WO2020097959A1 - 一种显示面板、制程方法和显示装置 - Google Patents

一种显示面板、制程方法和显示装置 Download PDF

Info

Publication number
WO2020097959A1
WO2020097959A1 PCT/CN2018/116618 CN2018116618W WO2020097959A1 WO 2020097959 A1 WO2020097959 A1 WO 2020097959A1 CN 2018116618 W CN2018116618 W CN 2018116618W WO 2020097959 A1 WO2020097959 A1 WO 2020097959A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film thickness
electrode
substrate
area
Prior art date
Application number
PCT/CN2018/116618
Other languages
English (en)
French (fr)
Inventor
杨春辉
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US16/349,282 priority Critical patent/US10816859B1/en
Publication of WO2020097959A1 publication Critical patent/WO2020097959A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a manufacturing method, and a display device.
  • Flat panel displays include thin film transistor liquid crystal displays (Thin Film Transistor-Liquid Crystal (TFT-LCD) and organic light-emitting diode (Organic Light-Emitting Diode, OLED) displays, etc.
  • TFT-LCD Thi Film Transistor-Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the thin film transistor liquid crystal display controls the rotation direction of the liquid crystal molecules to refract the light of the backlight module to generate a picture, which has many advantages such as thin body, power saving, no radiation and so on.
  • the organic light emitting diode display is made of organic electroluminescent diodes, and has many advantages such as self-luminescence, short response time, high definition and contrast, flexible display and large-area full-color display.
  • VA panel Multi-domain Vertical Alignment
  • a commonly used polymer-stabilized vertical alignment type is a non-contact alignment manufacturing process, which can avoid static electricity and ion pollution caused by contact friction alignment, but The polymer vertical alignment technology still needs further improvement in dark lines.
  • the purpose of the present application is to provide a display panel, a manufacturing method and a display device, so as to eliminate dark borders of pixels.
  • the present application provides a display panel, including: a first substrate; and a second substrate disposed opposite to the first substrate; a first common line and a first are provided on the first substrate Electrodes, the first electrode partially overlaps the first common line; the second substrate is provided with a common electrode corresponding to the first common line and the first electrode; the first electrode is The overlapping portion of the first common line is an overlapping light-shielding area, and the portion where the first electrode and the first common line are not overlapping is a light-transmitting area.
  • the light-transmitting area includes: a main light-transmitting area; an edge light-transmitting area Is provided between the main light-transmitting region and the overlapping light-shielding region and close to the overlapping light-shielding region, wherein the film thickness of the edge light-transmitting region is greater than the film thickness of the overlapping light-shielding region.
  • the film thickness of the edge light-transmitting region is greater than the film thickness of the main light-transmitting region.
  • the film thickness of the main light-transmitting region is equal to the film thickness of the overlapping light-shielding region.
  • the film thickness of the main light-transmitting region is greater than the film thickness of the overlapping light-shielding region.
  • the film thickness of the edge light-transmitting area does not exceed ten times the film thickness of the main light-transmitting area.
  • the film thickness of the overlapping light-shielding area is greater than one tenth of the film thickness of the main light-transmitting area.
  • the film thickness of the main light-transmitting region on the first substrate is equal to the film thickness of the common electrode on the second substrate.
  • the present application also discloses a manufacturing method including the manufacturing method of the first substrate.
  • the manufacturing method of the first substrate includes the steps of: depositing a metal layer on a base and etching to obtain a first common line with a predetermined pattern Forming an insulating layer above the first common line, depositing the pixel electrode material above the insulating layer; depositing a photoresist material above the pixel electrode material; forming a photoresist layer with a predetermined pattern by exposure and development; using a semi-transparent film mask once
  • the pixel electrode material is processed by exposure and development or multiple photomasks for multiple exposures and development to obtain a first electrode with a film thickness in the edge light-transmitting area greater than that in the overlapping light-shielding area; and the photoresist layer is peeled off.
  • the first common line and the common electrode are connected, there is no voltage difference, the first common line is opaque, so the overlapping portion of the first common line and the pixel electrode is opaque; between the pixel electrode and the common electrode and A fringe electric field is formed between the pixel electrode and the first common line.
  • the fringe electric field affects the brightness and dark uniformity of the edge region of the first common line, which is called a fringe field effect.
  • the fringe field effect affects the stability of the electric field between the pixel electrode and the common electrode.
  • the fluctuation of the electric field causes the deflection angle of some liquid crystals to fluctuate, resulting in uneven brightness and darkness including dark lines and unclear bright and dark boundaries; For the dark lines, this application is based on this.
  • the relative strength of the deflection electric field increases, the stability of the deflection electric field is improved, the influence of the fringe electric field is reduced, and the Problems such as dark lines or uneven brightness appear at the edge of the common line.
  • FIG. 4 is a schematic diagram of an AA 'section in FIG. 3 according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a pixel electrode according to an embodiment of the present application.
  • an embodiment of the present application discloses a display panel 110, including: a first substrate 120; a second substrate 140, which is disposed opposite to the first substrate 120; a liquid crystal layer 130, which is interposed on the first substrate 120 Between the second substrate 140; the first substrate (Array) 120 is provided with a first common line 150 and a first electrode 160 partially overlapping the first common line 150, the second substrate 140 is provided with a first common line A common electrode 170 corresponding to the first electrode is provided; an insulating layer (PVX) is provided between the first common line and the first electrode, and the insulating layer covers the first common line.
