WO2022157979A1 - 室外機、空気調和機および室外機の設計方法 - Google Patents

室外機、空気調和機および室外機の設計方法 Download PDF

Info

Publication number
WO2022157979A1
WO2022157979A1 PCT/JP2021/002459 JP2021002459W WO2022157979A1 WO 2022157979 A1 WO2022157979 A1 WO 2022157979A1 JP 2021002459 W JP2021002459 W JP 2021002459W WO 2022157979 A1 WO2022157979 A1 WO 2022157979A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
row
outdoor
outdoor heat
outdoor unit
Prior art date
Application number
PCT/JP2021/002459
Other languages
English (en)
French (fr)
Inventor
正典 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP21921086.1A priority Critical patent/EP4283219A4/en
Priority to JP2022576941A priority patent/JPWO2022157979A1/ja
Priority to PCT/JP2021/002459 priority patent/WO2022157979A1/ja
Publication of WO2022157979A1 publication Critical patent/WO2022157979A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present disclosure relates to outdoor units, air conditioners, and outdoor unit design methods.
  • R32 is generally used as a refrigerant in air conditioners. Due to refrigerant regulations in Europe, etc., it is required to use a refrigerant with a lower global warming potential (GWP) than R32 as a refrigerant used in the refrigeration cycle of air conditioners.
  • GWP global warming potential
  • R290 propane
  • R290 is a refrigerant with a lower GWP than R32. Since R290 has a higher latent heat of vaporization than R32, it has a higher theoretical coefficient of performance (COP) of an air conditioner. Therefore, R290 is promising as a candidate refrigerant to replace R32.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-227822 describes an air conditioner using R290 as a refrigerant.
  • R290 since R290 has a lower pressure than R32, the pressure loss of the refrigerant is large. Therefore, when R290 is used in an air conditioner, the coefficient of performance is lower than when R32 is used in an air conditioner having the same tube internal volume of the heat exchanger.
  • As a method for avoiding the deterioration of the coefficient of performance due to the large pressure loss of the refrigerant it is conceivable to increase the pipe diameter of the heat exchanger or increase the number of paths of the heat exchanger.
  • the cost of the heat exchanger increases due to an increase in the pipe diameter of the heat exchanger or an increase in the number of paths (the number of paths) of the heat exchanger.
  • R290 has a lower thermal conductivity of liquid refrigerant than R32. Therefore, since R290 has a smaller thermal conductivity in the supercooled liquid portion than R32, the degree of supercooling of R290 tends to be smaller than that of R32. Therefore, when R290 is used in an air conditioner, the enthalpy difference of the evaporator becomes smaller than when R32 is used in an air conditioner with the same tube internal volume of the heat exchanger, so the coefficient of performance decreases. do.
  • Methods for increasing the degree of supercooling include increasing the amount of refrigerant, reducing the pipe diameter of the heat exchanger, or reducing the number of paths in the heat exchanger.
  • R290 since the maximum refrigerant charging amount of R290 is specified by international standards, it is difficult to increase the amount of refrigerant.
  • R290 since R290 has a lower pressure than R32, the rate of increase in refrigerant pressure loss due to an increase in refrigerant flow velocity is large due to a reduction in the pipe diameter of the heat exchanger or a decrease in the number of paths. Therefore, the coefficient of performance is not improved because the condensing temperature is greatly increased.
  • the present disclosure has been made in view of the above problems, and its purpose is to improve the coefficient of performance of the air conditioner while suppressing the cost of the heat exchanger while using R290. It is to provide a design method for an outdoor unit.
  • the outdoor unit of the present disclosure includes a housing and an outdoor heat exchanger housed in the housing.
  • the outdoor heat exchanger has heat transfer tubes for flowing a refrigerant.
  • the refrigerant is R290.
  • the heat transfer tube has an internal volume of 70% or more and less than 100% of that when R32 is used as the refrigerant.
  • the refrigerant is R290.
  • the heat transfer tube has an internal volume of 70% or more and less than 100% of that when R32 is used as the refrigerant. Therefore, it is possible to improve the coefficient of performance of the air conditioner while suppressing the cost of the heat exchanger while using R290.
  • FIG. 1 is a perspective view schematically showing the configuration of an outdoor unit according to Embodiment 1
  • FIG. 3 is a perspective view schematically showing a state in which a portion forming a blowing chamber of the peripheral wall portion of the outdoor unit according to Embodiment 1, a fan grille, and a top plate portion are removed
  • 2 is a schematic diagram schematically showing the configuration of an outdoor heat exchanger of the outdoor unit according to Embodiment 1.
  • FIG. 4 is a graph showing changes in the coefficient of performance (COP) of the air conditioner with respect to the tube internal volume of the outdoor heat exchanger of the outdoor unit according to Embodiment 1.
  • COP coefficient of performance
  • FIG. 4 is a graph showing changes in the degree of supercooling (SC) with respect to the tube internal volume of the outdoor heat exchanger of the outdoor unit according to Embodiment 1.
  • FIG. 4 is a graph showing changes in refrigerant circulation amount (Gr) with respect to pipe internal volume of the outdoor heat exchanger of the outdoor unit according to Embodiment 1.
  • FIG. 4 is a graph showing changes in compressor frequency with respect to tube internal volume of the outdoor heat exchanger of the outdoor unit according to Embodiment 1.
  • FIG. 4 is a graph showing changes in the discharge pressure of the compressor with respect to the tube internal volume of the outdoor heat exchanger of the outdoor unit according to Embodiment 1.
  • FIG. 4 is a graph showing changes in compressor input (Gr ⁇ hcomp) with respect to the tube internal volume of the outdoor heat exchanger of the outdoor unit according to Embodiment 1.
  • FIG. 4 is a front view schematically showing the height of the indoor heat exchanger with respect to the height of the housing of the outdoor unit according to Embodiment 1.
  • FIG. 4 is a flow chart of a method for designing an outdoor unit according to Embodiment 1.
  • FIG. FIG. 9 is a top view schematically showing the product width of an outdoor heat exchanger with respect to the lateral length of the housing of the outdoor unit according to Embodiment 2; FIG.
  • FIG. 8 is a top view schematically showing the length of the L-bent portion of the outdoor heat exchanger with respect to the length in the depth direction of the housing of the outdoor unit according to Embodiment 2;
  • FIG. 11 is a front view schematically showing the height of an indoor heat exchanger with respect to the height of a housing of an outdoor unit according to Embodiment 3;
  • FIG. 11 is a top view schematically showing the length of the L-bent portion of the outdoor heat exchanger with respect to the length in the depth direction of the housing of the outdoor unit according to Embodiment 3;
  • FIG. 11 is a front view schematically showing the height of an indoor heat exchanger with respect to the height of a housing of a modified example of the outdoor unit according to Embodiment 3;
  • FIG. 10 is a top view schematically showing the length of the L-bent portion of the outdoor heat exchanger with respect to the length in the depth direction of the housing of the modification of the outdoor unit according to Embodiment 3;
  • Embodiment 1 A configuration of an air conditioner 1000 according to Embodiment 1 will be described with reference to FIG.
  • the air conditioner 1000 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a pressure reducing valve 4, an indoor heat exchanger 5, an outdoor fan 6, and an indoor fan. 7 and a control device 8 .
  • An air conditioner 1000 includes an outdoor unit 100 and an indoor unit 200 connected to the outdoor unit 100 .
  • the air conditioner 1000 includes the four-way valve 2 in the present embodiment, the air conditioner 1000 may be a cooling-only air conditioner that does not include the four-way valve 2 .
  • a refrigerant circuit 10 includes a compressor 1 , a four-way valve 2 , an outdoor heat exchanger 3 , a pressure reducing valve 4 and an indoor heat exchanger 5 .
  • Compressor 1 , four-way valve 2 , outdoor heat exchanger 3 , pressure reducing valve 4 and indoor heat exchanger 5 are connected by piping 20 .
  • the refrigerant circuit 10 is configured to circulate the refrigerant.
  • the refrigerant is R290 (propane).
  • the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducing valve 4, the outdoor fan 6 and the control device 8 are housed in the outdoor unit 100.
  • Indoor heat exchanger 5 and indoor fan 7 are housed in indoor unit 200 .
  • the outdoor unit 100 and the indoor unit 200 are connected by a gas pipe 301 and a liquid pipe 302 .
  • a part of the pipe 20 constitutes a gas pipe 301 and a liquid pipe 302 .
  • the refrigerant circuit 10 is configured such that the refrigerant circulates through the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducing valve 4, the indoor heat exchanger 5, and the four-way valve 2 in this order during cooling operation. Further, the refrigerant circuit 10 is configured such that the refrigerant circulates in the order of the compressor 1, the four-way valve 2, the indoor heat exchanger 5, the pressure reducing valve 4, the outdoor heat exchanger 3, and the four-way valve 2 during the heating operation. .
  • the compressor 1 is configured to compress refrigerant.
  • the compressor 1 is configured to compress and discharge the sucked refrigerant.
