WO2022151638A1 - 液晶显示面板和液晶显示装置 - Google Patents

液晶显示面板和液晶显示装置 Download PDF

Info

Publication number
WO2022151638A1
WO2022151638A1 PCT/CN2021/097440 CN2021097440W WO2022151638A1 WO 2022151638 A1 WO2022151638 A1 WO 2022151638A1 CN 2021097440 W CN2021097440 W CN 2021097440W WO 2022151638 A1 WO2022151638 A1 WO 2022151638A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
light
crystal display
layer
Prior art date
Application number
PCT/CN2021/097440
Other languages
English (en)
French (fr)
Inventor
邹晓灵
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/440,627 priority Critical patent/US11867998B2/en
Publication of WO2022151638A1 publication Critical patent/WO2022151638A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element

Definitions

  • the present application relates to the field of display technology, and in particular, to a liquid crystal display panel and a liquid crystal display device.
  • the liquid crystal display panel is composed of multiple pixels, which are driven by cross-addressing in the horizontal and vertical directions. There will be wires between adjacent pixels, so that the liquid crystal in the area between the adjacent pixels cannot be effectively controlled. Therefore, in the prior art, a black matrix is used to shield the adjacent areas of the pixels, and in order to avoid the scattering of stray light. , therefore, the width of the black matrix will be larger than the actual width that needs to be shielded, resulting in a lower aperture ratio of the liquid crystal display panel.
  • the existing liquid crystal display device has the technical problem that the width of the black matrix is relatively large, resulting in a low aperture ratio of the liquid crystal display panel.
  • Embodiments of the present application provide a liquid crystal display panel and a liquid crystal display device, which are used to solve the technical problem of the large width of the black matrix in the existing liquid crystal display device, resulting in a low aperture ratio of the liquid crystal display panel.
  • An embodiment of the present application provides a liquid crystal display panel, the liquid crystal display panel includes:
  • liquid crystal layer disposed between the first substrate and the second substrate
  • a light-shielding layer is provided in the direction of the first substrate away from the liquid crystal layer, the light-shielding layer is patterned to form a light-shielding pattern, the light-shielding pattern is arranged between adjacent pixels, and the width of the light-shielding pattern is the same as the width of the light-shielding pattern.
  • the difference of the pitches between adjacent pixels is less than or equal to a threshold value, and the material of the light-shielding pattern includes an inorganic material.
  • the first substrate includes an array substrate
  • the array substrate includes a first substrate and a driving circuit layer disposed on the first substrate
  • the light shielding pattern is disposed on the first substrate in the direction away from the driving circuit layer.
  • the first substrate includes a color filter substrate
  • the color filter substrate includes a second substrate and a color resist layer disposed on the second substrate, and adjacent color resists are disposed at intervals
  • the The light shielding pattern is arranged in a direction of the second substrate away from the color resist layer.
  • the light-shielding pattern includes a first pattern arranged horizontally and a second pattern arranged vertically, the width of the first pattern is equal to the spacing between adjacent color resistors arranged horizontally, and the width of the second pattern is equal to that of the adjacent color resistors arranged horizontally. The width is equal to the spacing between adjacent color resistors arranged vertically.
  • the material of the light-shielding pattern includes one of copper, aluminum, silver, zinc, copper-zinc laminate, copper-titanium laminate, and copper-aluminum laminate.
  • the liquid crystal display panel further includes a flattening layer, the flattening layer is disposed in the area corresponding to the color resistance, and the flattening layer is disposed in the gap formed by the light-shielding pattern.
  • the material of the flat layer includes one of silicon nitride, silicon oxide, and silicon oxynitride.
  • the first substrate includes a third substrate, a driving circuit layer and a color resist layer, adjacent color resists are arranged overlappingly, and the light shielding pattern is provided on the third substrate away from the driving circuit in the direction of the layer.
  • the liquid crystal display panel includes a terminal area, and the light shielding pattern is disposed along a direction perpendicular to the terminal area and an area opposite to the terminal area.
  • the liquid crystal display panel includes a terminal area, and the light shielding pattern is disposed along a direction of the terminal area and an area opposite to the terminal area.
  • an embodiment of the present application provides a liquid crystal display device, and the liquid crystal display device includes:
  • a liquid crystal display panel the liquid crystal display panel includes a first substrate, a second substrate and a liquid crystal layer, the second substrate is disposed opposite to the first substrate, and the liquid crystal layer is disposed between the first substrate and the first substrate Between two substrates, wherein a light-shielding layer is provided in the direction of the first substrate away from the liquid crystal layer, the light-shielding layer is patterned to form a light-shielding pattern, and the light-shielding pattern is disposed between adjacent pixels, and The difference between the width of the light-shielding pattern and the spacing between adjacent pixels is less than or equal to a threshold, and the material of the light-shielding pattern includes an inorganic material;
  • the polarizer is arranged outside the liquid crystal display panel.
  • the polarizer includes a first polarizer and a second polarizer, the first polarizer is disposed on a side close to the first substrate, and the second polarizer is disposed close to the first substrate On one side of the second substrate, at least one between the first polarizer and the first substrate and between the second polarizer and the second substrate is provided with a light shielding pattern.
  • the first substrate includes an array substrate
  • the array substrate includes a first substrate and a driving circuit layer disposed on the first substrate
  • the light shielding pattern is disposed on the first substrate in the direction away from the driving circuit layer.
  • the first substrate includes a color filter substrate
  • the color filter substrate includes a second substrate and a color resist layer disposed on the second substrate, and adjacent color resists are disposed at intervals
  • the The light shielding pattern is arranged in a direction of the second substrate away from the color resist layer.
  • the light-shielding pattern includes a first pattern arranged horizontally and a second pattern arranged vertically, the width of the first pattern is equal to the spacing between adjacent color resistors arranged horizontally, and the width of the second pattern is equal to that of the adjacent color resistors arranged horizontally. The width is equal to the spacing between adjacent color resistors arranged vertically.
  • the material of the light-shielding pattern includes one of copper, aluminum, silver, zinc, copper-zinc laminate, copper-titanium laminate, and copper-aluminum laminate.
  • the liquid crystal display panel further includes a flattening layer, the flattening layer is disposed in the area corresponding to the color resistance, and the flattening layer is disposed in the gap formed by the light-shielding pattern.
  • the material of the flat layer includes one of silicon nitride, silicon oxide, and silicon oxynitride.
  • the first substrate includes a third substrate, a driving circuit layer and a color resist layer, adjacent color resists are arranged overlappingly, and the light shielding pattern is provided on the third substrate away from the driving circuit in the direction of the layer.
  • the liquid crystal display panel includes a terminal area, and the light shielding pattern is disposed along a direction perpendicular to the terminal area and an area opposite to the terminal area.
  • Embodiments of the present application provide a liquid crystal display panel and a liquid crystal display device.
  • the liquid crystal display panel includes a first substrate, a second substrate and a liquid crystal layer.
  • the second substrate is disposed opposite to the first substrate, and the liquid crystal layer is disposed between the first substrate and the second substrate.
  • the first substrate is provided with a light-shielding layer in the direction away from the liquid crystal layer
  • the light-shielding layer is patterned to form a light-shielding pattern
  • the light-shielding pattern is arranged between adjacent pixels, and the width of the light-shielding pattern is the same as that of the adjacent pixels.
  • the difference between the distances is less than or equal to the threshold value, and the material of the light-shielding pattern includes inorganic materials; in the embodiment of the present application, the light-shielding pattern is arranged in the direction of the first substrate away from the liquid crystal layer, and the light-shielding pattern is arranged between adjacent pixels.
  • the difference between the width of the pattern and the spacing between adjacent pixels is less than or equal to the threshold value, and the material of the light-shielding pattern includes inorganic materials, that is, the light-shielding layer is arranged outside the substrate of the liquid crystal display panel, and the light-shielding layer is arranged on the adjacent pixels.
  • the light shielding layer can shield the light between the adjacent pixels, no black matrix is required, and the control ability of the liquid crystal is improved.
  • the stray light is shielded without making the width of the shielding pattern larger than the spacing between adjacent pixels, thereby improving the aperture ratio of the liquid crystal display panel.
  • FIG. 1 is a schematic diagram of a color blocking layer and a black matrix layer in a conventional liquid crystal display device.
  • FIG. 2 is a first schematic diagram of a liquid crystal display panel provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a color blocking layer and a light shielding layer in a liquid crystal display panel according to an embodiment of the present application.
  • FIG. 4 is a second schematic diagram of a liquid crystal display panel provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a liquid crystal display device according to an embodiment of the present application.
  • the embodiments of the present application aim at the technical problem of the large width of the black matrix in the existing liquid crystal display device, which leads to a low aperture ratio of the liquid crystal display device, and the embodiments of the present application are used to solve the technical problem.
  • a black matrix is arranged between adjacent pixels, and the color resist layer includes a red color resist 111, a blue color resist Resistors 112 and green color resists 113, the lateral spacing between adjacent color resists is a1, and the vertical spacing between adjacent color resists is b1, but in order to avoid stray light scattering, the vias 121 formed in the black matrix layer 12 will is smaller than the size of the color resistance, that is, the lateral spacing a2 between adjacent vias 121 is greater than a1, and the vertical spacing b2 between adjacent vias 121 is greater than a2, so that the black matrix will block the color resistance, resulting in an actual light-emitting area smaller than Therefore, the existing liquid crystal display device has the technical problem that the width of the black matrix is large, resulting in a low aperture ratio of the liquid crystal display device.
  • an embodiment of the present application provides a liquid crystal display panel, and the liquid crystal display panel includes:
  • the second substrate 21 is disposed opposite to the first substrate 23;
  • a light-shielding layer 24 is provided in the direction of the first substrate 23 away from the liquid crystal layer 22, and the light-shielding layer 24 is patterned to form a light-shielding pattern 241, and the light-shielding pattern 241 is arranged between adjacent pixels.
  • the difference between the width c2 ( d2 ) of the light shielding pattern 241 and the distance c1 ( d1 ) between adjacent pixels is less than or equal to the threshold value k, and the material of the light shielding pattern 241 includes inorganic materials.
  • An embodiment of the present application provides a liquid crystal display panel.
  • the light-shielding layer is patterned to form a light-shielding pattern, and the light-shielding pattern is arranged between adjacent pixels, and the light-shielding pattern is formed between adjacent pixels.
