WO2022152341A1 - Batterie redox à circulation - Google Patents

Batterie redox à circulation Download PDF

Info

Publication number
WO2022152341A1
WO2022152341A1 PCT/DE2021/100818 DE2021100818W WO2022152341A1 WO 2022152341 A1 WO2022152341 A1 WO 2022152341A1 DE 2021100818 W DE2021100818 W DE 2021100818W WO 2022152341 A1 WO2022152341 A1 WO 2022152341A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
redox flow
flow battery
electrode
substrate
Prior art date
Application number
PCT/DE2021/100818
Other languages
German (de)
English (en)
Inventor
Florian Doerrfuss
Jan Martin STUMPF
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102021126138.4A external-priority patent/DE102021126138A1/de
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to EP21798558.9A priority Critical patent/EP4278402A1/fr
Publication of WO2022152341A1 publication Critical patent/WO2022152341A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying

Definitions

  • the invention relates to a redox flow battery comprising at least one electrode, the electrode comprising a metallic substrate, a coating being formed at least partially on a surface of the substrate.
  • redox flow batteries are used in a stationary manner, for example as domestic energy storage for single-family houses or entire blocks of flats. Furthermore, redox flow batteries can also be used in power plants for intermediate storage of generated electrical energy.
  • a redox flow battery also known as a redox flow battery, stores electrical energy in chemical compounds in which the reactants are dissolved in a solvent.
  • a redox flow battery stores electrical energy in chemical compounds in which the reactants are dissolved in a solvent.
  • two energy-storing electrolytes circulate in two separate circuits, between which the ion exchange in the cell takes place via an ion-conducting membrane.
  • the energy-storing electrolytes are stored outside the cell in separate tanks.
  • Redox flow batteries are based on the principle that two electrolytes flow through the half-cells of an electrochemical cell, i.e. the battery cell, and change their oxidation state on the surface of the electrodes. The electrons given off or taken up during the half-cell reactions do work via the external circuit.
  • the electrodes may be formed of metal, diamond, or indium tin oxide. The electrodes are either applied to a suitable substrate by means of coating methods such as CVD or PVD, or are produced separately and pressed onto the substrate.
  • Metallic plates that are coated using the PVD process usually do not have a completely dense layer, so that the base material, i.e. the metallic plate, is not completely protected by the layer from an aggressive electrolyte. This reduces the efficiency and service life of the electrode and thus of the entire battery cell.
  • WO 2018/146342 A1 discloses various lignin-based electrolyte compositions for use in redox flow batteries.
  • the publication "A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries", Aaron Hollas et al., Nature energy, Vol. 3, June 2018, pages 508 - 514 describes anolytes for redox flow batteries Based on aqueous "organic” electrolytes or based on aqueous electrolytes with a redox-active organic species. These are becoming increasingly important.
  • the object of the present invention is to provide a redox flow battery comprising at least one electrode with an electrolyte-tight coating.
  • the production costs are to be reduced and the efficiency and service life or operating times are to be increased.
  • the redox flow battery comprises at least one electrode, the electrode comprising a metallic substrate, a coating being formed at least partially on a surface of the substrate.
  • the coating is formed by applying powder material using an aerosol coating process and is therefore designed to be electrolyte-tight.
  • the aerosol coating process also known as the aerosol deposition method, is a dry spray coating process for producing dense layers directly from the powder material.
  • the aerosol consists of the powder material and a carrier gas.
  • the carrier gas can be O2, N2 or He, for example.
  • a process temperature of 100° C. is preferably not exceeded during the aerosol coating process.