  • the compressor 1 may be configured to have a variable capacity.
  • the compressor 1 may be configured such that the displacement is changed by adjusting the rotational speed of the compressor 1 based on an instruction from the control device 8 .
  • the four-way valve 2 During cooling operation, the four-way valve 2 has the first port P1 connected to the third port P3 and the second port P2 connected to the fourth port P4.
  • the four-way valve 2 is configured to flow the refrigerant discharged from the compressor 1 to the indoor heat exchanger 5 during heating operation.
  • the four-way valve 2 has the first port P1 connected to the fourth port P4 and the second port P2 connected to the third port P3.
  • the outdoor heat exchanger 3 is configured to exchange heat between the refrigerant flowing inside the outdoor heat exchanger 3 and the air flowing outside the outdoor heat exchanger 3 .
  • the outdoor heat exchanger 3 is configured to function as a condenser that condenses refrigerant during cooling operation, and to function as an evaporator that evaporates refrigerant during heating operation.
  • the outdoor heat exchanger 3 is a fin-and-tube heat exchanger having a plurality of fins and heat transfer tubes passing through the plurality of fins.
  • the pressure reducing valve 4 is configured to reduce the pressure by expanding the refrigerant condensed in the condenser.
  • the pressure reducing valve 4 is configured to reduce the pressure of the refrigerant condensed by the outdoor heat exchanger 3 during cooling operation, and to reduce the pressure of the refrigerant condensed by the indoor heat exchanger 5 during heating operation.
  • the pressure reducing valve 4 is, for example, an electromagnetic expansion valve.
  • the indoor heat exchanger 5 is configured to exchange heat between the refrigerant flowing inside the indoor heat exchanger 5 and the air flowing outside the indoor heat exchanger 5 .
  • the indoor heat exchanger 5 is configured to function as an evaporator that evaporates the refrigerant during cooling operation and as a condenser that condenses the refrigerant during heating operation.
  • the indoor heat exchanger 5 is a fin-and-tube heat exchanger having a plurality of fins and heat transfer tubes passing through the plurality of fins.
  • the indoor blower 7 is configured to blow indoor air to the indoor heat exchanger 5 . That is, the indoor fan 7 is configured to supply air to the indoor heat exchanger 5 .
  • the control device 8 is configured to perform calculations, instructions, etc. to control each device of the air conditioner 1000 .
  • the control device 8 is electrically connected to the compressor 1, the four-way valve 2, the pressure reducing valve 4, the outdoor fan 6, the indoor fan 7, etc., and is configured to control these operations.
  • the air conditioner 1000 can selectively perform cooling operation and heating operation.
  • the refrigerant circulates through the refrigerant circuit 10 in the order of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the pressure reducing valve 4, the indoor heat exchanger 5, and the four-way valve 2.
  • the outdoor heat exchanger 3 functions as a condenser. Heat exchange is performed between the refrigerant flowing through the outdoor heat exchanger 3 and the air blown by the outdoor fan 6 .
  • the indoor heat exchanger 5 functions as an evaporator. Heat exchange is performed between the refrigerant flowing through the indoor heat exchanger 5 and the air blown by the indoor blower 7 .
  • the outdoor unit 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a pressure reducing valve 4, an outdoor fan 6, a controller 8, and a housing. 101.
  • a housing 101 accommodates a compressor 1 , a four-way valve 2 , an outdoor heat exchanger 3 , a pressure reducing valve 4 , an outdoor fan 6 and a control device 8 .
  • the housing 101 has a bottom portion 102 , a peripheral wall portion 103 , a fan grill 104 , a top plate portion 105 and a separator 106 .
  • a peripheral wall portion 103 is arranged on the bottom portion 102 .
  • a blowout port (not shown) is provided in front of the peripheral wall portion 103 .
  • a fan grill 104 is configured to cover the outlet.
  • a top plate portion 105 is arranged on the peripheral wall portion 103 .
  • the separator 106 is configured to separate the machine room 107 and the blower room 108 of the outdoor unit 100 .
  • a compressor 1 , a four-way valve 2 , a pressure reducing valve 4 and a control device 8 are installed in the machine room 107 .
  • An outdoor heat exchanger 3 and an outdoor fan 6 are installed in the blowing chamber 108 .
  • FIG. 3 is a schematic diagram schematically showing the configuration of the outdoor heat exchanger 3. As shown in FIG. In FIG. 4, the outdoor heat exchangers 3 are shown in one row for convenience of explanation.
  • the outdoor heat exchanger 3 has heat transfer tubes HP for flowing refrigerant and a plurality of fins FP.
  • a plurality of fins FP are stacked together.
  • the heat transfer pipe HP is configured to pass through the plurality of fins FP.
  • the heat transfer pipe HP is configured to meander.
  • the outdoor heat exchanger and outdoor fan are set to the maximum size that can be installed with respect to the housing size of the outdoor unit in order to improve the performance (coefficient of performance) of the air conditioner. Installed. That is, in the Z direction and the X direction of the housing shown in FIG. 3, the outdoor heat exchanger is maximized within a range that can be accommodated in the housing. The reason for this is to increase the heat transfer area of the heat exchanger to improve the heat transfer performance, and to reduce the pressure loss on the air side of the heat exchanger by increasing the front surface area of the heat exchanger to reduce the input of the outdoor fan.
  • the outdoor heat exchanger and the outdoor fan are installed at the maximum size of the installable range with respect to the housing size of the outdoor unit.
  • the refrigerant is changed from R32 to R290 in such an outdoor unit, the coefficient of performance is not optimal.
  • the following methods are conceivable for increasing the degree of supercooling (SC).
  • the first method is to simply increase the amount of R290 refrigerant.
  • a second method is to reduce the pipe diameter of the outdoor heat exchanger or reduce the number of paths.
  • the above method has the following problems.
  • Regarding the first method it is difficult to increase the amount of refrigerant because the maximum refrigerant charge amount of R290 is specified by international standards.
  • Regarding the second method since R290 has a lower pressure than R32, an increase in the refrigerant flow velocity results in a large increase in refrigerant pressure loss. Therefore, the coefficient of performance (performance) is not improved because the condensing temperature is significantly increased.
  • This embodiment aims to improve the coefficient of performance (performance) by increasing the degree of supercooling (SC) by a method other than the above. Specifically, the present embodiment aims to improve the coefficient of performance (performance) by increasing the degree of subcooling (SC) by reducing the internal volume of the outdoor heat exchanger.
  • the number of stages of the outdoor heat exchanger 3 was reduced from 32 stages by two stages under the following conditions, and changes in the coefficient of performance (COP), etc., were calculated. That is, the 32 stages of the outdoor heat exchanger 3 correspond to 100% of the tube internal volume of the outdoor heat exchanger, 30 stages 94%, 28 stages 88%, 26 stages 81%, 24 stages 75%, 22 stages corresponds to 69%, and 20 steps corresponds to 63%.
  • COP coefficient of performance
  • Cooling rated conditions (outdoor dry-bulb temperature of 35°C, outdoor wet-bulb temperature of 24°C, indoor dry-bulb temperature of 27°C, and indoor wet-bulb temperature of 19°C) are applied. Cooling capacity is 2.5 kW.
  • the refrigerant amount of R290 is 0.33 kg.
  • the maximum refrigerant charging amount for flammable refrigerant in air conditioners is specified in the international standard IEC60335-2-40.
  • the gas pipe diameter is 12.7 mm.
  • the liquid tube diameter is 6.35 mm.
  • the length of the gas pipe is 5m.
  • the length of the liquid tube is 5 m.
  • the outdoor air volume is 35.7 m 3 /min.
  • the indoor air volume is 13.2 m 3 /min.
  • the specifications of the outdoor heat exchanger are as follows.
  • the outdoor heat exchanger is a fin-and-tube heat exchanger.
  • the outer diameter of the heat transfer tube is 5 mm.
  • the thickness of the heat transfer tube is 0.21 mm.
  • the number of stages is 32 stages.
  • the product width is 847 mm.
  • the fin pitch (FP) is 1.5 mm.
  • the step pitch (DP) is 21 mm.
  • the row pitch (LP) is 22 mm.
  • the thickness of the fins is 0.11 mm.
  • the number of passes is 8-2 passes. In other words, there are 8 entrance paths and 2 exit paths during cooling.
  • the specifications of the indoor heat exchanger are as follows.
  • the indoor heat exchanger is a fin-and-tube heat exchanger.
  • the outer diameter of the heat transfer tube is 5 mm.
  • the thickness of the heat transfer tube is 0.21 mm.
  • the number of stages is 30 stages.
  • the product width is 789 mm.
  • the fin pitch (FP) is 1.2 mm.
  • the step pitch (DP) is 15.3 mm.
  • the row pitch (LP) is 8.67 mm.
  • the fin thickness is 0.095 mm.
  • the number of passes is 2-4 passes. In other words, there are 2 paths for the entrance and 4 paths for the exit during cooling.
  • the degree of supercooling (SC) increases as the tube internal volume of the outdoor heat exchanger decreases. That is, since the amount of refrigerant is fixed, the average density of the refrigerant increases when the volume inside the tubes of the outdoor heat exchanger decreases, so the degree of supercooling (SC) increases.