  • the difference between the width and the spacing between adjacent pixels is less than or equal to the threshold value, and the material of the light-shielding pattern includes inorganic materials, so that the area between adjacent pixels is shielded from light by the light-shielding pattern, no black matrix is required, and the resistance to the liquid crystal is improved.
  • the light-shielding pattern is arranged outside the substrate, the human eye side is shielded from light, and the width of the light-shielding pattern does not need to be larger than the spacing between adjacent pixels, thereby improving the aperture ratio of the liquid crystal display panel.
  • the width of the shading pattern is d2
  • the adjacent pixels are two vertical pixels
  • the width of the shading pattern is c2
  • the width of the shading pattern corresponds to the spacing between adjacent pixels
  • the width of the corresponding shading pattern is designed accordingly, so that the shading pattern shields the area between the pixels, and at the same time, by controlling the width of the shading pattern, the shading pattern is prevented from shading the pixels, and the aperture ratio of the display panel is improved;
  • the width of the shading pattern is either c2 or d2 .
  • the spacing between adjacent color resistors is used to represent the spacing between adjacent pixels, and in FIG. 3 , the color resistors of the same color are arranged laterally, but the embodiments of the present application are not limited to this.
  • the color resists of the same color can be arranged vertically, or the color resists can be arranged in other pixel arrangements.
  • the threshold value may be a positive value, 0 and a negative value, that is, the difference between the width of the light-shielding pattern and the spacing between adjacent pixels is defined to be within a certain range.
  • the black matrix is an organic material
  • the black matrix will shrink, causing the black matrix to present a state of concave and convex on both sides.
  • the liquid crystal has a certain pre-tilt angle (the pre-tilt angle here refers to the deflection angle of the liquid crystal due to design defects outside the design), which affects the display, such as light leakage, and the liquid crystal cannot be effectively controlled.
  • the black matrix is arranged so that the liquid crystals can be arranged according to the design, thereby improving the control ability of the liquid crystals.
  • the first alignment layer is provided on the first substrate and the second alignment layer is provided on the second substrate, that is, when the liquid crystal is assembled, the first substrate and the second substrate are formed on the first substrate and the second substrate.
  • the alignment layer is formed, so that the liquid crystal is aligned through the alignment layer to form a certain pre-tilt angle, and then the light is controlled by the deflection of the liquid crystal.
  • the first substrate includes an array substrate 21
  • the array substrate 21 includes a first substrate 211 and a driving circuit layer 212 disposed on the first substrate 211
  • the pixel electrode layer 213 the light shielding pattern 241 is arranged in the direction of the first substrate 211 away from the driving circuit layer 212, for the liquid crystal display panel whose light exit direction is the array substrate side, by setting the light emitting direction on the array substrate side shading pattern, so that when the display panel is emitted from the side of the array substrate, the shading pattern shields the area between the pixels to prevent stray light from affecting the display, and since the shading pattern is arranged on the side of the human eye, the light is emitted from the side of the array substrate After that, the light will not be refracted or shifted through other film layers. Therefore, it is only necessary to make the difference between the width of the shading pattern and the spacing between adjacent pixels less than the threshold to block the stray light and improve the liquid crystal display.
  • the aperture ratio of the display is only necessary to make the difference between the width of
  • the first substrate includes a color filter substrate 23
  • the color filter substrate 23 includes a second substrate 234 and a color resist disposed on the second substrate 234
  • the layer 232 and the common electrode layer 231 are arranged at intervals between adjacent color resists.
  • the light-shielding pattern 241 is arranged on the second substrate 234 in the direction away from the color-resist layer 232.
  • the light-emitting direction It is a liquid crystal display panel on the side of the color filter substrate.
  • the light After the color filter substrate is emitted, the light will not be refracted or shifted through other layers. Therefore, there is no need to set a black matrix, and the difference between the width of the light-shielding pattern and the interval between the color resists only needs to be smaller than the threshold value. Stray light can be shielded, thereby improving the aperture ratio of the liquid crystal display panel.
  • the liquid crystal display panel includes a terminal area, and the light-shielding pattern is arranged along a direction perpendicular to the terminal area and an area opposite to the terminal area. Therefore, by setting the shading pattern between the adjacent pixels in the vertical direction, it is not necessary to set the black matrix, thereby improving the aperture ratio of the display panel.
  • the liquid crystal display panel includes a terminal area, and the light-shielding pattern is arranged along the direction of the terminal area and the area opposite to the terminal area, that is, when the light-shielding pattern is arranged, the light-shielding pattern can be arranged longitudinally, so that the Between the horizontally adjacent pixels, by setting the shading pattern, there is no need to set the black matrix, thereby improving the aperture ratio of the display panel.
  • the light-shielding pattern 241 includes a first pattern arranged horizontally and a second pattern arranged vertically, and the width d2 of the first pattern is the same as the width d2 of the adjacent color resists arranged horizontally.
  • the spacing d1 is equal, and the width c2 of the second pattern is equal to the spacing c1 of the adjacent color resistors arranged in the longitudinal direction, that is, when the width of the shading pattern is set, the width of the shading pattern is equal to the spacing between adjacent pixels, so that in the When the display panel is displayed, the area corresponding to the color resistance can be completely displayed, and is blocked by the shading pattern, so that the emission of stray light will not affect the display, thereby improving the aperture ratio of the display panel.
  • the width of the light-shielding pattern when the light-shielding pattern is made to shield the area between adjacent color resists, considering better light-shielding properties, the width of the light-shielding pattern can be made larger than the spacing between adjacent color resists, because the light-shielding The pattern is shielded on the human eye side. Therefore, even if the width of the shading pattern is larger than the spacing between adjacent color resistors, the width of the shading pattern is smaller than that of the black matrix compared to the black matrix that shields the light on the light-emitting side.
  • the aperture ratio of the liquid crystal display panel is limited.
  • the shading effect of the shading pattern is the same or even better than that of the black matrix.
  • the spacing between the color resists is taken into account when better light-shielding properties are required, the width of the light-shielding pattern can be slightly increased, but the aperture ratio of the display panel can still be increased, and the display effect of the display panel can be improved.
  • the shading pattern when used to shield the light between adjacent color resists, it is considered that when the width of the shading pattern is smaller than the spacing between adjacent color resists, within a certain range, the display effect will not be affected , the width of the shading pattern can be made smaller than the spacing between adjacent color resistors, thereby further improving the aperture ratio of the display panel. Therefore, the area between adjacent color resists of the display device is shielded from light, and the aperture ratio of the display device is improved.
  • the material of the light-shielding pattern includes an inorganic non-metallic material.
  • an inorganic non-metallic material with better light-shielding property is selected as the material of the light-shielding pattern, so as to improve the distance between adjacent pixels of the liquid crystal display panel. area shading.
  • the material of the shading pattern includes one of copper, aluminum, silver, zinc, copper-zinc laminate, copper-titanium laminate, and copper-aluminum laminate, by making the material of the shading pattern a metal or Alloy or metal stack can make the metal reflect and absorb light, so as to avoid the light emitting, and since the material of the shading pattern is metal, the metal has ductility, so it does not affect the liquid crystal display panel that needs to be bent or bent.
  • the bending performance of the display panel at the same time, since the metal can induce static electricity, and the metal is disposed outside the substrate in the embodiment of the present application, the static electricity can be discharged through the metal, thereby improving the anti-static ability of the liquid crystal display panel, and the metal is used as the shading pattern.
  • the adhesion between the metal material and the substrate is better. Therefore, compared with the use of organic materials, there will be problems of fusion and peeling, and the shading pattern of metal materials will not peel and peel off.
  • the shading pattern when a metal material is used as the material of the shading pattern, since the metal material is disposed outside the substrate, and the static electricity of the liquid crystal display panel is caused by friction during handling or movement, it will appear on the surface of the liquid crystal display panel. Therefore, arranging the shading pattern outside the substrate of the liquid crystal display panel allows the metal material to directly conduct static electricity, thereby avoiding the concentration of static electricity in the liquid crystal display panel and improving the antistatic capability of the liquid crystal display panel.
  • the light-shielding pattern is disposed in contact with the first substrate, that is, by disposing the light-shielding pattern on the first substrate, and setting the thickness of the light-shielding pattern to be thinner, the liquid crystal can be improved. Display the aperture ratio of the panel, and prevent the shading pattern from falling off.
  • the thickness of the light-shielding pattern ranges from 100 angstroms to 1000 angstroms, and the thickness of the light-shielding pattern is set to be thinner to avoid increasing the thickness of the liquid crystal display panel.
  • the thickness of the light-shielding area between the pixels can be used as the thickness value of the light-shielding pattern.
  • the liquid crystal display panel further includes a flattening layer 25 , the flattening layer 25 is disposed in the corresponding region of the color resistance, and the flattening layer 25 is disposed in the light-shielding pattern
  • the flattening layer 25 is disposed in the void 242 formed by 241
  • the shading pattern it is necessary to make the shading pattern flat to facilitate the design of other film layers. Therefore, in the design After the shading pattern is formed, considering that there will be a certain gap in the shading pattern, a flat layer may be arranged in the gap, so that the flat layer fills the gap of the shading pattern and keeps the light shading layer flat.
  • the thickness of the light-shielding layer is equal to the thickness of the flat layer, that is, when the flat layer is arranged, it is only necessary to make the thickness of the flat layer and the thickness of the light-shielding layer consistent, so that the light-shielding layer remains flat, Facilitates the formation of subsequent film layers.
  • the thickness of the flat layer is greater than the thickness of the light-shielding layer, that is, when the flat layer is formed, the flat layer is arranged in the gap of the light-shielding pattern, and at the same time, the flat layer is arranged on the light-shielding pattern, thereby After the shading pattern is formed, the flat layer keeps the liquid crystal display panel flat.
  • the flat layer keeps the liquid crystal display panel flat.
  • the material of the flattening layer includes inorganic materials, specifically, the material of the flattening layer includes one of silicon nitride, silicon oxide, and silicon oxynitride.
  • the layer is arranged in the area corresponding to the color resistance, therefore, an inorganic material is used to form the flat layer, thereby improving the light transmittance of the flat layer.
