WO2022105960A1 - Composant pour une cellule électrochimique, cellule à flux redox, pile à combustible et électrolyseur - Google Patents

Composant pour une cellule électrochimique, cellule à flux redox, pile à combustible et électrolyseur Download PDF

Info

Publication number
WO2022105960A1
WO2022105960A1 PCT/DE2021/100894 DE2021100894W WO2022105960A1 WO 2022105960 A1 WO2022105960 A1 WO 2022105960A1 DE 2021100894 W DE2021100894 W DE 2021100894W WO 2022105960 A1 WO2022105960 A1 WO 2022105960A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
component
tin
metal substrate
cell
Prior art date
Application number
PCT/DE2021/100894
Other languages
German (de)
English (en)
Inventor
Ladislaus Dobrenizki
Mehmet OETE
Bertram Haag
Jan-Peter Viktor SCHINZEL
Jeevanthi VIVEKANANTHAN
Jan Martin STUMPF
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2022105960A1 publication Critical patent/WO2022105960A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Component for an electrochemical cell as well as a redox flow cell, fuel cell and electrolyser
  • the invention relates to a component for an electrochemical cell comprising a metal substrate and a layer system applied at least partially to the metal substrate, the layer system comprising a first layer arranged on the metal substrate and a second layer arranged on the first layer.
  • the invention also relates to electrochemical cells in the form of redox flow cells, electrolyzers and fuel cells.
  • Hydrogen represents an important raw material for key technologies with regard to future energy storage and energy conversion.
  • Water electrolysis is based on the decomposition of water into the components hydrogen (H2) and oxygen (O2).
  • a hydrogen-powered fuel cell generates electrical energy from the hydrogen.
  • a reduction in the hydrogen production costs by electrolysers comprising a polymer electrolyte membrane (PEM-EL) and a reduction in the production costs of the components of a fuel cell comprising a polymer electrolyte membrane (PEM-BZ) represent a basic requirement for future efficient use of these systems.
  • the main components of a PEM Electrolyzer stacks/PEM fuel cell stacks are the bipolar plates (BiP), the current collectors or fluid diffusion layers and the membrane electrode unit (MEA).
  • bipolar plates account for a not inconsiderable proportion of the manufacturing costs of the respective stacks.
  • the essential requirements for the components, such as the bipolar plates and fluid diffusion layers, are high corrosion resistance combined with low substrate and interface resistances.
  • Titanium and stainless steel plates are the state of the art in electrolysis. While the field of application of stainless steel plates on the anode side is limited to a pH range of around 7 due to the high oxidation potential present, titanium plates can be used over a wide pH range from 1 to 7. On the cathode side, titanium proves to be disadvantageous since it tends to become hydrogen embrittlement. Furthermore, the operation of electrolyser stacks with titanium plates shows an increase in the ohmic see losses due to surface passivation. against this background, the use of niobium, platinum or gold coatings on titanium plates is known. Extensive use of stainless steel to form a bipolar plate requires the use of an electrochemically stable, conductive and, in particular, dense, impenetrable coating. In particular, tightness with respect to aqueous electrolytes should be achieved.
  • Flow battery systems as storage systems also enable a sustainable energy supply for stationary and mobile fields of application using renewable energies.
  • the aim is to make battery stacks as compact as possible.
  • high power densities pose major challenges for the individual components of a battery stack.
  • a new approach here is a metallic electrode with a structured geometry to ensure homogeneous distribution of an electrolyte in the active area and at the same time enable small distances to the membrane.
  • metallic electrodes require corresponding surface properties that meet the high requirements of electrochemical stability, low interfacial resistance and catalytic activity.
  • composite plates comprising plastic and graphite (thickness ⁇ 0.5-0.6 mm) with a carbon black active coating applied on both sides (thickness ⁇ 0.1-0.3 mm) are often used as electrodes is applied dry-pressed or wet-chemically. This results in a total plate thickness of the electrode of ⁇ 0.7-1.2 mm.
  • thicknesses of ⁇ 0.5 mm can be achieved over a large area. It can also be assumed that the processability of large-area metallic plates is more favorable compared to injection-moulded plastic frames with graphite-based electrodes.
  • Electrochemical stability pH range: 1 -14
  • US 2018/0 151 891 A1 discloses an anti-corrosion structure comprising an aluminum layer, an intermediate layer of an alloy containing nickel, tin and aluminum applied thereto and an anti-corrosion layer of an alloy containing nickel and tin applied to the intermediate layer.
  • the anti-corrosion structure is used as a bipolar plate in a fuel cell.
  • JP 2011 198 573 A describes a separator for a fuel cell with a substrate made of aluminum or an aluminum alloy, a copper layer formed thereon, a tin layer formed on the copper layer and a metal layer formed on the tin layer, which consists of at least one of the elements from the group consisting of titanium , vanadium, chromium, zirconium, niobium, molybdenum, hafnium, tantalum, tungsten.
  • JP 2010 272 429 A discloses a separator for a fuel cell with a substrate made of copper or a copper alloy and a coating made of tin or a tin alloy.
  • EP 3 469 646 B1 describes a coated object for an electrochemical device, in particular a PEM fuel cell.
