程により、上記の複合繊維の表面全体にクラックを有する状態とすることができる。また、選択的な減量による脆化を避けるため連続減量方式のプロセスが好ましい。
 [染色工程]
 さらに必要に応じて、上記のアルカリ減量工程の前及び/又は後に、あるいは同時に、常法の精練、リラックス処理、中間熱セット、染色加工、仕上げ熱セットを施してもよい(本発明では、これらの加工を総称して「染色工程」と称する場合がある)。本発明の好ましい様態である複合繊維の太細長比LR1と0.11cN/dtex荷重負荷時の太細長比LR2との比(LR2/LR1)を得るために、適宜各工程のフィード、張力管理を行う。例えば、本発明の複合繊維軸方向に対して、フィード量とコントロールできるRoll to roll等の方式の設備ではオーバーフィードー10%以内、バッチ式の液流染色機などでは進行方法への過剰な張力がかからないように液量や流速をコントロールすることが望ましい。染色は、複合繊維を構成する熱可塑性樹脂、あるいは複合する他の糸条の染色性にもよるが、分散染料あるいはカチオン染料を用いて好ましくは110~130℃の染色液中で行う。
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、上述した方法に基づいて測定を行ったものである。
 [測定方法]
 (1)熱可塑性樹脂の重量平均分子量の測定
 ゲル透過クロマトグラフィー(GPC)試験機として、東ソー株式会社製“TOSO GMHHR-H(S)HT”を用いた。
 (2)平均繊維直径Daveの測定
 染色加工後の織編物から複合繊維を抜き出し、繊度およびフィラメント数をそれぞれJISL1013(2010)8.3.1B法、JISL1013(2010)8.4に準じて測定し、繊度/フィラメント数により単糸繊度を得た。得られた単糸繊度から下記式により平均繊維直径を算出した。
Figure JPOXMLDOC01-appb-M000001
 ρ:密度(g/m) ポリエチレンテレフタレートの場合、1.38×10g/m
 (3)繊維直径D、ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みt、繊維の周囲長Cの測定
 複合繊維からなるマルチフィラメントを繊維軸方向に1cm間隔で10か所連続してエポキシ樹脂などの包埋剤にて包埋したものを試料とし、透過型電子顕微鏡(TEM)で10本以上の繊維が観察できる倍率として各試料の画像を撮影した。この際、金属染色を施して、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの接合部のコントラストを明確にした。画像解析ソフトとして、三谷商事株式会社製“WinROOF2015”を用い、観察画像中すべての単糸から繊維直径Dと、そこからそれぞれの周囲長Cおよび、ポリエステル系熱可塑性樹脂Bの厚みtを測定した。得られた繊維直径D、周囲長C、厚みtのセットを10点揃え、それを平均して繊維直径Dは有効数字3桁、周囲長Cおよび厚みtは有効数字2桁で求め本発明の繊維直径D、周囲長C、厚みtとした。
 (4)ヒステリシスロス率
 染色工程(仕上げ熱セット)後の織編物から複合繊維を抜き取り、JISL1013(2010)8.5.1標準時試験に示される定速伸長条件に準じて、テンシロン引張試験機により試料長20cm、引張速度20cm/分で初荷重0.1cN/dtexから最大応力0.5cN/dtexまで伸長させた後、同速度で元の試長の位置まで回復させ、横軸を伸度、縦軸を応力とするヒステリシス曲線を描き、伸長時の曲線と回復時の曲線および横軸に囲まれた面積(A1)と、伸長時の曲線とその終点から横軸に垂直に下ろした直線および横軸(伸度の軸)に囲まれた面積(A2)から、次式によりヒステリシスロスを求めた。ヒステリシスロス率は小数点以下2桁目を四捨五入して小数点以下1桁で求めた。
ヒステリシスロス(%)=(A1/A2)×100  。
 (5)見掛けの太細比(Dthick/Dthin)の測定
 染色工程(仕上げ熱セット)後の織編物から複合繊維を抜き取り、0.11cN/dtexの荷重をかけた状態で複合繊維の両端を固定する。固定した試料の側面を株式会社キーエンス製デジタルマイクロスコープ“VHX2000”にて200倍の倍率で撮影した画像において、繊維束の直径を繊維軸方向に連続して1.0mm間隔で500か所測定する。太部の繊維直径(Dthick)および細部の繊維直径(Dthin)の判別は、全測定データの平均値より細い部分を細部、全測定データの平均値より太い部分を太部とすることにより行った。細部から太部の境界は、細部から1.05倍以上太い箇所が3点連続した3点目とし、太部から細部への境界は細部太さ×1.05倍以内の太さが3カ所連続した3点目とした。見掛けの太細比は小数点以下3桁目を四捨五入して小数点以下2桁で求めた。
 (6)繊維軸方向への太部長(Lthick)および細部長(Lthin)の測定
