WO2023178666A1 - 调光面板、叠屏面板、和制造调光面板的方法 - Google Patents

调光面板、叠屏面板、和制造调光面板的方法 Download PDF

Info

Publication number
WO2023178666A1
WO2023178666A1 PCT/CN2022/083104 CN2022083104W WO2023178666A1 WO 2023178666 A1 WO2023178666 A1 WO 2023178666A1 CN 2022083104 W CN2022083104 W CN 2022083104W WO 2023178666 A1 WO2023178666 A1 WO 2023178666A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
control
dimming
auxiliary electrode
Prior art date
Application number
PCT/CN2022/083104
Other languages
English (en)
French (fr)
Inventor
杨杰
臧远生
王一军
周如
郭兴奎
许徐飞
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/083104 priority Critical patent/WO2023178666A1/zh
Priority to CN202280000515.4A priority patent/CN117136329A/zh
Publication of WO2023178666A1 publication Critical patent/WO2023178666A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes

Definitions

  • the present application relates to the field of liquid crystal display technology, and in particular, to a dimming panel, a stacked screen panel, and a method of manufacturing a dimming panel.
  • liquid crystal displays have the disadvantages of insufficient color gamut and low contrast (contrast ratio is about 1000:1).
  • Color gamut refers to the set of colors that a certain display device can display.
  • Contrast ratio refers to the ratio between the brightest brightness and the darkest brightness that a display device can display.
  • Mini LED sub-millimeter light-emitting diode
  • Mini LED technology uses a large number of small LED light sources to achieve dimming of multiple backlight zones.
  • Due to the large number of LEDs, Mini LED technology has higher power consumption, lower yield, and higher cost.
  • stacked screen display technology Another option is to use stacked screen display technology.
  • the products of stacked screen display technology include two laminated panels, namely the display panel (also called the main screen, Main cell) and the dimming panel (also called the secondary screen, Sub cell).
  • the display panel is mainly used to control the color and pattern of the display screen.
  • the dimming panel includes multiple dimming zones that are individually controlled, which can adjust local backlight, thereby improving the contrast of the picture, making the image display clearer, the color expression stronger, and the color transition smoother.
  • Stacked screen display technology can increase the contrast ratio of liquid crystal displays from the order of 1,000:1 to the order of 1,000,000:1, and also has lower power consumption and cost.
  • the problem of uneven brightness may occur in the intervals between the partitions of the dimming panel. For example, light leaks or dark areas appear between dimming zones.
  • dimming panels may have an impact on the overall transmittance of the display panel.
  • a dimming panel includes a common electrode layer, a control electrode layer, a dimming liquid crystal layer, and an auxiliary electrode arranged in a stack.
  • the control electrode layer includes control electrodes arranged in an array, and there are gaps between adjacent control electrodes.
  • An orthographic projection of the spacer on the common electrode layer at least partially coincides with an orthographic projection of the auxiliary electrode on the common electrode layer.
  • the interval includes a first boundary, a second boundary, an alignment weak area and a non-alignment weak area, the alignment weak area being closer to the first boundary than the non-alignment weak area, and the The non-alignment weak area is closer to the second boundary than the alignment weak area.
  • the dimming liquid crystal layer includes a first dimming liquid crystal and a second dimming liquid crystal.
  • the orthographic projection of the first dimming liquid crystal at the interval is located in the alignment weak area, and the second dimming liquid crystal is located at the alignment weak area.
  • the orthographic projection of the interval is located in the non-alignment weak region.
  • the average anchoring energy of the first dimmable liquid crystal is smaller than the average anchoring energy of the second dimmable liquid crystal.
  • the orthographic projection of the first boundary on the auxiliary electrode is closer to the midline of the auxiliary electrode than the orthographic projection of the second boundary on the auxiliary electrode.
  • the distance between the orthographic projection of the center line of the auxiliary electrode on the common electrode layer and the orthographic projection of the spaced midline on the common electrode layer is in the range of 0.5 ⁇ m to 1.5 ⁇ m.
  • control electrodes arranged in the array are aligned in a first direction and a second direction, the first direction being angled with the second direction.
  • the dimming panel further includes a gate line layer, wherein the gate line layer includes a gate line, the gate line is electrically connected to a corresponding one of the control electrodes, and the gate line extends along the first direction. extend.
  • the auxiliary electrode includes a first auxiliary electrode extending along the first direction, and the first auxiliary electrode is arranged parallel to and spaced apart from the projection of the gate line on the common electrode layer.
  • the spacing between any two adjacent orthographic projections of the first auxiliary electrode and the gate line in the orthographic projection of the common electrode layer is the same.
  • the dimming panel further includes dummy wires extending along the second direction.
  • the auxiliary electrode further includes a second auxiliary electrode extending along the second direction, and the dummy traces are arranged parallel to and spaced apart from the orthographic projection of the second auxiliary electrode on the common electrode layer.
  • the gate line is bent at an inflection point, and the orthographic projection of the straight line where the dummy trace is located on the gate line layer passes through the inflection point.
  • At least two of the dummy traces, the gate lines, and the auxiliary electrodes are located on the same layer.
  • the dimming panel further includes a voltage control chip, wherein the voltage control chip is configured to be connected to the gate line through an output pin, and to be connected to the control electrode through the gate line, to The voltage of the control electrode is controlled, wherein each of the control electrodes is connected to an output pin with the same voltage polarity.
  • the auxiliary electrode is electrically connected to one of the control electrodes on both sides of the spacer.
  • the common electrode layer is sandwiched between the dimming liquid crystal layer and the control electrode layer.
  • the common electrode layer includes parallel strip electrodes, and the auxiliary electrode is located in the common electrode layer and is parallel to and electrically connected to the strip electrodes.
  • control electrodes arranged in the array are arranged along a first direction and a second direction, the first direction being at an angle of less than 90° with the second direction.
  • the strip electrode extends along the first direction.
  • the angle between the first direction and the second direction is between 75° and 85°.
  • control electrodes include first control electrodes and second control electrodes adjacent in the first direction, and the first control electrodes and the second control electrodes each include a control electrode along the first direction.
  • the second edge of the first control electrode close to the second control electrode includes spaced-apart protrusions, and the second edge of the second control electrode close to the first control electrode includes spaced-apart protrusions.