  • FIG. 11 shows the height ZL2 of the outdoor heat exchanger 3 with respect to the height ZL1 of the housing 101 of the outdoor unit 100.
  • FIG. The height of the outdoor heat exchanger 3 in the current machine is maximized to 89% or more and 95% or less of the height of the housing 101 of the outdoor unit 100 as described above.
  • the height ZL1 of the housing 101 of the outdoor unit 100 of the room air conditioner is 530 mm
  • the height ZL2 of the outdoor heat exchanger 3 is 472 mm or more and 504 mm or less.
  • COP coefficient of performance
  • FIG. 5 a design method for the outdoor unit according to Embodiment 1 will be described with reference to FIGS. 5, 11 and 12.
  • FIG. 5 a design method for the outdoor unit according to Embodiment 1 will be described with reference to FIGS. 5, 11 and 12.
  • the height ZL2 of the outdoor heat exchanger 3 is 62% or more and less than 95% of the height ZL1 of the housing 101. Therefore, it is possible to improve the coefficient of performance of the air conditioner 1000 using R290 while suppressing the cost of the outdoor heat exchanger 3 .
  • the heat transfer tubes HP are configured to pass through the plurality of fins FP. Therefore, a fin-and-tube heat exchanger can be used as the outdoor heat exchanger 3 .
  • the outdoor unit 100 and the indoor unit 200 connected to the outdoor unit 100 are provided. Therefore, it is possible to improve the coefficient of performance of the air conditioner 1000 while suppressing the cost of the heat exchanger while using R290.
  • the pipe internal volume of the outdoor heat exchanger using R290 is reduced so as to exceed the coefficient of performance when R32 is used.
  • the pipe internal volume of the outdoor heat exchanger to be used is set. Therefore, it is possible to improve the coefficient of performance of the air conditioner 1000 while suppressing the cost of the heat exchanger while using R290.
  • Embodiment 1 Although the size of the outdoor heat exchanger in the stage direction (Z direction) is reduced in Embodiment 1, similar effects can be obtained even if the size of the outdoor heat exchanger in the width direction (X direction) is reduced.
  • FIG. 13 shows the product width XL2 of the outdoor heat exchanger 3 with respect to the lateral length XL1 of the housing 101 of the outdoor unit 100.
  • FIG. The product width XL2 of the outdoor heat exchanger 3 in the current machine is maximized to 80% or more and 85% or less of the lateral length XL1 of the housing 101 of the outdoor unit 100 as described above.
  • the product width XL2 of the outdoor heat exchanger 3 is smaller than that in the Z direction due to the distributor, connecting pipes, etc. for the outdoor heat exchanger 3 .
  • the lateral length XL1 of the housing 101 of the outdoor unit 100 of the room air conditioner is 699 mm
  • the outdoor heat exchanger 3 has a width of 560 mm or more and 593 mm or less.
  • COP coefficient of performance
  • FIG. 14 shows the length YL2 of the L-bent portion of the outdoor heat exchanger 3 with respect to the length YL1 of the housing 101 of the outdoor unit 100 in the depth direction (Y direction).
  • the length YL2 of the L-bent portion of the outdoor heat exchanger 3 is 60% or more and less than 66% of the length YL1 of the housing 101 in the depth direction (Y direction). Since the outdoor heat exchanger 3 has a length in the depth direction (Y direction) that is not the L-bent portion, the length YL2 of the L-bend portion is a small value.
  • the length YL1 in the depth direction (Y direction) of the housing 101 of the outdoor unit 100 of the room air conditioner is 249 mm
  • the length YL2 of the L-bent portion of the outdoor heat exchanger 3 is 150 mm. 164 mm or less.
  • the total length (X direction + Y direction) of the L-bent outdoor heat exchanger 3 is 710 mm or more and 757 mm or less.
  • the tube internal volume of the outdoor heat exchanger according to the present embodiment which is equal to or higher than the COP (100%) at the current outdoor heat exchanger volume (100%), is 70% or more and less than 100%. . Therefore, when R290 is used, the length of the outdoor heat exchanger 3 is 497 mm or more and 757 mm. If the length of the outdoor heat exchanger 3 is 497 mm or more and 593 mm or less, the L-bent portion of the outdoor heat exchanger 3 can be eliminated because it is equal to or less than the product width of the existing outdoor heat exchanger.
  • the L-bent portion of the outdoor heat exchanger 3 is a bottleneck and the blade diameter or the bell mouth diameter of the outdoor fan 6 cannot be increased, eliminating the L-bent portion of the outdoor heat exchanger 3 can reduce the blade diameter and bell diameter of the outdoor fan. You can expand the mouse diameter. As a result, the aerodynamic performance can also be improved, so further performance improvement is possible.
  • the product width XL2 of the outdoor heat exchanger 3 is 56% or more and less than 85% of the horizontal length XL1 of the housing 101 . Therefore, it is possible to improve the coefficient of performance of the air conditioner 1000 using R290 while suppressing the cost of the outdoor heat exchanger 3 .
  • Embodiment 3 unlike Embodiments 1 and 2, the length of the outdoor heat exchanger 3 in the Y direction (the number of rows) is reduced, not in the Z direction or X direction.
  • the outdoor heat exchanger 3 has two or more rows.
  • the tube internal volume of the outdoor heat exchanger according to the present embodiment is 75% or more and 95% or less of the tube internal volume of the existing heat exchanger.
  • the row to be reduced should be on the windward side (away from the outdoor fan 6).
  • the reason for this is that by making the heat exchanger on the leeward side, which is the inlet side of the condenser, 100% the size of the current heat exchanger, it becomes easier to handle the paths in the multipath part, and the number of heat exchangers can be reduced. This is because the degree of supercooling can be easily taken by setting the on the windward side.
  • the first row 31 is L-shaped and the second row 32 is straight. Similarly, when there are three rows of outdoor heat exchangers in the Y direction, only one row is eliminated.
  • the size of one row to be reduced may be 10% or more and less than 100% of the size of the current heat exchanger. Assuming that the internal volume of the pipes in the first row of the current heat exchanger is 100%, the internal volume of the pipes in the third row is 300%.
  • the pipe internal volume of the outdoor heat exchanger according to the present embodiment which is equal to or higher than the coefficient of performance (COP 100%) at the pipe internal volume of the current heat exchanger (tube internal volume 100%), is 70% or more of the pipe internal volume of the current heat exchanger. Less than 100%.
  • the third row 33 is arranged on the windward side of the first row 31 and the second row 32.
  • the first row 31 and the second row 32 are bent in an L shape, and the third row 33 is straight.
  • the height is 89% or more and 95% or less of the height of the housing 101 .
  • the height of the second row 32 is 45% or more and 86% or less of the height of the housing 101 . Therefore, it is possible to improve the coefficient of performance of the air conditioner 1000 using R290 while suppressing the cost of the outdoor heat exchanger 3 .
  • the product width of the first row 31 is 80% or more and 85% or less of the lateral length of the housing 101 .
  • the product width of the second row 32 is 40% or more and 77% or less of the lateral length of the housing. Therefore, it is possible to improve the coefficient of performance of the air conditioner 1000 using R290 while suppressing the cost of the outdoor heat exchanger 3 .
  • the second row 32 is arranged on the windward side of the first row 31 in the flow of air generated by the outdoor fan 6 .
  • the heat exchanger on the leeward side which is the inlet side of the condenser, is 100% the size of the current heat exchanger, making it easier to handle the paths in the multi-path part and reducing the number of heat exchangers. This is because the degree of supercooling can be easily taken by setting it on the windward side.
  • the heights of the first row 31 and the second row 32 are 89% or more and 95% or less of the height of the housing 101 .
  • the height of the third row 33 is 22% or more and 81% or less of the height of the housing 101 . Therefore, it is possible to improve the coefficient of performance of the air conditioner 1000 using R290 while suppressing the cost of the outdoor heat exchanger 3 .
  • the product width of the first row 31 and the second row 32 is 80% or more and 85% or less of the lateral length of the housing 101 .
  • the product width of the third row 33 is 20% or more and 72% or less of the lateral length of the housing 101 . Therefore, it is possible to improve the coefficient of performance of the air conditioner 1000 using R290 while suppressing the cost of the outdoor heat exchanger 3 .
  • the third row 33 is arranged on the windward side of the first row 31 and the second row 32 in the flow of air generated by the outdoor fan 6.
  • the heat exchanger on the leeward side which is the inlet side of the condenser, is 100% the size of the current heat exchanger, making it easier to handle the paths in the multi-path part and reducing the number of heat exchangers. This is because the degree of supercooling can be easily taken by setting it on the windward side.
  • the first row 31 and the second row 32 are L-shaped, and the third row 33 is straight. Therefore, by bending the leeward side into an L shape, the volume of the outdoor heat exchanger on the windward side can be reduced. At the same time, the aerodynamic performance is improved because the frontal area is not reduced.