  • the object around summarizes on a substrate, for example made of stainless steel, a layer of a binary or ternary tin alloy comprising one or two of the elements of the group nickel, antimony, indium, gallium.
  • a coating comprising elemental carbon and an azole-containing corrosion inhibitor is formed on the layer.
  • the object is achieved for the component of an electrochemical cell, comprising a metal substrate and a layer system applied at least partially to the metal substrate, the layer system comprising a first layer arranged on the metal substrate and a second layer arranged on the first layer, in that the first layer is formed of copper or nickel and the second layer of a copper-tin alloy or a tin-nickel alloy or a tin-silver alloy or a tin-zinc alloy or a tin-bismuth alloy or a tin-antimony alloy and wherein the metal substrate is formed of stainless steel.
  • Such components have excellent electrochemical stability, as is required in electrochemical cells. Because of the low interfacial resistances, such components are particularly suitable for the construction of electrodes of a redox flow cell, of bipolar plates for fuel cells and electrolyzers, and of fluid diffusion layers of electrolyzers.
  • the materials tin and nickel proved to be thermodynamically stable over a wide pH range due to the formation of oxides.
  • SnCu in particular has proven to be an efficient material composition in the redox flow cell when alkaline electrolytes are used.
  • the first layer is made of copper or nickel. This ensures good adhesion of the layer system to the stainless steel metal substrate.
  • the metal substrate is preferably formed from grade 1.4404 stainless steel.
  • the first layer and/or the second layer is/are preferably formed by galvanic deposition. Electrolyte-tight layers with a layer thickness >10 micrometers can be deposited without further ado using galvanic processes for use in PEM-EL and redox flow cells. As a result, galvanically deposited, conductive and durable layers can be achieved on the metallic substrate made of stainless steel over a wide pH and potential window.
  • the galvanic deposition is carried out using a so-called "pulse plating" process, in which the voltage applied to the electrolyte is periodically switched off or reversed.
  • the short-term current surges when switching on increase the formation of nuclei for the metal deposition and thus create a basis for fine-grained deposits and gloss.
  • the metal substrate is in particular in the form of a metal sheet or a metal foil with a thickness in the range from 0.05 to 1 mm. Furthermore, the metal sheet or the metal foil can have embossed three-dimensional structures in order to enlarge the surface and thus increase the contact area with a fluid in an electrochemical cell.
  • the first layer preferably has a layer thickness of up to 5 ⁇ m, in particular in the range of up to 3 ⁇ m.
  • the second layer preferably has a layer thickness of up to 30 ⁇ m, in particular in the range from 5 to 20 ⁇ m.
  • a surface of the second layer facing away from the metal substrate is in particular anodized.
  • a targeted enrichment of the respective alloying element in the form of oxides is possible by means of such a subsequent anodization (surface modification). This is achieved by applying potentials to components immersed in aqueous electrolytes.
  • the component according to the invention is preferably in the form of an electrode for a redox flow cell, with the layer system covering the metal substrate at least in a contact area with an electrolyte of the redox flow cell.
  • a redox flow cell in particular a redox flow battery, comprising the at least one electrode for the redox flow cell and at least one electrolyte, in particular with a pH in the range from 7 to 14 .
  • the redox flow cell preferably comprises at least two electrodes, a first reaction space and a second reaction space, each reaction space being in contact with one of the electrodes and the reaction spaces being separated from one another by an ion exchange membrane.
  • redox flow cells are used that are electrically connected to one another.
  • An example of an anolyte suitable for a redox flow cell or a redox flow battery is:
  • Electrolyte combinations with aqueous electrolytes with a redox-active organic and/or metallic species on the anolyte side are preferably used to form a redox flow cell or a redox flow battery.
  • the object is also achieved for a fuel cell, comprising at least one component according to the invention in the form of a bipolar plate and at least one polymer electrolyte membrane.
  • a fuel cell comprising at least one component according to the invention in the form of a bipolar plate and at least one polymer electrolyte membrane.
  • an electrolyzer comprising at least one component according to the invention in the form of a bipolar plate or a fluid diffusion layer and at least one polymer electrolyte membrane.
  • the electrolyser is preferably set up for the electrolysis of water.
  • Metal substrate stainless steel first layer: copper or nickel second layer: SnNi (galvanic; DC, pulse plating)
  • Metal substrate stainless steel first layer: copper or nickel second layer: SnAg (galvanic; DC, pulse plating)
  • Metal substrate stainless steel first layer: not applicable second layer: SnCu (galvanic; DC, pulse plating)
  • Metal substrate stainless steel first layer: copper or nickel second layer: SnZn (galvanic; DC, pulse plating)
  • Metal substrate stainless steel first layer: copper or nickel second layer: SnBi (galvanic; DC, pulse plating)
  • Metal substrate stainless steel first layer: copper or nickel second layer: SnSb (galvanic; DC, pulse plating)
  • FIGS 1 to 7 show examples of components and their use in electrochemical cells. So shows