  • the material of the flat layer includes an inorganic material
  • the material of the light-shielding pattern includes one of copper, aluminum, silver, zinc, copper-zinc stack, copper-titanium stack, and copper-aluminum stack, that is, inorganic materials are used.
  • the material forms a flat layer
  • metal or metal stacks are used to form light-shielding patterns, so that the inorganic materials are divided, and the metal has better ductility. Therefore, in the liquid crystal display panel When bending or bending is required, the flat layer will not affect the bending performance of the liquid crystal display panel due to the existence of the metal material.
  • the material of the flat layer includes an organic material, that is, in order to improve the bending performance of the liquid crystal display panel, the material of the flat layer can be made of an organic material, thereby improving the flexibility of the flat layer and the light-shielding layer.
  • the flat layer is arranged in the area corresponding to the color resistance, it is necessary to make the flat layer have better light transmittance, so that an organic material with better light transmittance can be selected as the material of the flat layer.
  • the liquid crystal display panel further includes a color-resistance flattening layer 233 , and the color-resistance flattening layer is disposed between the color-resistors, that is, when the color-resistance layer is formed
  • the color resistance layer is composed of red color resistance 232a, blue color resistance 232b, and green color resistance 232c, there is a certain distance between each color resistance. Black matrix, therefore, the color resistance layer needs to be kept flat. Therefore, a color resistance flattening layer can be arranged between the color resistances, so that the color resistance layer can be kept flat.
  • the common electrode layer and other film layers are subsequently formed, keep other films The flatness of the layer.
  • the material of the color resistance flattening layer is the same as the material of the common electrode layer, and the common electrode layer is filled to the adjacent area of the color resistance, that is, when the color resistance layer is flattened, the common electrode layer can be The area between the color resistances is directly filled to form the common electrode layer directly on the color resistance layer, so that while the color resistance layer remains flat, the common electrode layer is also kept flat. The impedance of the common electrode layer is reduced, and the display effect of the liquid crystal display panel is improved.
  • the material of the color-resistance flattening layer is the same as the material of the color-resistance layer, that is, when the color-resistance flattening layer is formed, contact between adjacent color-resistors can be made, and then the The area between the color resistors is shielded from light, so that when the color resistors emit light normally, the light shielding pattern shields the area between the color resistors, thereby improving the aperture ratio of the liquid crystal display panel.
  • the material of the color-resistance flattening layer includes inorganic materials, that is, when setting the material of the color-resistance flattening layer, an inorganic material may also be used to form the color-resistance flattening layer, so that the color-resistance flattening layer flattens the color-resistance layer change.
  • the first substrate includes a third substrate, a driving circuit layer and a color resist layer, adjacent color resists are arranged in overlapping connection, and the light shielding pattern is provided on the third substrate away from the driving In the direction of the circuit layer, that is, in the liquid crystal display panel using the COA (Color On Array, the color filter is arranged on the array substrate) substrate, the shading pattern is arranged under the third substrate, so that the shading pattern is applied to the adjacent pixels. Light shielding, thereby increasing the aperture ratio of the liquid crystal display panel with the COA substrate.
  • the first substrate includes a third substrate, a driving circuit layer and a color resist layer, and adjacent color resists are arranged in overlapping connection
  • the second substrate includes a second substrate and is disposed on the second substrate the common electrode layer, the light-shielding pattern is arranged in the direction of the second substrate away from the common electrode layer, that is, considering that the liquid crystal display panel with the COA substrate will emit from the second substrate side, the second substrate can The shading pattern is arranged outside, and it is not necessary to arrange a black matrix, thereby improving the aperture ratio of the liquid crystal display panel.
  • an embodiment of the present application provides a liquid crystal display device, and the liquid crystal display device includes:
  • a liquid crystal display panel the liquid crystal display panel includes a first substrate 21, a second substrate 23 and a liquid crystal layer 22, the second substrate 23 is disposed opposite the first substrate 21, and the liquid crystal layer 22 is disposed on the first substrate 21.
  • a light-shielding layer 24 is provided in the direction of the first substrate 21 away from the liquid crystal layer 22, and the light-shielding layer 24 is patterned with a light-shielding pattern 241,
  • the light-shielding pattern 241 is disposed between adjacent pixels, and the difference between the width c2 (d2) of the light-shielding pattern 241 and the distance c1 (d1) between adjacent pixels is less than or equal to the threshold k,
  • the Materials include inorganic materials;
  • the polarizer 31 is disposed outside the liquid crystal display panel.
  • An embodiment of the present application provides a liquid crystal display device, the liquid crystal display device includes a liquid crystal display panel and a polarizer, the liquid crystal display panel is provided with a light-shielding layer in a direction away from the liquid crystal layer through a first substrate, and the light-shielding layer is patterned to form a light-shielding pattern, and The light-shielding pattern is arranged between adjacent pixels, and the difference between the width of the light-shielding pattern and the spacing between adjacent pixels is less than or equal to a threshold value, and the material of the light-shielding pattern includes inorganic materials, so that the difference between the adjacent pixels is affected by the light-shielding pattern.
  • the aperture ratio of the liquid crystal display panel is improved.
  • the polarizer 31 includes a first polarizer 312 and a second polarizer 311 , and the first polarizer 312 is disposed on a side close to the first substrate 21 , the second polarizer 311 is disposed on the side close to the second substrate 23 , between the first polarizer 312 and the first substrate 21 and between the second polarizer 311 and the second substrate 23 At least one of them is provided with a light-shielding pattern 241, that is, when the light-shielding pattern is set, a light-shielding pattern is set between the liquid crystal display panel and the polarizer, so that after the light passes through the liquid crystal display panel, the light-shielding pattern affects the area between adjacent pixels. The light is shielded, so that it is not necessary to provide a black matrix, thereby increasing the aperture ratio of the liquid crystal display panel.
  • the light-shielding pattern is only provided on the side where the light from the liquid crystal display panel is emitted, so as to The light is blocked and the thickness of the liquid crystal display panel is avoided.
  • light blocking patterns can also be formed on both sides of the liquid crystal display panel.
  • the liquid crystal display device further includes a backlight module, and the backlight module is disposed in a direction in which the polarizer is away from the liquid crystal display panel.
  • a liquid crystal display device of a backlight module but the embodiments of the present application are not limited to this.
  • a liquid crystal display panel that uses mini LEDs (mini light emitting diodes) and micro LEDs (miniature light emitting diodes) as light sources and is disposed on an array substrate may also use a light-shielding pattern. By shielding light, the aperture ratio of the liquid crystal display device is increased.
  • the light-shielding pattern when forming the light-shielding pattern, may be first formed on the substrate of the substrate, so that when other film layers are formed subsequently, even if static electricity is generated by friction, the static electricity can be released through the light-shielding pattern, thereby The accumulation of static electricity in the liquid crystal display panel is avoided, and the antistatic capability of the liquid crystal display panel is improved.
  • the first substrate includes an array substrate, the array substrate includes a first substrate and a driving circuit layer disposed on the first substrate, and the light shielding pattern It is arranged in a direction of the first substrate away from the driving circuit layer.
  • the first substrate includes a color filter substrate
  • the color filter substrate includes a second substrate and a color resist layer disposed on the second substrate, adjacent to each other.
  • the color resists are arranged at intervals, and the light-shielding patterns are arranged in a direction of the second substrate away from the color resist layer.
  • the light-shielding pattern includes a first pattern arranged in a horizontal direction and a second pattern arranged in a vertical direction, and the width of the first pattern is equal to the spacing between adjacent color resistors arranged in the horizontal direction.
  • the width of the second pattern is equal to the spacing between adjacent color resistors arranged in the longitudinal direction.
  • the material of the light-shielding pattern includes one of copper, aluminum, silver, zinc, copper-zinc stack, copper-titanium stack, and copper-aluminum stack.
  • the liquid crystal display panel further includes a flat layer, the flat layer is disposed in the area corresponding to the color resistance, and the flat layer is disposed in the gap formed by the light-shielding pattern Inside.
  • the material of the flat layer includes one of silicon nitride, silicon oxide, and silicon oxynitride.
  • the first substrate includes a third substrate, a driving circuit layer and a color resist layer, adjacent color resists are arranged in overlapping connection, and the light-shielding pattern is provided on the third substrate.
  • the substrate is in a direction away from the driving circuit layer.
  • the liquid crystal display panel includes a terminal area, and the light shielding pattern is arranged along a direction perpendicular to the terminal area and an area opposite to the terminal area.
  • Embodiments of the present application provide a liquid crystal display panel and a liquid crystal display device.
  • the liquid crystal display panel includes a first substrate, a second substrate and a liquid crystal layer.
  • the second substrate is disposed opposite to the first substrate, and the liquid crystal layer is disposed between the first substrate and the second substrate.
  • the first substrate is provided with a light-shielding layer in the direction away from the liquid crystal layer
  • the light-shielding layer is patterned to form a light-shielding pattern
  • the light-shielding pattern is arranged between adjacent pixels, and the width of the light-shielding pattern is the same as that of the adjacent pixels.
  • the difference between the distances is less than or equal to the threshold value, and the material of the light-shielding pattern includes inorganic materials; in the embodiment of the present application, the light-shielding pattern is arranged in the direction of the first substrate away from the liquid crystal layer, and the light-shielding pattern is arranged between adjacent pixels.
  • the difference between the width of the pattern and the spacing between adjacent pixels is less than or equal to the threshold, that is, by arranging a light-shielding layer outside the substrate of the liquid crystal display panel, and by placing the light-shielding layer between adjacent pixels, the light-shielding layer can The light between adjacent pixels is blocked, no black matrix is required, and the control ability of the liquid crystal is improved.
  • the light blocking layer is arranged outside the substrate of the liquid crystal display panel, the stray light is directly blocked on the human eye side, without the need to block the light.
  • the width of the pattern is larger than the spacing between adjacent pixels, thereby increasing the aperture ratio of the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请实施例提供一种液晶显示面板和液晶显示装置,该液晶显示面板通过在第一基板远离液晶层的方向设置遮光图案,且遮光图案设置于相邻像素之间,遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,遮光图案的材料包括无机材料,提高了液晶显示面板的开口率。