  • PVX insulating layer
  • the common metal line (Array Common, A_COM) on the array substrate is the first common line
  • the common electrode (Color Film Indium Oxide, CF_ITO) on the color filter substrate, for dark lines as shown in Figure 2, generally Use A_COM and the pixel electrode for gold plating, and then A_COM and CF_ITO share the voltage, so that the two potentials are equal to form an electric field shield, and then achieve the purpose of stabilizing and regularizing the liquid crystal around the pixel electrode pattern in the pixel, A_COM line potential and CF_ITO line When the potentials are equal, there is no voltage difference between the two, and the liquid crystal between the two will not rotate. The dark state is shown.
  • FIG. 2 is the pixel data line Cross-sectional view, it can be seen that the pixel electrode (Array Intin oxide (A_ITO) and A_COM) on the array substrate have gold plating in the vertical space.
  • A_COM shielding method is also called shielding metal Method (shielding metal), referred to as SM.
  • shielding metal shielding metal
  • the film thickness d2 of the edge light-transmitting area 210 is greater than the overlapping light-shielding area
  • the film thickness d1 of 190 increases the thickness of the edge light-transmitting region 210, so that the deflection electric field between the edge light-transmitting region 210 and the common electrode increases.
  • the edge region of the first common line is Although the deflection electric field between the pixel electrode and the common electrode is still affected by the edge electric field in the edge light-transmitting area 210, the intensity of the deflection electric field is much stronger than that of the edge electric field.
  • the film thickness of the main light-transmitting area 200 is the thickness of the pixel electrode of the panel design, the film thickness of the edge light-transmitting area 210 of the first electrode increases, and the relative distance between the first electrode and the common electrode in this area decreases.
  • the electric field strength formula E U / d, the electric field between the edge light-transmitting area 210 and the common electrode is enhanced.
  • E1 the electric field strength in this area E1; the first electrode and the common electrode in the area of the main light-transmitting area 200
  • E2 The electric field intensity between is called E2.
  • the film thickness of the edge light-transmitting area 210 is thicker than that of the normally designed main light-transmitting area 200, such a design can make E1> E2, that is, the E1 is more than normal
  • the deflection electric field is stronger, and its anti-interference ability becomes stronger, so that the edge light-transmitting area 210 can resist the influence of the edge electric field of the overlapping light-shielding area 190, weaken the edge field effect, and thereby improve the dark border of the pixel and make the penetration Increase, increase contrast, improve product quality and display effect;
  • the film thickness of the edge light-transmitting area 210 is greater than the film thickness of the main light-transmitting area 200, you can add a process, or you can use semi-transmission in the original process
  • the film mask makes the light transmittance of the edge light-transmitting area 210 and the main light-transmitting area 200 different, and realizes different degrees of time, so that the film thickness of the edge light-transmitting area 210 is
  • the film thickness d3 of the main light-transmitting region 200 is equal to the film thickness d1 of the overlapping light-shielding region 190.
  • the film thickness of the edge light-transmitting region 210 located in the overlapping area of the pixel electrode and the first common line is set to be the same thickness as the film thickness of the main light-transmitting region 200 and both are smaller than those of the edge light-transmitting region 210
  • the thickness of the film is so that the deflection voltage intensity of the edge light-transmitting region 210 is stronger than the effect caused by the edge field effect, which reduces the problem of uneven brightness and darkness, including boundary dark lines, on the display screen, and can even eliminate the boundary dark lines
  • the film thickness of the overlapping light-shielding area 190 and the main light-transmitting area 200 are equal, we can reduce the dark lines and enhance the display effect as long as the film thickness of the edge light-transmitting area 210 becomes thicker in the manufacturing process.
  • the purpose of the overlapping light-shielding area 190 and the main light-transmitting area 200 can retain the original design thickness (or formed by the same process), while solving technical problems, there is no need for the overlapping light-shielding area 190 and the main light-transmitting area
  • the area 200 is designed with a special photomask to make the film thickness of the two different, reducing the extra workload and the difficulty of the manufacturing process.
  • the first common line is generally provided under the pixel electrode
  • the pixel electrode is provided between the common electrode and the first common line
  • the film thickness of the overlapping light-shielding region 190 is thinned, and thus, the overlapping of the pixel electrodes
  • the electric field strength between the shaded area 190 and the common electrode will be weakened, and the edge light-transmitting area 210 will be weakened by the effect of the edge field effect. While enhancing the thickness of the edge light-transmitting area 210 and enhancing the anti-interference ability, it will mainly The intensity of the electric field interference source is weakened, which basically eliminates the effect of the fringe field effect, and achieves a better effect of improving the unevenness of light and dark.
  • the dark pattern problem is basically eliminated, and the display quality of the display panel 110 is better improved.
  • the film thickness of the edge light-transmitting region 210 is less than ten times the film thickness of the main light-transmitting region 200.
  • the film thickness refers to the film thickness of the first electrode perpendicular to the direction of the electric field.
