WO2022154240A1 - 금속산화물 반도체 물질의 증착 챔버의 세정 방법 - Google Patents

금속산화물 반도체 물질의 증착 챔버의 세정 방법 Download PDF

Info

Publication number
WO2022154240A1
WO2022154240A1 PCT/KR2021/017073 KR2021017073W WO2022154240A1 WO 2022154240 A1 WO2022154240 A1 WO 2022154240A1 KR 2021017073 W KR2021017073 W KR 2021017073W WO 2022154240 A1 WO2022154240 A1 WO 2022154240A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine
based gas
cleaning
gas
chamber
Prior art date
Application number
PCT/KR2021/017073
Other languages
English (en)
French (fr)
Inventor
곽정훈
권병향
조용준
김영범
이진희
이상기
Original Assignee
에스케이스페셜티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이스페셜티 주식회사 filed Critical 에스케이스페셜티 주식회사
Publication of WO2022154240A1 publication Critical patent/WO2022154240A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a method for cleaning a deposition chamber, and more particularly, to a method for in situ dry cleaning of a deposition chamber of a metal oxide semiconductor material such as IGZO.
  • Thin-Film Transistors are used as switching and driving devices in many integrated circuits (ICs). For example, thin film transistors are used to control pixels in a display panel.
  • the main materials used for the channel layer of the thin film transistor are amorphous silicon and polycrystalline silicon.
  • the conventional thin film transistor using amorphous silicon does not have a sufficiently high carrier mobility, and the thin film transistor using polycrystalline silicon is required to be improved in terms of characteristic deviation between numerous thin film transistors on a panel.
  • silicon is not transparent to visible light, the aperture ratio is not sufficient, and there are fundamental problems that a transparent display panel cannot be realized.
  • IGZO indium-gallium-zinc oxide
  • zinc oxide zinc oxide
  • IGZO indium-gallium-zinc oxide
  • IGZO is transparent to visible light and has a carrier mobility of 20 to 50 times that of amorphous silicon, so it is promising as a material for a channel layer of a thin film transistor of a display panel.
  • a manufacturing process of a thin film transistor of a display panel involves a process of forming a thin film by depositing a predetermined material on a substrate in a chamber of a deposition apparatus. During the thin film forming process, unwanted by-products may be deposited on the inner wall of the chamber and on the surfaces of parts exposed to the interior of the chamber, which may act as a contamination source.
  • the residual film deposited inside the chamber is peeled off when the thickness is increased to cause the generation of particles.
  • the particles generated in this way may enter the thin film formed on the substrate in a subsequent process or may be attached to the surface of the thin film to act as a cause of defects in the thin film transistor device, and may increase the defect rate of the product. Therefore, it is necessary to perform cleaning to remove the residual film deposited in the chamber before the residual film is peeled off and particles are generated.
  • the deposition apparatus for performing the deposition of the IGZO thin film since the deposition apparatus for performing the deposition of the IGZO thin film generates a large amount of particles in the deposition process, very frequent cleaning is required.
  • the conventional cleaning method since the residual film in the chamber is mainly removed by wet cleaning, the deposition chamber in a vacuum state must be opened every cleaning. Accordingly, there is a problem in that the cleaning cost increases and it is difficult to secure device reproducibility and operation rate.
  • the present invention is to solve the problems of the conventional cleaning method, and in-situ a chamber of a deposition apparatus for forming a metal oxide semiconductor thin film such as IGZO used as a channel layer material of a thin film transistor of a display panel. To provide a method for dry cleaning in situ).
  • the cleaning method of the present invention is a method for cleaning a deposition chamber for depositing a metal oxide semiconductor material, wherein an activation step of activating a plurality of chlorine-based gases including a first chlorine-based gas and a second chlorine-based gas is generated in the activation step a cleaning step of cleaning the deposition chamber by radicals of a plurality of chlorine-based gases, wherein the radicals are generated from the first chlorine-based gas and react with the metal oxide semiconductor material; It is generated from the chlorine-based gas and reacts with the metal oxide semiconductor material, and includes a second chlorine-based radical different from the first chlorine-based radical, and in the activation step, the product of the concentration of the first chlorine-based radical and the second chlorine-based radical is maximized. It is characterized in that the flow ratio of the first chlorine-based gas and the second chlorine-based gas is controlled.
  • a deposition chamber of a metal oxide semiconductor thin film such as IGZO can be dry cleaned in situ.
  • FIG. 1 is a schematic cross-sectional view of a substrate processing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart of a cleaning method according to the first embodiment of the present invention.
  • FIG 3 is a graph showing the etching rate according to the flow rate ratio of the first chlorine-based gas and the second chlorine-based gas in the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of a substrate processing apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a flowchart of a cleaning method according to a second embodiment of the present invention.
  • FIG. 6 is a graph showing the etching rate according to the flow rate ratio of the first chlorine-based gas and the second chlorine-based gas in the second embodiment.
  • the present invention relates to a method for in-situ dry cleaning of metal oxide semiconductor materials, such as IGZO, ZnO, In 2 O 3 , etc., from a chamber of a substrate processing apparatus.
  • the substrate processing apparatus is a metal oxide including IGZO by CVD, plasma enhanced-CVD (PE-CVD), pulsed-CVD, ALD, PE-ALD, metal-organic chemical vapor deposition (MOCVD), or a combination thereof. It can be used to deposit a semiconductor material, but is not limited thereto.
  • the substrate processing apparatus may be used to form structures and devices on a substrate to fabricate a liquid crystal display (LCD) or organic light emitting diode (OLED) panel, but is not limited thereto.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • a metal oxide semiconductor film is formed over the entire interior of the chamber of the substrate processing apparatus as well as the substrate. Films deposited on the inner walls of the chamber other than the substrate or on various components within the chamber can cause particle generation as a source of contamination, reduced uniformity, and blockage of substrate processing gas inlets, leading to lower yields.
  • One method for removing unwanted metal oxide semiconductor films on chamber interior walls or other components within the chamber is to periodically open or disassemble the chamber every predetermined deposition cycle to wet clean the residual films with a cleaning solution.
  • a substrate processing apparatus processes a substrate in a vacuum state (eg, deposition)
  • it takes a considerable time to open the vacuum chamber to the atmosphere for cleaning and to evacuate the chamber again after the cleaning process is completed. and significantly affects the operating time of the substrate processing apparatus.
  • NF3 plasma is widely used in the semiconductor or display industry to remove SiOx and SiNx films from chambers of substrate processing apparatus.
  • NF3 plasma is not effective for etching or cleaning residual films of metal oxide semiconductor materials such as IGZO.
  • radicals generated from a mixture of a plurality of chlorine-based gases supplied at a predetermined flow rate are introduced into the substrate processing chamber or are directly generated in the substrate processing chamber to react with the residual metal oxide semiconductor film in the chamber. By doing so, the residual metal oxide semiconductor film is effectively removed from the substrate processing chamber.
  • the flow ratio of the plurality of chlorine-based gases based on the type of plasma, the type of the chlorine-based gas, etc. so as to maximize the concentration of all radicals that react with the metal oxide semiconductor film to generate volatile products.
  • FIG. 1 is a diagram schematically showing a substrate processing apparatus according to a first embodiment of the present invention.
  • a plurality of different chlorine-based gases are introduced into a chamber (that is, a substrate processing space) of a substrate processing apparatus at a predetermined flow rate to generate radicals or the like by direct plasma, thereby creating a chamber in the chamber.
  • the deposited metal oxide semiconductor material such as IGZO is dry cleaned in situ.
  • a substrate processing apparatus includes a chamber 10 defining a substrate processing space, a first chlorine-based gas source 20 for supplying a first chlorine-based gas, and a first chlorine-based gas.
  • the control unit 50 which controls the supply flow rate of the gas and also controls the power supply of the showerhead 30 by the first power supply unit 40 , and the substrate support unit 60 which supports the substrate S as a processing target ) is included.
  • a residual film of a metal oxide semiconductor material deposited in a chamber 10 during processing of a substrate for example, during deposition of a thin film of a metal oxide semiconductor material including IGZO Remove by dry cleaning. That is, the substrate processing process by the substrate processing apparatus may be a process of depositing zinc oxide (IGZO) doped with indium and gallium on the substrate. In this case, the residual film deposited in the chamber 10 is doped with indium and gallium. Zinc oxide may be included.
  • IGZO zinc oxide
  • the first chlorine-based gas source 20 and the second chlorine-based gas source 25 may be respectively installed outside the chamber 10 , and the first chlorine-based gas and the second chlorine-based gas are separately supplied to the shower head 30 . .