 染色工程(仕上げ熱セット)後の織編物から複合繊維を抜き取り、所定の荷重をかけた状態で複合繊維の両端を固定する。固定した試料の側面を株式会社キーエンス製デジタルマイクロスコープ“VHX2000”にて200倍の倍率で撮影した画像において、繊維束の直径を1.0mm間隔で連続して測定し繊維軸方向へ交互に存在する太部長および細部長を連続してそれぞれ50カ所ずつ測定し、50カ所ずつ測定した時点で測定方向を反転して、同じ部分を同様に太部および細部長を50カ所連続して測定し、それぞれ100カ所の平均をLthick、Lthinとする。なお、太部および細部の判別は上記(5)に準じた。測定結果は小数点以下3桁目を四捨五入して小数点以下2桁で求めた。
 (7)クラックの有無および深さの測定
 上記(5)項で太部と認定した箇所を、電子顕微鏡として、株式会社日立製作所製走査型電子顕微鏡“S-3400N”を用いて観察した。仕上げ熱セット後の織編物から複合繊維を、外力を掛けずに引き出し、クラックの有無を確認すると共に、クラック有の場合はクラックと略直交する方向の側面を倍率2000倍にて観察した。クラックの最も深い深さと長さを計測し、一本の複合繊維内で10個のクラックを測定した平均値をクラック深さとした。
 (8)糸長差
 20℃、65RH%の環境で24時間以上調湿した仕上げ熱セット後の織編物から約5cmの長さの糸を取り出し、繊維自体が伸びないように注意深く単糸1本1本に分解した。グリセリンを塗布したスケール板上に分解した単糸を乗せて、0.11cN/dtexの荷重をかけた状態で繊維長を測定し、繊維長の相対的に短い単糸群の平均長をLa、相対的に長い単糸群の平均長をLbとして、次式により算出した。複合混繊繊維を構成するすべての単糸は繊維長に従い、いずれかの単糸群に分類する。試験は20回行い、その平均値をJIS Z 8401(2019)の規則B(四捨五入法)によって小数点以下1けたに丸める。
・糸長差(%)={(Lb-La)/La}×100。
 (9)複合繊維、複合混繊繊維を用いた織編物のストレッチ性
 JISL1096(2010)8.16.1B法に準じて本発明の複合繊維に沿った方向の伸長率を測定した。経緯ともに本発明の複合繊維を用いた場合は経緯それぞれの伸長率を測定し、その平均値を結果とした。
 (10)複合繊維、複合混繊繊維を用いた織編物の風合い、梳毛調、杢感の評価
 本発明における複合繊維を用いて形成した織編物のサンプルを、健康な成人10名(男性と女性各5名)を評価者として、織編物の風合い(特にふくらみ感と表面の触感)を触感によって、梳毛調と杢感とを目視によって、非常に良い(5点)、良い(4点)、普通(3点)、あまり良くない(2点)、悪い(1点)の5段階で官能評価し、各検査者の平均値を四捨五入して評価をした。
 (11)繊維製品の繊維屑量
 ISO 6330(2012)に記載のC型基準洗濯機を用いて、ISO6330(2012)C4N法により“AQW-V700E 7kg”(アクア株式会社製)を使用して、被洗物を入れずにすすぎと排水を2回行った。具体的には、コースを念入りコース、水量を40L、洗い時間を15分、すすぎを2回、脱水を7分に設定し、洗いの水温を40℃、すすぎの水温を常温とした。次に、洗濯機の排水ホースに目開き11.3μm(実測値)の“ナイロンスクリーンNY10-HC“(株式会社フロン工業製、カタログ値:目開き10μm)を用いて製造した捕集袋を取り付けた。その後、評価する繊維製品1枚を洗濯機に入れ、ISO 6330 C4N法の洗濯条件にて洗濯を行った。ただし、洗剤と負荷布は使用しなかった。洗濯後、“ナイロンスクリーン”に付着した繊維屑を、あらかじめ重量を測定したポリカーボネートメンブレン(”K040A047A“株式会社アドバンテック東洋製)を用いて吸引濾過した。濾過後のポリカーボネートメンブレンと繊維屑を105℃で1時間乾燥、重量を測定し、濾過前の重量との差を繊維屑発生量とした。重量は小数点以下3桁目を四捨五入して小数点以下2桁で求めた。
 [実施例1]
 ポリエステル系熱可塑性樹脂Aを重量平均分子量25000のポリエチレンテレフタレート、ポリエステル系熱可塑性樹脂Bを重量平均分子量15000のポリエチレンテレフタレートとし、紡糸温度290℃、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとが50:50の質量複合比となるように、吐出孔数12の複合繊維用紡糸口金に流入させた。なお、本実施例1の紡糸においては、複数枚で構成される分配プレートの内、最も下流に設置された最終分配プレートにおける分配孔の配置を図4に示した形とすることにより、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bの質量複合比が50:50の、ポリエステル系熱可塑性樹脂B中にポリエステル系熱可塑性樹脂Aが包含された偏心芯鞘型(図1)の複合断面を形成するものである。口金から吐出された糸条は、空冷装置により冷却、油剤付与後、ワインダーにより2600m/分の速度で巻き取り、総繊度100dtex-単糸数12フィラメントの半延伸糸として安定的に巻き取った。