  • the recessed portion, the protruding portion and the recessed portion are at least partially aligned along the first direction.
  • the width of the auxiliary electrode is 1 to 2 times the width of the spacer.
  • a stacked screen panel including the dimming panel according to any embodiment of the present application, and a display panel stacked with the dimming panel.
  • a method of manufacturing a dimming panel includes: providing a substrate; forming a control electrode layer on the substrate, wherein the control electrode layer includes control electrodes arranged in an array, and there are gaps between adjacent control electrodes; forming a control electrode layer on the substrate.
  • An auxiliary electrode wherein an orthographic projection of the auxiliary electrode on the substrate at least partially coincides with an orthographic projection of the spacer on the substrate.
  • forming an auxiliary electrode on the substrate includes: forming a first electrode material layer on the substrate, and performing a first exposure and etching operation on the first electrode material layer to obtain the The auxiliary electrode;.
  • the method further includes: forming a first insulating layer on a side of the auxiliary electrode away from the substrate.
  • forming the control electrode layer on the substrate includes: forming a second electrode material layer on a side of the first insulating layer away from the substrate, and performing a second exposure and etching on the second electrode material layer. Etching operation is performed to obtain the control electrode layer.
  • forming the control electrode layer on the substrate includes: forming a third electrode material layer on the substrate, and performing a third exposure and etching operation on the third electrode material layer to obtain The control electrode layer.
  • the method further includes: forming a second insulating layer on a side of the control electrode layer away from the substrate.
  • forming an auxiliary electrode on the substrate includes: forming a fourth electrode material layer on a side of the second insulating layer away from the substrate, and performing a fourth exposure and etching on the fourth electrode material layer. operate to obtain the auxiliary electrode.
  • Figures 1A and 1B respectively schematically illustrate light leakage and dark areas at intervals between control electrodes of the relevant dimming panel
  • Figures 2A and 2B respectively schematically illustrate the relationship between the width of the light leakage area of the dimming panel and the spacing width of adjacent control electrodes
  • Figure 3A schematically shows a cross-sectional view of a dimming panel according to an embodiment of the present application
  • Figure 3B schematically shows a cross-sectional view of a dimming panel according to an embodiment of the present application
  • Figure 4 schematically shows the light leakage situation of the dimming panel according to the embodiment of the present application
  • Figure 5 schematically shows a top view of a dimming panel according to an embodiment of the present application
  • Figure 6 schematically shows the relationship between the alignment direction of the dimming panel and the position of the light leakage area
  • FIG. 7A and 7B schematically illustrate a top view and a cross-sectional view of a dimming panel according to an embodiment of the present application
  • Figure 8 schematically shows the relationship between the spacing of elongated strip structures and the resolvability of the strip structures
  • Figure 9 schematically shows a top view of a dimming panel according to an embodiment of the present application.
  • Figure 10 schematically shows the relationship between the bending of the grid lines of the dimming panel and the pixels of the display panel
  • Figure 11 schematically shows a top view of a dimming panel according to an embodiment of the present application.
  • Figure 12 schematically shows a cross-sectional view of a dimming panel according to an embodiment of the present application
  • Figure 13 schematically shows the relationship between the polarity of adjacent control electrodes in the dimming panel and the light leakage situation between the control electrodes;
  • Figure 14 schematically shows a top view of a dimming panel according to an embodiment of the present application
  • Figures 15A and 15B schematically show a cross-sectional view and a top view of the relevant dimming panel, respectively;
  • Figure 16 schematically shows the situation of the dark area between adjacent control electrodes in the dimming panel
  • Figures 17A and 17B schematically illustrate a cross-sectional view and a top view of a dimming panel according to an embodiment of the present application
  • Figure 18 schematically shows the situation of dark areas between adjacent control electrodes in a dimming panel provided with auxiliary electrodes
  • Figures 19A and 19B schematically show the white display effect of the dimming panel without and with the auxiliary electrode respectively;
  • Figure 20A and Figure 20B schematically show the grayscale display effect of the dimming panel without and with the auxiliary electrode respectively;
  • Figure 21 schematically shows the situation of the dark area of the dimming panel according to an embodiment of the present application
  • Figure 22 schematically shows a top view of a dimming panel according to an embodiment of the present application
  • Figure 23 schematically shows a top view of a dimming panel according to an embodiment of the present application.
  • Figure 24 schematically shows the situation of the dark area of the dimming panel when the second edge of the control electrode has protrusions and recesses;
  • Figure 25 schematically shows the dark area situation corresponding to auxiliary electrodes of different widths
  • Figure 26 schematically shows a cross-sectional view of a stacked screen panel according to an embodiment of the present application.
  • Figure 27 schematically shows a flow chart of a method of manufacturing a dimming panel according to an embodiment of the present application.
  • one solution is to apply a high-resolution dimming panel, whose resolution may reach one-half the resolution of the display panel, or even higher. For example, when the display panel has a 4K resolution, the resolution of the dimming panel can reach 2K.
  • High-resolution dimming panels have up to one million divisions and generally use active driving, that is, each division has a separate switching element, such as a thin film transistor (TFT). This will reduce the transmittance of the dimming panel, and too many partitions will increase the burden on the system's computing power.
  • TFT thin film transistor
  • dimming panels with a low number of zones This kind of dimming panel generally has less than 3,000 zones and can be driven passively. That is, it does not contain a TFT structure.
  • the control electrodes of each zone are directly electrically connected to the voltage control chip, which is beneficial to improving the transmittance. It can also be understood that high transmittance is the main pursuit of dimming panels with a low number of partitions. Moreover, the size of each partition is larger, reaching millimeter level, which requires lower alignment accuracy of pixels and dimming partitions.
  • the edge effect of the electric field means that the same kind of charges carried by the electrodes repel each other, causing the charges to be mainly concentrated on the edges of the electrodes, causing the electric field at the edges of the electrodes to become uneven and the electric field lines to spread out to the surroundings. Therefore, the deflection of the liquid crystal at the edge of the control electrode changes.
  • FIG. 1A and 1B respectively schematically illustrate the light leakage and dark areas at the control electrode intervals of the relevant dimming panel.
  • FIG. 1A shows that elongated bright areas appear at intervals of the control electrodes 105 arranged in an array.