Description

液晶显示面板和液晶显示装置 技术领域
本申请涉及显示技术领域,尤其是涉及一种液晶显示面板和液晶显示装置。
背景技术
在现有液晶显示器件中,会采用偏光片、色阻和液晶调制从而显示不同的灰阶和色彩,液晶显示面板由多个像素组成,通过横向和纵向的交叉寻址方式进行驱动,由于在相邻的像素之间会存在导线,导致相邻的像素之间的区域的液晶无法得到有效控制,所以现有技术中会采用黑色矩阵对像素相邻区域进行遮光,而为了避免杂散光的散射,因此会使得黑色矩阵的宽度大于需要遮挡的实际宽度,导致液晶显示面板的开口率较低。
所以,现有液晶显示器件存在黑色矩阵的宽度较大,导致液晶显示面板的开口率较低的技术问题。
技术问题
本申请实施例提供一种液晶显示面板和液晶显示装置,用以解决现有液晶显示器件存在黑色矩阵的宽度较大,导致液晶显示面板的开口率较低的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种液晶显示面板,该液晶显示面板包括:
第一基板;
第二基板,与所述第一基板相对设置;
液晶层,设置于所述第一基板与所述第二基板之间;
其中,在所述第一基板远离所述液晶层的方向上设有遮光层,所述遮光层图案化形成有遮光图案,所述遮光图案设置于相邻像素之间,且遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,所述遮光图案的材料包括无机材料。
在一些实施例中,所述第一基板包括阵列基板,所述阵列基板包括第一衬底和设置于所述第一衬底上的驱动电路层,所述遮光图案设置于所述第一衬底远离所述驱动电路层的方向上。
在一些实施例中,所述第一基板包括彩膜基板,所述彩膜基板包括第二衬底和设置于所述第二衬底上的色阻层,相邻色阻间隔设置,所述遮光图案设置于所述第二衬底远离所述色阻层的方向上。
在一些实施例中,所述遮光图案包括横向设置的第一图案与纵向设置的第二图案,所述第一图案的宽度与横向设置的相邻色阻的间距相等,所述第二图案的宽度与纵向设置的相邻色阻的间距相等。
在一些实施例中,所述遮光图案的材料包括铜、铝、银、锌、铜锌叠层、铜钛叠层和铜铝叠层中的一种。
在一些实施例中,所述液晶显示面板还包括平坦层,所述平坦层设置于所述色阻对应区域,且所述平坦层设置于所述遮光图案形成的空隙内。
在一些实施例中,所述平坦层的材料包括氮化硅、氧化硅、氮氧化硅中的一种。
在一些实施例中,所述第一基板包括第三衬底、驱动电路层和色阻层,相邻色阻搭接设置,所述遮光图案设置于所述第三衬底远离所述驱动电路层的方向上。
在一些实施例中,所述液晶显示面板包括端子区,所述遮光图案沿着垂直于端子区和端子区相对的区域的方向设置。
在一些实施例中,所述液晶显示面板包括端子区,所述遮光图案沿着端子区和端子区相对的区域的方向设置。
同时,本申请实施例提供一种液晶显示装置,该液晶显示装置包括:
液晶显示面板,所述液晶显示面板包括第一基板、第二基板和液晶层,所述第二基板与所述第一基板相对设置,所述液晶层设置于所述第一基板与所述第二基板之间,其中,在所述第一基板远离所述液晶层的方向上设有遮光层,所述遮光层图案化形成有遮光图案,所述遮光图案设置于相邻像素之间,且遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,所述遮光图案的材料包括无机材料;
偏光片,设置于所述液晶显示面板外。
在一些实施例中,所述偏光片包括第一偏光片和第二偏光片,所述第一偏光片设置于靠近所述第一基板的一侧,所述第二偏光片设置于靠近所述第二基板的一侧,所述第一偏光片与第一基板之间和所述第二偏光片与第二基板之间中的至少一个设有遮光图案。
在一些实施例中,所述第一基板包括阵列基板,所述阵列基板包括第一衬底和设置于所述第一衬底上的驱动电路层,所述遮光图案设置于所述第一衬底远离所述驱动电路层的方向上。
在一些实施例中,所述第一基板包括彩膜基板,所述彩膜基板包括第二衬底和设置于所述第二衬底上的色阻层,相邻色阻间隔设置,所述遮光图案设置于所述第二衬底远离所述色阻层的方向上。
在一些实施例中,所述遮光图案包括横向设置的第一图案与纵向设置的第二图案,所述第一图案的宽度与横向设置的相邻色阻的间距相等,所述第二图案的宽度与纵向设置的相邻色阻的间距相等。
在一些实施例中,所述遮光图案的材料包括铜、铝、银、锌、铜锌叠层、铜钛叠层和铜铝叠层中的一种。
在一些实施例中,所述液晶显示面板还包括平坦层,所述平坦层设置于所述色阻对应区域,且所述平坦层设置于所述遮光图案形成的空隙内。
在一些实施例中,所述平坦层的材料包括氮化硅、氧化硅、氮氧化硅中的一种。
在一些实施例中,所述第一基板包括第三衬底、驱动电路层和色阻层,相邻色阻搭接设置,所述遮光图案设置于所述第三衬底远离所述驱动电路层的方向上。
在一些实施例中,所述液晶显示面板包括端子区,所述遮光图案沿着垂直于端子区和端子区相对的区域的方向设置。
有益效果
本申请实施例提供一种液晶显示面板和液晶显示装置,该液晶显示面板包括第一基板、第二基板和液晶层,第二基板与第一基板相对设置,液晶层设置于第一基板与第二基板之间,其中,在第一基板远离液晶层的方向上设有遮光层,遮光层图案化形成有遮光图案,遮光图案设置于相邻像素之间,且遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,遮光图案的材料包括无机材料;本申请实施例通过在第一基板远离液晶层的方向设置遮光图案,且遮光图案设置于相邻像素之间,遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,遮光图案的材料包括无机材料,即使得通过在液晶显示面板的基板外设置遮光层,通过将遮光层设置于相邻像素之间,从而使得遮光层对相邻像素之间的光线进行遮挡,无需设置黑色矩阵,提高对液晶的控制能力,由于遮光层设置于液晶显示面板的基板外,因此,直接在人眼侧对杂散光进行遮挡,无需使得遮光图案的宽度大于相邻像素之间的间距,从而提高了液晶显示面板的开口率。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为现有液晶显示器件中色阻层和黑色矩阵层的示意图。
图2为本申请实施例提供的液晶显示面板的第一种示意图。
图3为本申请实施例提供的液晶显示面板中的色阻层和遮光层的示意图。
图4为本申请实施例提供的液晶显示面板的第二种示意图。
图5为本申请实施例提供的液晶显示装置的示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例针对现有液晶显示器件存在黑色矩阵的宽度较大,导致液晶显示器件的开口率较低的技术问题,本申请实施例用以解决该技术问题。
如图1所示,现有液晶显示器件中为了避免相邻像素之间出现杂散光导致显示画面失真,因此会在相邻像素之间设置黑色矩阵,色阻层包括红色色阻111、蓝色色阻112、绿色色阻113,相邻色阻之间的横向间距为a1,相邻色阻之间的纵向间距为b1,但为了避免杂散光的散射,黑色矩阵层12形成的过孔121会小于色阻的大小,即相邻过孔121之间的横向间距a2大于a1,相邻过孔121之间的纵向间距b2大于a2,从而使得黑色矩阵会遮挡色阻,导致实际的发光区域小于色阻的发光区域,从而导致显示面板的开口率降低,所以,现有液晶显示器件存在黑色矩阵的宽度较大,导致液晶显示器件的开口率较低的技术问题。
如图2、图3所示,本申请实施例提供一种液晶显示面板,该液晶显示面板包括:
第一基板23;
第二基板21,与所述第一基板23相对设置;
其中,在所述第一基板23远离所述液晶层22的方向上设有遮光层24,所述遮光层24图案化形成有遮光图案241,所述遮光图案241设置于相邻像素之间,且遮光图案241的宽度c2(d2)与相邻像素之间的间距c1(d1)的差值小于或者等于阈值k,所述遮光图案241的材料包括无机材料。