  • the first chlorine-based gas and the second chlorine-based gas are illustrated as being supplied to the shower head 30 through separate supply paths, but the present invention is not limited thereto, and one may be mixed in the supply path of , and supplied to the shower head 30 .
  • the first chlorine-based gas and the second chlorine-based gas are respectively activated to generate radicals for cleaning and etching the residual metal oxide semiconductor film in the chamber 10 .
  • the first chlorine-based gas and the second chlorine-based gas are Cl 2 , BCl 3 , ClF 3 , ClF 4 , HCl, CCl 4 , CoCl, respectively. 2 , and any one of TiCl 4 .
  • the first chlorine-based gas and the second chlorine-based gas are different chlorine-based gases. More preferably, the first chlorine-based gas is BCl 3 , and the second chlorine-based gas is Cl 2 .
  • the first chlorine-based gas source 20 and the second chlorine-based gas source 25 are shown as gas sources of the gas supplied into the chamber 10, but the present invention is not limited thereto.
  • the substrate processing apparatus according to the first embodiment of the present invention may further include an inert gas source containing argon (Ar), a hydrogen (H) containing gas source for supplying H 2 , H 2 O, and the like. have.
  • the shower head 30 is detachably installed inside the chamber 10 , and for supplying a first chlorine-based gas supply path and a second chlorine-based gas for supplying the first chlorine-based gas to the substrate processing space of the chamber 10 . and a second chlorine-based gas supply path.
  • the first power supply unit 40 is connected to the shower head 30 to apply power to the shower head 30 .
  • the power applied by the first power supply unit 40 is high frequency power or RF (Radio Frequency) power, for example, LF (Low Frequency) power, MF (Middle Frequency), HF (High Frequency) power, or VHF ( Very High Frequency) power.
  • RF Radio Frequency
  • the LF power has a frequency in the range of 3 kHz to 300 kHz
  • the MF power has a frequency in the range of 300 kHz to 3 MHz
  • the HF power has a frequency in the range of 3 MHz to 30 MHz
  • the VHF power is 30 MHz to 30 MHz It may have a frequency in the range of 300 MHz.
  • the first power supply unit 40 may include an impedance matching circuit for matching the source impedance and the load impedance of the power applied to the shower head 30 .
  • the impedance matching circuit may include at least two impedance elements including at least one of a variable capacitor and a variable inductor.
  • the substrate support unit 60 may be installed to lift and/or rotate according to a substrate processing process.
  • the lifting and/or rotation of the substrate support unit 60 is performed by a support shaft passing through the bottom surface of the chamber 10 and a driving unit (not shown) connected to the support shaft.
  • a flexible member such as a bellows may be used to connect the support shaft to the driving unit while maintaining a vacuum state in the chamber 10 .
  • the substrate support 20 may be grounded, but a power different from that of the shower head 30 may be applied by the power supply 40 or a separate second power supply 45 .
  • the second power supply 45 may be used to set an additional potential from the plasma to the substrate S. Thereby, the second power supply 45 may serve to increase the bias to provide more ion bombardment to enhance the etching/cleaning effect.
  • the second power supply 45 may be a DC power supply, a pulsed DC power supply, an RF bias power supply, a pulsed RF source or a bias power supply, or a combination thereof. In this embodiment, it is a DC bias power supply.
  • the control unit 50 supplies power (power of a predetermined size and a frequency of a predetermined range) for activating the first chlorine-based gas and the second chlorine-based gas, the shower head 30, the first power supply unit 40 and / or the second power supply unit 45 may be controlled.
  • control unit 50 may control the supply flow rate of the first chlorine-based gas and the second chlorine-based gas supplied from the first chlorine-based gas source 20 and the second chlorine-based gas source 25, and the like. That is, the control unit 50 may control the supply amount of the first chlorine-based gas and the second chlorine-based gas according to the type of the first chlorine-based gas and the second chlorine-based gas. For example, when BCl 3 is used as the first chlorine-based gas and Cl 2 is used as the second chlorine-based gas, as will be described later, the control unit 50 equalizes the supply amount of the first chlorine-based gas and the second chlorine-based gas. can be controlled
  • control unit 50 controls the supply amount of the first chlorine-based gas and the second chlorine-based gas according to the type of the first chlorine-based gas, the second chlorine-based gas and other supply gases, thereby forming the metal oxide semiconductor film and the metal oxide semiconductor film in the chamber 10 .
  • concentration of total radicals that can react can be maximized.
  • FIG. 2 is a diagram schematically illustrating a chamber cleaning method according to a first embodiment of the present invention.
  • a chamber cleaning method includes: supplying a plurality of chlorine-based gases including a first chlorine-based gas and a second chlorine-based gas into the chamber 10 at a predetermined flow rate (S01); activating a plurality of chlorine-based gases including a first chlorine-based gas and a second chlorine-based gas by direct plasma in the chamber 10 (S02); Dry cleaning of the metal oxide semiconductor material deposited in the chamber 10 by reactive species, radicals, ions, etc. generated in the activation step (S03); and purging the chamber 10 ( S04 ).
  • the provided second chlorine-based gas is supplied into the chamber 10 through the shower head 30 . That is, the first chlorine-based gas and the second chlorine-based gas may be simultaneously supplied from one shower head 30 installed in the chamber 10 , and the first chlorine-based gas and the second chlorine-based gas are each other in the shower head 30 . It may be supplied into the chamber 10 along a gas supply path formed by another path.
  • the first chlorine-based gas and the second chlorine-based gas may each independently be one chlorine-based gas selected from Cl 2 , BCl 3 , ClF 3 , ClF 4 , HCl, CCl 4 , CoCl 2 , TiCl 4 and the like.
  • the first chlorine-based gas may be BCl 3
  • the second chlorine-based gas may be Cl 2 .
  • H 2 in addition to the plurality of chlorine-based gases, H 2 , at least one inert gas of hydrogen (H) containing gas such as H 2 O, argon (Ar), xenon (Ze), and helium (He) can be supplied together.
  • the inert gas may serve as a carrier gas for the chlorine-based gas or prevent a reverse flow of the chlorine-based gas or hydrogen (H)-containing gas, and may improve discharge efficiency for plasma formation.
  • the inert gas may be ionized by the plasma to provide ion bombardment, thereby promoting a chemical reaction by radicals.
  • the flow rates of the first chlorine-based gas and the second chlorine-based gas are controlled and supplied according to the types of the first chlorine-based gas and the second chlorine-based gas. That is, as described above, the control unit 50 controls the flow rates of the first chlorine-based gas and the second chlorine-based gas according to the types of the first chlorine-based gas and the second chlorine-based gas.
  • RF power is applied to the shower head 30 through the first power supply unit 40, and DC bias power is applied to the substrate support unit ( 60) to generate direct plasma in the substrate processing space.
  • DC bias power is applied to the substrate support unit ( 60) to generate direct plasma in the substrate processing space.
  • radicals or active species generated from the plurality of chlorine-based gases are chemically and chemically with the IGZO residual film in the chamber 10 By reacting with a volatile material, the IGZO residual film is cleaned.
  • the concentration of total radicals or active species reacting with a metal oxide semiconductor material such as IGZO among radicals or active species generated therefrom is different depending on the flow ratio of a plurality of different chlorine-based gases. and the cleaning rate is changed accordingly.
  • FIG. 3 shows the etching rate of IGZO according to the flow rate ratio of these chlorine-type gas, when a 1st chlorine-type gas is BCl3 and a 2nd chlorine-type gas is Cl2.
  • the etching rate of IGZO is highest when the flow ratio of BCl3 and Cl2 is 1:1. This means that when the flow ratio of BCl 3 and Cl 2 is 1:1, the sum of the concentrations of the BCl radical (first chlorine-based radical) and the Cl radical (second chlorine-based radical) that reacts with the IGZO film to generate volatile chloride is the maximum. It is presumed to be because
  • the concentration of BCl radicals increases compared to the case where the flow ratio is 1:1, but since the concentration of Cl radicals becomes relatively smaller, the sum of the concentrations of total radicals reacting with the IGZO film as a whole this gets smaller
  • the concentration of Cl radicals becomes larger compared to the case of the flow ratio of 1:1, but the concentration of BCl radicals becomes relatively smaller, and the sum of the concentrations of total radicals reacting with the IGZO film is similarly small. and, accordingly, the etch rate of IGZO is relatively low.
  • the product of the concentration of the first chlorine-based radical reacting with IGZO among radicals from the first chlorine-based gas and the concentration of the second chlorine-based radical reacting with IGZO among radicals from the second chlorine-based gas is the maximum
  • the cleaning rate for IGZO under direct plasma is maximized.
  • the volatile material generated by the reaction of the chlorine-based active species and the metal oxide semiconductor material in the step of cleaning the chamber (S03) is discharged to the outside of the chamber 10 by the purging gas and removed.
  • the purging gas nitrogen or an inert gas can be used.
  • the chamber cleaning method according to the first embodiment of the present invention may include a substrate processing process and an in situ process. That is, in a state in which the substrate is seated on the substrate support unit 60 , zinc oxide (IGZO) doped with indium and gallium is deposited on the substrate, and when the deposition is completed, the substrate is taken out. After such a deposition cycle is performed a predetermined number of times, in a state in which the deposition process gas is not supplied into the chamber 10 to clean the inside of the chamber 10 , as described above, the first chlorine-based gas and the second chlorine-based gas and an inert gas.