  • the process temperature essentially corresponds to the room temperature.
  • the aerosol coating process is not a high-temperature process, but is carried out particularly at room temperature.
  • the substrate is placed in a vacuum chamber during the aerosol coating process whereby the powder material is deposited onto the surface of the substrate via the carrier gas.
  • the powder material is combined with the carrier gas in a powder aerosol manufacturing unit. mixes and in this way the aerosol for the coating process is produced.
  • the powder material is preferably solvent-free for the aerosol coating process.
  • the surface of the substrate can be coated either completely or only partially.
  • a mask can be used, which masks off sections of the surface of the substrate that are not to be coated and thus prevents a coating at these locations.
  • the substrate is made of a steel alloy, a copper-tin alloy, an aluminum alloy or a silver alloy.
  • a low-alloy steel is provided as the substrate. A cost saving can be achieved as a result.
  • the coating is formed at least partially or entirely from copper, tin, titanium, carbon and/or nickel.
  • the material or the composition of the powder material required to form the coating does not require any appreciable corrosion resistance, but good electrical conductivity, ie low electrical resistance, is advantageous. As a result, the efficiency of the electrode can be further increased.
  • the coating is designed as a CuSn6 coating, CuSn8 coating, titanium-carbon coating, tin coating or nickel coating.
  • a coating offers adequate protection against corrosion in the electrolyte. As a result, the efficiency of the electrode can be further increased.
  • the coating is formed with a layer thickness of at least 5 nm to at most 500 nm.
  • the layer thickness is preferably at least 50 nm to at most 250 nm.
  • the layer thickness can be determined by means of light microscopic methods. In particular, ground samples can be taken and etched for this purpose in order to determine the layer thickness.
  • a layer thickness in the aforementioned range offers adequate protection against corrosion in the electrolyte. As a result, the efficiency of the electrode can be further increased. Due to the small possible thickness of the electrode, small redox flow batteries can be produced which also have a low production price. For example, more than 10, in particular more than 50, electrically connected redox flow cells are used to form a redox flow battery.
  • Electrochemical Stability pH range: 1 -14
  • DHPS 7,8-dihydroxyphenazine-2-sulfonic acid
  • Electrolyte combinations with aqueous electrolytes with a redox-active organic and/or metallic species on the anolyte side are preferably used here to form a redox flow battery. Further measures improving the invention are presented in more detail below together with the description of preferred exemplary embodiments of the invention with reference to the figures. Show it
  • FIG. 1 shows a schematic block diagram of a method for producing an electrode for a redox flow battery
  • FIG. 2 shows a highly simplified representation of a device for carrying out the aerosol coating process
  • FIG. 3 shows a greatly simplified representation of a formed electrode of a redox flow battery
  • FIG. 4 shows a three-dimensional representation of an electrode
  • FIG. 5 shows a redox flow battery
  • FIG. 1 a method for producing an electrode 1 of a redox flow battery is visualized according to a block diagram. A section of the electrode 1 is shown in greatly simplified form in FIG.
  • a metallic substrate 2 and a powder material 3 are provided in a first method step 100 .
  • the substrate 2 consists of a steel alloy that has no appreciable corrosion resistance, but has good electrical conductivity, ie a low electrical resistance.
  • the powdered material 3 essentially consists of the elements copper and tin, with the powdered material 3 being produced by powdering a copper-tin alloy. Small amounts of impurities and other alloying elements can therefore be contained in the powder material 3, although these are not further considered in the present case.