Abstract

室外機(100)は、筐体と、筐体に収容された熱交換器(3)とを備えている。熱交換器(3)は、冷媒を流すための伝熱管を有している。冷媒は、R290である。伝熱管は、冷媒としてR32が用いられた場合に対して、70%以上100%未満の管内容積を有している。

Description

室外機、空気調和機および室外機の設計方法
 本開示は、室外機、空気調和機および室外機の設計方法に関するものである。
 空気調和機では、一般的に冷媒としてR32が使用されている。欧州での冷媒規制などから空気調和機の冷凍サイクルに使用される冷媒にR32よりも地球温暖化係数(GWP:Global Warming Potential)の低い冷媒を用いることが求められている。R32よりもGWPの低い冷媒としてR290(プロパン)がある。R290は、R32に比べて、蒸発潜熱が大きいため、空気調和機の理論的な成績係数(COP:Coefficient Of Performance)である理論成績係数が高い。そのため、R290はR32に代わる候補冷媒として有望である。
 例えば、特開2001-227822号公報(特許文献1)には、冷媒としてR290を用いた空気調和機が記載されている。
特開2001-227822号公報
 一方、R290は、R32に対して、圧力が低いため、冷媒の圧力損失が大きい。そのため、空気調和機にR290が用いられると、同じ熱交換器の管内容積を備えた空気調和機にR32が用いられた場合に対して、成績係数が低下する。冷媒の圧力損失が大きいことによる成績係数の低下を避けるための方法には、熱交換器の配管径の拡大または熱交換器のパス数(経路数)の増加が考えられる。しかしながら、これらの方法では、熱交換器の配管径の拡大または熱交換器のパス数(経路数)の増加により熱交換器のコストが増加する。
 また、R290は、R32に対して液冷媒の熱伝導率が低い。したがって、R290はR32に対して過冷却液部分の熱伝導率が小さいため、R290はR32よりも過冷却度が小さくなりやすい。そのため、空気調和機にR290が用いられると、同じ熱交換器の管内容積を備えた空気調和機にR32が用いられた場合に対して、蒸発器のエンタルピー差が小さくなるため、成績係数が低下する。過冷却度を大きくする方法には、冷媒量の増加、もしくは、熱交換器の配管径の縮小または熱交換器のパス数の減少が考えられる。しかしながら、R290の最大冷媒充填量は国際規格で規定されているため、冷媒量の増加は困難である。また、R290はR32に対して圧力が低いため、熱交換器の配管径の縮小またはパス数の減少により、冷媒流速の増加による冷媒圧力損失の増加の割合が大きい。したがって、凝縮温度が大幅に増加するため、成績係数は向上しない。
 本開示は上記の課題を鑑みてなされたものであり、その目的は、R290を用いながら熱交換器のコストを抑えつつ空気調和機の成績係数を向上させることができる室外機、空気調和機および室外機の設計方法を提供することである。
 本開示の室外機は、筐体と、筐体に収容された室外熱交換器とを備えている。室外熱交換器は、冷媒を流すための伝熱管を有している。冷媒は、R290である。伝熱管は、冷媒としてR32が用いられた場合に対して、70%以上100%未満の管内容積を有している。
 本開示の室外機によれば、冷媒はR290である。伝熱管は冷媒としてR32が用いられた場合に対して、70%以上100%未満の管内容積を有している。したがって、R290を用いながら熱交換器のコストを抑えつつ空気調和機の成績係数を向上させることができる。
実施の形態1に係る空気調和機の冷媒回路図である。 実施の形態1に係る室外機の構成を概略的に示す斜視図である。 実施の形態1に係る室外機の周壁部の送風室を構成する部分、ファングリルおよび天板部が取り外された状態を概略的に示す斜視図である。 実施の形態1に係る室外機の室外熱交換器の構成を概略的に示す模式図である。 実施の形態1に係る室外機の室外熱交換器の管内容積に対する空気調和機の成績係数(COP)の変化を示すグラフである。 実施の形態1に係る室外機の室外熱交換器の管内容積に対する過冷却度(SC)の変化を示すグラフである。 実施の形態1に係る室外機の室外熱交換器の管内容積に対する冷媒循環量(Gr)の変化を示すグラフである。 実施の形態1に係る室外機の室外熱交換器の管内容積に対する圧縮機周波数の変化を示すグラフである。 実施の形態1に係る室外機の室外熱交換器の管内容積に対する圧縮機の吐出圧力の変化を示すグラフである。 実施の形態1に係る室外機の室外熱交換器の管内容積に対する圧縮機入力(Gr×Δhcomp)の変化を示すグラフである。 実施の形態1に係る室外機の筐体の高さに対する室内熱交換器の高さを模式的に示す正面図である。 実施の形態1に係る室外機の設計方法のフローチャートである。 実施の形態2に係る室外機の筐体の横方向長さに対する室外熱交換器の積幅を模式的に示す上面図である。 実施の形態2に係る室外機の筐体の奥行方向の長さに対する室外熱交換器のL曲げ部分の長さを模式的に示す上面図である。 実施の形態3に係る室外機の筐体の高さに対する室内熱交換器の高さを模式的に示す正面図である。 実施の形態3に係る室外機の筐体の奥行方向の長さに対する室外熱交換器のL曲げ部分の長さを模式的に示す上面図である。 実施の形態3に係る室外機の変形例の筐体の高さに対する室内熱交換器の高さを模式的に示す正面図である。 実施の形態3に係る室外機の変形例の筐体の奥行方向の長さに対する室外熱交換器のL曲げ部分の長さを模式的に示す上面図である。
 以下、図面を参照して、実施の形態について説明する。なお、図中において、同一または相当する部分には同一の符号を付してその説明は繰り返さない。
 実施の形態1.
 図1を参照して、実施の形態1に係る空気調和機1000の構成について説明する。
 図1に示されるように、空気調和機1000は、圧縮機1と、四方弁2と、室外熱交換器3と、減圧弁4と、室内熱交換器5と、室外送風機6と、室内送風機7と、制御装置8とを備えている。空気調和機1000は、室外機100と、室外機100に接続された室内機200とを備えている。
 なお、本実施の形態では空気調和機1000は四方弁2を備えているが、空気調和機1000は四方弁2を備えていない冷房専用の空気調和機であってもよい。
 冷媒回路10は、圧縮機1、四方弁2、室外熱交換器3、減圧弁4および室内熱交換器5を含んでいる。圧縮機1、四方弁2、室外熱交換器3、減圧弁4および室内熱交換器5は、配管20によって接続されている。冷媒回路10は、冷媒を循環させるように構成されている。冷媒は、R290(プロパン)である。
 圧縮機1、四方弁2、室外熱交換器3、減圧弁4、室外送風機6および制御装置8は、室外機100に収容されている。室内熱交換器5および室内送風機7は、室内機200に収容されている。室外機100と室内機200とは、ガス管301と液管302とにより接続されている。配管20の一部がガス管301および液管302を構成している。
 冷媒回路10は、冷房運転時には、圧縮機1、四方弁2、室外熱交換器3、減圧弁4、室内熱交換器5、四方弁2の順に冷媒が循環するように構成されている。また、冷媒回路10は、暖房運転時には、圧縮機1、四方弁2、室内熱交換器5、減圧弁4、室外熱交換器3、四方弁2の順に冷媒が循環するように構成されている。
 圧縮機1は、冷媒を圧縮するように構成されている。圧縮機1は、吸入した冷媒を圧縮して吐出するように構成されている。圧縮機1は、容量可変に構成されていてもよい。圧縮機1は、制御装置8からの指示に基づいて圧縮機1の回転数が調整されることにより容量が変化するように構成されていてもよい。
 四方弁2は、圧縮機1により圧縮された冷媒を室外熱交換器3または室内熱交換器5に流すように冷媒の流れを切替えるように構成されている。四方弁2は、第1ポートP1~第4ポートP4を有している。第1ポートP1は、圧縮機1の吐出側に接続されている。第2ポートP2は圧縮機1の吸入側に接続されている。第3ポートP3は、室外熱交換器3に接続されている。第4ポートP4は、室内熱交換器5に接続されている。四方弁2は、冷房運転時には圧縮機1から吐出された冷媒を室外熱交換器3に流すように構成されている。冷房運転時には、四方弁2において第1ポートP1に第3ポートP3が接続されているとともに第2ポートP2に第4ポートP4が接続されている。また、四方弁2は、暖房運転時には圧縮機1から吐出された冷媒を室内熱交換器5に流すように構成されている。暖房運転時には、四方弁2において第1ポートP1に第4ポートP4が接続されているとともに第2ポートP2に第3ポートP3が接続されている。
 室外熱交換器3は、室外熱交換器3の内部を流れる冷媒と室外熱交換器3の外部を流れる空気との間で熱交換を行うように構成されている。室外熱交換器3は、冷房運転時には冷媒を凝縮させる凝縮器として機能し、暖房運転時には冷媒を蒸発させる蒸発器として機能するように構成されている。室外熱交換器3は、複数のフィンと、複数のフィンを貫通する伝熱管とを有するフィンアンドチューブ式熱交換器である。
 減圧弁4は、凝縮器で凝縮された冷媒を膨張させることにより減圧させるように構成されている。減圧弁4は、冷房運転時には室外熱交換器3により凝縮された冷媒を減圧させ、暖房運転時には室内熱交換器5により凝縮された冷媒を減圧させるように構成されている。減圧弁4は、たとえば、電磁膨張弁である。
 室内熱交換器5は、室内熱交換器5の内部を流れる冷媒と室内熱交換器5の外部を流れる空気との間で熱交換を行うように構成されている。室内熱交換器5は、冷房運転時には冷媒を蒸発させる蒸発器として機能し、暖房運転時には冷媒を凝縮させる凝縮器として機能するように構成されている。室内熱交換器5は、複数のフィンと、複数のフィンを貫通する伝熱管とを有するフィンアンドチューブ式熱交換器である。
 室外送風機6は、室外熱交換器3に室外の空気を送風するように構成されている。つまり、室外送風機6は、室外熱交換器3に対して空気を供給するように構成されている。