  • the film thickness d2 of the edge light-transmitting region 210 (the area affected by the edge field effect), and the film thickness of the main light-transmitting region 200 is d3 (the film thickness preset by the display panel 110 process), that is, the The film thickness requirements of the edge light-transmitting area 210 are as follows: d3 ⁇ d2 ⁇ 10d3, so that we can improve or even eliminate the problem of the edge field effect. Specifically, the larger the d2, the stronger the effect of eliminating the edge field effect, but according to the display panel 110 The design is different.
  • the width of the edge light-transmitting area 210 is greater than zero and less than half the width of the first electrode. If the width of the edge light-transmitting area is y, then 0 ⁇ y ⁇ 0.5A, A is The width of the first electrode, generally y is equal to 1 / 3A, the best effect.
  • the increased thickness of the edge light-transmitting area 210 can enhance the voltage between the edge light-transmitting area 210 and the common electrode, reduce the influence of the edge electric field, and improve the problem of dark lines; remember that the width of the first electrode is A, because of this
  • the first electrode is also designed with a main light-transmitting region 200. Therefore, the maximum design width of the edge light-transmitting region 210 is less than 0.5A to ensure that there is room for the main light-transmitting region 200.
  • the film thickness of the overlapping light-shielding region 190 is greater than one tenth of the film thickness of the main light-transmitting region 200.
  • the film thickness of the overlapping light-shielding region 190 is less than the film thickness of the main light-transmitting region 200 to weaken the fringe electric field between the overlapping light-shielding region 190 and the first common line, and weaken the effect of the edge field effect on the edge light-transmitting region 210 influences.
  • the designed minimum film thickness is greater than one-tenth of the film thickness of the main light-transmitting region 200, so as to avoid the occurrence of the problem of breaking the overlapping light-shielding region 190 that is too thin.
  • the thickness of the pixel electrode of the display panel 110 can be set to D Then, the film thickness d3 of the main light-transmitting region 200 is equal to D, the film thickness d1 of the overlapping light-shielding region 190 is less than D, and the film thickness d2 of the edge light-transmitting region 210 is greater than D.