  • IGZO zinc oxide
  • BCl radicals and Cl radicals in the direct plasma generated by applying RF power to the shower head 30 chemically react with the residual film of the metal oxide semiconductor material inside the chamber 10 , and the residual film is etched and removed.
  • the supply of the first chlorine-based gas and the second chlorine-based gas may be stopped, and the substrate may be brought into the chamber 10 again to perform the deposition process.
  • in-situ dry cleaning is possible without vacuum opening the chamber 10 in the deposition process of a metal oxide semiconductor material such as IGZO, which requires frequent cleaning, It is possible to improve efficiency and secure high device reproducibility and operation rate.
  • IGZO metal oxide semiconductor material
  • the substrate processing apparatus of this embodiment may be configured to deposit a metal oxide semiconductor material such as IGZO, and after the deposition process of IGZO or the like, as will be described below, of the substrate processing apparatus A cleaning process of the deposition chamber may be performed.
  • a metal oxide semiconductor material such as IGZO
  • the substrate processing apparatus of the second embodiment of the present invention generates radicals or the like for cleaning a substrate processing chamber by a combination of a remote plasma separated from the substrate processing space and a direct plasma in the substrate processing space (so-called hybrid plasma). is different from the substrate processing apparatus of the first embodiment.
  • hybrid plasma a direct plasma in the substrate processing space
  • the substrate processing apparatus of this embodiment further includes a remote plasma source 70 for forming a remote or remote plasma in a chamber or a space remote from the substrate processing space of the substrate processing apparatus.
  • a remote plasma source 70 for forming a remote or remote plasma in a chamber or a space remote from the substrate processing space of the substrate processing apparatus.
  • an inductively coupled remote plasma source 70 includes a first chlorine-based gas source 20 and a second chlorine-based gas source 25 and a shower head 30 . connected between
  • the first power supply unit 40 is connected to the shower head 30 , and the substrate support unit 60 is grounded.
  • the present invention is not limited thereto, and the substrate support unit 60 may be connected to a second power supply unit (not shown) such as a DC bias power supply, as in the first embodiment.
  • the first chlorine-based gas and the second chlorine-based gas are supplied to the remote plasma source 70 at a predetermined flow rate as will be described later.
  • an inert gas such as Ar may be supplied together.
  • the remote plasma source 70 generates plasma remotely (ie, outside the substrate processing space) to activate or ionize a plurality of supplied chlorine-based gases and Ar gases.
  • a cleaning gas mixture comprising radicals and ions generated by the remote plasma source 70 is supplied into the substrate processing space through a shower head 30 .
  • the cleaning gas mixture supplied to the substrate processing space may be further activated by RF power supplied to the shower head 30 by the first power supply 40 in the substrate processing space.
  • the cleaning gas activated by the hybrid plasma includes Cl radicals, BCl radicals, B radicals, Ar ions, and the like.
  • Cl radicals and BCl radicals react with the residual film of the metal oxide semiconductor material to form volatile products. As these volatile products are removed from the substrate processing chamber, cleaning of the substrate processing chamber is performed.
  • FIG. 5 is a flowchart of a method that can be used to clean the chamber by removing the residual metal oxide semiconductor film from the chamber of the substrate processing apparatus of the second embodiment.
  • an IGZO material is deposited on a substrate S disposed in a chamber of a substrate processing apparatus. While the IGZO material is being deposited on the substrate S, the IGZO material may be deposited on other components of the substrate processing chamber, such as the shower head 30 , the substrate support 60 , the inner sidewall of the chamber 10 , etc. have.
  • the IGZO material is, for example, a chemical vapor deposition (CVD) process, a plasma-enhanced chemical vapor deposition (PECVD) process, an atomic layer deposition (ALD) process, a metal-organic chemical vapor deposition (MOCVD) process, and a physical vapor deposition (PVD) process. It can be deposited using a process.
  • CVD chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • MOCVD metal-organic chemical vapor deposition
  • PVD physical vapor deposition
  • the substrate S is discharged out of the substrate processing chamber.
  • the present invention is not limited thereto, and the substrate S may be continuously maintained in the substrate processing chamber during a cleaning process to be described later.
  • step S12 a plurality of chlorine-based gases from the first chlorine-based gas source 20 and the second chlorine-based gas source 25 are supplied to the remote plasma source 70 at a predetermined flow rate. is supplied, and a plurality of chlorine-based gases are activated (first activation step) by the remote plasma generated by the remote plasma source 70 .
  • the first chlorine-based gas is BCl 3
  • the second chlorine-based gas is Cl 2 . Accordingly, the cleaning gas flowing into the substrate processing chamber from the remote plasma source 70 in step S13 includes BCl radicals and Cl radicals.
  • an inert gas such as Ar in addition to the plurality of chlorine-based gases including the first chlorine-based gas and the second chlorine-based gas may be supplied together.
  • Inert gases can extend the lifetime of radicals and increase their density.
  • step S13 a cleaning gas mixture including radicals of a plurality of chlorine-based gases is supplied from the remote plasma source 70 into the substrate processing chamber.
  • the cleaning gas mixture is activated by a remote plasma. That is, the radical mixture of the cleaning gas flowing into the substrate processing chamber in step S13 is activated by, for example, the first activation step of step S12.
  • the cleaning gas mixture introduced into the substrate processing chamber in step S13 may further include ions of an inert gas such as Ar.
  • Ar may be directly supplied from an Ar gas source (not shown) to the substrate processing space and ionized by direct plasma.
  • step S14 the cleaning gas mixture introduced into the substrate processing space of the substrate processing chamber from the remote plasma source 70 is activated once again by direct plasma (second activation step).
  • the direct plasma is generated by applying RF power to the shower head 30 by the first power source 40 , as described above.
  • step S15 the metal oxide semiconductor residual film in the substrate processing chamber is removed by chlorine-based radicals (BCl radicals, Cl radicals, etc.) generated by the hybrid plasma (remote plasma and direct plasma).
  • chlorine-based radicals BCl radicals, Cl radicals, etc.
  • the cleaning gas activated by the hybrid plasma has different radical concentration distributions according to flow rates of the first chlorine-based gas and the second chlorine-based gas, and thus different cleaning rates can be achieved.
  • FIG. 6 is a graph showing the cleaning rate according to the flow rate ratio of the first chlorine-based gas and the second chlorine-based gas.
  • the first chlorine-based gas is BCl 3 and the second chlorine-based gas is Cl 2 .
  • the applied RF power was 700 W, the pressure was 10 mTorr, and the cleaning rate was measured with no DC bias applied.
  • the cleaning rate varies depending on the flow rate ratio of the first chlorine-based gas and the second chlorine-based gas.
  • the cleaning rate is maximized when the flow ratio of the first chlorine-based gas and the second chlorine-based gas is 1:2.
  • the concentrations of B radicals, Cl radicals, and Ar radicals increase, and the concentrations of BCl radicals increase. It was confirmed that the concentration decreased. That is, in the second embodiment, the concentration of Cl radicals increases, but the concentration of BCl radicals decreases, and instead the concentration of B radicals increases.
  • the B radical reacts with the oxygen component of the metal oxide semiconductor residual film to form a B 2 O 3 film, thereby preventing etching of the metal oxide semiconductor residual film. This is presumed to be one of the reasons why the flow rate ratio at which the cleaning rate is maximized in the second embodiment is different from that in the first embodiment.
  • the cleaning rate according to the flow ratio may exhibit different behavior depending on which chlorine-based gas is used for the first chlorine-based gas and the second chlorine-based gas, and the flow ratio at which the cleaning rate is maximized may be a ratio other than 1:2. .
  • step S16 the gaseous volatile products are purged out of the substrate processing chamber.
  • the substrate processing chamber By flowing a purge gas into the substrate processing chamber, the substrate processing chamber may be actively purged.
  • the substrate processing chamber may be depressurized to remove any residual cleaning gas as well as any by-products from the substrate processing chamber along with introducing the purge gas.
  • the substrate processing chamber By evacuating the substrate processing chamber, the substrate processing chamber may be purged.
  • the behavior of the cleaning rate according to the flow rate may vary depending on which chlorine-based gas is used and depending on which plasma activates a plurality of different chlorine-based gases, and according to the present invention, A cleaning rate of a deposition chamber of a metal oxide semiconductor material such as IGZO may be maximized by adjusting the plurality of chlorine-based gases, plasma activation methods, and flow ratios of the chlorine-based gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)