 室内送風機7は、室内熱交換器5に室内の空気を送風するように構成されている。つまり、室内送風機7は、室内熱交換器5に対して空気を供給するように構成されている。
 制御装置8は、演算、指示等を行って空気調和機1000の各機器等を制御するように構成されている。制御装置8は、圧縮機1、四方弁2、減圧弁4、室外送風機6、室内送風機7などに電気的に接続されており、これらの動作を制御するように構成されている。
 続いて、実施の形態1に係る空気調和機1000の動作について説明する。図1中破線矢印は冷房運転時における冷媒の流れを示している。図1中実線矢印は暖房運転時における冷媒の流れを示している。
 空気調和機1000は、冷房運転と暖房運転とを選択的に行うことが可能である。冷房運転時には、圧縮機1、四方弁2、室外熱交換器3、減圧弁4、室内熱交換器5、四方弁2の順に冷媒が冷媒回路10を循環する。冷房運転時には室外熱交換器3は、凝縮器として機能する。室外熱交換器3を流れる冷媒と室外送風機6によって送風される空気との間で熱交換が行われる。冷房運転時には室内熱交換器5は、蒸発器として機能する。室内熱交換器5を流れる冷媒と室内送風機7によって送風される空気との間で熱交換が行われる。
 暖房運転には、圧縮機1、四方弁2、室内熱交換器5、減圧弁4、室外熱交換器3、四方弁2の順に冷媒が冷媒回路10を循環する。暖房運転時には室内熱交換器5は、凝縮器として機能する。室内熱交換器5を流れる冷媒と室内送風機7によって送風される空気との間で熱交換が行われる。暖房運転時には室外熱交換器3は、蒸発器として機能する。室外熱交換器3を流れる冷媒と室外送風機6によって送風される空気との間で熱交換が行われる。
 次に、図2および図3を参照して、実施の形態1に係る室外機100の構成について詳しく説明する。
 図2および図3に示されるように、室外機100は、圧縮機1と、四方弁2と、室外熱交換器3と、減圧弁4と、室外送風機6と、制御装置8と、筐体101とを有している。筐体101に、圧縮機1、四方弁2、室外熱交換器3、減圧弁4、室外送風機6および制御装置8が収容されている。筐体101は、底部102と、周壁部103と、ファングリル104と、天板部105と、セパレーター106とを有している。底部102の上に周壁部103が配置されている。周壁部103の正面に図示しない吹出口が設けられている。ファングリル104は吹出口を覆うように構成されている。周壁部103の上に天板部105が配置されている。セパレーター106は、室外機100の機械室107と送風室108とを分けるように構成されている。機械室107に圧縮機1、四方弁2、減圧弁4、制御装置8が設置されている。送風室108に室外熱交換器3、室外送風機6が設置されている。
 続いて、図3および図4を参照して、実施の形態1に係る室外機100の室外熱交換器3の構成について詳しく説明する。実施の形態1に係る室外熱交換器3は、1列であってもよく、2列であってもよい。図3では、説明の便宜のため、室外熱交換器3は2列で図示されている。図4は、室外熱交換器3の構成を概略的に示す模式図である。図4では、説明の便宜のため、室外熱交換器3は1列で図示されている。
 図3および図4に示されるように、室外熱交換器3は、冷媒を流すための伝熱管HPと、複数のフィンFPとを有している。複数のフィンFPは、互いに積層されている。伝熱管HPは、複数のフィンFPを貫通するように構成されている。伝熱管HPは、蛇行するように構成されている。
 次に、冷媒としてR32が用いられた場合と対比して、実施の形態1に係る室外機100の成績係数について詳しく説明する。
 冷媒としてR32が用いられた空気調和機では、空気調和機の性能(成績係数)を高めるために、室外機の筐体サイズに対し、室外熱交換器および室外送風機は設置可能範囲の最大サイズで設置される。つまり、図3に示される筐体のZ方向およびX方向において、筐体に収まる範囲で室外熱交換器は最大限大きくされる。この理由は、熱交換器伝熱面積を増やして伝熱性能を高めるためと、熱交換器の前面面積を大きくして熱交換器の空気側圧力損失を低減させることによって室外送風機の入力を低下させるためである。室外送風機も同様に、筐体に収まる範囲で最大限大きな羽径にされる。この理由は、羽径が大きくなると、同等回転数で出せる風量が増加するので、空気調和機の性能(成績係数)が高まるためである。
 このように、冷媒としてR32が用いられた空気調和機では、室外機の筐体サイズに対し、室外熱交換器および室外送風機は設置可能範囲の最大サイズで設置される。しかしながら、このような室外機において冷媒をR32からR290へ変更すると、最適な成績係数とはならない。
 R290が用いられた空気調和機の成績係数の最適点は、R32が用いられた場合に比べて変化する理由を説明する。R290の熱物性上の特徴として、R290は、R32に対して液冷媒の熱伝導率が低い。具体的には、凝縮温度40℃、過冷却度(SC)5deg(℃)としたときの液冷媒の熱伝導率は、R32では0.1188W/m・Kであるのに対して、R290では0.0893W/m・Kであり、R290ではR32に対して25%低い。したがって、R290はR32に対して過冷却液部分の熱伝導率が小さいため、R290はR32よりも過冷却度(SC)が小さくなりやすい。そのため、R290が用いられた場合に、現行室外熱交換器の管内容積(100%)では、蒸発器のエンタルピー差が小さくなるので、成績係数は最適点とはならない。つまり、空気調和機にR290が用いられると、同じ熱交換器の管内容積を備えた空気調和機にR32が用いられた場合に対して、蒸発器のエンタルピー差が小さくなるため、成績係数が低下する。
 過冷却度(SC)を大きく方法には、次の方法が考えられる。第1の方法は、単純にR290の冷媒量を増やすことである。第2の方法は、室外熱交換器の配管径を細くする、または、パス数(経路数)を少なくすることである。しかしながら、上記の方法には次の問題がある。第1の方法に関しては、R290の最大冷媒充填量は国際規格で規定されているため、冷媒量を増やすことは困難である。第2の方法に関しては、R290はR32に対して圧力が低いため、冷媒流速が増加することにより、冷媒圧力損失が増加する割合が大きい。したがって、凝縮温度が大幅に増加するため、成績係数(性能)は向上しない。
 本実施の形態は、上記以外の方法で過冷却度(SC)を大きくすることによって成績係数(性能)の向上を図る。本実施の形態は、具体的には、室外熱交換器の管内容積の削減により過冷却度(SC)を大きくすることによって成績係数(性能)の向上を図る。
 図5~図10は、室外熱交換器の管内容積に対する空気調和機の成績係数(COP)等の変化を示したグラフである。図5~図10は、シミュレーションの結果を示している。室外熱交換器はフィンアンドチューブ式熱交換器のため、管内容積が減少した分、フィンも減少するように計算されている。また、管内容積が減少した際も能力は同等として計算されている。冷媒はR290である。R290はR32に対して飽和ガス密度および飽和液密度がそれぞれ約50%程度であるため、R290の冷媒量はR32の冷媒量の50%である。
 シミュレーションは、以下の条件にて室外熱交換器3の段数を32段から2段ずつ削減し、成績係数(COP)等の変化を計算したものである。つまり、室外熱交換器3の32段が室外熱交換器の管内容積100%に対応し、30段が94%、28段が88%、26段が81%、24段が75%、22段が69%、20段が63%に対応する。
 冷房定格条件(室外乾球温度35℃、室外湿球温度24℃、室内乾球温度27℃、室内湿球温度19℃)が適用されている。冷房能力は2.5kWである。R290の冷媒量は0.33kgである。空気調和機の可燃性冷媒の最大冷媒充填量は、国際規格であるIEC60335-2-40で規定されている。ガス管径は12.7mmである。液管径は6.35mmである。ガス管の長さは5mである。液管の長さは5mである。室外風量は35.7m/minである。室内風量は13.2m/minである。
 室外熱交換器の仕様は次の通りである。室外熱交換器は、フィンアンドチューブ式熱交換器である。伝熱管の外径は5mmである。伝熱管の肉厚は0.21mmである。列数は2列である。段数は32段である。積幅は847mmである。フィンピッチ(FP)は1.5mmである。段ピッチ(DP)は21mmである。列ピッチ(LP)は22mmである。フィンの厚みは0.11mmである。パス数は、8-2パスである。つまり、冷房時の入口が8パスで出口が2パスである。
 室内熱交換器の仕様は次の通りである。室内熱交換器は、フィンアンドチューブ式熱交換器である。伝熱管の外径は5mmである。伝熱管の肉厚は0.21mmである。列数は2列である。段数は30段である。積幅は789mmである。フィンピッチ(FP)は1.2mmである。段ピッチ(DP)は15.3mmである。列ピッチ(LP)は8.67mmである。フィンの厚みは0・095mmである。パス数は、2-4パスである。つまり、冷房時の入口が2パスで出口が4パスである。
 図5に示されるように、R290では、現行室外熱交換器容積(室外熱交換器管内容積100%)の85%において、成績係数(COP)が最適となり、成績係数(COP)が102.3%となる。現行室外熱交換器容積(室外熱交換器管内容積100%)での成績係数(COP100%)以上となる室外熱交換器管内容積は、70%以上100%未満である。本実施の形態では、伝熱管は、冷媒としてR32が用いられた場合に対して、70%以上100%未満の管内容積を有している。