  • FIG. 1B shows that there is a dark area between two longitudinally arranged control electrodes 110 .
  • the outline of the control electrode 110 is schematically shown in dashed lines.
  • Two control electrodes 110 arranged longitudinally appear in Figure 1B.
  • the shape of the control electrode is a block electrode with longitudinal slits 111 .
  • dark areas exist between upper and lower adjacent control electrodes 110 . This phenomenon of light leakage or dark areas will seriously hinder the promotion of stacked screen display technology.
  • a dimming panel includes an array substrate on which the control electrode is located and an opposing substrate disposed on the opposite side of the array substrate relative to the liquid crystal layer.
  • one method is to set a black matrix in the opposite substrate and align the position of the black matrix with the positions of the intervals between the control electrodes to correct the bright areas at the intervals. Perform occlusion.
  • the inventor noticed that in actual production, the process accuracy of the box alignment between the array substrate and the counter substrate was low, so that the black matrix on the counter substrate could not be accurately aligned with the intervals of the control electrodes, resulting in unsatisfactory light shielding effect.
  • the width of light leakage and dark areas is larger than the width of the interval between adjacent control electrodes, and can be as much as three times the width of the interval between control electrodes.
  • the shape of the light leakage area and dark area as well as the shape of the spacing between the control electrodes can be seen as elongated strips.
  • the term "width" means the dimension of such a bar shape in a direction perpendicular to its direction of extension.
  • 2A and 2B exemplarily illustrate the relationship between the width of the light leakage region and the width of the interval 215 of adjacent control electrodes 210 in the related art.
  • a light shield equal to the width of the space is provided in the space between adjacent control electrodes.
  • FIG. 2A shows the light shield does not completely block the light leakage between adjacent control electrodes.
  • Figure 2B shows the light leakage corresponding to light shielding objects with different widths.
  • the width of the space between the control electrodes is 3.5 ⁇ m.
  • the width of the light shielding object is 6.5 ⁇ m, 7 ⁇ m, 7.5 ⁇ m, 8 ⁇ m, 8.5 ⁇ m, or 9 ⁇ m, there is still a certain degree of light leakage. It is not until the width of the light shield increases to 9.5 ⁇ m or 10 ⁇ m that the light leakage becomes inconspicuous.
  • FIG. 3A schematically shows a cross-sectional view of a dimming panel according to an embodiment of the present application.
  • the dimming panel 300 includes a common electrode layer 305 , a control electrode layer 310 and a dimming liquid crystal layer 315 arranged in a stack.
  • layer refers to a structure whose length in one of its three mutually perpendicular dimensions is much smaller than the length of the remaining two dimensions.
  • layered arrangement means that a plurality of layer structures are arranged along the direction of the aforementioned dimension with a significantly smaller length, but does not necessarily require that the layer structures are adjacent or in contact with each other. Furthermore, the layer structure does not preclude that its surface must be flat. The surface may also have bulges or depressions in substantially smaller dimensions along the aforementioned length.
  • the term “layered arrangement” does not exclude the case where projections of one layer structure are embedded in depressions of another layer structure.
  • the term "layered arrangement” does not limit the arrangement order of the layer structures.
  • the control electrode layer 310 and the dimming liquid crystal layer 315 are stacked and arranged" it is not required to determine the order of the layer structure according to the textual order, that is, the control electrode layer 310 is not required to be Located between the common electrode layer 305 and the dimming liquid crystal layer 315.
  • the dimming liquid crystal layer 315 is located between the common electrode layer 305 and the control electrode layer 310.
  • the common electrode layer 305 is located between the dimming liquid crystal layer 315 and the control electrode layer 310 .
  • the dimming liquid crystal layer 315 is located between the common electrode layer 305 and the control electrode layer 310 .
  • the dimming panel 300 also includes a first substrate 301 and a second substrate 302.
  • the control electrode layer 310 includes control electrodes 311 arranged in an array. As shown in FIG. 3A , there is a gap 313 between adjacent control electrodes 311 . In the dimming panel 300, each control electrode 311 defines a partition of the dimming panel.
  • the dimming panel 300 further includes an auxiliary electrode 320 .
  • the material of the auxiliary electrode 320 may be metal.
  • the orthographic projection of the spacer 313 on the common electrode layer 305 at least partially coincides with the orthographic projection of the auxiliary electrode 320 on the common electrode layer 305 .
  • the term "at least partially coincides" includes the situation where one projection completely falls into the other projection, and also includes the situation where the boundaries of the two projections completely overlap, and also includes the situation where a part of one projection coincides with a part of the other projection and the two projections The remaining parts do not overlap.
  • the orthographic projection of the spacer 313 on the common electrode layer 305 and the orthographic projection of the auxiliary electrode 320 on the common electrode layer 305 at least partially coincide when looking at the dimming panel 300 in a direction perpendicular to the common electrode layer 305 , the auxiliary electrode 320 appears at least partially in the interval 313 of the control electrode 311 .
  • This positional relationship can be briefly described as: the auxiliary electrode 320 corresponds to the interval 313.
  • the dimming panel shown in FIG. 3A in which the dimming liquid crystal layer 315 is located between the common electrode layer 305 and the control electrode layer 310 is generally a normally-on panel.
  • the dimmable liquid crystal When the dimmable liquid crystal is driven without an electric field, it allows the light emitted by the backlight module to pass through.
  • the interval 313 there is no control electrode 311, so there is no electric field formed by the common electrode layer 305 and the control electrode 311. This allows the dimming liquid crystal to allow the light emitted by the backlight module to pass through, causing light leakage.
  • the edge of the control electrode 311 will cause the formation of a fringe electric field, which will further aggravate the light leakage and increase the width of the light leakage area.
  • the auxiliary electrode 320 By providing the auxiliary electrode 320 at a position corresponding to the interval 313, the auxiliary electrode can form an electric field with the common electrode layer 305 at the interval 313, so that the deflection of the dimming liquid crystal in the dimming liquid crystal layer 315 corresponding to the interval 313 can be assisted.
  • the control of the electrode 320 can also shield the fringe electric field of the control electrode 311, thereby changing the light passage at the interval 313, overcoming the aforementioned light leakage problem, and improving the display effect.