本申请实施例提供一种液晶显示面板,通过在第一基板远离液晶层的方向设置遮光层,遮光层图案化形成有遮光图案,并使得遮光图案设置于相邻像素之间,且遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,遮光图案的材料包括无机材料,从而使得通过遮光图案对相邻像素之间的区域进行遮光,无需设置黑色矩阵,提高对液晶的控制能力,且由于遮光图案设置在基板外,从而对人眼侧进行遮光,无需使得遮光图案的宽度大于相邻像素之间的间距,从而提高了液晶显示面板的开口率。
需要说明的是,在液晶显示面板的设计中,会存在在横向方向上,相邻像素之间的间距,与在纵向方向上,相邻像素之间的间距不同的情况,即在图3中,c1与d1不相等,则遮光图案的宽度与相邻像素之间的比较根据相邻像素的方向确定,例如,相邻像素为纵向的两个像素,则遮光图案的宽度为d2,相邻像素为横向的两个像素,则遮光图案的宽度为c2,即使得遮光图案的宽度与相邻像素之间的间距对应;同时,还会存在相邻像素之间的间距为非等间距的情况,则相应的遮光图案的宽度进行相应的设计,以使得遮光图案对像素之间的区域进行遮光,同时,通过控制遮光图案的宽度,避免遮光图案对像素进行遮光,提高显示面板的开口率;而对于横向的相邻像素之间的间距和纵向的相邻像素之间的间距相同的情况,即图3中c1与d1相等,则遮光图案的宽度为c2或者d2中的任一值。
需要说明的是,图3中以相邻的色阻之间的间距表示相邻像素之间的间距,且在图3中,相同颜色的色阻横向排列,但本申请实施例不限于此,相同颜色的色阻可以纵向排列,或者色阻以其他像素排列方式进行排列。
需要说明的是,阈值可以为正值、0和负值,即此处限定遮光图案的宽度与相邻像素之间的间距的差值在某范围内。
在本申请实施例中,相较于现有技术中在基板内设置黑色矩阵,由于黑色矩阵为有机材料,有机材料的形成过程中,会收缩导致黑色矩阵呈现中间凹陷两边凸起的状态,从而导致液晶存在一定的预倾角(此处的预倾角指设计外由于设计缺陷导致的液晶偏转角度),从而导致影响显示,例如出现漏光,且液晶无法得到有效的控制,但本申请实施例中无需设置黑色矩阵,使得液晶能够按照设计进行排列,从而提高了液晶的控制能力。
在一种实施例中,在第一基板上设有第一配向层、在第二基板上设有第二配向层,即在液晶对盒时,会使得在第一基板和第二基板上形成配向层,从而使得液晶通过配向层进行配向,形成一定的预倾角,进而通过液晶偏转进行控制光线。
在一种实施例中,如图4所示,所述第一基板包括阵列基板21,所述阵列基板21包括第一衬底211和设置于所述第一衬底211上的驱动电路层212,以及像素电极层213,所述遮光图案241设置于所述第一衬底211远离所述驱动电路层212的方向上,对于出光方向为阵列基板侧的液晶显示面板,通过在阵列基板侧设置遮光图案,从而使得在显示面板从阵列基板侧发射出去时,遮光图案对像素之间的区域进行遮光,避免杂散光影响显示,且由于遮光图案设置于人眼侧,光线从阵列基板侧发射出来后,不会再经过其他膜层导致光线出现折射或者偏移,因此,仅需要使得遮光图案的宽度与相邻像素之间的间距的差值小于阈值即可对杂散光进行遮挡,提高了液晶显示面板的开口率。
在一种实施例中,如图2所示,所述第一基板包括彩膜基板23,所述彩膜基板23包括第二衬底234和设置于所述第二衬底234上的色阻层232,以及公共电极层231,相邻色阻间隔设置,所述遮光图案241设置于所述第二衬底234远离所述色阻层232的方向上,在设置遮光层时,针对出光方向为彩膜基板侧的液晶显示面板,通过在彩膜基板侧设置遮光图案,使得遮光图案对像素之间的区域进行遮光,避免杂散光影响显示,且由于遮光图案设置于人眼侧,光线从彩膜基板侧发射出来后,不会再经过其他膜层导致光线出现折射或者偏移,因此,无需设置黑色矩阵,且遮光图案的宽度仅需要与色阻之间的间隔的差值小于阈值即可对杂散光进行遮光,从而提高了液晶显示面板的开口率。
在一种实施例中,所述液晶显示面板包括端子区,所述遮光图案沿着垂直于端子区和端子区相对的区域的方向设置,即在设置遮光图案时,可以使得遮光图案横向设置,从而在纵向的相邻像素之间,通过设置遮光图案,无需设置黑色矩阵,从而提高了显示面板的开口率。
在一种实施例中,所述液晶显示面板包括端子区,所述遮光图案沿着端子区和端子区相对的区域的方向设置,即在设置遮光图案时,可以使得遮光图案纵向设置,从而在横向的相邻像素之间,通过设置遮光图案,无需设置黑色矩阵,从而提高了显示面板的开口率。
在一种实施例中,如图3所示,所述遮光图案241包括横向设置的第一图案和纵向设置的第二图案,所述第一图案的宽度d2与横向设置的相邻色阻的间距d1相等,所述第二图案的宽度c2与纵向设置的相邻色阻的间距c1相等,即在设置遮光图案的宽度时,遮光图案的宽度等于相邻像素之间的间距,从而使得在显示面板显示时,对应色阻的区域能够完全显示,通过遮光图案进行遮挡,不会出现杂散光的射出影响显示,从而提高了显示面板的开口率。
在一种实施例中,在使得遮光图案对相邻色阻之间的区域进行遮光时,考虑到更好的遮光性,可以使得遮光图案的宽度大于相邻色阻之间的间距,由于遮光图案是在人眼侧进行遮光,因此,即使遮光图案的宽度大于相邻色阻之间的间距,但是相较于黑色矩阵在发光侧进行遮光,遮光图案的宽度小于黑色矩阵的宽度,从而提高了液晶显示面板的开口率,在遮光图案的宽度等于相邻色阻之间的间距时,遮光图案的遮光效果与黑色矩阵的遮光效果相同甚至更好,此处设置遮光图案的宽度大于相邻色阻之间的间距,是考虑到在需要更好的遮光性时,可以略微提高遮光图案的宽度,但仍然能够提高显示面板的开口率,提高显示面板的显示效果。
在一种实施例中,在使得遮光图案对相邻色阻之间进行遮光时,考虑到在遮光图案宽度小于相邻色阻之间的间距时,在一定范围内,不会影响到显示效果,则可以使得遮光图案的宽度小于相邻色阻之间的间距,从而进一步提高显示面板的开口率,但此时由于露出的相邻色阻之间的间距透出的光线不影响显示面板的显示效果,因此,在对显示装置的相邻色阻之间的区域进行遮光的同时,提高了显示装置的开口率。
在一种实施例中,所述遮光图案的材料包括无机非金属材料,具体的,选择遮光性较好的无机非金属材料作为遮光图案的材料,从而提高液晶显示面板的相邻像素之间的区域的遮光性。
在一种实施例中,所述遮光图案的材料包括铜、铝、银、锌、铜锌叠层、铜钛叠层和铜铝叠层中的一种,通过使得遮光图案的材料为金属或者合金或者金属叠层,则可以使得金属对光线进行反射和吸收,从而避免光线射出,且由于遮光图案的材料为金属,金属具有延展性,则对于需要弯曲或者弯折的液晶显示面板,不影响显示面板的弯折性能,同时,由于金属能够导出静电,且本申请实施例将金属设置基板外,则可以通过金属释放静电,从而提高液晶显示面板的防静电能力,且在使用金属作为遮光图案的材料时,由于金属材料与基板的附着力较好,因此,相较于采用有机材料会出现溶结和剥离的问题,采用金属材料的遮光图案不会出现剥离和脱离。
在一种实施例中,在采用金属材料作为遮光图案的材料时,由于金属材料设置于基板外,而液晶显示面板的静电是由于搬运或者移动过程中的摩擦导致,会出现在液晶显示面板的基板外,因此,将遮光图案设置在液晶显示面板的基板外,可以使得金属材料直接将静电导出,从而避免液晶显示面板出现静电集中,提高液晶显示面板的防静电能力。
在一种实施例中,所述遮光图案与所述第一衬底贴合设置,即通过将遮光图案设置在第一衬底上,通过将遮光图案的厚度设置为较薄,从而可以提高液晶显示面板的开口率,且避免遮光图案出现脱落。