 図6に示されるように、室外熱交換器の管内容積が減少することにより、過冷却度(SC)が増加する。つまり、冷媒量は固定であるため、室外熱交換器の管内容積が減少することにより、冷媒平均密度が増加するため、過冷却度(SC)が増加する。過冷却度(SC)が増加するため、図7および図8に示されるように、蒸発器のエンタルピー差が増加することにより、圧縮機周波数を減少させることができるため、冷媒循環量(Gr)が減少する。それにより、図5、図9および図10に示されるように、圧縮機入力(W=Gr×Δhcomp)が減少し、成績係数(COP)が向上する。一方、さらに室外熱交換器の管内容積を減少させていくこと、過冷却度(SC)は増加するが、それよりも圧縮機の吐出圧力が増加し、圧縮機エンタルピー差Δhcompが増加する方が増える。そのため、圧縮機入力(W=Gr×Δhcomp)が増加し、成績係数(COP)が低下する。
 図11は、室外機100の筐体101の高さZL1に対する室外熱交換器3の高さZL2を示している。現行機における室外熱交換器3の高さは、室外機100の筐体101の高さの89%以上95%以下と前述の通り最大限大きくされている。具体的には、例えばルームエアコンの室外機100の筐体101の高さZL1は530mmであるのに対し、室外熱交換器3の高さZL2は472mm以上504mm以下である。
 図5に示されるように、現行室外熱交換器容積(100%)でのCOP(100%)以上となる本実施の形態に係る室外熱交換器の管内容積は70%以上100%未満である。このため、図11に示されるように、室外熱交換器3の段方向(Z方向)高さZL2が室外機100の筐体101の高さZL1の62%以上95%未満(=(89%~95%)×(70%~100%))であれば、室外熱交換器3のコストを抑えつつR290を用いた空気調和機の成績係数(COP)を向上させることができる。本実施の形態では、室外熱交換器3の高さZL2は、筐体101の高さZL1の62%以上95%未満である。
 また、図5に示されるように、空気調和機の成績係数(COP)が最適となる102.3%から1%低減までのより好ましい範囲となる室外熱交換器の管内容積は75%以上95%以下である。したがって、図11に示されるように、室外熱交換器3の段方向(Z方向)の高さZL2が室外機100の筐体101の高さZL1の67%以上90%以下(=(89%~95%)×(75%~95%))であれば、室外熱交換器3のコストを抑えつつR290を用いた空気調和機の成績係数(COP)をさらに向上させることができる。
 続いて、図5、図11、図12を参照して、実施の形態1に係る室外機の設計方法について説明する。
 実施の形態1に係る室外機の設計方法は、第1の工程S1と、第2の工程S2とを備えている。第1の工程S1では、R32が用いられた場合の室外熱交換器の管内容積が設定される。つまり、R32が用いられた場合の現行室外熱交換容積(100%)が設定される。第2の工程S2では、R32が用いられた場合の成績係数を超えるようにR290が用いられる室外熱交換器の管内容積が削減されることにより、R290が用いられる室外熱交換器の管内容積が設定される。つまり、現行室外熱交換容積(100%)でのR32が用いられた場合の成績係数(100%)を超えるように、R290が用いられる室外熱交換器の管内容積が削減されることにより、R290が用いられる室外熱交換器の管内容積が設定される。
 次に、実施の形態1の作用効果について説明する。
 実施の形態1に係る室外機100によれば、冷媒はR290である。伝熱管は冷媒としてR32が用いられた場合に対して、70%以上100%未満の管内容積を有している。冷媒としてR32が用いられた場合の成績係数以上となる室外熱交換器3の管内容積は、冷媒としてR32が用いられた場合の管内面積の70%以上100%未満である。したがって、R290を用いながら熱交換器のコストを抑えつつ空気調和機1000の成績係数を向上させることができる。
 実施の形態1に係る室外機100によれば、室外熱交換器3の高さZL2は筐体101の高さZL1の62%以上95%未満である。したがって、室外熱交換器3のコストを抑えつつR290を用いた空気調和機1000の成績係数を向上させることができる。
 実施の形態1に係る室外機100によれば、伝熱管HPは、複数のフィンFPを貫通するように構成されている。したがって、室外熱交換器3としてフィンアンドチューブ式熱交換器を用いることができる。
 実施の形態1に係る空気調和機1000によれば、上記の室外機100と、室外機100に接続された室内機200とを備えている。したがって、R290を用いながら熱交換器のコストを抑えつつ空気調和機1000の成績係数を向上させることができる。
 実施の形態1に係る室外機100の設計方法によれば、R32が用いられた場合の成績係数を超えるようにR290が用いられる室外熱交換器の管内容積が削減されることにより、R290が用いられる室外熱交換器の管内容積が設定される。したがって、R290を用いながら熱交換器のコストを抑えつつ空気調和機1000の成績係数を向上させることができる。
 実施の形態2.
 実施の形態2に係る空気調和機1000は、特に説明しない限り、実施の形態1に係る空気調和機1000と同一の構成、動作および作用効果を有している。
 実施の形態1では、室外熱交換器の段方向(Z方向)のサイズを削減したが、室外熱交換器の積幅方向(X方向)のサイズが削減されても同様の効果が得られる。
 図13は、室外機100の筐体101の横方向長さXL1に対する室外熱交換器3の積幅XL2を示している。現行機における室外熱交換器3の積幅XL2は、室外機100の筐体101の横方向長さXL1の80%以上85%以下と前述の通り最大限大きくされている。室外熱交換器3の積幅XL2は、室外熱交換器3のための分配器、接続配管等のため、Z方向に比べて小さい。具体的には、例えばルームエアコンの室外機100の筐体101の横方向長さXL1は699mmであるのに対し、室外熱交換器3の積幅は560mm以上593mm以下である。
 図5に示されるように、現行室外熱交換器容積(100%)でのCOP(100%)以上となる本実施の形態に係る室外熱交換器の管内容積は70%以上100%未満である。このため、図13に示されるように、室外熱交換器3の積幅XL2が室外機100の筐体101の方向の横方向長さXL1の56%以上85%未満(=(80%~85%)×(70%~100%))であれば、室外熱交換器3のコストを抑えつつR290を用いた空気調和機の成績係数(COP)を向上させることができる。本実施の形態では、室外熱交換器3の積幅XL2は、筐体101の横方向長さXL1の56%以上85%未満である。
 また、図5に示されるように、空気調和機の成績係数(COP)が最適となる102.3%から1%低減までのより好ましい範囲となる室外熱交換器の管内容積は75%以上95%以下である。したがって、図13に示されるように、室外熱交換器3の積幅XL2が室外機100の筐体101の横方向長さXL1の60%以上81%未満(=(80%~85%)×(75%~95%))であれば、室外熱交換器3のコストを抑えつつR290を用いた空気調和機の成績係数(COP)をさらに向上させることができる。
 図14は、室外機100の筐体101の奥行き方向(Y方向)の長さYL1に対する室外熱交換器3のL曲げ部分の長さYL2を示している。室外熱交換器3のL曲げ部分の長さYL2は、筐体101の奥行き方向(Y方向)の長さYL1に対して60%以上66%未満である。L曲げ部分ではない室外熱交換器3の奥行方向(Y方向)の長さがあるため、L曲げ部分の長さYL2は小さい値となっている。具体的には、例えばルームエアコンの室外機100の筐体101の奥行き方向(Y方向)の長さYL1は249mmであるのに対し、室外熱交換器3のL曲げ部分の長さYL2は150mm以上164mm以下である。
 したがって、L曲げされている室外熱交換器3の合計の長さ(X方向+Y方向)は、710mm以上757mm以下である。図5に示されるように、現行室外熱交換器容積(100%)でのCOP(100%)以上となる本実施の形態に係る室外熱交換器の管内容積は70%以上100%未満である。このため、R290が用いられた場合、室外熱交換器3の長さは497mm以上757mmである。室外熱交換器3の長さは、497mm以上593mm以下であれば、現行室外熱交換器積幅以下となるため、室外熱交換器3のL曲げ部分をなくすことができる。室外熱交換器3のL曲げ部分がネックで、室外送風機6の羽径もしくはベルマウス径が大きくできない場合は、室外熱交換器3のL曲げ部分をなくすことで、室外送風機の羽径およびベルマウス径を拡大できる。これにより、空力性能も向上することができるため、さらなる性能向上が可能である。
 次に、実施の形態2の作用効果について説明する。
 実施の形態2に係る室外機100によれば、室外熱交換器3の積幅XL2は、筐体101の横方向長さXL1の56%以上85%未満である。したがって、室外熱交換器3のコストを抑えつつR290を用いた空気調和機1000の成績係数を向上させることができる。
 実施の形態3.
 実施の形態3に係る空気調和機1000は、特に説明しない限り、実施の形態1に係る空気調和機1000と同一の構成、動作および作用効果を有している。
 実施の形態3では、実施の形態1および実施の形態2と異なり室外熱交換器3のZ方向もしくはX方向ではなく、Y方向(列数)の長さが削減されている。本実施の形態では、室外熱交換器3は2列以上を有している。