  • the auxiliary electrode 320 and the control electrode 311 are both located on the first substrate 301, that is, they are two film layers located on the same substrate, which makes the alignment accuracy of the two higher.
  • FIG 4 schematically shows the light leakage situation of the dimming panel according to the embodiment of the present application. As shown in Figure 4, compared with Figure 2, the light leakage phenomenon between the control electrodes is significantly reduced or even almost completely eliminated, so the displayed image quality is higher.
  • the auxiliary electrode 320 is electrically connected to one of the control electrodes 311 on both sides of the gap 313 . This means first of all that no dedicated power supply element is required for the auxiliary electrode 320 . Furthermore, when the auxiliary electrode 320 and the control electrode 311 are electrically connected, the voltage of the auxiliary electrode 320 and the voltage of the control electrode 311 are substantially the same. Therefore, the voltage difference between the auxiliary electrode 320 and the common electrode layer 305 is basically the same as the voltage difference between the control electrode 311 and the common electrode layer 305. Therefore, the electric field of the dimming liquid crystal corresponding to the interval 313 is the same as the electric field of the dimming liquid crystal corresponding to the control electrode 311.
  • the degree of deflection of the liquid crystal will also be basically the same.
  • the brightness at the interval 313 is basically consistent with the brightness at the control electrode 311, and the interval will not be brighter or darker.
  • an insulating layer 325 exists between the control electrode layer 310 and the auxiliary electrode 320 .
  • the insulating layer 325 covers the auxiliary electrode 320 .
  • the position of the via hole 330 may be set such that the orthographic projection of the via hole 330 on the common electrode layer 305 is located within the overlapping area.
  • the electrical connection between the auxiliary electrode 320 and the control electrode 311 may be formed by first providing an insulating layer 325 on the auxiliary electrode 320 and then performing an etching operation on the insulating layer 325 to form a via hole 330 therein.
  • the via 330 should reach the auxiliary electrode 320.
  • the insulating layer 325 can be over-etched, that is, in the process of forming the via hole 330, the surface of the auxiliary electrode 320 in the via hole 330 is also etched to a certain extent to ensure that the surface of the auxiliary electrode 320 in the via hole 330 is No insulating material remains on the surface of the auxiliary electrode 320. Control electrode material is then deposited on the insulating layer.
  • control electrode material A part of the control electrode material will enter the via hole 330 and reach the auxiliary electrode 320 to conduct electricity. Then, the control electrode material is etched to obtain the control electrode 311. Through this operation, the control electrode 311 is electrically connected to the auxiliary electrode 320 through the control electrode material.
  • FIG. 3B schematically shows a cross-sectional view of a dimming panel according to another embodiment of the present application.
  • the auxiliary electrode 320 itself is not absolutely transparent, and may even be opaque (for example, when the material of the auxiliary electrode is metal). Therefore, as long as the auxiliary electrode is arranged at the interval between the control electrodes, the auxiliary electrode can achieve a certain light-shielding effect, thereby reducing the aforementioned light leakage problem.
  • the auxiliary electrode 320 is not electrically connected to other components in the dimming panel, that is, the auxiliary electrode 320 may not be powered.
  • auxiliary electrode 320 may be configured to be electrically connected to other components in the dimming panel, or may be configured not to be electrically connected to other components.
  • FIG. 5 schematically shows a top view of the dimming panel according to an embodiment of the present application, which specifically shows that when the dimming panel 300 is viewed in a direction perpendicular to the common electrode layer 305 , the inside of the dimming panel 300 The positional relationship of each component.
  • the orthographic projection of the control electrode 311 partially overlaps the orthographic projection of the auxiliary electrode 320 .
  • the orthographic projection of the via hole 330 is located at the overlap of the orthographic projection of the control electrode 311 and the orthographic projection of the auxiliary electrode 320 . It should be understood that in the case where the aforementioned auxiliary electrode is not electrically connected to other components in the dimming panel, there is no need to provide the via 330 for the auxiliary electrode 320 .
  • the inventor found through experiments that the light leakage between the control electrodes is often biased towards the weak alignment area of the liquid crystal.
  • the weak alignment area occurs because, in the actual manufacturing process of the liquid crystal panel, the components on the surface of the array substrate are different, and the height of each component is also different.
  • the auxiliary electrodes have a certain thickness and are arranged at intervals of the control electrodes, the height at the intervals of the control electrodes may be higher than the height at the control electrodes. In this way, the alignment layer is not evenly coated on the surface of the array substrate, but has steps.
  • a friction roller When a friction roller is used to rub the alignment layer, the roller will experience uphill and downhill processes. For example, a roller will experience an uphill slope when reaching a space between control electrodes and a downhill slope when leaving a space between control electrodes. When going downhill, the contact between the roller and the film surface of the alignment layer is weak, resulting in weak alignment strength, thus forming a weak alignment area.
  • the anchoring energy of the liquid crystal in the weak alignment area is weak and it is more susceptible to electric field disturbance and alignment disorder. Therefore, the light leakage in the weak alignment area will be more serious.
  • FIG. 6 schematically shows the relationship between the alignment direction and the position of the light leakage area.
  • the liquid crystal panel in Figure 6 is aligned in the direction of the arrow in the figure (from bottom to top).
  • the light leakage area is biased above the control electrode gap 605 in the figure, because when the roller passes here, it is leaving the gap 605 between the control electrode 610 and the control electrode 615 and moving towards the control electrode 610 Marching, that is, going downhill.
  • the auxiliary electrode is disposed closer to the side where the weak alignment region is located.
  • the auxiliary electrode needs a narrower width, which is beneficial to the transmittance of the panel. That is to say, this embodiment achieves better light-shielding effect with a narrower width.
  • the space 713 between the control electrodes 711 includes a first boundary 741 , a second boundary 742 , an alignment weak area 743 and a non-alignment weak area 744 .
  • the alignment weak region 743 is closer to the first boundary 741 than the non-alignment weak region 744 .
  • the non-alignment weak region 744 is closer to the second boundary 742 than the alignment weak region 743 .
  • the dimming liquid crystal layer includes a first dimming liquid crystal and a second dimming liquid crystal.
  • the orthographic projection of the first dimming liquid crystal in the interval is located in the weak alignment area. That is, the position of the first dimming liquid crystal corresponds to the weak alignment area.