  • a manufacturing method of the display panel 110 is disclosed, wherein the manufacturing method includes the manufacturing method of the first substrate 120, and the manufacturing method of the first substrate 120 includes Step: deposit a metal layer on a substrate and etch to obtain a first common line with a predetermined pattern; form an insulating layer 180 above the first common line, and deposit pixel electrode material above the insulating layer (PVX) to make the first electrode 160; A photoresist material is deposited over the pixel electrode material; a photoresist layer 220 with a predetermined pattern is formed by exposure and development; the pixel electrode material is processed by using a semi-transparent film mask for one-time exposure development or multiple photomasks for multiple exposure development to obtain edge transparency The film thickness of the light region 210 is greater than the thickness of the first electrode overlapping the light shielding region 190; the photoresist layer 220 is stripped.
  • the first electrode needs to be manufactured with a film thickness region different from the main light-transmitting region 200 and the edge light-transmitting region 210, other photomasks can be replaced. If you think the process is too complicated, you can also use a special semi-transparent film mask to form the first electrode with at least three film thicknesses at a time. However, the requirements for semi-transparent film masks are relatively high.
  • a display device 100 including the above display panel 110.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(110)、制程方法和显示装置。显示面板(110)包括:第一基板(120);第二基板(140),与第一基板(120)对盒设置;液晶层(130),夹设于第一基板(120)与第二基板(140)之间;第一基板(120)上设有第一公共线(150)以及与第一公共线(150)部分重叠的第一电极(160),第二基板(140)上设有与第一公共线(150)和第一电极(160)对应设置的公共电极(170);第一电极(160)与第一公共线(150)的重叠部分为重叠遮光区(190),第一电极(160)与第一公共线(150)未重叠部分为透光区,透光区包括靠近重叠遮光区(190)的边缘透光区(210),边缘透光区(210)的膜厚大于重叠遮光区的膜厚。本方案,通过形成不同膜厚的像素电极图案,进而改善像素的暗纹边界,提升产品品质。

Description

一种显示面板、制程方法和显示装置
本申请要求于2018年11月14日提交中国专利局、申请号为CN201811350598.1、发明名称为“一种显示面板、制程方法和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板、制程方法和显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着科技的发展和进步,平板显示器由于具备机身薄、省电和辐射低等热点而成为显示器的主流产品,得到了广泛应用。平板显示器包括薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)和有机发光二极管(Organic Light-Emitting Diode,OLED)显示器等。其中,薄膜晶体管液晶显示器通过控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面,具有机身薄、省电、无辐射等众多优点。而有机发光二极管显示器是利用有机电致发光二极管制成,具有自发光、响应时间短、清晰度与对比度高、可实现柔性显示与大面积全色显示等诸多优点。
VA面板(Multi-domain Vertical Alignment,多象限垂直配向技术),常用的高分子稳定垂直配向型,属于非接触式配向制作工艺,可以避免到由于接触摩擦配向引起的静电及离子污染等问题,但高分子垂直配向技术在暗纹方面仍有待进一步的改善。
技术解决方案
本申请的目的在于提供一种显示面板、制程方法和显示装置,以消除像素暗纹边界。
为实现上述目的,本申请提供了一种显示面板,包括:第一基板;以及与所述第一基板对盒设置的第二基板;所述第一基板上设有第一公共线以及第一电极,所述第一电极与所述第一公共线部分重叠;所述第二基板上设有与所述第一公共线和所述第一电极对应设置的公共电极;所述第一电极与所述第一公共线的重叠部分为重叠遮光区,所述第一电极与所述第一公共线未重叠部分为透光区,所述透光区包括:主透光区;边缘透光区,设置在所述主透光区和所述重叠遮光区之间并靠近所述重叠遮光区,其中,所述边缘透光区的膜厚大于所述重叠遮光区的膜厚。
可选的,所述边缘透光区的膜厚大于所述主透光区的膜厚。
可选的,所述主透光区的膜厚等于所述重叠遮光区的膜厚。
可选的,所述主透光区的膜厚大于所述重叠遮光区的膜厚。
可选的,所述边缘透光区的膜厚不超过十倍所述主透光区的膜厚。
可选的,所述边缘透光区的宽度大于0.01倍的所述第一电极的宽度,且小于所述第一电极的宽度的一半。
可选的,所述重叠遮光区的膜厚大于所述主透光区的膜厚的十分之一。
可选的,所述第一基板上的主透光区的膜厚与所述第二基板上的公共电极的膜厚相等。
本申请还公开了一种制程方法,所述制程方法包括第一基板的制程方法,所述第一基板的制程方法包括步骤:在一基底沉积金属层,蚀刻得到预设图案的第一公共线;在第一公共线上方形成绝缘层,在绝缘层上方沉积像素电极材料;在像素电极材料的上方沉积光阻材料;通过曝光显影形成预设图案的光阻层;使用半透膜光罩一次曝光显影或多个光罩多次曝光显影处理像素电极材料,得到边缘透光区膜厚大于重叠遮光区膜厚的第一电极;剥离光阻层。