  • FIG. 1 shows a component comprising a metal substrate and a layer system
  • FIG. 2 shows the component according to FIG. 1 in a sectional view
  • FIG. 3 shows another component with a three-dimensional structure in a side view
  • FIG. 4 shows a component in the form of an electrode with a three-dimensionally structured flow field
  • FIG. 5 a redox flow cell or a redox flow battery with a redox flow cell
  • FIG. 6 shows an electrolyzer in section
  • FIG. 7 shows a fuel cell stack in a three-dimensional view.
  • Figure 1 shows a component 1 comprising a metal substrate 2 and a layer system 3 in a plan view of a surface 4.
  • FIG. 2 shows the component 1 according to FIG. 1 in sectional view II-II.
  • the same reference symbols as in FIG. 1 identify the same elements.
  • the metal substrate 2 made of stainless steel in the form of a metal sheet can now be seen.
  • the metal sheet is galvanically coated on both sides with a first layer 3a of copper in a layer thickness of 1 ⁇ m.
  • a second layer 3b made of a copper-tin alloy with a layer thickness in the region of 5 ⁇ m.
  • Figure 3 shows another component 1 'with three-dimensional structure 5 in side view.
  • the component 1' comprises a metal substrate, not visible here, which is covered on all sides by a layer system 3
  • Figure 4 shows a component 1a in the form of an electrode in a three-dimensional view comprising a metal substrate 2 in the form of a metal sheet made of stainless steel coated with a layer system 3.
  • a metal substrate 2 in the form of a metal sheet made of stainless steel coated with a layer system 3.
  • a three-dimensional structure tion 5 for forming a flow field 7 in each case, so that an increase in the surface area of the electrode results, which in a redox flow cell 8 (see FIG. 5) is to be flown against by an electrolyte.
  • Figure 5 shows a redox flow cell 8 or a redox flow battery with a redox flow cell 8.
  • the redox flow cell 8 includes two components 1a, 1b in the form of electrodes (see Figure 4) , a first reaction space 10a and a second reaction space 10b, each reaction space 10a, 10b being in contact with one of the electrodes.
  • the flow fields 7 (compare FIG. 4) of the electrodes, which are not visible here, are aligned to face an ion exchange membrane 9a.
  • the reaction spaces 10a, 10b are separated from one another by the ion exchange membrane 9a.
  • a liquid anolyte 11a is pumped from a tank 13a via a pump 12a into the first reaction chamber 10a and passed between the component 1a and the ion exchange membrane 9a.
  • a liquid catholyte 11b is pumped from a tank 13b via a pump 12b into the second reaction chamber 10b and passed between the component 1b and the ion exchange membrane 9a. Ion exchange takes place across the ion exchange membrane 9a, electrical energy being released at the electrodes due to the redox reaction.
  • FIG. 6 shows an electrolysis cell 20 of an electrolyzer comprising a polymer electrolyte membrane 9 which separates an anode side A and a cathode side K from one another.
  • a catalyst layer 21a, 21b comprising a catalyst material and a fluid diffusion layer 22a, 22b made of titanium (anode side) and a graphite felt (cathode side) is arranged adjacent to the catalyst layer 21a, 21b on both sides of the polymer electrolyte membrane 9.
  • the fluid diffusion layers 22a, 22b are each arranged adjacent to a component 1e, 1f in the form of an electrically conductive plate.
  • the plates are made of stainless steel and have a galvanically applied layer system 3 (compare FIG.
  • FIG. 7 schematically shows a fuel cell stack 100 comprising a plurality of fuel cells 90.
  • Each fuel cell 90 comprises a polymer electrolyte membrane 9 which is adjacent to components 1c, 1d in the form of bipolar plates on both sides.
  • Each bipolar plate has a metal substrate 2 with a galvanically applied layer system 3 (compare FIG. 2).
  • the bipolar plate has an inflow area with openings 80a and an outlet area with further openings 80b, which are used to supply a fuel cell 90 with process gases and coolant and to discharge reaction products from the fuel cell 90 and coolant.
  • the bipolar plate also has a gas distributor structure 6 on each side, which is intended for contact with the polymer electrolyte membrane 9 .
  • FIGS. 1 to 7 are only intended to explain the invention by way of example. However, further electrochemical cells with at least one component designed according to the invention should be included in the idea of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un composant (1) d'une cellule électrochimique (10) comprenant un substrat métallique (2) et un système de couches (3) qui est disposé au moins en partie sur le substrat métallique (2), le système de couches (3) comprenant une première couche (3a) disposée sur le substrat métallique (2) et une deuxième couche (3b) disposée sur la première couche (3a), la première couche (3a) étant constituée de cuivre ou de nickel et la deuxième couche (3b) étant constituée d'un alliage cuivre-étain, d'un alliage étain-nickel, d'un alliage étain-argent, d'un alliage étain-étain, d'un alliage étain-bismuth ou d'un alliage étain-antimoine, et le substrat métallique étant constitué d'acier inoxydable. L'invention concerne en outre une cellule à flux redox (8), une pile à combustible (90) et un électrolyseur (20).
PCT/DE2021/100894 2020-11-20 2021-11-10 Composant pour une cellule électrochimique, cellule à flux redox, pile à combustible et électrolyseur WO2022105960A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020130694.6A DE102020130694A1 (de) 2020-11-20 2020-11-20 Bauteil für eine elektrochemische Zelle, sowie Redox-Flow-Zelle, Brennstoffzelle und Elektrolyseur
DE102020130694.6 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022105960A1 true WO2022105960A1 (fr) 2022-05-27