Abstract

본 발명의 세정 방법은, 금속 산화물 반도체 물질을 증착하는 증착 챔버를 세정하기 위한 방법으로서, 제1 염소계 가스와 제2 염소계 가스를 포함하는 복수의 염소계 가스를 활성화시키는 활성화 단계, 상기 활성화 단계에서 생성된 복수의 염소계 가스의 라디칼(radical)에 의해 상기 증착 챔버를 세정하는 세정 단계를 포함하며, 상기 라디칼은, 제1 염소계 가스로부터 생성되어 금속 산화물 반도체 물질과 반응하는 제1 염소계 라디칼과, 제2 염소계 가스로부터 생성되어 금속 산화물 반도체 물질과 반응하며, 제1 염소계 라디칼과 다른 제2 염소계 라디칼을 포함하며, 상기 활성화 단계에서는 제1 염소계 라디칼과 제2 염소계 라디칼의 농도의 곱이 최대가 되도록, 상기 제1 염소계 가스와 상기 제2 염소계 가스의 유량비를 제어하는 것을 특징으로 한다.

Description

금속산화물 반도체 물질의 증착 챔버의 세정 방법
본 발명은 증착 챔버의 세정 방법에 관한 것으로, 특히, IGZO와 같은 금속 산화물 반도체 물질의 증착 챔버의 인시츄 건식 세정 방법에 관한 것이다.
박막 트랜지스터(TFT, Thin-Film Transistor)는 많은 집적회로(IC)에서 스위칭 및 구동(driving) 디바이스로서 사용된다. 예컨대, 박막 트랜지스터는 디스플레이 패널에서 픽셀들을 제어하기 위해 사용된다.
박막 트랜지스터의 채널층에 사용된 주요 재료는 비정질 실리콘 및 다결정 실리콘이다. 그러나, 비정질 실리콘을 사용하는 종래의 박막 트랜지스터는 캐리어의 이동도가 충분히 높지 않으며, 다결정 실리콘을 사용하는 박막 트랜지스터는 패널상의 수많은 박막 트랜지스터간의 특성 편차라는 측면에서 개선이 요구된다. 더욱이, 실리콘은 가시광선에 대해 투명하지 않기 때문에, 개구율이 충분하지 않으며, 투명한 디스플레이 패널을 구현할 수 없다는 근본적인 문제점을 포함한다.
투명하면서도 캐리어 이동도를 향상시킬 수 있는 박막 트랜지스터의 채널층 재료로서 각광을 받고 있는 재료들 중 하나는 인듐-갈륨-아연 산화물(IGZO), 산화아연(zinc oxide) 등과 같은 금속 산화물이다. 특히, IGZO는 가시광선에 대해 투명하며, 비정질 실리콘에 비해 20~50배의 캐리어 이동도를 가지기 때문에, 디스플레이 패널의 박막 트랜지스터의 채널층 재료로서 유망하다.
디스플레이 패널의 박막 트랜지스터의 제조 과정은 증착 장치의 챔버 내에서 기판 상에 소정의 물질을 퇴적하여 박막을 형성하는 공정을 수반한다. 박막 형성 공정을 수행하는 동안, 챔버의 내벽과 챔버의 내부에 노출되는 부품들의 표면에도 원하지 않게 부산물이 퇴적되어 오염원으로 작용할 수 있다.
즉, 챔버 내부에 퇴적되어 남아 있는 잔류막은 그 두께가 증가하면 박리되어 파티클 (particle) 발생의 원인이 된다. 이와 같이 발생된 파티클은 후속 공정에서 기판 상에 형성되는 박막 내에 들어가거나, 박막 표면에 부착되어 박막 트랜지스터 소자의 결함 원인으로 작용할 수 있으며, 제품의 불량률을 높일 수 있다. 따라서, 이러한 잔류막이 박리되어 파티클이 발생하기 이전에 챔버 내부에 퇴적된 잔류막을 제거하는 세정을 행할 필요가 있다.
특히, IGZO 박막의 증착을 수행하는 증착 장치는 증착 과정에서 다량의 다량의 파티클을 발생시키기 때문에 매우 빈번한 세정이 요구된다. 그러나, 종래의 세정 방법에서는 챔버 내의 잔류막을 주로 습식 세정에 의하여 제거하므로, 세정시마다 진공상태의 증착 챔버를 개방하여야 한다. 이에 따라, 세정 비용이 증가하고 장치 재현성 및 가동률의 확보가 어려운 문제점이 있었다.
본 발명은, 이러한 종래의 세정 방법의 문제점을 해결하기 위한 것으로서, 디스플레이 패널의 박막 트랜지스터의 채널층 재료로서 사용되는 IGZO 등과 같은 금속 산화물 반도체 박막을 형성하기 위한 증착 장치의 챔버를 인시츄(in-situ)로 건식 세정하기 위한 방법을 제공하는 것이다.
본 발명의 세정 방법은, 금속 산화물 반도체 물질을 증착하는 증착 챔버를 세정하기 위한 방법으로서, 제1 염소계 가스와 제2 염소계 가스를 포함하는 복수의 염소계 가스를 활성화시키는 활성화 단계, 상기 활성화 단계에서 생성된 복수의 염소계 가스의 라디칼(radical)에 의해 상기 증착 챔버를 세정하는 세정 단계를 포함하며, 상기 라디칼은, 제1 염소계 가스로부터 생성되어 금속 산화물 반도체 물질과 반응하는 제1 염소계 라디칼과, 제2 염소계 가스로부터 생성되어 금속 산화물 반도체 물질과 반응하며, 제1 염소계 라디칼과 다른 제2 염소계 라디칼을 포함하며, 상기 활성화 단계에서는 제1 염소계 라디칼과 제2 염소계 라디칼의 농도의 곱이 최대가 되도록, 상기 제1 염소계 가스와 상기 제2 염소계 가스의 유량비를 제어하는 것을 특징으로 한다.
본 발명에 따르면, IGZO 등의 금속 산화물 반도체 박막의 증착 챔버를 인시츄로 건식 세정할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 기판 처리 장치의 모식적 단면도이다.
도 2는 본 발명의 제1 실시예에 따른 세정 방법의 흐름도이다.
도 3은 제1 실시예에 있어서 제1 염소계 가스와 제2 염소계 가스의 유량비에 따른 에칭 레이트를 나타내는 그래프이다.
도 4는 본 발명의 제2 실시예에 따른 기판 처리 장치의 모식적 단면도이다.
도 5는 본 발명의 제2 실시예에 따른 세정 방법의 흐름도이다.
도 6은 제2 실시예에 있어서 제1 염소계 가스와 제2 염소계 가스의 유량비에 따른 에칭 레이트를 나타내는 그래프이다.
본 발명의 다양한 실시형태 또는 실시예를 설명하기 위해 도면을 참조하여 구체적인 사항들이 설명된다. 다만, 플라즈마 세정에 관한 주지의 구조들 및 시스템들에 관한 세부사항들은, 본 발명의 실시예의 설명을 불필요하게 모호하게 하는 것을 회피하기 위해 생략된다.
도면에 도시된 많은 세부사항들, 치수들, 각도들 및 다른 특징들은 예시적인 것이며, 본 발명의 기술적 사상 또는 범위를 벗어나지 않고 다른 세부사항들, 구성요소들, 치수들, 각도들 및 특징들을 가질 수 있다. 또한, 본 발명의 다른 구현예는 이하에서 설명되는 여러 세부사항들 없이 실시될 수도 있다.
본 발명은, 기판 처리 장치의 챔버로부터 금속 산화물 반도체 물질, 이를테면, IGZO, ZnO, In2O3 등을 인-시츄로 건식 세정하는 방법에 관한 것이다. 여기서, 기판 처리 장치는 CVD, PE-CVD(plasma enhanced-CVD), 펄스식-CVD, ALD, PE-ALD, MOCVD(metal-organic chemical vapor deposition) 또는 이들의 조합에 의해 IGZO를 포함하는 금속 산화물 반도체 물질을 증착하는데 사용될 수 있으나 이에 한정되지 않는다. 또한, 기판 처리 장치는, LCD(liquid crystal display)나 OLED(organic light emitting diode) 패널을 제작하기 위해 기판상에 구조들 및 디바이스들을 형성하는데 사용될 수 있으나, 이에 한정되지 않는다.
전술한 바와 같이, 금속 산화물 반도체 물질의 증착 동안, 기판 뿐만 아니라 기판 처리 장치의 챔버 내부 전체에 걸쳐 금속 산화물 반도체막이 형성된다. 기판 이외의 챔버 내벽 또는 챔버 내의 각종 부품에 증착된 막은, 오염원으로서의 파티클 생성, 균일성 저하 및 기판 처리 가스 유입구 막힘을 유발하여서, 수율 저하로 이어질 수 있다.
챔버 내벽 또는 챔버내의 다른 부품들상의 원치 않는 금속 산화물 반도체막을 제거하기 위한 하나의 방법은, 소정의 증착 사이클마다 주기적으로 챔버를 개방 또는 분해하여 세정액으로 잔류막들을 습식 세정하는 것이다. 그러나, 이러한 기판 처리 장치는 진공상태에서 기판의 처리(예컨대, 증착)를 진행하므로, 세정을 위해서 진공상태의 챔버를 대기 개방하고, 세정 공정의 완료 후 다시 챔버내를 진공 배기하는 것은 상당한 시간을 요하며, 기판 처리 장치의 가동 시간에 상당히 영향을 준다.
다른 접근법은 반응종 또는 라디칼을 함유하는 플라즈마에 의해 건식 세정을 행하는 것이다. 플라즈마는, 잔류막과 반응하여 잔류막을 에칭하는 반응종 또는 라디칼, 이온 등을 포함한다. 예컨대, NF3 플라즈마는 반도체나 디스플레이 산업에서 기판 처리 장치의 챔버들로부터 SiOx 및 SiNx 막들을 제거하기 위해 널리 사용된다. 그러나, NF3 플라즈마는 IGZO와 같은 금속 산화물 반도체 물질의 잔류막의 에칭 또는 세정에 효과적이지 않다.