 続いて、得られた半延伸糸を300m/分の速度で延伸装置に送糸し、図3に示すような延伸装置を用いて延伸倍率1.50倍、ホットピン温度70℃、セット温度150℃でピン延伸することで、見かけの太細比(Dthick/Dthin)1.40の延伸糸を得た。この延伸糸について、前記の(tthin/D)は0.020、CとCとの関係は、C=0.40C(C/C=0.40)であった。また、S:S=50:50であった。
 次に、1200T/mの撚りを常法により得られた延伸糸に付与したものを経糸および緯糸として用い、経糸密度115本/2.54cm、緯糸密度105本/2.54cmで、1/3ツイル組織の織物を作製した。
 さらにこの織物に、精練、中間熱セット、アルカリ減量加工(減量率10%)を施した。その後、染色工程として分散染料「Dystar Navy BlueS-GL」を用いて濃度1.0owf%、130℃の温度で30分間染色し、160℃での仕上げ熱セットを施した。結果を表1に示す。
 [実施例2]
 延伸工程において、延伸装置における延伸倍率を1.30倍として、見掛けの太細比(Dthick/Dthin)1.25の延伸糸を得た以外は、実施例1と同様に複合繊維、織物を得た。結果を表1に示す。
 [実施例3]
 延伸工程において、延伸装置における延伸倍率を1.40倍として、見掛けの太細比(Dthick/Dthin)1.30の延伸糸を得た以外は、実施例1と同様に複合繊維、織物を得た。結果を表1に示す。
 [比較例1]
 ポリエステル系熱可塑性樹脂A、ポリエステル系熱可塑性樹脂Bのいずれも重量平均分子量15000のポリエチレンテレフタレートを用いた以外は、実施例1と同様に複合繊維、織物を得た。結果を表1に示す。
 [比較例2]
 実施例1において、使用する紡糸口金を、分配板方式の口金から特開平09-157941号公報に記載された形式の口金に置き換え、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとからなるサイドバイサイド型複合繊維としたこと以外は、実施例1と同様に複合繊維、織物を得た。得られた織物は品位が悪く、風合い、梳毛調、杢感に劣っていた。結果を表1に示す。
 [比較例3]
 実施例1において、ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みtの最小値tminの値が10倍となるように使用する紡糸口金の最終分配板プレートの分配孔の配置を図4から図5となるように変更し、ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとからなり、(tmin/D)が0.20である芯鞘型複合繊維としたこと以外は、実施例1と同様に複合繊維、織物を得た。結果を表1に示す。
 [比較例4]
 延伸工程において、延伸装置における延伸倍率を1.90倍として、見掛けの太細比(Dthick/Dthin)1.00の延伸糸(すなわち、複合繊維が膨らんだ部分(太部)も複合繊維が集束した部分(細部)も有さない、均一な繊維径を有する糸)を得た以外は、実施例1と同様に複合繊維、織物を得た。結果を表1に示す。
 [実施例4]
 実施例1で作製した延伸糸に、更に見掛けの太細比(Dthick/Dthin)1.15のポリエチレンテレフタレート繊維(74dtex-48f)をインターレースノズルにて42質量%となるように交絡混繊して複合混繊繊維とし、経糸密度を82本/inch、緯糸密度を75本/inchとした以外は実施例1と同様に織物を得た。結果を表1に示す。
 [実施例5]
 紡糸速度を1400m/分として未延伸糸とした以外は実施例1と同様に複合繊維を作製したところ延伸のセット工程で部分的な融着が発生したため、セット温度を120℃として融着のない複合繊維、織物を得た。得られた織物は伸長率が低いものの、風合い、梳毛感に優れるものであった。結果を表1に示す。
 [実施例6]
 ポリエステル系熱可塑性樹脂Aとしてイソフタル酸(IPA)を酸成分に対して10mol%共重合させた重量平均分子量20000のポリエステルとした以外は、請求項1と同様に複合繊維、織物を得た。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
1:ポリエステル系熱可塑性樹脂A
2:ポリエステル系熱可塑性樹脂B
3:複合繊維
4:クラック
5:半延伸糸
6:ガイド
7:第1フィードローラー
8:ホットピン
9:第2フィードローラー
10:ヒーター
11:第3フィードローラー
12:太細比を有する複合繊維
13:巻き取り部
14:最終分配プレートにおける分配孔のうち、ポリエステル系熱可塑性樹脂Aの分配孔
15:最終分配プレートにおける分配孔のうち、ポリエステル系熱可塑性樹脂Bの分配孔
16:ポリエステル系熱可塑性樹脂Aを覆っているポリエステル系熱可塑性樹脂Bの厚みt
 