  • a coating 4 is formed from the powder material 3 on a surface of the substrate 2 by means of an aerosol coating method in order to produce the electrode 1.
  • FIG. 2 shows a device 5 for carrying out the aerosol coating process in a greatly simplified manner.
  • the substrate 2 is placed on a holding element 7 within a vacuum chamber 6 .
  • the aerosol coating process is carried out at room temperature, whereby a process temperature of approx. 50°C is not exceeded.
  • the device 5 comprises a gas reservoir 8 for providing a carrier gas for the aerosol coating process, a control device 9 for controlling at least one flow rate of the carrier gas, a powder aerosol production unit 10 for mixing the carrier gas with the powder material 3 and a vacuum pump 11 for creating a negative pressure in of the vacuum chamber 6.
  • the gas reservoir s, control device 9, powder aerosol production unit 10 and vacuum chamber 6 are connected to one another via fluid-carrying connecting lines 12.
  • the carrier gas is mixed with the powder material 3, the powder material 3 being present without solvent.
  • a nozzle 13 which deposits the aerosol, ie the carrier gas/powder material mixture, from the powder aerosol production unit 10 onto the substrate 2 in the vacuum chamber 6 .
  • the powder material 3 is thus deposited via the carrier gas onto the surface of the substrate 2 and forms a dense and firmly adhering coating 4 there, as shown in an enlarged view in FIG.
  • FIG. 3 shows a greatly simplified and enlarged sectional representation of a section of the electrode 1 formed.
  • the coating 4 has a layer thickness of approximately 50 nm, for example, and is designed to protect the substrate 2 from corrosion in an electrolyte, in particular an organic electrolyte, and thus to increase the efficiency and service life of the battery cell.
  • FIG. 4 shows an electrode 1 in a three-dimensional view, comprising a metallic substrate 2 in the form of a metal sheet made of an aluminum alloy, which has the coating 4 .
  • a metallic substrate 2 in the form of a metal sheet made of an aluminum alloy, which has the coating 4 .
  • the substrate 2 there is a three-dimensional structure for the formation of a flow field 20 with flow guide structures, so that the surface of the electrode 1 is enlarged in this area, which in an electrolyte (anolyte or catholyte) flows against a redox flow battery (compare FIG. 5).
  • FIG. 5 schematically shows a redox flow battery 14 with a single redox flow cell.
  • the redox flow cell comprises two components in the form of electrodes 1a, 1b, a first reaction space 16a and a second reaction space 16b, each reaction space 16a, 16b being in contact with one of the electrodes 1a, 1b.
  • the reaction spaces 16a, 16b are separated from one another by the ion exchange membrane 15.
  • a liquid anolyte 17a is pumped from a tank 19a via a pump 18a into the first reaction chamber 16a and passed between the electrode 1a and the ion exchange membrane 15.
  • a liquid catholyte 17b is pumped from a tank 19b via a pump 18b into the second reaction chamber 16b and passed between the electrode 1b and the ion exchange membrane 15.
  • An ion exchange takes place across the ion exchange membrane 15, electrical energy being released due to the redox reaction at the electrodes 1a, 1b.
  • Aqueous organic electrolytes are used here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une batterie redox à circulation (14) comprenant au moins une électrode (1, 1a, 1b), l'électrode (1, 1a, 1b) comprenant un substrat métallique (2), un revêtement (4) étant réalisé au moins en partie sur une surface dudit substrat (2), ledit revêtement (4) étant formé par application d'une matière en poudre (3) au moyen d'un procédé d'application de revêtement par aérosol.
PCT/DE2021/100818 2021-01-13 2021-10-11 Batterie redox à circulation WO2022152341A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21798558.9A EP4278402A1 (fr) 2021-01-13 2021-10-11 Batterie redox à circulation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102021100504 2021-01-13
DE102021100504.3 2021-01-13
DE102021126138.4A DE102021126138A1 (de) 2021-01-13 2021-10-08 Redox-Flussbatterie
DE102021126138.4 2021-10-08