在一种实施例中,所述遮光图案的厚度范围为100埃至1000埃,将遮光图案的厚度设置的较薄,避免增加液晶显示面板的厚度,但本申请实施例不限于此,能够对像素之间的区域进行遮光的厚度均可以作为遮光图案的厚度值。
在一种实施例中,如图4所示,所述液晶显示面板还包括平坦层25,所述平坦层25设置于所述色阻对应区域,且所述平坦层25设置于所述遮光图案241形成的空隙242内,即在设置遮光图案时,考虑到会在遮光图案上设置其他膜层或者其他结构,因此,需要使得遮光图案的平坦,从而便于其他膜层的设计,因此,在设计遮光图案后,考虑到遮光图案会存在一定的空隙,因此,可以在空隙内设置平坦层,从而使得平坦层填补遮光图案的空隙,使得遮光层保持平整。
在一种实施例中,所述遮光层的厚度与所述平坦层的厚度相等,即在设置平坦层时,仅需要使得平坦层的厚度与遮光层的厚度一致,从而使得遮光层保持平整,便于后续的膜层的形成。
在一种实施例中,所述平坦层的厚度大于所述遮光层的厚度,即在形成平坦层时,使得平坦层设置在遮光图案的空隙内,同时,平坦层设置在遮光图案上,从而使得在形成遮光图案后,平坦层使得液晶显示面板保持平整,在设计其他膜层或者其他结构时,避免存在不平整的区域导致其他膜层或者其他结构无法完整形成或者出现弯曲,影响显示。
在一种实施例中,所述平坦层的材料包括无机材料,具体的,平坦层的材料包括氮化硅、氧化硅、氮氧化硅中的一种,即在设置平坦层时,考虑到平坦层设置在色阻对应区域,因此,采用无机材料形成平坦层,从而提高平坦层的透光性。
在一种实施例中,平坦层的材料包括无机材料,遮光图案的材料包括铜、铝、银、锌、铜锌叠层、铜钛叠层和铜铝叠层中的一种,即采用无机材料形成平坦层时,考虑到无机材料的弯折性能较差,因此采用金属或者金属叠层形成遮光图案,从而使得无机材料被分割,而金属具有较好的延展性能,因此,在液晶显示面板需要进行弯折或者弯曲时,由于金属材料的存在,平坦层不会影响到液晶显示面板的弯折性能。
在一种实施例中,平坦层的材料包括有机材料,即在为了提高液晶显示面板的弯折性能,可以使得平坦层的材料为有机材料,从而提高平坦层和遮光层的柔性,同时,考虑到平坦层设置于色阻对应区域,因此,需要使得平坦层的透光性较好,从而可以选择透光性较好的有机材料作为平坦层的材料。
在一种实施例中,如图2至图4所示,所述液晶显示面板还包括色阻平坦层233,所述色阻平坦层设置于所述色阻之间,即在形成色阻层时,由于在色阻层由红色色阻232a,蓝色色阻232b,绿色色阻232c组成,各个色阻之间存在一定的间距,在本申请实施例中,在相邻色阻之间未设置黑色矩阵,因此,需要使得色阻层保持平坦,因此,可以在色阻之间设置色阻平坦层,从而使得色阻层保持平坦,在后续形成公共电极层以及其他膜层时,保持其他膜层的平坦。
在一种实施例中,色阻平坦层的材料与公共电极层的材料相同,公共电极层填充至所述色阻相邻区域,即在对色阻层进行平坦化时,可以使得公共电极层直接填充至色阻之间的区域,从而直接在色阻层上形成公共电极层,使得色阻层保持平坦的同时,公共电极层也保持平坦,同时,由于公共电极层的厚度增加,从而可以降低公共电极层的阻抗,提高液晶显示面板的显示效果。
在一种实施例中,色阻平坦层的材料与所述色阻层的材料相同,即在形成色阻平坦层时,可以使得相邻色阻之间接触,然后对相邻色阻之间的区域进行遮光,从而使得在色阻正常发光的同时,遮光图案对色阻之间的区域进行遮光,从而提高了液晶显示面板的开口率。
在一种实施例中,色阻平坦层的材料包括无机材料,即在设置色阻平坦层的材料时,也可以采用无机材料形成色阻平坦层,从而使得色阻平坦层将色阻层平坦化。
在一种实施例中,所述第一基板包括第三衬底、驱动电路层和色阻层,相邻色阻搭接设置,所述遮光图案设置于所述第三衬底远离所述驱动电路层的方向上,即在采用COA(Color On Array,彩色滤光片设置在阵列基板上)基板的液晶显示面板中,通过在第三衬底下设置遮光图案,使得遮光图案对相邻像素进行遮光,从而提高具有COA基板的液晶显示面板的开口率。
在一种实施例中,所述第一基板包括第三衬底、驱动电路层和色阻层,相邻色阻搭接设置,第二基板包括第二衬底和设置于第二衬底上的公共电极层,所述遮光图案设置于第二衬底远离所述公共电极层的方向上,即考虑到具有COA基板的液晶显示面板会从第二基板侧发射出去,则可以在第二基板外设置遮光图案,无需设置黑色矩阵,从而提高液晶显示面板的开口率。
如图3、图5所示,本申请实施例提供一种液晶显示装置,该液晶显示装置包括:
液晶显示面板,所述液晶显示面板包括第一基板21、第二基板23和液晶层22,所述第二基板23与所述第一基板21相对设置,所述液晶层22设置于所述第一基板21与所述第二基板23之间,其中,在所述第一基板21远离所述液晶层22的方向上设有遮光层24,所述遮光层24图案化形成有遮光图案241,所述遮光图案241设置于相邻像素之间,且遮光图案241的宽度c2(d2)与相邻像素之间的间距c1(d1)的差值小于或者等于阈值k,所述遮光图案241的材料包括无机材料;
偏光片31,设置于所述液晶显示面板外。
本申请实施例提供一种液晶显示装置,该液晶显示装置包括液晶显示面板和偏光片,该液晶显示面板通过第一基板远离液晶层的方向设置遮光层,遮光层图案化形成有遮光图案,并使得遮光图案设置于相邻像素之间,且遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,遮光图案的材料包括无机材料,从而使得通过遮光图案对相邻像素之间的区域进行遮光,无需设置黑色矩阵,提高对液晶的控制能力,且由于遮光图案设置在基板外,从而对人眼侧进行遮光,无需使得遮光图案的宽度大于相邻像素之间的间距,从而提高了液晶显示面板的开口率。
在一种实施例中,如图5所示,所述偏光片31包括第一偏光片312和第二偏光片311,所述第一偏光片312设置于靠近所述第一基板21的一侧,所述第二偏光片311设置于靠近所述第二基板23的一侧,所述第一偏光片312与第一基板21之间和所述第二偏光片311与第二基板23之间的至少一个设有遮光图案241,即在设置遮光图案时,在液晶显示面板与偏光片之间设置遮光图案,使得在光线穿过液晶显示面板后,遮光图案对相邻像素之间的区域的光线进行遮光,从而无需设置黑色矩阵,从而提高液晶显示面板的开口率。
在一种实施例中,在本申请实施例中,考虑到光线会从一侧发射出去,因此,在上述实施例中,仅会在从液晶显示面板的光线射出的一侧设置遮光图案,从而避免光线被遮挡,且避免液晶显示面板的厚度较大,但在实际过程中,在需要在液晶显示面板的两侧设置遮光图案时,也可以在液晶显示面板的两侧形成遮光图案。
在一种实施例中,液晶显示装置还包括背光模组,所述背光模组设置于所述偏光片远离所述液晶显示面板的方向上,即本申请实施例中的液晶显示装置可以是采用背光模组的液晶显示装置,但本申请实施例不限于此,例如采用mini LED(迷你发光二极管)、micro LED(微型发光二极管)作为光源设置在阵列基板的液晶显示面板,也可以采用遮光图案进行遮光,从而提高液晶显示装置的开口率。
在一种实施例中,在形成遮光图案时,可以先在基板的衬底上形成遮光图案,从而在后续形成其他膜层时,即使摩擦产生静电,也可以通过遮光图案将静电进行释放,从而避免液晶显示面板中出现静电积累,提高液晶显示面板的防静电能力。
在一种实施例中,在液晶显示装置中,所述第一基板包括阵列基板,所述阵列基板包括第一衬底和设置于所述第一衬底上的驱动电路层,所述遮光图案设置于所述第一衬底远离所述驱动电路层的方向上。
在一种实施例中,在液晶显示装置中,所述第一基板包括彩膜基板,所述彩膜基板包括第二衬底和设置于所述第二衬底上的色阻层,相邻色阻间隔设置,所述遮光图案设置于所述第二衬底远离所述色阻层的方向上。