Claims (10)

  1.  ポリエステル系熱可塑性樹脂Aとポリエステル系熱可塑性樹脂Bとを含み、以下の要件を満たす複合繊維。
    (1)前記ポリエステル系熱可塑性樹脂Aの重量平均分子量Mと前記ポリエステル系熱可塑性樹脂Bの重量平均分子量Mとの差(M-M)が2000~15000である。
    (2)前記複合繊維において、前記複合繊維の見かけの太細比(Dthick/Dthin)が1.05~3.00である。
    (3)前記複合繊維の断面において、前記ポリエステル系熱可塑性樹脂Bが前記ポリエステル系熱可塑性樹脂Aを覆っており、前記ポリエステル系熱可塑性樹脂Bの厚みtの最小値tminと前記複合繊維の繊維直径Dとの比(tmin/D)が0.01~0.10である。
    (4)前記複合繊維の断面において、厚みtが1.00tmin≦t≦1.05tminを満たす部分の周囲長Cが、前記複合繊維全体の周囲長Cに対し、C≧0.33Cである。
  2.  前記複合繊維の最大荷重0.5cN/dtexにおける伸長回復時のヒステリシスロス率が0~70%である、請求項1に記載の複合繊維。
  3.  前記複合繊維の測定荷重0.00166cN/dtexにおける繊維軸方向の太部長(L1)と細部長(L2)の太細長比LR1(L2/L1)が0.90~1.40であり、測定荷重0.11cN/dtexの太細長比LR2と測定荷重0.00166cN/dtexの太細長比LR1との比(LR2/LR1)が1.20~2.10である、請求項1または2に記載の複合繊維。
  4.  少なくとも前記複合繊維の見掛け太さが太い繊維直径(Dthick)を有する部分において、前記複合繊維の表面にクラックを有する、請求項1~3のいずれかに記載の複合繊維。
  5.  請求項1~4のいずれかに記載の前記複合繊維に、さらに少なくとも1種の他の糸条が複合されている複合混繊繊維。
  6.  請求項1~4のいずれかに記載の前記複合繊維を少なくとも一部に含む織編物。
  7.  請求項5に記載の前記複合混繊繊維を少なくとも一部に含む織編物。
  8.  請求項1~4のいずれかに記載の前記複合繊維を少なくとも一部に含む衣類。
  9.  請求項5に記載の前記複合混繊繊維を少なくとも一部に含む衣類。
  10.  請求項6または請求項7のいずれかに記載の前記織編物を少なくとも一部に含む衣類。
     