本申请还公开了一种显示装置,包括如上所述的显示面板。
在VA模式显示面板中,第一公共线和公共电极相连,无电压差,第一公共线不透光,因而第一公共线和像素电极重叠部分不透光;像素电极和公共电极之间以及该像素电极和第一公共线之间均形成有边缘电场,边缘电场会影响到第一公共线边缘区域部分的亮暗均匀性,称为边缘场效应。边缘场效应影响该像素电极和公共电极之间的电场稳定性,电场出现波动,使得部分液晶的偏转角度波动,从而出现暗纹在内的亮暗不均匀,及亮暗边界不清楚的问题;针对暗纹,本申请基于此,在做第一电极时,设置不同膜厚来改善暗纹,具体的,该边缘透光区的膜厚大于重叠遮光区的膜厚,对边缘透光区的膜厚进行了加厚,使得该边缘透光区和公共电极之间的偏转电场增大,如此,在该第一公共线的边缘区域即边缘透光区,虽然像素 电极和公共电极之间的偏转电场还是受到边缘电场的影响,但是偏转电场的强度远强于边缘电场的强度,在主透光区该偏转电场相对强度增加,偏转电场稳定性得以提升,减少边缘电场的影响,减少第一公共线边缘区域出现暗纹或者亮度不均匀等问题的发生。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,作为本申请的实施方式的一种示例,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请实施例一种显示面板的示意图;
图2是本申请实施例一种金属屏蔽方法的示意图;
图3是本申请实施例一种边缘透光区的示意图;
图4是本申请实施例一种图3中的AA’截面的示意图;
图5是本申请实施例一种边缘透光区膜厚大于重叠遮光区膜厚的示意图;
图6是本申请实施例一种重叠遮光区膜厚等于主透光区膜厚的示意图;
图7是本申请实施例一种重叠遮光区膜厚小于主透光区膜厚的示意图;
图8是本申请实施例一种改进后的AA’截面的示意图;
图9是本申请实施例一种像素电极的示意图;
图10是本申请实施例一种制程流程的示意图;
图11是本申请实施例一种显示装置的示意图。
本申请的实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是描述本申请的示例性实施例。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面参考附图和可选的实施例对本申请作进一步说明。
如图1所示,本申请实施例公布了一种显示面板110,包括:第一基板120;第二基板140,与第一基板120对盒设置;液晶层130,夹设于第一 基板120与第二基板140之间;第一基板(Array)120上设有第一公共线150以及与第一公共线150部分重叠的第一电极160,第二基板140上设有与第一公共线和第一电极对应设置的公共电极170;第一公共线与第一电极之间设置绝缘层(PVX),绝缘层覆盖在第一公共线上。
如图3所示,第一电极与第一公共线的重叠部分为重叠遮光区190,第一电极与第一公共线未重叠部分为透光区,透光区包括靠近重叠遮光区190的边缘透光区210,如图5所示,边缘透光区210的膜厚大于重叠遮光区190的膜厚。
在VA模式显示面板110中,第一公共线和公共电极相连,无电压差,第一公共线不透光,因而第一公共线和公共电极重叠部分不透光;如图4所示,第一公共线上设置有像素电极(Array Indium tin oxide,A_ITO),像素电极和公共电极形成像素电容,像素电极和公共电极形成偏转电场从而控制液晶偏转;同时,该像素电极与第一公共线部分重叠形成存储电容。其中,该像素电极和公共电极之间以及该像素电极和第一公共线之间均形成有边缘电场,边缘电场会影响到第一公共线边缘区域部分的亮暗均匀性,称为边缘场效应,边缘场效应影响该像素电极和公共电极之间的电场稳定性,电场出现波动,使得部分液晶分子的偏转角度波动,从而出现暗纹在内的亮暗不均匀,及亮暗边界不清楚的问题。
本方案中,阵列基板上的公共金属线(Array common,A_COM)为第一公共线,彩膜基板上的公共电极(Color FilmIndium tin oxide,CF_ITO),针对暗纹,如图2所示,一般利用A_COM与像素电极进行镀金,然后A_COM 再与CF_ITO共用电压,借而二者等电势,形成电场屏蔽,进而达到使像素中像素电极图案周边液晶导向稳定且规整的目的,A_COM线电位与CF_ITO线电位相等,二者之间也就不存在电压差,二者之间的液晶也就不会转动,展示的为暗态,二者电场有相互影响,但影响不大;图2为像素数据线截面图,可以看出阵列基板上的像素电极(Array Indium tin oxide,A_ITO)与A_COM在垂直空间有镀金(overlay),此即是现在通常所用的ACOM屏蔽法,因此A_COM屏蔽法也叫屏蔽金属法(shielding metal),简称SM。但此A_COM屏蔽法,A_COM边亮区与A_COM屏蔽的暗区界限不明显,直接引起像素(pixel)暗纹边界模糊,会使穿透率下降,对比度降低。
本方案中,基于以上内容,在做第一电极时,设置不同膜厚来改善暗纹,具体的,如图3和图5所示,该边缘透光区210的膜厚d2大于重叠遮光区190的膜厚d1,对边缘透光区210的膜厚进行了加厚,使得该边缘透光区210和公共电极之间的偏转电场增大,如此,在该第一公共线的边缘区域即边缘透光区210,虽然该像素电极和公共电极之间的偏转电场,仍然受到边缘电场的影响,但是偏转电场的强度远强于边缘电场的强度,在主透光区200该偏转电场相对强度增加,偏转电场稳定性得以提升,减少边缘电场的影响,减少第一公共线边缘区域出现暗纹或者亮度不均匀等问题的发生;具体的,第一电极的边缘透光区210膜厚增加,那么第一电极与公共电极的相对距离减少,由电场强度公式E=U/d(此为匀强电场公式,第一电极A_ITO与公共电极CF_ITO之间的电场可以近似为匀强电场,U为A_ITO与CF_ITO电位差,d为A_ITO与CF_ITO垂直距离、E为电场强度) 可知,该边缘透光区210和公共电极之间的电场增强,那么该边缘透光区210受到来自与重叠区的边缘电场影响会减少,如此减少显示时的边缘场效应,进而改善像素的边界暗纹情况,使穿透率提高,对比度增加,提升产品品质和显示效果。
在一实施例中,如图3所示,透光区还包括主透光区200,边缘透光区210设置在主透光区200和重叠遮光区190之间,如图5所示,边缘透光区210的膜厚d2大于主透光区200的膜厚d3。
本方案中,该主透光区200的膜厚为面板设计的像素电极的膜厚,第一电极的边缘透光区210膜厚增加,此区域内第一电极与公共电极的相对距离减少,由电场强度公式E=U/d可知,该边缘透光区210和公共电极之间的电场增强,我们把该区域电场强度称为E1;主透光区200的区域内第一电极与公共电极之间的电场强度称为E2,由于边缘透光区210的膜厚比正常设计的主透光区200的膜厚要厚,如此设计,可以使得那么E1>E2,即该E1比正常情况下的偏转电场要强,其抗干扰能力变强,使得该边缘透光区210可以抵抗该重叠遮光区190的边缘电场的影响,减弱边缘场效应,进而改善像素的边界暗纹情况,使穿透率提高,对比度增加,提升产品品质和显示效果;其中,该边缘透光区210的膜厚大于主透光区200的膜厚,可以通过增加一道制程,也可以在原有的制程中,使用半透膜光罩,使得该边缘透光区210和主透光区200的透光率不同,而实现不同程度的时刻,从而使得边缘透光区210的膜厚大于主透光区200的膜厚。