 Y方向に室外熱交換器3が2列の場合、1列はX方向、Z方向で現行熱交換器と同等(100%)サイズにし、もう1列のみが削減される。この理由は、2列とも均等に削減すると室外熱交換器3の前面面積が減少するため、室外送風機6の入力が増加するからである。削減される1列は、現行熱交換器の40%以上100%未満のサイズとすればよい。現行熱交換器の1列の管内容積を100%とすると、2列の管内容積は200%である。現行熱交換器の管内容積(管内容積100%)での成績係数(COP100%)以上となる本実施の形態に係る室外熱交換器の管内容積は、現行熱交換器の管内容積の70%以上100%未満である。そのため、現行熱交換器の管内容積(管内容積100%)での成績係数(COP100%)以上となる本実施の形態に係る熱交換器の2列の管内容積は、現行熱交換器の2列の管内容積の140%以上200%未満(=200%×(70%~100%))である。室外熱交換器3の前面面積を減らさないため、後面側の1列のみで管内容積が削減されると、削減される1列での管内容積は、現行熱交換器の管内容積の40%以上100%未満(=(140%~200%)-100%)である。より好ましい範囲(最適COPから1%低減まで)では、本実施の形態に係る室外熱交換器の管内容積は、現行熱交換器の管内容積の75%以上95%以下である。そのため、より好ましい範囲(最適COPから1%低減まで)となる本実施の形態に係る熱交換器の2列の管内容積は現行熱交換器の2列の管内容積の150%以上190%以下(=200%×(75%~95%))である。室外熱交換器3の前面面積を減らさないため、後面側の1列のみで管内容積が削減されると、削減される1列での管内容積は、現行熱交換器の管内容積の50%以上90%以下(=(150%~190%)-100%)である。したがって、削減される1列の管内容積は、現行熱交換器の50%以上90%以下のサイズとなる。削減する1列は、風上側(室外送風機6から離れた方)にするとよい。この理由は、凝縮器入口側となる風下側の熱交換器を現行熱交換器の100%サイズとすることで、多パス部分のパスの取り回しがしやすくなり、また、削減される熱交換器を風上側とすることで、過冷却度が取りやすくなるためである。
 また、室外熱交換器3がL曲げされている場合は、風上側の熱交換器がL曲げされていない直線にし、風下側をL曲げすることで、風上側の室外熱交換器の容積を削減することができる。それでいて、前面面積を削減することがないため、空力性能もよくなる。
 図15および図16を参照して、実施の形態3に係る室外熱交換器3は、第1列31および第2列32を有している。第1列31の高さは、筐体101の高さの89%以上95%以下である。上述の通り、削減される1列での管内容積は、現行熱交換器の管内容積の40%以上100%未満である。そのため、第2列32の高さは、筐体101の高さの36%以上95%以下(=(89%~95%)×(40%~100%))である。より好ましい範囲(最適COPから1%低減まで)では、削減される1列の管内容積は、現行熱交換器の管内容積の50%以上90%以下である。したがって、第2列32の高さは、筐体101の高さの45%以上86%以下(=(89%~95%)×(50%~90%))である。第1列31の積幅は、筐体101の横方向長さの80%以上85%以下である。上述の通り、削減される1列での管内容積は、現行熱交換器の管内容積の40%以上100%未満である。そのため、第2列32の積幅は、筐体101の横方向の長さの32%以上85%以下(=(80%~85%)×(40%~100%))である。より好ましい範囲(最適COPから1%低減まで)では、削減される1列の管内容積は、現行熱交換器の管内容積の50%以上90%以下である。したがって、第2列32の積幅は、筐体101の横方向長さの40%以上77%以下(=(80%~85%)×(50%~90%))である。
 室外送風機6が発生させる風の流れFにおいて、第2列32は、第1列31よりも風上側に配置されている。
 第1列31はL字状に曲げられており、第2列32は直線状に構成されている。
 Y方向に室外熱交換器が3列の場合も同様に、1列のみが削減される。削減される1列は、現行熱交換器の10%以上100%未満のサイズとすればよい。現行熱交換器の1列の管内容積を100%とすると、3列の管内容積は300%である。現行熱交換器の管内容積(管内容積100%)での成績係数(COP100%)以上となる本実施の形態に係る室外熱交換器の管内容積は、現行熱交換器の管内容積の70%以上100%未満である。そのため、現行熱交換器の管内容積(管内容積100%)での成績係数(COP100%)以上となる本実施の形態に係る熱交換器の3列の管内容積は、現行熱交換器の3列の管内容積の210%以上300%未満(=300%×(70%~100%))である。室外熱交換器3の前面面積を減らさないため、後面側の1列のみで管内容積が削減されると、削減される1列での管内容積は、現行熱交換器の管内容積の10%以上100%未満(=(210%~300%)-200%)である。より好ましい範囲(最適COPから1%低減まで)では、本実施の形態に係る室外熱交換器の管内容積は、現行熱交換器の管内容積の75%以上95%以下である。そのため、より好ましい範囲(最適COPから1%低減まで)となる本実施の形態に係る熱交換器の3列の管内容積は現行熱交換器の3列の管内容積の225%以上285%以下(=300%×(75%~95%))である。室外熱交換器3の前面面積を減らさないため、後面側の1列のみで管内容積が削減されると、削減される1列での管内容積は、現行熱交換器の管内容積の25%以上85%以下(=(225%~285%)-200%)である。したがって、削減される1列の管内容積は、現行熱交換器の25%以上85%以下のサイズとなる。
 図17および図18を参照して、実施の形態3に係る室外熱交換器3の変形例は、第1列31、第2列32および第3列33を有している。第1列31および第2列32の高さは、筐体101の高さの89%以上95%以下である。上述の通り、削減される1列での管内容積は、現行熱交換器の管内容積の10%以上100%未満である。そのため、第3列33の高さは、筐体101の高さの9%以上95%以下である(=(89%~95%)×(10%~100%))。より好ましい範囲(最適COPから1%低減まで)では、削減される1列の管内容積は、現行熱交換器の管内容積の25%以上85%以下である。したがって、第3列33の高さは、筐体101の高さの22%以上81%以下(=(89%~95%)×(25%~85%))である。第1列31および第2列32の積幅は、筐体101の横方向長さの80%以上85%以下である。上述の通り、削減される1列での管内容積は、現行熱交換器の管内容積の10%以上100%未満である。そのため、第3列33の積幅は、筐体101の横方向長さの8%以上85%以下である(=(80%~85%)×(10%~100%))。より好ましい範囲(最適COPから1%低減まで)では、削減される1列の管内容積は、現行熱交換器の管内容積の25%以上85%以下である。したがって、第3列33の積幅は、筐体101の横方向長さの20%以上72%以下(=(80%~85%)×(25%~85%))である。
 室外送風機6が発生させる風の流れFにおいて、第3列33は、第1列31および第2列32よりも風上側に配置されている。
 第1列31および第2列32はL字状に曲げられており、第3列33は直線状に構成されている。
 次に、実施の形態3の作用効果について説明する。
 実施の形態3に係る室外機100によれば、筐体101の高さの89%以上95%以下である。第2列32の高さは、筐体101の高さの45%以上86%以下である。したがって、室外熱交換器3のコストを抑えつつR290を用いた空気調和機1000の成績係数を向上させることができる。
 実施の形態3に係る室外機100によれば、第1列31の積幅は、筐体101の横方向長さの80%以上85%以下である。第2列32の積幅は、筐体の横方向長さの40%以上77%以下である。したがって、室外熱交換器3のコストを抑えつつR290を用いた空気調和機1000の成績係数を向上させることができる。
 実施の形態3に係る室外機100によれば、室外送風機6が発生させる風の流れにおいて、第2列32は、第1列31よりも風上側に配置されている。これにより、凝縮器入口側となる風下側の熱交換器を現行熱交換器の100%サイズとすることで、多パス部分のパスの取り回しがしやすくなり、また、削減される熱交換器を風上側とすることで、過冷却度が取りやすくなるためである。
 実施の形態3に係る室外機100によれば、第1列31はL字状に曲げられており、第2列32は直線状に構成されている。このため、風下側をL曲げすることで、風上側の室外熱交換器の容積を削減することができる。それでいて、前面面積を削減することがないため、空力性能もよくなる。
 実施の形態3に係る室外機100の変形例によれば、第1列31および第2列32の高さは、筐体101の高さの89%以上95%以下である。第3列33の高さは、筐体101の高さの22%以上81%以下である。したがって、室外熱交換器3のコストを抑えつつR290を用いた空気調和機1000の成績係数を向上させることができる。
 実施の形態3に係る室外機100の変形例によれば、第1列31および第2列32の積幅は、筐体101の横方向長さの80%以上85%以下である。第3列33の積幅は、筐体101の横方向長さの20%以上72%以下である。したがって、室外熱交換器3のコストを抑えつつR290を用いた空気調和機1000の成績係数を向上させることができる。
 実施の形態3に係る室外機100の変形例によれば、室外送風機6が発生させる風の流れにおいて、第3列33は、第1列31および第2列32よりも風上側に配置されている。これにより、凝縮器入口側となる風下側の熱交換器を現行熱交換器の100%サイズとすることで、多パス部分のパスの取り回しがしやすくなり、また、削減される熱交換器を風上側とすることで、過冷却度が取りやすくなるためである。
 実施の形態3に係る室外機100の変形例によれば、第1列31および第2列32はL字状に曲げられており、第3列33は直線状に構成されている。このため、風下側をL曲げすることで、風上側の室外熱交換器の容積を削減することができる。それでいて、前面面積を削減することがないため、空力性能もよくなる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 圧縮機、2 四方弁、3 室外熱交換器、4 減圧弁、5 室内熱交換器、6 室外送風機、7 室内送風機、8 制御装置、10 冷媒回路、31 第1列、32 第2列、33 第3列、100 室外機、101 筐体、200 室内機、1000 空気調和機、FP フィン、HP 伝熱管。