在一种实施例中,在液晶显示装置中,所述遮光图案包括横向设置的第一图案与纵向设置的第二图案,所述第一图案的宽度与横向设置的相邻色阻的间距相等,所述第二图案的宽度与纵向设置的相邻色阻的间距相等。
在一种实施例中,在液晶显示装置中,所述遮光图案的材料包括铜、铝、银、锌、铜锌叠层、铜钛叠层和铜铝叠层中的一种。
在一种实施例中,在液晶显示装置中,所述液晶显示面板还包括平坦层,所述平坦层设置于所述色阻对应区域,且所述平坦层设置于所述遮光图案形成的空隙内。
在一种实施例中,在液晶显示装置中,所述平坦层的材料包括氮化硅、氧化硅、氮氧化硅中的一种。
在一种实施例中,在液晶显示装置中,所述第一基板包括第三衬底、驱动电路层和色阻层,相邻色阻搭接设置,所述遮光图案设置于所述第三衬底远离所述驱动电路层的方向上。
在一种实施例中,在液晶显示装置中,所述液晶显示面板包括端子区,所述遮光图案沿着垂直于端子区和端子区相对的区域的方向设置。
根据以上实施例可知:
本申请实施例提供一种液晶显示面板和液晶显示装置,该液晶显示面板包括第一基板、第二基板和液晶层,第二基板与第一基板相对设置,液晶层设置于第一基板与第二基板之间,其中,在第一基板远离液晶层的方向上设有遮光层,遮光层图案化形成有遮光图案,遮光图案设置于相邻像素之间,且遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,遮光图案的材料包括无机材料;本申请实施例通过在第一基板远离液晶层的方向设置遮光图案,且遮光图案设置于相邻像素之间,遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,即使得通过在液晶显示面板的基板外设置遮光层,通过将遮光层设置于相邻像素之间,从而使得遮光层对相邻像素之间的光线进行遮挡,无需设置黑色矩阵,提高对液晶的控制能力,由于遮光层设置于液晶显示面板的基板外,因此,直接在人眼侧对杂散光进行遮挡,无需使得遮光图案的宽度大于相邻像素之间的间距,从而提高了液晶显示面板的开口率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种液晶显示面板和液晶显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种液晶显示面板,其包括:
    第一基板;
    第二基板,与所述第一基板相对设置;
    液晶层,设置于所述第一基板与所述第二基板之间;
    其中,在所述第一基板远离所述液晶层的方向上设有遮光层,所述遮光层图案化形成有遮光图案,所述遮光图案设置于相邻像素之间,且遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,所述遮光图案的材料包括无机材料。
  2. 如权利要求1所述的液晶显示面板,其中,所述第一基板包括阵列基板,所述阵列基板包括第一衬底和设置于所述第一衬底上的驱动电路层,所述遮光图案设置于所述第一衬底远离所述驱动电路层的方向上。
  3. 如权利要求1所述的液晶显示面板,其中,所述第一基板包括彩膜基板,所述彩膜基板包括第二衬底和设置于所述第二衬底上的色阻层,相邻色阻间隔设置,所述遮光图案设置于所述第二衬底远离所述色阻层的方向上。
  4. 如权利要求3所述的液晶显示面板,其中,所述遮光图案包括横向设置的第一图案与纵向设置的第二图案,所述第一图案的宽度与横向设置的相邻色阻的间距相等,所述第二图案的宽度与纵向设置的相邻色阻的间距相等。
  5. 如权利要求4所述的液晶显示面板,其中,所述遮光图案的材料包括铜、铝、银、锌、铜锌叠层、铜钛叠层和铜铝叠层中的一种。
  6. 如权利要求4所述的液晶显示面板,其中,所述液晶显示面板还包括平坦层,所述平坦层设置于所述色阻对应区域,且所述平坦层设置于所述遮光图案形成的空隙内。
  7. 如权利要求6所述的液晶显示面板,其中,所述平坦层的材料包括氮化硅、氧化硅、氮氧化硅中的一种。
  8. 如权利要求1所述的液晶显示面板,其中,所述第一基板包括第三衬底、驱动电路层和色阻层,相邻色阻搭接设置,所述遮光图案设置于所述第三衬底远离所述驱动电路层的方向上。
  9. 如权利要求1所述的液晶显示面板,其中,所述液晶显示面板包括端子区,所述遮光图案沿着垂直于端子区和端子区相对的区域的方向设置。
  10. 如权利要求1所述的液晶显示面板,其中,所述液晶显示面板包括端子区,所述遮光图案沿着端子区和端子区相对的区域的方向设置。
  11. 一种液晶显示装置,其包括:
    液晶显示面板,所述液晶显示面板包括第一基板、第二基板和液晶层,所述第二基板与所述第一基板相对设置,所述液晶层设置于所述第一基板与所述第二基板之间,其中,在所述第一基板远离所述液晶层的方向上设有遮光层,所述遮光层图案化形成有遮光图案,所述遮光图案设置于相邻像素之间,且遮光图案的宽度与相邻像素之间的间距的差值小于或者等于阈值,所述遮光图案的材料包括无机材料;
    偏光片,设置于所述液晶显示面板外。
  12. 如权利要求11所示的液晶显示装置,其中,所述偏光片包括第一偏光片和第二偏光片,所述第一偏光片设置于靠近所述第一基板的一侧,所述第二偏光片设置于靠近所述第二基板的一侧,所述第一偏光片与第一基板之间和所述第二偏光片与第二基板之间中的至少一个设有遮光图案。
  13. 如权利要求11所示的液晶显示装置,其中,所述第一基板包括阵列基板,所述阵列基板包括第一衬底和设置于所述第一衬底上的驱动电路层,所述遮光图案设置于所述第一衬底远离所述驱动电路层的方向上。
  14. 如权利要求11所示的液晶显示装置,其中,所述第一基板包括彩膜基板,所述彩膜基板包括第二衬底和设置于所述第二衬底上的色阻层,相邻色阻间隔设置,所述遮光图案设置于所述第二衬底远离所述色阻层的方向上。
  15. 如权利要求14所示的液晶显示装置,其中,所述遮光图案包括横向设置的第一图案与纵向设置的第二图案,所述第一图案的宽度与横向设置的相邻色阻的间距相等,所述第二图案的宽度与纵向设置的相邻色阻的间距相等。
  16. 如权利要求15所示的液晶显示装置,其中,所述遮光图案的材料包括铜、铝、银、锌、铜锌叠层、铜钛叠层和铜铝叠层中的一种。
  17. 如权利要求15所示的液晶显示装置,其中,所述液晶显示面板还包括平坦层,所述平坦层设置于所述色阻对应区域,且所述平坦层设置于所述遮光图案形成的空隙内。
  18. 如权利要求17所示的液晶显示装置,其中,所述平坦层的材料包括氮化硅、氧化硅、氮氧化硅中的一种。
  19. 如权利要求11所示的液晶显示装置,其中,所述第一基板包括第三衬底、驱动电路层和色阻层,相邻色阻搭接设置,所述遮光图案设置于所述第三衬底远离所述驱动电路层的方向上。
  20. 如权利要求11所示的液晶显示装置,其中,所述液晶显示面板包括端子区,所述遮光图案沿着垂直于端子区和端子区相对的区域的方向设置。
PCT/CN2021/097440 2021-01-15 2021-05-31 液晶显示面板和液晶显示装置 WO2022151638A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/440,627 US11867998B2 (en) 2021-01-15 2021-05-31 Liquid crystal display panel and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110055254.3 2021-01-15
CN202110055254.3A CN112764260B (zh) 2021-01-15 2021-01-15 液晶显示面板和液晶显示装置