본 발명의 일 실시형태에 따르면, 소정의 유량비로 공급된 복수의 염소계 가스의 혼합물로부터 생성된 라디칼을 기판 처리 챔버로 유입하거나 기판 처리 챔버내에서 다이렉트로 생성하여 챔버 내의 잔류 금속 산화물 반도체막과 반응시킴으로써, 기판 처리 챔버로부터 잔류 금속 산화물 반도체막을 효과적으로 제거한다.
특히, 본 발명의 바람직한 실시형태에 따르면, 금속 산화물 반도체막과 반응하여 휘발성 생성물을 발생시키는 전체 라디칼의 농도를 극대화시킬 수 있도록, 플라즈마의 종류, 염소계 가스의 종류 등에 기초하여 복수의 염소계 가스의 유량비를 조절한다.
이하 본 발명의 구체적인 실시예를 설명한다.
<제1 실시예>
도 1은 본 발명의 제1 실시예에 따른 기판 처리 장치를 모식적으로 나타내는 도면이다. 본 발명의 제1 실시예에서는, 복수개의 서로 다른 염소계 가스를 기판 처리 장치의 챔버(즉, 기판 처리 공간)내로 소정의 유량비로 도입하여, 다이렉트 플라즈마에 의해 라디칼 등을 생성하고, 이에 의해 챔버내에 퇴적된 IGZO 등의 금속 산화물 반도체 물질을 인시츄로 건식 세정한다.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 기판 처리 장치는, 기판 처리 공간을 정의하는 챔버(10), 제1 염소계 가스를 공급하는 제1 염소계 가스원(20), 제1 염소계 가스와 다른 제2 염소계 가스를 공급하는 제2 염소계 가스원(25), 제1 염소계 가스와 제2 염소계 가스를 챔버내의 기판 처리 공간으로 공급하기 위한 샤워 헤드(30), 샤워 헤드(30)에 접속되어, 샤워 헤드(30)에 전원을 인가하기 위한 제1 전원 공급부(40), 제1 염소계 가스원(20) 및 제2 염소계 가스원(25)으로부터의 샤워헤드(30)로의 복수의 염소계 가스의 공급 유량을 제어하고, 또한, 제1 전원 공급부(40)에 의한 샤워헤드(30)의 전원 공급을 제어하는 제어부(50), 및 처리 대상으로서의 기판(S)을 지지하는 기판 지지부(60)를 포함한다.
본 발명의 제1 실시예에 따른 기판 처리 장치는, 기판의 처리시에, 예를 들어 IGZO를 포함하는 금속 산화물 반도체 물질의 박막 증착 시에 챔버(10) 내에 퇴적되는 금속 산화물 반도체 물질의 잔류막을 건식 세정하여 제거한다. 즉, 기판 처리 장치에 의한 기판 처리 공정은 기판 상에 인듐과 갈륨이 도핑된 아연 산화물(IGZO)을 증착하는 공정일 수 있으며, 이 경우 챔버(10) 내에 퇴적되는 잔류막은 인듐과 갈륨이 도핑된 아연 산화물을 포함할 수 있다.
제1 염소계 가스원(20) 및 제2 염소계 가스원(25)은 각각 챔버(10)의 외부에 설치될 수 있으며, 제1 염소계 가스 및 제2 염소계 가스를 별도로 샤워 헤드(30)에 공급한다. 도 1에서는, 제1 염소계 가스 및 제2 염소계 가스가 샤워 헤드(30)에 별도의 공급로를 통해 공급되는 것으로 도시하였으나, 본 발명은 이에 한정되지 않으며, 샤워 헤드(30)에 공급되기 전에 하나의 공급로에서 혼합되어, 샤워 헤드(30)에 공급되어도 된다.
후술하는 바와 같이, 제1 염소계 가스 및 제2 염소계 가스는 각각 활성화되어 챔버(10) 내의 잔류 금속 산화물 반도체막을 식각하여 세정하기 위한 라디칼 등을 생성한다. IGZO, 아연 산화물 등의 금속 산화물 반도체 물질을 포함하는 잔류막을 효율적으로 식각하기 위하여, 제1 염소계 가스 및 제2 염소계 가스는 각각 Cl2, BCl3, ClF3, ClF4, HCl, CCl4, CoCl2, TiCl4 중 어느 하나를 포함한다. 바람직하게는, 제1 염소계 가스 및 제2 염소계 가스는 서로 다른 염소계 가스이다. 보다 바람직하게는, 제1 염소계 가스는 BCl3이고, 제2 염소계 가스는 Cl2이다.
도 1에는, 챔버(10)내로 공급되는 가스의 가스원으로서 제1 염소계 가스원(20)과 제2 염소계 가스원(25)을 도시하였으나, 본 발명은 이에 한정되지 않으며, 다른 가스원을 더 포함할 수 있다. 예컨대, 본 발명의 제1 실시예에 따른 기판 처리 장치는, 아르곤(Ar)을 포함하는 불활성 가스원, H2, H2O 등을 공급하기 위한 수소(H) 함유 가스원 등을 더 가질 수 있다.
샤워 헤드(30)는 챔버(10) 내부에 착탈 가능하게 설치되며, 챔버(10)의 기판 처리 공간으로 제1 염소계 가스를 공급하기 위한 제1 염소계 가스 공급로 및 제2 염소계 가스를 공급하기 위한 제2 염소계 가스 공급로를 포함한다.
제1 전원 공급부(40)는 샤워 헤드(30)에 접속되어, 샤워 헤드(30)에 전원을 인가한다. 제1 전원 공급부(40)가 인가하는 전원은, 고주파 전력 또는 RF(Radio Frequency) 전력, 예를 들어, LF(Low Frequency) 전력, MF(Middle Frequency), HF(High Frequency) 전력, 또는 VHF(Very High Frequency) 전력일 수 있다.
여기서, LF 전력은 3㎑ 내지 300㎑ 범위의 주파수를 가지고, MF 전력은 300㎑ 내지 3㎒ 범위의 주파수를 가지고, HF 전력은 3㎒ 내지 30㎒ 범위의 주파수를 가지며, VHF 전력은 30㎒ 내지 300㎒ 범위의 주파수를 가질 수 있다.
또한, 제1 전원 공급부(40)는 샤워 헤드(30)에 인가되는 전원의 부하 임피던스와 소스 임피던스를 정합시키기 위한 임피던스 매칭 회로를 포함할 수도 있다. 임피던스 매칭 회로는 가변 커패시터 및 가변 인덕터 중 적어도 하나로 구성되는 적어도 2개의 임피던스 소자를 포함하여 이루어질 수 있다.
기판 지지부(60)는 기판 처리 공정에 따라 승강 및/또는 회전하도록 설치될 수 있다. 이와 같은 기판 지지부(60)의 승강 및/또는 회전은 챔버(10)의 바닥면을 관통하는 지지축 및 지지축에 연결되는 구동부(미도시)에 의하여 이루어진다. 도 1에는 도시하지 않았으나, 챔버(10)내의 진공 상태를 유지하면서도 지지축을 구동부에 연결하기 위해, 벨로우즈와 같은 신축가능부재가 사용될 수 있다.
기판 지지부(20)는 접지될 수 있으나, 전원 공급부(40) 또는 별도의 제2 전원 공급부(45)에 의하여 샤워 헤드(30)와 상이한 전원이 인가될 수도 있다. 제2 전원 공급부(45)는 플라즈마로부터 기판(S)으로의 부가적인 전위를 설정하는데 사용될 수 있다. 이에 의해, 제2 전원 공급부(45)는 에칭/세정 효과를 향상시키기 위해 더 많은 이온 충격을 제공하도록 바이어스를 증가시키는 역할을 할 수 있다. 제2 전원 공급부(45)는 DC 전원, 펄스식 DC 전원, RF 바이어스 전원, 펄스식 RF 소스 또는 바이어스 전원, 또는 이들의 조합일 수 있다. 본 실시예에서는 DC 바이어스 전원이다.
제어부(50)는 제1 염소계 가스 및 제2 염소계 가스를 활성화시키기 위한 전원(소정의 크기의 전력 및 소정 범위의 주파수)을 공급하기 위해, 샤워 헤드(30), 제1 전원 공급부(40) 및/또는 제2 전원 공급부(45)를 제어할 수 있다.
또한, 제어부(50)는 제1 염소계 가스원(20) 및 제2 염소계 가스원(25)으로부터 공급되는 제1 염소계 가스 및 제2 염소계 가스의 공급 유량 등을 제어할 수 있다. 즉, 제어부(50)는 제1 염소계 가스, 제2 염소계 가스의 종류에 따라 제1 염소계 가스 및 제2 염소계 가스의 공급량을 제어할 수 있다. 예를 들어, 제1 염소계 가스로서 BCl3가 사용되고, 제2 염소계 가스로서 Cl2가 사용되는 경우, 후술하는 바와 같이, 제어부(50)는 제1 염소계 가스와 제2 염소계 가스의 공급량을 동일하게 제어할 수 있다.
이와 같이, 제어부(50)는 제1 염소계 가스, 제2 염소계 가스 및 기타 공급 가스의 종류에 따라 제1 염소계 가스 및 제2 염소계 가스의 공급량을 제어함으로써, 챔버(10) 내에 금속 산화물 반도체막과 반응할 수 있는 전체 라디칼의 농도가 극대화되도록 할 수 있다.
이하에서, 도 2를 참조하여 본 발명의 제1 실시예에 따른 챔버 세정 방법을 상세하게 설명한다. 본 발명의 제1 실시예에 따른 챔버 세정 방법의 설명에 있어 전술한 기판 처리 장치에 관한 설명과 중복되는 설명은 생략한다.
도 2는 본 발명의 제1 실시예에 따른 챔버 세정 방법을 개략적으로 나타내는 도면이다.