PCT/JP2022/000301 2021-01-25 2022-01-07 複合繊維並びにこれを含む複合混繊繊維、織編物及び衣類 WO2022158310A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/269,808 US20240060217A1 (en) 2021-01-25 2022-01-07 Composite fiber, composite mixed-filament fiber including same, woven/knitted fabric, and garment
JP2022506132A JPWO2022158310A1 (ja) 2021-01-25 2022-01-07
CN202280009834.1A CN116724154A (zh) 2021-01-25 2022-01-07 复合纤维和包含其的复合混纤纤维、机织针织物以及衣物
KR1020237023884A KR20230136117A (ko) 2021-01-25 2022-01-07 복합 섬유 그리고 이것을 포함하는 복합 혼섬 섬유,직편물 및 의류
EP22742434.8A EP4283027A1 (en) 2021-01-25 2022-01-07 Composite fiber, composite mixed-filament fiber including same, woven/knitted fabric, and garment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-009281 2021-01-25
JP2021009281 2021-01-25

Publications (1)

Publication Number Publication Date
WO2022158310A1 true WO2022158310A1 (ja) 2022-07-28

Family

ID=82548865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000301 WO2022158310A1 (ja) 2021-01-25 2022-01-07 複合繊維並びにこれを含む複合混繊繊維、織編物及び衣類

Country Status (7)

Country Link
US (1) US20240060217A1 (ja)
EP (1) EP4283027A1 (ja)
JP (1) JPWO2022158310A1 (ja)
KR (1) KR20230136117A (ja)
CN (1) CN116724154A (ja)
TW (1) TW202237918A (ja)
WO (1) WO2022158310A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157941A (ja) 1995-11-30 1997-06-17 Toray Ind Inc 潜在捲縮性複合繊維及び製造方法
JPH09228181A (ja) * 1996-02-20 1997-09-02 Kuraray Co Ltd 斑 糸
JP2003239153A (ja) * 2002-02-15 2003-08-27 Mitsubishi Rayon Co Ltd ポリエステル太細マルチフィラメント糸及びその製造方法並びにそれからの織編物
WO2003093547A1 (fr) * 2002-05-02 2003-11-13 Teijin Fibers Limited Tissu de fil epais-fin a filament conjugue en polyester et son procede de fabrication
JP2004218156A (ja) * 2003-01-16 2004-08-05 Teijin Ltd 潜在捲縮性ポリエステル複合繊維
JP2011174215A (ja) 2010-01-29 2011-09-08 Toray Ind Inc 複合口金
JP2011208313A (ja) 2010-03-30 2011-10-20 Toray Ind Inc 複合口金および複合繊維の製造方法
JP2012136804A (ja) 2010-12-27 2012-07-19 Toray Ind Inc 複合口金および複合繊維の製造方法
WO2018110523A1 (ja) 2016-12-14 2018-06-21 東レ株式会社 偏心芯鞘複合繊維および混繊糸