Publications (1)

Publication Number Publication Date
WO2022152341A1 true WO2022152341A1 (fr) 2022-07-21

Family

ID=78401986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2021/100818 WO2022152341A1 (fr) 2021-01-13 2021-10-11 Batterie redox à circulation

Country Status (2)

Country Link
EP (1) EP4278402A1 (fr)
WO (1) WO2022152341A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140009A (ja) * 2004-11-11 2006-06-01 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池用金属セパレータ及びその製造方法
WO2010094657A1 (fr) 2009-02-18 2010-08-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procédé de stockage d'énergie électrique dans des liquides ioniques
DE102014109321A1 (de) * 2014-07-03 2016-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung einer Bipolarplatte, Bipolarplatte für eine elektrochemische Zelle und elektrochemische Zelle
WO2018146342A1 (fr) 2017-02-13 2018-08-16 Cmblu Projekt Ag Électrolyte de batterie redox

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140009A (ja) * 2004-11-11 2006-06-01 Mitsubishi Heavy Ind Ltd 固体高分子電解質燃料電池用金属セパレータ及びその製造方法
WO2010094657A1 (fr) 2009-02-18 2010-08-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procédé de stockage d'énergie électrique dans des liquides ioniques
DE102014109321A1 (de) * 2014-07-03 2016-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung einer Bipolarplatte, Bipolarplatte für eine elektrochemische Zelle und elektrochemische Zelle
WO2018146342A1 (fr) 2017-02-13 2018-08-16 Cmblu Projekt Ag Électrolyte de batterie redox
US20190393506A1 (en) * 2017-02-13 2019-12-26 Cmblu Projekt Ag Redox Flow Battery Electrolytes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AARON HOLLAS ET AL., NATURE ENERGY, 3 June 2018 (2018-06-03), pages 508 - 514

Also Published As

Publication number Publication date
EP4278402A1 (fr) 2023-11-22

Similar Documents

Publication Publication Date Title
DE112006000345B4 (de) Brennstoffzelle mit leitender hydrophiler Strömungsfeldplatte und deren Verwendung
EP1409767B1 (fr) Preparation par electrochimie d'acide peroxo-pyrosulfurique a l'aide d'electrodes diamantees
DE112006000613B4 (de) Metalloxidbasierte hydrophile Beschichtungen für Bipolarplatten für PEM-Brennstoffzellen und Verfahren zu ihrer Herstellung
DE102007026339B4 (de) Brennstoffzelle mit einer Strömungsfeldplatte, Verfahren zum Herstellen einer solchen Strömungsfeldplatte und Verwendung vorgenannter Brennstroffzelle
DE102007037246B4 (de) Verfahren zum recyceln einer beschichteten bipolaren platte aus rostfreiem stahl
DE102004050921A1 (de) Elektrisches Kontaktelement und bipolare Platte
DE102016209742A1 (de) Rolle-zu-Rolle-Herstellung einer Hochleistungs-Brennstoffzellenelektrode mit Kern-Schale-Katalysator unter Verwendung von gesäten Elektroden
DE102016221395A1 (de) Bipolarplatte und poröse Transportschicht für einen Elektrolyseur
DE102008055808A1 (de) Hydrophile Behandlung von Bipolarplatten für einen stabilen Brennstoffzellenstapelbetrieb bei Niedrigleistung
WO2023025426A1 (fr) Cellule d'électrolyse pour électrolyse à membrane électrolytique polymère et revêtement
WO2022105960A1 (fr) Composant pour une cellule électrochimique, cellule à flux redox, pile à combustible et électrolyseur
DE112007000607B4 (de) Brennstoffzellenseparator und Verfahren zur Herstellung eines Brennstoffzellenseperators
EP4014271B1 (fr) Unité d'électrode et cellule à flux redox
EP3456866A1 (fr) Procédé de fabrication d'un interconnecteur, interconnecteur et son utilisation
EP4278402A1 (fr) Batterie redox à circulation
DE102021126138A1 (de) Redox-Flussbatterie
EP4248506A1 (fr) Élément constitutif d'une cellule redox ainsi que cellule redox et batterie à circulation
DE19720688C1 (de) Verfahren zur Herstellung einer Elektroden-Festelektrolyt-Einheit mit einer katalytisch aktiven Schicht
DE102008060638B4 (de) Verfahren zum Behandeln von Nanopartikeln unter Verwendung einer Protonenaustauschmembran- und Flüssigelektrolytzelle
DE102021126534B4 (de) Elektrodenplatte für eine elektrochemische Zelle, Redox-Flow-Zelle sowie Redox-Flow-Batterie
DE102020130693A1 (de) Bauteil für eine elektrochemische Zelle, sowie Redox-Flow-Zelle, Brennstoffzelle und Elektrolyseur
DE112014006237B4 (de) Brennstoffzellen-Anschlussstück umfassend eine Beschichtung um die Möglichkeit eines elektrischen Kurzschlusses zu reduzieren
DE2424126A1 (de) Bipolare elektroden
DE102022110114A1 (de) Redox-Flusszelle
DE102021124470A1 (de) Elektrode, Redox-Flow-Zelle sowie Redox-Flow-Batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21798558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021798558

Country of ref document: EP

Effective date: 20230814