본 발명의 제1 실시예에 따른 챔버 세정 방법은, 제1 염소계 가스 및 제2 염소계 가스를 포함하는 복수의 염소계 가스를 소정의 유량비로 챔버(10) 내로 공급하는 단계(S01); 챔버(10)내에서 다이렉트 플라즈마에 의해 제1 염소계 가스 및 제2 염소계 가스를 포함하는 복수의 염소계 가스를 활성화시키는 단계(S02); 활성화 단계에서 생성된 반응종 또는 라디칼, 이온 등에 의해 챔버(10) 내에 퇴적된 금속 산화물 반도체 물질을 건식 세정하는 단계(S03); 및 챔버(10)를 퍼징하는 단계(S04)를 포함한다.
제1 염소계 가스 및 제2 염소계 가스를 포함하는 복수의 염소계 가스를 공급하는 단계(S01)에서는, 제1 염소계 가스원(20)으로부터 제공되는 제1 염소계 가스와 제2 염소계 가스원(25)로부터 제공되는 제2 염소계 가스를 샤워 헤드(30)를 통하여 챔버(10) 내로 공급한다. 즉, 제1 염소계 가스 및 제2 염소계 가스는 챔버(10) 내에 설치되는 하나의 샤워 헤드(30)로부터 동시에 공급될 수 있으며, 제1 염소계 가스 및 제2 염소계 가스는 샤워 헤드(30) 내에 서로 다른 경로로 형성되는 가스 공급로를 따라 챔버(10) 내로 공급될 수 있다.
제1 염소계 가스 및 제2 염소계 가스는, 전술한 바와 같이, 각각 독립적으로 Cl2, BCl3, ClF3, ClF4, HCl, CCl4, CoCl2, TiCl4 등 로부터 선택된 하나의 염소계 가스일 수 있다. 예컨대, 제1 염소계 가스는 BCl3이고, 제2 염소계 가스는 Cl2일 수 있다. 가스 공급 단계(S01)에서는 복수의 염소계 가스 이외에 H2, H2O 등의 수소(H) 함유 가스나, 아르곤(Ar), 제논(Ze) 및 헬륨(He) 등 중 적어도 하나의 불활성 가스가 함께 공급될 수 있다. 불활성 가스는 염소계 가스에 대한 캐리어 가스의 역할을 하거나, 염소계 가스나 수소(H) 함유 가스가 역류하는 것을 방지하는 역할을 할 수 있으며, 플라즈마 형성을 위한 방전 효율을 향상시킬 수 있다. 또한, 불활성 가스는 플라즈마에 의해 이온화되어 이온 충격(ion bombardment)를 제공함으로써, 라디칼에 의한 화학적 반응을 촉진시킬 수 있다.
또한, 제1 염소계 가스 및 제2 염소계 가스를 공급하는 단계(S01)에서는 제1 염소계 가스 및 제2 염소계 가스의 종류에 따라 제1 염소계 가스와 제2 염소계 가스의 유량을 제어하여 공급한다. 즉, 제어부(50)는, 전술한 바와 같이, 제1 염소계 가스 및 제2 염소계 가스의 종류에 따라 제1 염소계 가스와 제2 염소계 가스의 유량을 제어한다. 이를 통해, 후술하는 바와 같이, IGZO와 같은 금속 산화물 반도체 물질의 잔류막과 반응할 수 있는 전체 라디칼의 농도를 극대화하고, 이에 따라 세정 속도를 극대화할 수 있다.
복수의 염소계 가스를 활성화시키는 단계(S02)에서는, 제1 전원 공급부(40)를 통해 RF 전원을 샤워 헤드(30)에 인가하고, 제2 전원 공급부(45)를 통해 DC 바이어스 전원을 기판 지지부(60)에 인가하여, 기판 처리 공간에 다이렉트 플라즈마를 생성한다. 구체적으로, 본 실시예에서는 제1 염소계 가스, 제2 염소계 가스 및 불활성 가스로서 각각 BCl3, Cl2, Ar을 챔버(10)내에 공급한 상태에서, 700W의 RF전력 및 -50V의 DC 바이어스를 인가하여 다이렉트 플라즈마를 발생시켰다.
복수개의 염소계 가스의 라디칼 또는 활성종 및 이온 등에 의해 챔버(10) 내의 IGZO 잔류막을 세정하는 단계(S03)에서는, 복수개의 염소계 가스로부터 생성된 라디칼 또는 활성종이 챔버(10) 내의 IGZO 잔류막과 화학적으로 반응하여 휘발성 물질을 생성함으로써, IGZO 잔류막을 세정한다.
본 발명의 발명자들이 예의 실험한 바에 따르면, 복수개의 서로 다른 염소계 가스의 유량비에 따라, 이들로부터 생성된 라디칼 또는 활성종 중 IGZO와 같은 금속 산화물 반도체 물질과 반응하는 전체 라디칼 또는 활성종의 농도가 달라지며, 이에 따라 세정 레이트가 달라진다.
예컨대, 도 3은, 제1 염소계 가스가 BCl3이고, 제2 염소계 가스가 Cl2인 경우에 있어서, 이들 염소계 가스의 유량비에 따른 IGZO의 에칭 레이트를 나타낸다. 도 3에 도시된 바와 같이, IGZO의 에칭 레이트는 BCl3와 Cl2의 유량비가 1:1인 경우에 가장 높음을 알 수 있다. 이는 BCl3와 Cl2의 유량비가 1:1일 때, IGZO막과 반응하여 휘발성의 염화물을 생성시키는 BCl 라디칼(제1 염소계 라디칼)과 Cl 라디칼(제2 염소계 라디칼)과의 농도의 합이 최대가 되기 때문으로 추측된다.
즉, 유량비가 2:1인 경우, BCl라디칼의 농도는 유량비가 1:1인 경우에 비해 커지나 Cl 라디칼의 농도가 상대적으로 더 많이 작아지기 때문에, 전체적으로 IGZO 막과 반응하는 총 라디칼의 농도의 합이 작아진다. 유량비가 1:2인 경우에는, 유량비가 1:1인 경우에 비해 Cl 라디칼의 농도가 커지나 BCl 라디칼의 농도가 상대적으로 더 많이 작아져, 마찬가지로 IGZO막과 반응하는 총 라디칼의 농도의 합이 작아지며, 이에 따라, IGZO의 에칭레이트가 상대적으로 낮아진다.
즉, 본 실시예의 세정방법에 있어서는, 제1 염소계 가스로부터의 라디칼 중 IGZO와 반응하는 제1 염소계 라디칼과, 제2 염소계 가스로부터의 라디칼 중 IGZO와 반응하는 제2 염소계 라디칼의 농도의 곱이 최대가 되도록 제1 염소계 가스와 제2 염소계 가스의 유량비를 조절함으로써, 다이렉트 플라즈마하에서의 IGZO에 대한 세정 레이트를 극대화한다.
도 3에서는, 제1 염소계 가스로서 BCl3를, 제2 염소계 가스로서 Cl2를 사용하는 경우를 예로 들었으나, 본 발명은 이에 한정되지 않으며, 제1 염소계 가스 및 제2 염소계 가스로서 다른 가스를 사용할 수 있으며, 어떤 염소계 가스의 조합을 사용하는가에 따라, IGZO 잔류막과 반응하여 휘발성 염화물을 생성할 수 있는 라디칼의 농도곱을 극대화하는 유량비가 달라질 수 있다.
챔버를 퍼징하는 단계(S04)는 챔버를 세정하는 단계(S03)에서 염소계 활성종과 금속 산화물 반도체 물질의 반응에 의해 생성된 휘발성 물질을 퍼징 가스에 의해 챔버(10) 외부로 배출하여 제거한다. 퍼징가스로서는 질소나 불활성 가스를 사용할 수 있다.
본 발명의 제1 실시예에 따른 챔버 세정 방법은 기판 처리 과정과 인시츄로 이루어질 수 있다. 즉, 기판 지지부(60)에 기판이 안착된 상태에서, 기판상에 인듐과 갈륨이 도핑된 아연 산화물(IGZO)이 증착되고, 증착이 완료되면 기판은 외부로 반출된다. 이러한 증착 사이클이 소정의 횟수만큼 행해진 후에, 챔버(10) 내부를 세정하기 위하여 챔버(10) 내부로 증착 공정 가스를 공급하지 않은 상태에서, 상술한 바와 같이, 제1 염소계 가스, 제2 염소계 가스 및 불활성 가스 등을 공급한다. 샤워 헤드(30)에 RF 전원이 인가되어 생성된 다이렉트 플라즈마내의 BCl 라디칼 및 Cl 라디칼 등이 챔버(10) 내부에서 금속 산화물 반도체 물질의 잔류막과 화학적으로 반응하여 잔류막이 에칭되어 제거된다. 이러한 세정 공정이 완료되고 나면, 제1 염소계 가스 및 제2 염소계 가스 등의 공급을 중단하고, 다시 기판을 챔버(10) 내부로 반입하여 증착 공정을 수행할 수 있다.
본 발명의 제1 실시예에 따른 챔버 세정 방법에 의하면, 빈번한 세정이 요구되는 IGZO와 같은 금속 산화물 반도체 물질의 증착 공정에서 챔버(10)를 진공 개방하지 않고 인시츄 건식 세정이 가능하게 되어, 작업 능률의 향상 및 높은 장치 재현성과 가동률을 확보할 수 있다. 특히, 기판 처리 공간내로 공급되는 복수의 염소계 가스의 유량비를 조절함으로써, IGZO 잔류막의 에칭 레이트를 극대화할 수 있다.
<제2 실시예>
도 4는 본 발명의 제2 실시예에 따른 기판 처리 장치의 개략적 단면도이다. 본 실시예의 기판 처리 장치는, 제1 실시예의 기판 처리 장치와 마찬가지로, IGZO와 같은 금속 산화물 반도체 물질을 증착하도록 구성될 수 있으며, IGZO 등의 증착 공정 후에, 이하 설명하는 바와 같이, 기판 처리 장치의 증착 챔버의 세정 공정을 수행할 수 있다.
본 발명의 제2 실시예의 기판 처리 장치는, 기판 처리 챔버의 세정을 위한 라디칼 등을 기판 처리 공간으로부터 분리된 원격 플라즈마 및 기판 처리 공간내의 다이렉트 플라즈마의 조합(소위, 하이브리드 플라즈마)에 의해 생성한다는 점에서 제1 실시예의 기판 처리 장치와 다르다. 이하, 제1 실시예와의 차이점을 중심으로 설명한다.