  • the orthographic projection of the second dimming liquid crystal in the interval is located in the non-alignment weak area. That is, the position of the second dimmable liquid crystal corresponds to the non-alignment weak area. Therefore, the average anchoring energy of the first dimmable liquid crystal is smaller than the average anchoring energy of the second dimmable liquid crystal.
  • the term "average anchoring energy of the first dimmable liquid crystal” should be understood as the average value of the anchoring energy of each liquid crystal molecule whose position corresponds to the weak alignment region.
  • the term “average anchoring energy of the second dimmable liquid crystal” should be understood as the average anchoring energy of each liquid crystal molecule whose position corresponds to the non-alignment weak region.
  • the orthographic projection of the first boundary 741 on the auxiliary electrode 720 is closer to the midline 745 of the auxiliary electrode than the orthographic projection of the second boundary on the auxiliary electrode 720 .
  • the alignment weak region 743 is closer to the first boundary 741 than the non-alignment weak region 744 , indicating that the side where the first boundary 741 is located is the alignment weak side of the interval 713 .
  • the anchoring energy of the liquid crystal on this side is weak, and light leakage mainly occurs on this side.
  • the auxiliary electrode 720 By disposing the auxiliary electrode 720 closer to the weak alignment side, the auxiliary electrode 720 can more effectively control the liquid crystal molecules in the weak alignment area, making the control of light leakage more targeted. Moreover, on the premise of achieving the same light-shielding effect, compared with the solution in which the intervals between the auxiliary electrode and the control electrode are centered and aligned, this can make the required width of the auxiliary electrode narrower, which is beneficial to the transmittance of the dimming panel.
  • the distance between the orthographic projection of the midline 745 of the auxiliary electrode 720 on the common electrode layer 705 and the midline 747 of the space 713 between the control electrodes 711 on the orthographic projection of the common electrode layer is 0.5 ⁇ m. to the range of 1.5 ⁇ m.
  • the electric field generated by the auxiliary electrode whose position meets this requirement is closer to the position of the light leakage area, which not only effectively reduces the light leakage phenomenon, but also reduces the required width.
  • the width of the auxiliary electrode needs to reach 11 ⁇ m, while when the auxiliary electrode is closer to the alignment weak side of the interval, only the width of the auxiliary electrode is required to be 9 ⁇ m. .
  • the transmittance of the latter can be 15% to 20% higher than that of the former.
  • the inventors also realized that in a dimming panel with a low number of partitions, the spacing between auxiliary electrodes is larger due to the larger size of each partition.
  • the design of the dimming panel needs to be comprehensively considered based on indicators such as the number of partitions and the resolution of the display panel. Taking a stacked screen panel with a diagonal length of 15.6 inches as an example, if the resolution of the display panel (ie, the main screen) is required to be 3840 ⁇ 2160, the corresponding pixel size is 90 ⁇ m ⁇ 90 ⁇ m. If the number of partitions of the dimming panel (ie, secondary screen) is selected to be about 1200, the partitions in the dimming panel can be set to 48 ⁇ 27 (a total of 1296 partitions).
  • each partition contains 80 ⁇ 80 (6400 in total) pixels, and the partition size is approximately 7.2mm ⁇ 7.2mm.
  • the auxiliary electrodes are arranged within the intervals between the control electrodes, that is, the distance between adjacent auxiliary electrodes is the width of one partition, that is, 7.2 mm. When the distance between adjacent auxiliary electrodes is so large, the auxiliary electrodes can be distinguished by the human eye.
  • Figure 8 shows the relationship between the pitch of an elongated strip structure and its resolvability. Specifically, Figure 8 schematically shows the viewing effect of the human eye when the spacing of the strip structure with a width of 6 ⁇ m is 250 ⁇ m, 500 ⁇ m, 750 ⁇ m, 3000 ⁇ m and 5000 ⁇ m respectively. As shown in Figure 8, when the spacing is wide (such as 750 ⁇ m, 3000 ⁇ m or 5000 ⁇ m), even if the strip structure is only 6 ⁇ m wide, it can still be distinguished by the human eye. When the distance is less than 500 ⁇ m, it will become difficult for the human eye to distinguish. When the spacing is reduced to 250 ⁇ m, the human eye will not be able to distinguish the dark lines.
  • the discrimination ability of the human eye is also related to the distance between the human eye and the display device.
  • Table 1 below shows the relationship between different viewing distances and the spacing of the bar structures.
  • Table 1 Relationship between different viewing distances and bar structure spacing.
  • the minimum distance that the human eye can distinguish is between 250 ⁇ m and 280 ⁇ m. That is, when the distance between the strip structures is less than 250 ⁇ m, they cannot be distinguished by the human eye.
  • the minimum distance that the human eye can distinguish is between 450 ⁇ m and 550 ⁇ m.
  • the viewing distance is between 300cm and 350cm (such as the usage scenario of a TV)
  • the spacing between the bar structures is less than 5000 ⁇ m, it cannot be distinguished by the human eye. It can be seen that as the viewing distance increases, the allowable spacing of the bar structures can also become larger. Different products can choose different spacing to achieve high-quality display effects.
  • the auxiliary electrodes arranged at intervals between control electrodes may be distinguished by the human eye. This will affect the display effect of the stacked screen panel.
  • a dimming panel with a low number of partitions can adopt a passive driving method, in which each control electrode is connected to a corresponding gate line.
  • the gate line is used to connect the control electrode and the voltage control chip to transmit the control signal from the voltage control chip to the control electrode.
  • the specific arrangement form of the gate lines can be that when N partitions are arranged in a column (N is a natural number), N gate lines are arranged parallel and spaced apart along the column direction in the column partition, and each gate line will be connected to the corresponding A control electrode is electrically connected. The distance between the grid lines is very close to each other and cannot be seen due to the limited resolution ability of the human eye.
  • gate lines may be arranged parallel to and spaced apart from the auxiliary electrodes.
  • the auxiliary electrodes and the grid lines may have similar widths, and the auxiliary electrodes and the grid lines arranged in parallel and spaced apart may be visually mixed together, and the distance between each other is less than the minimum distance that the human eye can distinguish. At this time, the control electrodes and The grid lines are not distinguishable by the human eye.