在一实施例中,如图6所示,主透光区200的膜厚d3等于重叠遮光区 190的膜厚d1。
本方案中,如图7所示,位于像素电极和第一公共线重叠区域的边缘透光区210的膜厚与主透光区200的膜厚设置等厚且都小于边缘透光区210的膜厚,如此,该边缘透光区210的偏转电压强度要强于边缘场效应带来的影响,使得显示画面出现包括边界暗纹在内的亮暗不均匀的问题减少,甚至可以消除边界暗纹;另外,由于该重叠遮光区190和主透光区200的膜厚相等,因而,我们在制程中,只要保证该边缘透光区210的膜厚变厚即可达到减少暗纹而提升显示效果的目的,而该重叠遮光区190和主透光区200则可以保留原有的设计厚度(或者说同一道制程形成),在解决技术问题的同时,无需针对该重叠遮光区190和主透光区200设计特殊的光罩以使得两者膜厚不同,减少额外工作量,减少制程的难度。
在一实施例中,如图7所示,主透光区200的膜厚d3大于重叠遮光区190的膜厚d1。
本方案中,第一公共线一般设置在该像素电极的下方,该像素电极设置在公共电极和第一公共线之间,该重叠遮光区190的膜厚削薄,如此,该像素电极的重叠遮光区190部位和公共电极之间的电场强度将被削弱,则该边缘透光区210受到边缘场效应的影响减弱,在增强该边缘透光区210厚度而增强抗干扰能力的同时,将主要的电场干扰源的强度削弱,基本消除了边缘场效应的影响,达到更好的改善亮暗不均匀的效果,暗纹问题基本被消除,显示面板110的显示品质得到更好的提升。
在一实施例中,边缘透光区210的膜厚小于十倍主透光区200的膜厚。
本方案中,该膜厚指的是第一电极垂直于电场方向的膜厚。如图9所示,该边缘透光区210的膜厚d2(边缘场效应影响的区域),主透光区200的膜厚为d3(显示面板110制程预设定的膜厚),即该边缘透光区210的膜厚要求如下:d3<d2<10d3,如此我们可以改善甚至消除边缘场效应的问题,具体的该d2越大,消除边缘场效应的效果越强,不过根据显示面板110的设计不同,有些面板,该像素电极和公共电极之间距离较近,可以设置该d2大于d3即可改善边缘场效应问题;当该像素电极和公共电极之间的距离足够时,可以将该d2设计接近十倍d3,以达到更好的消除边缘场效应的效果,但一般不会超过十倍d3,避免该边缘透光区210膜厚太厚,带来第一电极距离公共电极太近,影响液晶的设置等问题;其中,像素电极的膜厚一般在200nm-2000nm之间。
在一实施例中,如图8所示,边缘透光区210的宽度大于零,且小于第一电极的宽度的一半,边缘透光区宽度为y,则0<y<0.5A,A为第一电极的宽度,一般y等于1/3A效果最佳。
本方案中,透光区划分为边缘透光区210和主透光区200,边缘透光区210位于重叠遮光区190或者说是第一电极和第一公共线第一公共线的重叠区域,与主透光区200之间的区域,该区域由于受到第一电极和第一公共线之间的边缘电场的影响,越靠近第一公共线边缘越容易产生暗纹等问题,在此处将边缘透光区210的膜厚加厚,可以增强边缘透光区210和公共电极之间的电压,减少边缘电场的影响,改善暗纹的问题;记第一电极的宽度为A,则由于该第一电极还设计有主透光区200,因而,该边缘透光 区210最大的设计宽度小于0.5A,以保证有空间设置主透光区200。
在一实施例中,重叠遮光区190的膜厚大于主透光区200的膜厚的十分之一。
本方案中,重叠遮光区190的膜厚小于于主透光区200的膜厚即可减弱重叠遮光区190和第一公共线之间的边缘电场,减弱边缘场效应对于边缘透光区210的影响。但不能太小,一般,设计的最小膜厚大于主透光区200的膜厚的十分之一,避免太薄而出现重叠遮光区190的断裂问题的发生。
在一实施例中,如图9所示,主透光区200的膜厚与公共电极的膜厚相当。
本方案中,我们前面说到边缘透光区210的膜厚大于主透光区200,但是不能说明该边缘透光区210一定比设计膜厚要厚,也有一种可能是我们制程的时候将主透光区200削薄了,那么边缘透光区210相当于主透光区200来说也是厚的,一般来说,设计厚度也就是正常膜厚,从结构上看不出来的,主透光区200和公共电极膜厚相当,其中,该公共电极是作为参照物,一般膜厚在1400nm左右,如此达到纯结构描述的目的,显示面板110的像素电极的规格膜厚可以设定为D,则该主透光区200的膜厚d3=D,该重叠遮光区190的膜厚d1<D,该边缘透光区210的膜厚d2大于D。
作为本申请的另一实施例,参考图9和图10所示,公开了一种显示面板110的制程方法,其中,制程方法包括第一基板120的制程方法,第一基板120的制程方法包括步骤:在一基底沉积金属层,蚀刻得到预设图案的第一公共线;在第一公共线上方形成绝缘层180,在绝缘层(PVX)上方 沉积像素电极材料,即制作第一电极160;在像素电极材料的上方沉积光阻材料;通过曝光显影形成预设图案的光阻层220;使用半透膜光罩一次曝光显影或多个光罩多次曝光显影处理像素电极材料,得到边缘透光区210膜厚大于重叠遮光区190膜厚的第一电极;剥离光阻层220。
本方案中,其中使用半透膜光罩蚀刻像素电极材料,得到边缘透光区210膜厚大于重叠遮光区190膜厚的第一电极的步骤中,可以通过半透膜光罩直接形成边缘透光区210膜厚大于重叠遮光区190膜厚的第一电极;也可以,先通过一般的光罩将像素电极蚀刻成预定的截面形状,然后再通过半透膜将对应主透光区200的部分进行进一步蚀刻,使得主透光区200的膜厚达到规格需要的膜厚,而该边缘透光区210的膜厚,则大于规格膜厚。
其中,如果该第一电极还需要制造不同于主透光区200和边缘透光区210的膜厚区域时,可以更换其他光罩即可。如果觉得制程太繁杂,也可以采用特制的半透膜光罩一次形成至少三种膜厚的第一电极,但是,对于半透膜光罩的要求较高。
作为本申请的另一实施例,参考图11所示,公开了一种显示装置100,包括如上的显示面板110。
需要说明的是,本方案中涉及到的各步骤的限定,在不影响具体方案实施的前提下,并不认定为对步骤先后顺序做出限定,写在前面的步骤可以是在先执行的,也可以是在后执行的,甚至也可以是同时执行的,只要能实施本方案,都应当视为属于本申请的保护范围。
以上内容是结合具体的可选实施方式对本申请所作的进一步详细说明, 不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (19)

  1. 一种显示面板,包括:
    第一基板;
    第二基板,与所述第一基板对盒设置;