본 실시예의 기판 처리 장치는, 기판 처리 장치의 챔버 또는 기판 처리 공간으로부터 떨어진 공간에 원격 또는 리모트 플라즈마를 형성시키는 원격 플라즈마 소스(70)를 더 포함한다. 본 실시예에 있어서, 도 4에 도시한 바와 같이, 예컨대, 유도 결합형의 원격 플라즈마 소스(70)가 제1 염소계 가스원(20) 및 제2 염소계 가스원(25)과 샤워 헤드(30) 사이에 연결된다.
또한, 본 실시예의 기판 처리 장치에서는, 샤워 헤드(30)에 제1 전력 공급부(40)가 접속되며, 기판 지지부(60)는 접지된다. 다만, 본 발명은 이에 한정되지 않으며, 기판 지지부(60)는 제1 실시예에서와 마찬가지로, DC 바이어스 전원과 같은 제2 전원 공급부(미도시)에 접속되어도 된다.
기판 처리 챔버에서 기판(S)을 처리(예컨대, 증착)하는 동안, 제1 염소계 가스, 제2 염소계 가스가 후술하는 바와 같이 소정의 유량비로 원격 플라즈마 소스(70)에 공급된다. 이 때, 복수의 염소계 가스 이외에 Ar 등의 불활성 가스가 함께 공급될 수 있다.
원격 플라즈마 소스(70)는, 공급되는 복수의 염소계 가스 및 Ar 가스 등을 활성화 내지 이온화하기 위해, 원격으로(즉, 기판 처리 공간 외에서) 플라즈마를 생성한다. 원격 플라즈마 소스(70)에 의해 생성된 라디칼 및 이온을 포함하는 세정 가스 혼합물은 샤워 헤드(30)를 통해 기판 처리 공간내로 공급된다.
본 실시예에 있어서, 기판 처리 공간으로 공급된 세정 가스 혼합물은, 기판 처리 공간내에서 제1 전력 공급부(40)에 의해 샤워 헤드(30)에 공급되는 RF 전력에 의해 추가로 활성화될 수 있다.
이처럼, 하이브리드 플라즈마(원격 플라즈마 및 다이렉트 플라즈마)에 의해 활성화된 세정 가스는, Cl 라디칼, BCl 라디칼, B 라디칼, Ar 이온 등을 포함한다. 이 중, Cl 라디칼 및 BCl 라디칼은 금속 산화물 반도체 물질의 잔류막과 반응하여 휘발성 생성물을 형성한다. 이러한 휘발성 생성물이 기판 처리 챔버로부터 제거됨으로써, 기판 처리 챔버의 세정이 행해진다.
도 5는, 제2 실시예의 기판 처리 장치의 챔버로부터 잔류 금속 산화물 반도체막을 제거하여 챔버를 세정하는데 사용될 수 있는 방법의 흐름도이다.
단계 S11에서, 기판 처리 장치의 챔버내에 배치된 기판(S)상에 IGZO 재료가 증착된다. 기판(S)상에 IGZO 재료가 증착되는 동안, IGZO 재료는, 기판 처리 챔버의 다른 부품들, 예컨대, 샤워 헤드(30), 기판 지지부(60), 챔버(10)의 내부 측벽 등에 증착될 수 있다.
IGZO 재료는, 예컨대, CVD(chemical vapor deposition) 프로세스, PECVD(plasma-enhanced chemical vapor deposition) 프로세스, ALD(atomic layer deposition) 프로세스, MOCVD(metal-organic chemical vapor deposition) 프로세스 및 PVD(physical vapor deposition) 프로세스를 사용하여 증착될 수 있다.
증착 완료 후에, 기판(S)은 기판 처리 챔버의 밖으로 배출된다. 다만, 본 발명은 이에 한정되지 않으며, 기판(S)은 후술하는 세정 공정동안 기판 처리 챔버에 계속 유지될 수도 있다.
단계 S11이 진행되는 동안, 또는 그 전후하여, 단계 S12에서, 제1 염소계 가스원(20) 및 제2 염소계 가스원(25)으로부터 복수의 염소계 가스가 원격 플라즈마 소스(70)에 소정의 유량비로 공급되며, 원격 플라즈마 소스(70)에 의해 생성된 원격 플라즈마에 의해 복수의 염소계 가스가 활성화(제1 활성화 단계)된다. 본 실시예에 있어서, 제1 염소계 가스는 BCl3이며, 제2 염소계 가스는 Cl2이다. 따라서, 단계 S13에서 원격 플라즈마 소스(70)로부터 기판 처리 챔버내로 유입되는 세정가스는, BCl 라디칼, Cl 라디칼을 포함한다.
단계 S12에서는, 제1 염소계 가스 및 제2 염소계 가스를 포함하는 복수의 염소계 가스 이외에 Ar과 같은 불활성 가스가 함께 공급될 수 있다. 불활성 가스는 라디칼의 수명을 연장시키고 밀도를 증가시킬 수 있다.
단계 S13에서, 원격 플라즈마 소스(70)로부터 기판 처리 챔버 안으로 복수의 염소계 가스의 라디칼을 포함하는 세정가스 혼합물이 공급된다. 세정가스 혼합물은 원격 플라즈마에 의해 활성화된 것이다. 즉, 단계 S13에서 기판 처리 챔버 내로 유입되는 세정가스의 라디칼 혼합물은, 예컨대, 단계 S12의 제1 활성화 단계에 의해 활성화된 것이다.
또한, 단계 S13에서 기판 처리 챔버 내로 유입되는 세정가스 혼합물은 Ar과 같은 불활성 가스의 이온을 더 포함할 수 있다. 다만, 본 발명은 이에 한정되지 않고, Ar은 후술하는 단계 S14에서, 도시하지 않은 Ar 가스원으로부터 기판 처리 공간으로 직접 공급되어 다이렉트 플라즈마에 의해 이온화될 수도 있다.
단계 S14에서, 원격 플라즈마 소스(70)로부터 기판 처리 챔버의 기판 처리 공간내로 도입된 세정 가스 혼합물은 다이렉트 플라즈마에 의해 다시 한번 활성화된다(제2 활성화 단계). 다이렉트 플라즈마는 전술한 바와 같이, 제1 전력 공급원(40)에 의해 샤워 헤드(30)에 RF 전력을 인가함으로써 생성된다.
단계 S15에서, 하이브리드 플라즈마(원격 플라즈마와 다이렉트 플라즈마)에 의해 생성된 염소계 라디칼(BCl 라디칼, Cl 라디칼 등)에 의해 기판 처리 챔버내의 금속 산화물 반도체 잔류막이 제거된다. 본 발명자들이 예의 실험한 결과, 하이브리드 플라즈마에 의해 활성화된 세정가스는 제1 염소계 가스와 제2 염소계 가스의 유량에 따라 서로 다른 라디칼 농도 분포를 가지며, 이에 따라 서로 다른 세정 레이트를 달성할 수 있다.
도 6은, 제1 염소계 가스와 제2 염소계 가스의 유량비에 따른 세정 레이트를 나타낸 그래프이다. 여기서, 제1 염소계 가스는 BCl3이고 제2 염소계 가스는 Cl2이다. 인가된 RF 전력은 700W이고, 압력은 10mTorr이며, DC 바이어스는 인가하지 않은 상태에서 세정 레이트를 측정하였다.
도 6에 도시한 바와 같이, 제1 염소계 가스와 제2 염소계 가스의 유량비에 따라, 세정 레이트가 달라진다. 특히, 제1 염소계 가스와 제2 염소계 가스의 유량비가 1:2인 경우에 세정 레이트가 극대화됨을 알 수 있다. 본 발명자들이 측정한 바에 따르면, 제2 실시예에서 하이브리드 플라즈마에 의해 복수의 염소계 가스를 활성화하는 경우, 제1 실시예와 달리, B 라디칼, Cl 라디칼, Ar 라디칼의 농도가 증가하고, BCl 라디칼의 농도가 감소하는 것으로 확인되었다. 즉, 제2 실시예에 있어서는, Cl 라디칼의 농도가 증가하지만, BCl 라디칼의 농도는 감소하며, 대신 B 라디칼의 농도가 증가한다. B 라디칼은 금속 산화물 반도체 잔류막의 산소 성분과 반응하여 B2O3 막을 형성하여 금속 산화물 반도체 잔류막의 에칭을 방해한다. 이것이, 제2 실시예에서 세정 레이트가 극대화되는 유량비가 제1 실시예와 다른 이유의 하나로 추측된다.
도 6은 제1 염소계 가스 및 제2 염소계 가스가 각각 BCl3 및 Cl2인 경우이나, 본 발명은 이에 한정되지 않는다. 즉, 제1 염소계 가스 및 제2 염소계 가스를 어떤 염소계 가스를 사용하는가에 따라 유량비에 따른 세정 레이트가 다른 거동을 보일 수 있으며, 세정 레이트가 극대화되는 유량비가 1:2가 아닌 다른 비율일 수도 있다.
단계 S16에서, 가스 상태인 휘발성 생성물은, 기판 처리 챔버의 밖으로 퍼징된다. 퍼지 가스를 기판 처리 챔버 안으로 유동시킴으로써, 기판 처리 챔버는 능동적으로 퍼징될 수 있다. 퍼지 가스를 유입시킴과 함께 기판 처리 챔버로부터 임의의 부산물들 뿐만 아니라 임의의 잔류 세정 가스를 제거하기 위하여, 기판 처리 챔버를 감압시킬 수 있다. 기판 처리 챔버를 진공배기함으로써, 기판 처리 챔버는 퍼징될 수 있다.
이상 설명한 바와 같이, 어떤 염소계 가스를 사용하는가에 따라, 그리고, 복수의 서로 다른 염소계 가스를 어떤 플라즈마에 의해 활성화하는가에 따라 유량비에 따른 세정 레이트의 거동이 달라질 수 있으며, 본 발명에 따르면, 사용되는 복수의 염소계 가스의 종류, 플라즈마 활성화 방식 및 염소계 가스의 유량비를 조절하여 IGZO와 같은 금속 산화물 반도체 물질의 증착 챔버의 세정 레이트를 극대화할 수 있다.