  • FIG. 9 schematically shows a top view of a dimming panel according to an embodiment of the present application.
  • the control electrodes 911 arranged in the array are arranged along the first direction and the second direction.
  • the first direction is angled with the second direction.
  • the dimming panel also includes a grid layer.
  • the gate line layer includes gate lines 950 .
  • the gate line 950 is electrically connected to a corresponding one of the control electrodes 911 .
  • the gate line 950 can be electrically connected to the corresponding control electrode 911 through the conductive material in the via hole 951 .
  • the gate line 050 extends along the first direction.
  • the term "extends in a certain direction” considers the direction of extension as a whole. Slight fluctuations in directions other than the overall direction do not affect the determination of the extension direction. For example, as shown in FIG. 9 , although the gate line 950 is bent, the bending is reciprocating. The extent of the bend (eg, the distance traveled in the second direction) is much smaller than the distance traveled in the first direction. Therefore, it can be considered that the gate line 950 extends along the first direction as a whole. The reason why the grid lines are bent is to improve the moiré phenomenon that occurs when the dimming panel and the display panel are combined.
  • FIG. 10 schematically shows the relationship between the bending of the grid lines of the dimming panel and the pixels of the display panel.
  • one pixel may include red sub-pixel R, green sub-pixel G, and blue sub-pixel B.
  • the gate line can be configured to bend every time it crosses four pixels in the first direction and after crossing two pixels in the second direction (as shown in the left picture of Figure 10 shown), it can also be configured to bend every time it crosses three pixels in the first direction, and after crossing two pixels in the second direction (as shown in the middle picture of Figure 10), it can also be configured to is, each time it crosses two pixels in the first direction, and bends after crossing two pixels in the second direction (as shown in the right picture of Figure 10). Moiré is significantly reduced with this setup.
  • the auxiliary electrode includes a first auxiliary electrode 921 extending along the first direction.
  • the first auxiliary electrode 921 and the projection of the gate line 950 on the common electrode layer are arranged in parallel and spaced apart.
  • the gate line 950 and the first auxiliary electrode 921 are mixed together.
  • the distance between the first auxiliary electrode 921 and the nearest gate line 950 may be small enough so that it cannot be distinguished by human eyes. When the human eye observes the dimming panel, the black line defect along the first direction will not be seen.
  • the first auxiliary electrode 921 and the gate line 950 are mixed together.
  • the distance between the first auxiliary electrode 921 and the nearest gate line 950 is also on the order of 250 ⁇ m, which is lower than the minimum distance distinguishable by the human eye, and therefore will not be recognized by the human eye.
  • the spacing between any two adjacent orthographic projections of the first auxiliary electrode and the gate line in the orthographic projection of the common electrode layer is the same.
  • the mixture of the first auxiliary electrode and the gate line is uniform.
  • the distance between the first auxiliary electrode and its adjacent gate lines is the same as the distance between any two adjacent gate lines. This makes the first auxiliary electrode less visible.
  • the gate line extends along the first direction, therefore, the first auxiliary electrode extending along the first direction may not be observed.
  • the auxiliary electrode also includes a second auxiliary electrode extending in the second direction.
  • the spacing between adjacent second auxiliary electrodes is the size of the control electrode in the second direction. The spacing is relatively large, and there are no gate lines in this direction.
  • traces extending along the second direction may be added so that the density of the traces and the second auxiliary electrode exceeds the recognition range of the human eye.
  • FIG 11 schematically shows a top view of a dimming panel according to an embodiment of the present application.
  • the dimming panel also includes dummy wiring 1155.
  • the dummy trace 1155 extends along the second direction.
  • the auxiliary electrode further includes a second auxiliary electrode 1122 extending along the second direction.
  • the dummy traces 1155 and the second auxiliary electrode 1122 are arranged in parallel and spaced apart from the orthographic projection of the common electrode layer.
  • the human eye cannot see the light blocking effect of the second auxiliary electrode 1122 and the dummy trace 1155 . Therefore, by increasing the dummy traces 1155 extending along the second direction and controlling their density, the light leakage phenomenon between the control electrodes 1111 arranged along the first direction can be effectively improved.
  • the gate line 1150 is bent at an inflection point, and the orthographic projection of the straight line where the dummy trace 1155 is located on the gate line layer passes through the inflection point. It can be seen from the example of the relationship between gate lines and pixels depicted in FIG. 10 that the inflection points of gate lines generally occur at intervals of pixels. In a display panel, a black matrix is generally provided at intervals between pixels.
  • the dummy trace 1155 may at least partially coincide with the black matrix of the display panel, so that the dummy trace 1155 The existence of will not affect the display function of the pixels of the display panel, and will not significantly reduce the overall transmittance of the laminated panel.
  • both the gate line and the auxiliary electrode are powered.
  • the dummy wiring is located between adjacent gate lines and between the gate lines and the first auxiliary electrode. Therefore, the dummy wiring is segmented, and it should not short-circuit adjacent gate lines, nor should it short-circuit the gate lines and the first auxiliary electrode.
  • FIG. 12 schematically shows a cross-sectional view of a dimming panel according to an embodiment of the present application.
  • FIG. 12 is a partial view of the cross-sectional view taken along the AA direction in FIG. 11 .
  • the auxiliary electrode 1220, the dummy wiring 1255, and the gate line 1250 may be arranged on the same layer. In this case, all three can be formed in the same step by choosing the same material for all three, such as metal.
  • only one mask can be used to perform an etching operation on the metal material layer to simultaneously form the patterns of the auxiliary electrode 1220, the dummy wiring 1255, and the gate line 1250 in one exposure and etching process. This reduces the number of steps in the process and requires only one mask, thus saving costs.
  • Figure 13 schematically shows the relationship between the polarity of adjacent control electrodes in the dimming panel and the light leakage at the interval between the control electrodes.
  • the width of the space between adjacent control electrodes was 3.5 ⁇ m.
  • the left side of Figure 13 shows the light leakage situation when the voltage polarities of adjacent control electrodes are opposite. It can be seen that at this time, light leakage is obvious.
  • the experimental result is that the light leakage width can reach 10 ⁇ m.
  • the right side of Figure 13 shows the light leakage situation when the voltage polarities of adjacent control electrodes are the same. It can be seen that at this time, the degree of light leakage is obviously slight.