Family

ID=78709173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2021/100894 WO2022105960A1 (fr) 2020-11-20 2021-11-10 Composant pour une cellule électrochimique, cellule à flux redox, pile à combustible et électrolyseur

Country Status (2)

Country Link
DE (1) DE102020130694A1 (fr)
WO (1) WO2022105960A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274441A1 (fr) * 2021-06-30 2023-01-05 Schaeffler Technologies AG & Co. KG Composant pour cellule électrochimique, cellule à flux redox, pile à combustible et électrolyseur
WO2024036635A1 (fr) * 2022-08-19 2024-02-22 Schaeffler Technologies AG & Co. KG Électrolyseur d'eau et procédé de fabrication dudit électrolyseur

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010033957A1 (en) * 2000-04-19 2001-10-25 Hiromichi Nakata Fuel cell separator, manufacturing method thereof and fuel cell
JP2010272429A (ja) 2009-05-22 2010-12-02 Kobe Steel Ltd 燃料電池用セパレータおよびその製造方法
JP2011198573A (ja) 2010-03-18 2011-10-06 Kobe Steel Ltd 燃料電池用セパレータおよびその製造方法
JP2014192089A (ja) * 2013-03-28 2014-10-06 Neomax Materials Co Ltd 燃料電池用セパレータおよびその製造方法
US20170033372A1 (en) * 2014-04-15 2017-02-02 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
US20180151891A1 (en) 2016-11-28 2018-05-31 Industrial Technology Research Institute Anti-corrosion structure and fuel cell employing the same
US20190148741A1 (en) * 2016-06-10 2019-05-16 Imperial Innovations Limited Corrosion protection coating