Publications (1)

Publication Number Publication Date
WO2022151638A1 true WO2022151638A1 (zh) 2022-07-21

Family

ID=75701852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097440 WO2022151638A1 (zh) 2021-01-15 2021-05-31 液晶显示面板和液晶显示装置

Country Status (3)

Country Link
US (1) US11867998B2 (zh)
CN (1) CN112764260B (zh)
WO (1) WO2022151638A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596484A (zh) * 2020-06-01 2020-08-28 武汉华星光电技术有限公司 一种彩膜基板和显示面板
CN112764260B (zh) * 2021-01-15 2023-10-17 Tcl华星光电技术有限公司 液晶显示面板和液晶显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040027514A1 (en) * 2002-04-15 2004-02-12 Hironori Kobayashi Method for manufacturing pattern of light shielding layer and pattern forming body of light shielding layer
CN101526685A (zh) * 2008-03-06 2009-09-09 北京京东方光电科技有限公司 彩膜基板及其制造方法
CN104020603A (zh) * 2014-06-11 2014-09-03 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、显示装置
CN108153071A (zh) * 2017-12-29 2018-06-12 惠州市华星光电技术有限公司 显示面板及其制造方法、显示装置
CN112764259A (zh) * 2021-01-05 2021-05-07 惠州市华星光电技术有限公司 一种显示面板及其制备方法
CN112764260A (zh) * 2021-01-15 2021-05-07 Tcl华星光电技术有限公司 液晶显示面板和液晶显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566011A (en) * 1994-12-08 1996-10-15 Luncent Technologies Inc. Antiflector black matrix having successively a chromium oxide layer, a molybdenum layer and a second chromium oxide layer
CN101581852B (zh) * 2009-06-24 2012-02-08 昆山龙腾光电有限公司 彩色滤光片基板及制作方法和液晶显示面板
US9025112B2 (en) * 2012-02-02 2015-05-05 Apple Inc. Display with color mixing prevention structures
CN103218077B (zh) * 2013-03-30 2016-04-13 南昌欧菲光显示技术有限公司 滤光片模块及包含该滤光片模块的触摸显示屏
KR102363676B1 (ko) * 2015-04-16 2022-02-17 삼성디스플레이 주식회사 표시장치 및 그 제조방법
CN105549236B (zh) * 2016-02-19 2020-05-12 京东方科技集团股份有限公司 可切换防窥装置及其制备方法、显示装置
KR102654508B1 (ko) * 2016-05-04 2024-04-04 삼성디스플레이 주식회사 표시 장치
CN106200104B (zh) * 2016-09-26 2019-11-19 京东方科技集团股份有限公司 一种彩膜基板及其制作方法和显示面板
CN106707608A (zh) * 2017-03-23 2017-05-24 京东方科技集团股份有限公司 一种显示面板、显示装置及驱动方法
CN110161741A (zh) * 2018-08-24 2019-08-23 京东方科技集团股份有限公司 彩膜基板及其制造方法、显示装置
CN110058447A (zh) * 2019-04-23 2019-07-26 昆山龙腾光电有限公司 彩色滤光片基板及液晶显示面板以及显示装置
CN110673382A (zh) * 2019-09-16 2020-01-10 深圳市华星光电技术有限公司 液晶显示面板及制造方法
CN210465920U (zh) * 2019-09-26 2020-05-05 昆山龙腾光电股份有限公司 彩色滤光片基板及液晶显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040027514A1 (en) * 2002-04-15 2004-02-12 Hironori Kobayashi Method for manufacturing pattern of light shielding layer and pattern forming body of light shielding layer
CN101526685A (zh) * 2008-03-06 2009-09-09 北京京东方光电科技有限公司 彩膜基板及其制造方法
CN104020603A (zh) * 2014-06-11 2014-09-03 京东方科技集团股份有限公司 一种彩膜基板及其制作方法、显示装置
CN108153071A (zh) * 2017-12-29 2018-06-12 惠州市华星光电技术有限公司 显示面板及其制造方法、显示装置
CN112764259A (zh) * 2021-01-05 2021-05-07 惠州市华星光电技术有限公司 一种显示面板及其制备方法
CN112764260A (zh) * 2021-01-15 2021-05-07 Tcl华星光电技术有限公司 液晶显示面板和液晶显示装置

Also Published As

Publication number Publication date
CN112764260A (zh) 2021-05-07
US20230100095A1 (en) 2023-03-30
US11867998B2 (en) 2024-01-09
CN112764260B (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
JP4368096B2 (ja) 液晶表示装置
US7436473B2 (en) Liquid crystal display and manufacturing method thereof
TWI359298B (en) Liquid crystal display device and method for fabri
WO2022151638A1 (zh) 液晶显示面板和液晶显示装置
WO2022198707A1 (zh) 显示面板及显示装置
TW201443533A (zh) 畫素結構及具有此畫素結構之液晶顯示面板
WO2020097959A1 (zh) 一种显示面板、制程方法和显示装置
WO2020124896A1 (zh) 液晶显示面板
CN107861286B (zh) 显示面板
KR20060032034A (ko) 횡전계방식 액정표시장치
KR101728488B1 (ko) 횡전계형 액정표시장치
WO2021031443A1 (zh) 阵列基板、液晶显示面板及液晶显示器
CN114447067A (zh) 一种显示面板及其显示装置
JP2005148477A (ja) 電気光学装置用基板、電気光学装置、電子機器
JPH04296826A (ja) 液晶表示装置
CN218998739U (zh) 显示面板及显示装置
TWI828141B (zh) 顯示裝置
TWI834350B (zh) 顯示裝置
JP4865954B2 (ja) 液晶表示装置
WO2023178666A1 (zh) 调光面板、叠屏面板、和制造调光面板的方法
JP2008241856A (ja) 液晶装置及び電子機器
JP4051942B2 (ja) カラーフィルタ基板及びその製造方法、電気光学パネル、電気光学装置並びに電子機器
KR100852107B1 (ko) 반사형 액정 표시장치
KR20150085479A (ko) 디스플레이 패널
CN115915819A (zh) 显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918836

Country of ref document: EP

Kind code of ref document: A1