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157941A (ja) 1995-11-30 1997-06-17 Toray Ind Inc 潜在捲縮性複合繊維及び製造方法
JPH09228181A (ja) * 1996-02-20 1997-09-02 Kuraray Co Ltd 斑 糸
JP2003239153A (ja) * 2002-02-15 2003-08-27 Mitsubishi Rayon Co Ltd ポリエステル太細マルチフィラメント糸及びその製造方法並びにそれからの織編物
WO2003093547A1 (fr) * 2002-05-02 2003-11-13 Teijin Fibers Limited Tissu de fil epais-fin a filament conjugue en polyester et son procede de fabrication
JP2003328248A (ja) 2002-05-02 2003-11-19 Teijin Fibers Ltd 梳毛調布帛及びその製造方法
JP2004218156A (ja) * 2003-01-16 2004-08-05 Teijin Ltd 潜在捲縮性ポリエステル複合繊維
JP2011174215A (ja) 2010-01-29 2011-09-08 Toray Ind Inc 複合口金
JP2011208313A (ja) 2010-03-30 2011-10-20 Toray Ind Inc 複合口金および複合繊維の製造方法
JP2012136804A (ja) 2010-12-27 2012-07-19 Toray Ind Inc 複合口金および複合繊維の製造方法
WO2018110523A1 (ja) 2016-12-14 2018-06-21 東レ株式会社 偏心芯鞘複合繊維および混繊糸

Also Published As

Publication number Publication date
JPWO2022158310A1 (ja) 2022-07-28
EP4283027A1 (en) 2023-11-29
TW202237918A (zh) 2022-10-01
CN116724154A (zh) 2023-09-08
US20240060217A1 (en) 2024-02-22
KR20230136117A (ko) 2023-09-26

Similar Documents

Publication Publication Date Title
JP7358237B2 (ja) エラストマー繊維およびポリエステル二成分フィラメントを含有する伸縮性編生地、それから作られる衣類並びにその製造方法
KR102158057B1 (ko) 복수의 탄성 얀을 갖는 신축성 얀 및 패브릭
US20080070460A1 (en) Stretch woven fabrics
JP2012057265A (ja) 高密度織物
US6919131B2 (en) Latent-elasticity interlaced-textured yarn and suede-like elastic woven fabric produced using the same
JP5433259B2 (ja) 複合紡績糸、その製造方法及び該複合紡績糸を用いた織物
CN113423884A (zh) 织物及其制造方法、以及包含该织物的纤维制品
JP2006214056A (ja) 織物
JP2015196928A (ja) 長短複合紡績糸および織編物
JP5599686B2 (ja) ポリエステル潜在捲縮加工糸及びその製造方法
WO2022158310A1 (ja) 複合繊維並びにこれを含む複合混繊繊維、織編物及び衣類
KR20030083577A (ko) 멜란지 효과가 우수한 이수축 혼섬사 및 그의 제조방법
WO2024018818A1 (ja) 複合繊維、構造糸、織編物及び衣類
WO2024018814A1 (ja) 仮撚加工糸並びにこれを含む複合仮撚加工糸、撚糸、織編物及び衣類
JP2016056485A (ja) ポリアミド繊維織編物およびその製造方法
WO2023100570A1 (ja) 偏心芯鞘複合仮撚糸及びそれを用いた織編物
CN115803488B (zh) 针织面料及其用途
JP2014005574A (ja) ポリアミド繊維織編物
JP4202210B2 (ja) 混繊糸及び織編物及び着古し外観を有する縫製品
JP7388937B2 (ja) 通気性織物とその製造方法及びこれを用いた衣服
WO2023182145A1 (ja) 複合仮撚加工糸、織編物及び衣服
KR100624147B1 (ko) 스웨드 효과가 우수한 극세 혼섬사 및 그의 제조방법
JP3534025B2 (ja) 交織織物
JP2023123956A (ja) 織物
JP2004060065A (ja) 染色布帛およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022506132

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269808

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280009834.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022742434

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742434

Country of ref document: EP

Effective date: 20230825