    所述第一基板上设有第一公共线以及第一电极,所述第一电极与所述第一公共线部分重叠;
    所述第二基板上设有与所述第一公共线和所述第一电极对应设置的公共电极;
    所述第一电极与所述第一公共线的重叠部分为重叠遮光区,所述第一电极与所述第一公共线未重叠部分为透光区,所述透光区包括:
    主透光区;
    边缘透光区,设置在所述主透光区和所述重叠遮光区之间并靠近所述重叠遮光区;
    其中,所述边缘透光区的膜厚大于所述重叠遮光区的膜厚。
  2. 如权利要求1所述的一种显示面板,其中,所述边缘透光区的膜厚大于所述主透光区的膜厚。
  3. 如权利要求2所述的一种显示面板,其中,所述主透光区的膜厚等于所述重叠遮光区的膜厚。
  4. 如权利要求2所述的一种显示面板,其中,所述主透光区的膜厚大于所述重叠遮光区的膜厚。
  5. 如权利要求4所述的一种显示面板,其中,所述边缘透光区的膜厚不超过十倍所述主透光区的膜厚。
  6. 如权利要求5所述的一种显示面板,其中,所述边缘透光区的宽度大于0.01倍的第一电极的宽度,且小于所述第一电极的宽度的一半。
  7. 如权利要求6所述的一种显示面板,其中,所述边缘透光区的宽度等于所述第一电极的宽度的三分之一。
  8. 如权利要求4所述的一种显示面板,其中,所述重叠遮光区的膜厚大于所述主透光区的膜厚的十分之一。
  9. 如权利要求2所述的一种显示面板,其中,所述第一基板上的主透光区的膜厚与所述第二基板上的公共电极的膜厚相当。
  10. 一种显示面板的制程方法,所述制程方法包括第一基板的制程方法,所述第一基板的制程方法包括步骤:
    在一基底沉积金属层,蚀刻得到预设图案的第一公共线;
    在第一公共线上方形成绝缘层,在绝缘层上方沉积像素电极材料;
    在像素电极材料的上方沉积光阻材料;
    通过曝光显影形成预设图案的光阻层;
    使用半透膜光罩一次曝光显影或多个光罩多次曝光显影处理像素电极材料,得到边缘透光区膜厚大于重叠遮光区膜厚的第一电极;
    剥离光阻层。
  11. 一种显示装置,包括显示面板,所述显示面板包括:
    第一基板;
    第二基板,与所述第一基板对盒设置;
    所述第一基板上设有第一公共线以及第一电极,所述第一电极与所述第一公共线部分重叠;
    所述第二基板上设有与所述第一公共线和所述第一电极对应设置的公共电极;
    所述第一电极与所述第一公共线的重叠部分为重叠遮光区,所述第一电极与所述第一公共线未重叠部分为透光区,所述透光区包括:
    主透光区;
    边缘透光区,设置在所述主透光区和所述重叠遮光区之间并靠近所述重叠遮光区;
    其中,所述边缘透光区的膜厚大于所述重叠遮光区的膜厚。
  12. 如权利要求11所述的一种显示装置,其中,所述边缘透光区的膜厚大于所述主透光区的膜厚。
  13. 如权利要求12所述的一种显示装置,其中,所述主透光区的膜厚等于所述重叠遮光区的膜厚。
  14. 如权利要求12所述的一种显示装置,其中,所述主透光区的膜厚 大于所述重叠遮光区的膜厚。
  15. 如权利要求14所述的一种显示装置,其中,所述边缘透光区的膜厚不超过十倍所述主透光区的膜厚。
  16. 如权利要求15所述的一种显示装置,其中,所述边缘透光区的宽度大于0.01倍的第一电极的宽度,且小于所述第一电极的宽度的一半。
  17. 如权利要求16所述的一种显示装置,其中,所述边缘透光区的宽度等于所述第一电极的宽度的三分之一。
  18. 如权利要求14所述的一种显示装置,其中,所述重叠遮光区的膜厚大于所述主透光区的膜厚的十分之一。
  19. 如权利要求12所述的一种显示装置,其中,所述第一基板上的主透光区的膜厚与所述第二基板上的公共电极的膜厚相当。
PCT/CN2018/116618 2018-11-14 2018-11-21 一种显示面板、制程方法和显示装置 WO2020097959A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/349,282 US10816859B1 (en) 2018-11-14 2018-11-21 Display panel, manufacturing method and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811350598.1A CN109407422B (zh) 2018-11-14 2018-11-14 一种显示面板、制程方法和显示装置
CN201811350598.1 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020097959A1 true WO2020097959A1 (zh) 2020-05-22

Family

ID=65473289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116618 WO2020097959A1 (zh) 2018-11-14 2018-11-21 一种显示面板、制程方法和显示装置

Country Status (3)

Country Link
US (1) US10816859B1 (zh)
CN (1) CN109407422B (zh)
WO (1) WO2020097959A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456575B (zh) * 2019-08-20 2021-07-06 成都中电熊猫显示科技有限公司 液晶显示面板
CN110690360B (zh) * 2019-09-26 2022-06-17 武汉天马微电子有限公司 一种显示面板和显示装置
CN112540483A (zh) * 2020-12-09 2021-03-23 惠科股份有限公司 显示面板及显示装置
CN115550478A (zh) * 2021-06-30 2022-12-30 华为技术有限公司 一种电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008750A (zh) * 2006-01-26 2007-08-01 爱普生映像元器件有限公司 液晶装置和电子设备
CN101021657A (zh) * 2007-03-05 2007-08-22 友达光电股份有限公司 液晶显示器及其驱动方法
US20110205468A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN102540592A (zh) * 2012-03-09 2012-07-04 深圳市华星光电技术有限公司 Pva像素电极及相应的液晶显示装置
CN104898331A (zh) * 2015-06-15 2015-09-09 武汉华星光电技术有限公司 液晶显示器及其垂直配向模式的液晶显示面板