Claims (14)

  1.  筐体と、
     前記筐体に収容された室外熱交換器とを備え、
     前記室外熱交換器は、冷媒を流すための伝熱管を有しており、
     前記冷媒は、R290であり、
     前記伝熱管は、前記冷媒としてR32が用いられた場合に対して、70%以上100%未満の管内容積を有している、室外機。
  2.  前記室外熱交換器の高さは、前記筐体の高さの62%以上95%未満である、請求項1に記載の室外機。
  3.  前記室外熱交換器の積幅は、前記筐体の横方向長さの56%以上85%未満である、請求項1に記載の室外機。
  4.  前記室外熱交換器は、第1列および第2列を有しており、
     前記第1列の高さは、前記筐体の高さの89%以上95%以下であり、
     前記第2列の高さは、前記筐体の高さの45%以上86%以下である、請求項1に記載の室外機。
  5.  前記室外熱交換器は、第1列および第2列を有しており、
     前記第1列の積幅は、前記筐体の横方向長さの80%以上85%以下であり、
     前記第2列の積幅は、前記筐体の横方向長さの40%以上77%以下である、請求項1に記載の室外機。
  6.  室外送風機をさらに備え、
     前記室外送風機が発生させる風の流れにおいて、前記第2列は、前記第1列よりも風上側に配置されている、請求項4または5に記載の室外機。
  7.  前記第1列はL字状に曲げられており、
     前記第2列は直線状に構成されている、請求項6に記載の室外機。
  8.  前記室外熱交換器は、第1列、第2列および第3列を有しており、
     前記第1列および前記第2列の高さは、前記筐体の高さの89%以上95%以下であり、
     前記第3列の高さは、前記筐体の高さの22%以上81%以下である、請求項1に記載の室外機。
  9.  前記室外熱交換器は、第1列、第2列および第3列を有しており、
     前記第1列および前記第2列の積幅は、前記筐体の横方向長さの80%以上85%以下であり、
     前記第3列の積幅は、前記筐体の横方向長さの20%以上72%以下である、請求項1に記載の室外機。
  10.  室外送風機をさらに備え、
     前記室外送風機が発生させる風の流れにおいて、前記第3列は、前記第1列および前記第2列よりも風上側に配置されている、請求項8または9に記載の室外機。
  11.  前記第1列および前記第2列はL字状に曲げられており、
     前記第3列は直線状に構成されている、請求項10に記載の室外機。
  12.  前記室外熱交換器は、互いに積層された複数のフィンをさらに有しており、
     前記伝熱管は、前記複数のフィンを貫通するように構成されている、請求項1~11のいずれか1項に記載の室外機。
  13.  請求項1~12のいずれか1項に記載の室外機と、
     前記室外機に接続された室内機とを備えている、空気調和機。
  14.  R32が用いられた場合の室外熱交換器の管内容積が設定される工程と、
     前記R32が用いられた場合の成績係数を超えるようにR290が用いられる前記室外熱交換器の前記管内容積が削減されることにより、前記R290が用いられる前記室外熱交換器の前記管内容積が設定される工程とを備えた室外機の設計方法。
PCT/JP2021/002459 2021-01-25 2021-01-25 室外機、空気調和機および室外機の設計方法 WO2022157979A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21921086.1A EP4283219A4 (en) 2021-01-25 2021-01-25 OUTDOOR UNIT, AIR CONDITIONER AND OUTDOOR UNIT DESIGN METHOD
JP2022576941A JPWO2022157979A1 (ja) 2021-01-25 2021-01-25
PCT/JP2021/002459 WO2022157979A1 (ja) 2021-01-25 2021-01-25 室外機、空気調和機および室外機の設計方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002459 WO2022157979A1 (ja) 2021-01-25 2021-01-25 室外機、空気調和機および室外機の設計方法

Publications (1)

Publication Number Publication Date
WO2022157979A1 true WO2022157979A1 (ja) 2022-07-28

Family

ID=82548623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002459 WO2022157979A1 (ja) 2021-01-25 2021-01-25 室外機、空気調和機および室外機の設計方法

Country Status (3)

Country Link
EP (1) EP4283219A4 (ja)
JP (1) JPWO2022157979A1 (ja)
WO (1) WO2022157979A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299830A (ja) * 1987-05-29 1988-12-07 Showa Alum Corp 屈曲型熱交換器の製造方法
JP2001227822A (ja) 2000-02-17 2001-08-24 Mitsubishi Electric Corp 冷凍空調装置
JP2004205106A (ja) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd 室外ユニット
JP2017053515A (ja) * 2015-09-08 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
WO2017183068A1 (ja) * 2016-04-18 2017-10-26 三菱電機株式会社 冷凍サイクル装置
JP2019215118A (ja) * 2018-06-12 2019-12-19 ダイキン工業株式会社 熱交換器及び空気調和装置
JP2020153599A (ja) * 2019-03-20 2020-09-24 株式会社富士通ゼネラル 熱交換器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052396A1 (fr) * 1999-03-02 2000-09-08 Daikin Industries, Ltd. Dispositif frigorifique
WO2019171588A1 (ja) * 2018-03-09 2019-09-12 三菱電機株式会社 冷凍サイクル装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299830A (ja) * 1987-05-29 1988-12-07 Showa Alum Corp 屈曲型熱交換器の製造方法
JP2001227822A (ja) 2000-02-17 2001-08-24 Mitsubishi Electric Corp 冷凍空調装置
JP2004205106A (ja) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd 室外ユニット
JP2017053515A (ja) * 2015-09-08 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
WO2017183068A1 (ja) * 2016-04-18 2017-10-26 三菱電機株式会社 冷凍サイクル装置
JP2019215118A (ja) * 2018-06-12 2019-12-19 ダイキン工業株式会社 熱交換器及び空気調和装置
JP2020153599A (ja) * 2019-03-20 2020-09-24 株式会社富士通ゼネラル 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4283219A4

Also Published As

Publication number Publication date
JPWO2022157979A1 (ja) 2022-07-28
EP4283219A1 (en) 2023-11-29
EP4283219A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
JP6180338B2 (ja) 空気調和機
US10386081B2 (en) Air-conditioning device
US20110126581A1 (en) Air conditioner and outdoor unit thereof
JP2015068610A (ja) 空気調和装置
WO2021065913A1 (ja) 蒸発器、およびそれを備えた冷凍サイクル装置
TW201825838A (zh) 除濕裝置
JP7204906B2 (ja) 除湿装置
JP4857776B2 (ja) 熱交換器
WO2022157979A1 (ja) 室外機、空気調和機および室外機の設計方法
JP2020153593A (ja) 室外機ユニットおよびそれを備えた空気調和装置
WO2021065914A1 (ja) 冷凍装置
JP2017203620A (ja) 空気調和機
KR100930762B1 (ko) 공기 조화기
WO2023281655A1 (ja) 熱交換器および冷凍サイクル装置
JP2008121995A (ja) 空気調和機
WO2019155571A1 (ja) 熱交換器および冷凍サイクル装置
JP2020201007A (ja) 冷媒サイクルシステム
CN220793300U (zh) 空调器室外机
JP7357137B1 (ja) 空気調和機
JP6698196B2 (ja) 空気調和機
TWI810896B (zh) 除濕裝置
WO2021214832A1 (ja) 冷凍サイクル装置
CN219414991U (zh) 空调器
WO2023188421A1 (ja) 室外機およびそれを備えた空気調和装置
WO2020136797A1 (ja) 室外機、及び、冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576941

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021921086

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021921086

Country of ref document: EP

Effective date: 20230825