  • the experimental result is that the light leakage width is within 6 ⁇ m.
  • FIG. 14 schematically shows a top view of a dimming panel according to an embodiment of the present application.
  • the dimming panel also includes a voltage control chip 1460.
  • the voltage control chip 1460 includes an output pin 1461 .
  • the voltage control chip 1460 is configured to be connected to the gate line 1450 through the output pin 1461 and to the control electrode 1411 through the gate line 1450 to control the voltage of the control electrode 1411 .
  • each control electrode 1411 is connected to an output pin 1461 with the same voltage polarity. For example, in the dimming panel shown in FIG.
  • each control electrode 1411 is connected to an output pin 1461 with a positive voltage polarity through a gate line 1450 .
  • the polarities of each control electrode 1411 in the dimming panel can be made the same. In this way, the voltage difference between the control electrodes will be reduced, and the influence range of the fringe electric field will also be reduced.
  • the width of the light leakage area will also be reduced, improving the display effect.
  • the range of the electric field that needs to be provided by the auxiliary electrode will also be reduced, so the width of the auxiliary electrode can also be reduced, which is beneficial to the transmittance of the panel.
  • the selection of the voltage control chip is already determined.
  • the output pins of the voltage control chip can be preset so that adjacent pins have different voltage polarities, as shown in Figure 14.
  • the gate line and the output pin may be selectively connected. For example, have the gate lines both connected to positive polarity pins or both connected to negative polarity pins. Although this will leave the output pins of opposite polarity vacant, resulting in a certain degree of waste, there is no need to reselect the voltage control chip, which is beneficial to the consistency of the process.
  • the dimming liquid crystal layer 315 is located between the common electrode layer 305 and the control electrode layer 310 .
  • the common electrode layer may be located between the dimming liquid crystal layer and the control electrode layer. This embodiment is introduced below.
  • the dimming panel includes a first substrate 1501 and a second substrate 1502.
  • the dimming panel also includes a common electrode layer 1505, a control electrode layer 1510 and a dimming liquid crystal layer 1515.
  • the control electrode layer 1510 is sandwiched between the dimming liquid crystal layer 1515 and the common electrode layer 1505.
  • the common electrode layer 1505 and the control electrode layer 1510 are located on the same side of the dimming liquid crystal layer 1515.
  • the common electrode layer 1505 and the control electrode layer 1510 form a horizontal electric field in the dimming liquid crystal layer 1515 to drive the liquid crystal to deflect.
  • the control electrode layer 1510 includes control electrodes 1511. A fringe electric field is generated at the edge of the control electrode 1511.
  • a dimming panel in which the common electrode layer 1505 and the control electrode layer 1510 are located on the same side of the dimming liquid crystal layer 1515 is generally a long-dark panel.
  • the dimming liquid crystal is not driven by an electric field, it will prevent the light from the backlight module from passing through.
  • FIG. 15B in order to make the electric field lines emit from the control electrode 1511 which is closer to the dimming liquid crystal layer 1515 , it first extends to the dimming liquid crystal layer 1515 and then extends in the opposite direction to the common electrode which is far away from the dimming liquid crystal layer 1515 .
  • Layer 1505 control electrode 1511 has slits 1512 formed therein.
  • control electrode 1511 includes a plurality of first component electrodes 1551 extending along the first direction and a plurality of second component electrodes 1552 extending along the second direction.
  • the first direction and the second direction are angled.
  • the first direction and the second direction may be perpendicular or non-perpendicular.
  • the direction of the electric field formed by the second component electrode 1552 and the common electrode layer 1505 is parallel to the direction of the liquid crystal (for example, the direction of the long axis of the liquid crystal molecules).
  • the nearby liquid crystal cannot be driven. Therefore, the liquid crystal molecules near the interval between two adjacent control electrodes 1511 along the first direction are not deflected, and a dark area appears in this area.
  • 1B of the present application has schematically shown the dark area of the relevant dimming panel at the interval between two adjacent control electrodes along the first direction.
  • the width of the control electrode interval of this dimming panel is 3.5 ⁇ m, while the width of the dark area can be up to 15 ⁇ m.
  • the direction of the long axis of the liquid crystal molecules is determined by the alignment films on both sides of the liquid crystal layer.
  • the long axis direction of the liquid crystal molecules is the first direction.
  • the direction of the electric field formed by the first component electrode 1551 and the common electrode layer 1505 is perpendicular to the direction of the liquid crystal, and can drive nearby liquid crystals. However, due to the influence of the edge effect, there is still a dark area at the interval between two adjacent control electrodes 1511 in the second direction.
  • Figure 16 schematically shows the dark area between two adjacent control electrodes in the second direction of the dimming panel.
  • FIG. 17A schematically shows a cross-sectional view of a dimming panel according to an embodiment of the present application.
  • Figure 17B schematically shows a top view of a dimming panel according to an embodiment of the present application.
  • a common electrode layer 1705 is sandwiched between the dimming liquid crystal layer 1715 and the control electrode layer 1710 . That is, the common electrode layer 1705 and the control electrode layer 1710 are located on the same side of the dimming liquid crystal layer 1715, and the common electrode layer 1705 is closer to the dimming liquid crystal layer 1715 than the control electrode layer 1710.
  • the common electrode layer 1705 includes parallel strip electrodes 1706 .
  • the auxiliary electrode 1720 is located in the common electrode layer 1705 and is parallel to and electrically connected to the strip electrodes 1706 . Since the auxiliary electrode 1720 is located in the common electrode layer 1705, the auxiliary electrode and the strip electrode of the common electrode layer can be formed simultaneously in one process step using one mask. This reduces the number of processes and saves costs.
  • the auxiliary electrode 1720 and the strip electrode 1706 can be electrically connected in an appropriate manner, as shown by the dotted line in Figure 17B.
  • a wire is provided between the auxiliary electrode 1720 and the strip electrode 1706 at a location that does not overlap with the control electrode 1711, so that the wire can form an electrical connection between the auxiliary electrode 1720 and the strip electrode 1706 without interfacing with the control electrode.
  • 1711 forms an electric field and affects the deflection of the dimmable liquid crystal.
  • each strip electrode 1706 in the common electrode layer 1705 is the same. Therefore, in some embodiments, each strip electrode 1706 is also electrically connected, as shown by the dotted line in Figure 17B.