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010033957A1 (en) * 2000-04-19 2001-10-25 Hiromichi Nakata Fuel cell separator, manufacturing method thereof and fuel cell
JP2010272429A (ja) 2009-05-22 2010-12-02 Kobe Steel Ltd 燃料電池用セパレータおよびその製造方法
JP2011198573A (ja) 2010-03-18 2011-10-06 Kobe Steel Ltd 燃料電池用セパレータおよびその製造方法
JP2014192089A (ja) * 2013-03-28 2014-10-06 Neomax Materials Co Ltd 燃料電池用セパレータおよびその製造方法
US20170033372A1 (en) * 2014-04-15 2017-02-02 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
US20190148741A1 (en) * 2016-06-10 2019-05-16 Imperial Innovations Limited Corrosion protection coating
EP3469646B1 (fr) 2016-06-10 2021-01-20 IP2IPO Innovations Limited Revêtement de protection contre la corrosion
US20180151891A1 (en) 2016-11-28 2018-05-31 Industrial Technology Research Institute Anti-corrosion structure and fuel cell employing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274441A1 (fr) * 2021-06-30 2023-01-05 Schaeffler Technologies AG & Co. KG Composant pour cellule électrochimique, cellule à flux redox, pile à combustible et électrolyseur
WO2024036635A1 (fr) * 2022-08-19 2024-02-22 Schaeffler Technologies AG & Co. KG Électrolyseur d'eau et procédé de fabrication dudit électrolyseur

Also Published As

Publication number Publication date
DE102020130694A1 (de) 2022-05-25

Similar Documents

Publication Publication Date Title
EP4184621A1 (fr) Pile à combustible et électrolyseur avec une plaque bipolaire comprenant un système de couches
WO2022105960A1 (fr) Composant pour une cellule électrochimique, cellule à flux redox, pile à combustible et électrolyseur
DE102007032116A1 (de) Bipolarplatte für eine Brennstoffzelle und Brennstoffzellen-Stack
EP3665314A1 (fr) Revêtement et système de couches, ainsi que plaque bipolaire, pile à combustible et électrolyseur
WO2023025426A1 (fr) Cellule d'électrolyse pour électrolyse à membrane électrolytique polymère et revêtement
WO2023274441A1 (fr) Composant pour cellule électrochimique, cellule à flux redox, pile à combustible et électrolyseur
DE102020130695A1 (de) Bauteil einer elektrochemischen Zelle sowie elektrochemische Zellen
EP4014271B1 (fr) Unité d'électrode et cellule à flux redox
EP3159433B1 (fr) Électrode pour l'electrolyse alcaline de l'eau
WO2022127976A1 (fr) Couche, système de couche, plaque électroconductrice et cellule électrochimique
DE102022112319A1 (de) Bauteil für eine elektrochemische Zelle, sowie Redox-Flow-Zelle, Brennstoffzelle und Elektrolyseur
DE102021126534B4 (de) Elektrodenplatte für eine elektrochemische Zelle, Redox-Flow-Zelle sowie Redox-Flow-Batterie
DE112021002023T5 (de) Elektrolyse-behälter
DE102020130693A1 (de) Bauteil für eine elektrochemische Zelle, sowie Redox-Flow-Zelle, Brennstoffzelle und Elektrolyseur
DE102021124470A1 (de) Elektrode, Redox-Flow-Zelle sowie Redox-Flow-Batterie
DE102020112252A1 (de) Schichtsystem, Bipolarplatte mit einem solchen Schichtsystem sowie Brennstoffzelle, Elektrolyseur oder Redox-Flow-Zelle
DE102021130935A1 (de) Schicht und Schichtsystem, sowie elektrisch leitfähige Platte und elektrochemische Zelle
EP4302344A1 (fr) Cuve à flux redox
DE102022101159A1 (de) Redox-Flow-Zelle
WO2023208261A1 (fr) Pile à flux redox
EP4278402A1 (fr) Batterie redox à circulation
JP2024523864A (ja) 電気化学電池、レドックスフロー電池、燃料電池、及び電解装置の構成要素
CN117397073A (zh) 用于电化学电池的部件、氧化还原液流电池、燃料电池和电解槽
DE102021126138A1 (de) Redox-Flussbatterie
EP1771905A1 (fr) Dispositif pouvant etre parcouru par un fluide et procede d'utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21810918

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21810918

Country of ref document: EP

Kind code of ref document: A1