Claims (8)

  1. 금속 산화물 반도체 물질을 증착하는 증착 챔버를 세정하기 위한 방법으로서,
    제1 염소계 가스와 제2 염소계 가스를 포함하는 복수의 염소계 가스를 활성화시키는 활성화 단계,
    상기 활성화 단계에서 생성된 복수의 염소계 가스의 라디칼(radical)에 의해 상기 증착 챔버를 세정하는 세정 단계를 포함하며,
    상기 라디칼은, 제1 염소계 가스로부터 생성되어 금속 산화물 반도체 물질과 반응하는 제1 염소계 라디칼과, 제2 염소계 가스로부터 생성되어 금속 산화물 반도체 물질과 반응하며, 제1 염소계 라디칼과 다른 제2 염소계 라디칼을 포함하며,
    상기 활성화 단계에서는 제1 염소계 라디칼과 제2 염소계 라디칼의 농도의 곱이 최대가 되도록, 상기 제1 염소계 가스와 상기 제2 염소계 가스의 유량비를 제어하는 것을 특징으로 하는 세정 방법.
  2. 제1항에 있어서,
    상기 제1 염소계 가스 및 제2 염소계 가스는 각각 Cl2, BCl3, ClF3, ClF4, HCl, CCl4, CoCl2 및 TiCl4 로 이루어지는 염소계 가스군으로부터 선택되며, 상기 제1 염소계 가스 및 상기 제2 염소계 가스는 서로 다른 염소계 가스인 것을 특징으로 하는 세정 방법.
  3. 제2항에 있어서,
    상기 제1 염소계 가스는 BCl3이며, 상기 제1 염소계 라디칼은 BCl인 것을 특징으로 하는 세정 방법.
  4. 제3항에 있어서,
    상기 제2 염소계 가스는 Cl2이고, 상기 제2 염소계 라디칼은 Cl인 것을 특징으로 하는 세정 방법.
  5. 제2항에 있어서,
    상기 활성화 단계는, 다이렉트 플라즈마에 의해 상기 복수의 염소계 가스를 활성화시키는 것을 특징으로 하는 세정 방법.
  6. 제5항에 있어서,
    상기 제1 염소계 가스는 BCl3이고, 상기 제2 염소계 가스는 Cl2이며,
    상기 활성화 단계에서는, BCl3와 Cl2의 유량비가 1:1이 되도록 BCl3와 Cl2를 각각 상기 증착 챔버로 공급하는 것을 특징으로 하는 세정 방법.
  7. 제2항에 있어서,
    상기 활성화 단계는, 리모트 플라즈마에 의한 제1 활성화 단계 및 다이렉트 플라즈마에 의한 제2 활성화 단계를 포함하는 것을 특징으로 하는 세정 방법.
  8. 제7항에 있어서,
    상기 제1 염소계 가스는 BCl3이고, 상기 제2 염소계 가스는 Cl2이며,
    상기 제1 활성화 단계에서는, BCl3와 Cl2의 유량비가 1:2이 되도록 BCl3와 Cl2를 공급하는 것을 특징으로 하는 세정 방법.
PCT/KR2021/017073 2021-01-12 2021-11-19 금속산화물 반도체 물질의 증착 챔버의 세정 방법 WO2022154240A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210003791A KR20220101830A (ko) 2021-01-12 2021-01-12 금속산화물 반도체 물질의 증착 챔버의 세정 방법
KR10-2021-0003791 2021-01-12

Publications (1)

Publication Number Publication Date
WO2022154240A1 true WO2022154240A1 (ko) 2022-07-21

Family

ID=82447456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017073 WO2022154240A1 (ko) 2021-01-12 2021-11-19 금속산화물 반도체 물질의 증착 챔버의 세정 방법

Country Status (2)

Country Link
KR (2) KR20220101830A (ko)
WO (1) WO2022154240A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050050579A (ko) * 2003-11-26 2005-05-31 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 고유전율 물질의 에칭 방법 및 고유전율 물질용 증착챔버의 세정 방법
KR20070097875A (ko) * 2006-03-30 2007-10-05 삼성전자주식회사 챔버 세정 방법 및 이를 수행하기 위한 챔버 세정 장치
KR20130061075A (ko) * 2011-11-30 2013-06-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
KR20170081554A (ko) * 2016-01-04 2017-07-12 가부시키가이샤 히다치 하이테크놀로지즈 플라스마 처리 방법
JP2019041124A (ja) * 2011-12-23 2019-03-14 株式会社半導体エネルギー研究所 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050050579A (ko) * 2003-11-26 2005-05-31 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 고유전율 물질의 에칭 방법 및 고유전율 물질용 증착챔버의 세정 방법
KR20070097875A (ko) * 2006-03-30 2007-10-05 삼성전자주식회사 챔버 세정 방법 및 이를 수행하기 위한 챔버 세정 장치
KR20130061075A (ko) * 2011-11-30 2013-06-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
JP2019041124A (ja) * 2011-12-23 2019-03-14 株式会社半導体エネルギー研究所 半導体装置
KR20170081554A (ko) * 2016-01-04 2017-07-12 가부시키가이샤 히다치 하이테크놀로지즈 플라스마 처리 방법

Also Published As

Publication number Publication date
KR20220101830A (ko) 2022-07-19
KR20230160216A (ko) 2023-11-23

Similar Documents

Publication Publication Date Title
US10998187B2 (en) Selective deposition with atomic layer etch reset
KR100267418B1 (ko) 플라스마처리방법및플라스마처리장치
KR101265827B1 (ko) 웨이퍼의 베벨 에지 및 이면상의 필름들을 제거하는 장치및 방법들
KR100855597B1 (ko) 육불화황 원격 플라즈마 소스 세정
KR20210031532A (ko) 챔버로부터 SnO2 막을 세정하는 방법
US20180308687A1 (en) Euv photopatterning and selective deposition for negative pattern mask
KR101870491B1 (ko) 플라즈마 처리 장치, 기판 처리 시스템, 박막 트랜지스터의 제조 방법 및 기억 매체
CN112259457B (zh) 等离子体蚀刻方法、等离子体蚀刻装置和基板载置台
US20200194272A1 (en) Etching carbon layer using doped carbon as a hard mask
JP6760439B2 (ja) 薄膜トランジスターの製造方法及び記憶媒体
US20210017643A1 (en) Chamfer-less via integration scheme
US20220157617A1 (en) Reducing roughness of extreme ultraviolet lithography resists
US20120222752A1 (en) Method extending the service interval of a gas distribution plate
US20240038539A1 (en) Selective processing with etch residue-based inhibitors
US8052887B2 (en) Substrate processing apparatus
WO2022154240A1 (ko) 금속산화물 반도체 물질의 증착 챔버의 세정 방법
TWI743155B (zh) 電漿蝕刻方法及電漿蝕刻系統
KR20180124773A (ko) 플라즈마 처리 장치의 세정 방법
WO2019156489A1 (ko) 챔버 세정 장치 및 챔버 세정 방법
KR20070036912A (ko) 유기물 발광 다이오드 및 액정표시 장치 제조용 플라즈마화학 증착 장비
JP2001284330A (ja) 半導体装置の製造方法、及び製造装置
KR20200094664A (ko) 에칭 방법, 플라즈마 처리 장치, 및 처리 시스템
JP3754157B2 (ja) プラズマ処理方法およびプラズマ処理装置
KR20220144570A (ko) 금속산화물 반도체 물질의 증착 챔버의 세정 방법
WO2022255833A1 (ko) 박막 증착 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919864

Country of ref document: EP

Kind code of ref document: A1