CN107329334A (zh) * 2017-08-03 2017-11-07 深圳市华星光电半导体显示技术有限公司 像素电极及液晶显示面板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145525A (ja) * 2006-12-06 2008-06-26 Seiko Epson Corp 液晶装置及び電子機器
TWI408449B (zh) * 2009-11-03 2013-09-11 Wintek Corp 液晶顯示面板
KR101903414B1 (ko) * 2011-12-06 2018-11-08 엘지디스플레이 주식회사 박막 트랜지스터 기판의 제조방법 및 이를 이용한 액정 표시장치의 제조방법
CN104503163B (zh) * 2014-12-24 2018-05-11 上海中航光电子有限公司 一种像素结构、显示面板和显示装置
CN205507316U (zh) * 2016-02-24 2016-08-24 昆山龙腾光电有限公司 一种液晶显示装置
CN106292038A (zh) * 2016-10-17 2017-01-04 武汉华星光电技术有限公司 一种液晶显示面板
CN206975367U (zh) * 2017-08-03 2018-02-06 昆山龙腾光电有限公司 阵列基板和显示装置
CN107589599B (zh) * 2017-09-05 2020-11-24 昆山龙腾光电股份有限公司 阵列基板及液晶显示装置
CN107664880B (zh) * 2017-09-20 2018-09-14 南京中电熊猫液晶显示科技有限公司 一种液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008750A (zh) * 2006-01-26 2007-08-01 爱普生映像元器件有限公司 液晶装置和电子设备
CN101021657A (zh) * 2007-03-05 2007-08-22 友达光电股份有限公司 液晶显示器及其驱动方法
US20110205468A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
CN102540592A (zh) * 2012-03-09 2012-07-04 深圳市华星光电技术有限公司 Pva像素电极及相应的液晶显示装置
CN104898331A (zh) * 2015-06-15 2015-09-09 武汉华星光电技术有限公司 液晶显示器及其垂直配向模式的液晶显示面板
CN107329334A (zh) * 2017-08-03 2017-11-07 深圳市华星光电半导体显示技术有限公司 像素电极及液晶显示面板

Also Published As

Publication number Publication date
CN109407422A (zh) 2019-03-01
US10816859B1 (en) 2020-10-27
CN109407422B (zh) 2020-10-16
US20200333670A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US9673231B2 (en) Array substrate having via-hole conductive layer and display device
WO2020097959A1 (zh) 一种显示面板、制程方法和显示装置
US10379411B2 (en) Liquid crystal display panel and liquid crystal display device
US7547494B2 (en) Color filter substrate, manufacturing method thereof and liquid crystal display
JP4762297B2 (ja) 液晶表示装置
CN100426088C (zh) 半透射型液晶显示装置
US8426230B2 (en) Thin film transistor substrate and method for fabricating the same
US20130033654A1 (en) In-plane switching mode liquid crystal display device
US20160306220A1 (en) A color filter on array substrate and fabricating method thereof as well as a display device
WO2017035911A1 (zh) Boa型液晶面板
US9070599B2 (en) Array substrate, manufacturing method thereof and display device
WO2017124673A1 (zh) 阵列基板的制作方法及液晶显示面板
JP2005266011A (ja) カラーフィルタ基板及びそれを用いた表示装置
US20110221697A1 (en) Liquid crystal display device and method for manufacturing the liquid crystal display device
KR20170052801A (ko) 표시 장치 및 그 제조 방법
CN107861286B (zh) 显示面板
WO2020124896A1 (zh) 液晶显示面板
KR20120116651A (ko) 횡전계 방식 액정표시장치 및 그 제조방법
CN107367875A (zh) 显示装置
WO2019127670A1 (zh) Coa型阵列基板
US20110304791A1 (en) Display device
US20070058112A1 (en) Liquid crystal display panel, color filter, and manufacturing method thereof
US9366932B2 (en) TFT-LCD array substrate manufacturing method and LCD panel/device produced by the same
KR20120072817A (ko) 액정 표시 장치 및 이의 제조 방법
US20040105056A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939945

Country of ref document: EP

Kind code of ref document: A1