  • the strip electrode 1706 and the auxiliary electrode 1720 can be obtained by removing multiple parallel slits in the conductive material layer. In such an embodiment, the top and bottom ends of the strip electrodes 1706 and the auxiliary electrodes 1720 are connected through conductive materials, that is, the electrical connection between the strip electrodes 1706 and the auxiliary electrodes 1720 is achieved.
  • FIG. 18 shows the dark area between two adjacent control electrodes in the second direction after auxiliary electrodes are provided on the dimming panel of FIG. 16 at positions corresponding to the intervals between the control electrodes. As shown in Figure 18, compared to Figure 16, the situation in the dark area has been greatly improved.
  • Figures 19A and 19B respectively show the white display effect of the dimming panel without and with the auxiliary electrode.
  • Figure 19A when there is no auxiliary electrode for shielding, there is a dark area between adjacent control electrodes.
  • FIG. 19B when auxiliary electrodes are provided for shielding, dark areas at intervals of adjacent control electrodes can be significantly reduced.
  • the dimming panel can also have better display effects by providing auxiliary electrodes for shielding.
  • Figure 20A and Figure 20B respectively show the grayscale display effect of the dimming panel without and with the auxiliary electrode.
  • FIG 20A when there is no auxiliary electrode for shielding, there is a dark area between adjacent control electrodes.
  • Figure 20B when auxiliary electrodes are provided for shielding, there is no significant difference in light and dark between the intervals of the control electrodes and other positions.
  • the position and shape of the common electrode layer and the control electrode in the dimming panel according to the embodiment of the present application are also conducive to reducing dark areas.
  • the common electrode layer includes parallel strip electrodes, and the control electrodes are arranged in an array.
  • the common electrode In order to make the electric field lines start from the electrode layer closer to the dimming liquid crystal layer, first reach the dimming liquid crystal layer, and then extend back to the electrode layer far away from the dimming liquid crystal layer, the common electrode is in the shape of a parallel strip electrode.
  • the control electrode layer is arranged closer to the near-dimming liquid crystal layer, and the control electrode layer is arranged further from the near-dimming liquid crystal layer.
  • the control electrode 1711 is a planar structure without slits, which does not include the second component electrode extending along the second direction, and the common electrode layer is a strip electrode 1706 extending along the first direction, so the control The electrode 1711 and the common electrode layer do not generate an electric field along the first direction. Since the direction of the liquid crystal molecules is the first direction, the direction of the electric field generated by the control electrode layer and the common electrode layer will not be parallel to the direction of the liquid crystal molecules, making the liquid crystal molecules unable to be controlled by the electric field generated by the control electrode layer and the common electrode layer. Condition.
  • Figure 21 schematically shows the dark area situation of the dimming panel according to an embodiment of the present application, in which the outline of the electrode is shown with a dotted line for better clarity. As shown in Figure 21, compared with Figure 1B, the situation of dark areas is greatly reduced.
  • control electrodes 1711 arranged in the array are arranged along the first direction and the second direction.
  • the first direction forms an angle less than 90° with the second direction.
  • the strip electrode 1706 extends along the first direction.
  • the extending direction of the strip electrode 1706 will be the same as the extending direction of the edge of the control electrode. In this way, at the interval corresponding to the edge, the electric field will only include the electric field component perpendicular to the direction of the liquid crystal molecules, but not the electric field component parallel to the direction of the liquid crystal molecules. This reduces the situation where the liquid crystal molecules cannot be driven by the electric field, resulting in dark areas due to the direction of the electric field being parallel to the direction of the liquid crystal molecules.
  • first direction and the second direction form an angle less than 90°, that is, the first direction and the second direction are not perpendicular.
  • pixels are arranged in a matrix in two directions perpendicular to each other.
  • the extension direction of the strip-shaped electrodes of the auxiliary electrode and the common electrode is different from the arrangement direction of the pixels of the display panel. This helps reduce the appearance of moiré.
  • the angle between the first direction and the second direction is between 75° and 85°.
  • the moiré pattern reduction effect is better.
  • Figure 22 schematically shows a top view of a dimming panel according to an embodiment of the present application. As shown in Figure 20, the first direction and the second direction are not perpendicular. In the display panel matched with the dimming panel, the pixels are arranged in the second direction and another direction perpendicular to the second direction. By making the first direction and the second direction of the dimming panel non-perpendicular, the moiré pattern can be effectively reduced, and when the angle between the first direction and the second direction is between 75° and 85°, a smaller moiré pattern can be achieved. Best results.
  • Figure 23 schematically shows a top view of a dimming panel according to an embodiment of the present application.
  • the control electrodes include first control electrodes 2351 and second control electrodes 2352 that are adjacent in the first direction.
  • the first control electrode and the second control electrode respectively include a first edge extending along the first direction and a second edge extending along the second direction.
  • the second edge of the first control electrode 2351 close to the second control electrode 2352 includes spaced protrusions 2353.
  • the second edge of the second control electrode 2352 close to the first control electrode 2351 It includes spaced-apart recessed portions 2354 thereon.
  • the protruding portion 2353 and the recessed portion 2354 are at least partially aligned along the first direction.
  • the protruding portion and the recessed portion are at least partially aligned along the first direction. It can be understood that in the direction perpendicular to the first direction, the orthographic projections of the protruding portion and the recessed portion are at least partially coincident. It should be understood that protrusion and depression are a set of relative concepts. According to the perspective of FIG. 23 , the space between adjacent protruding portions 2353 can be understood as a recess, and the space between adjacent recessed portions 2354 can be understood as a protrusion.
  • this embodiment can also be understood as that the second edge of the first control electrode close to the second control electrode includes protrusions arranged at intervals, and the second edge of the second control electrode close to the first control electrode
  • the second edge also includes protrusions arranged at intervals, and the protrusions of the first control electrode and the protrusions of the second control electrode are arranged staggeredly, that is, in the second direction, the protrusions of the first control electrode
  • the projection of the protruding portion along the first direction is located at an interval of the protruding portion of the second control electrode, and the projection of the protruding portion of the second control electrode along the first direction is located at an interval of the protruding portion of the first control electrode.
  • the common electrode layer has been set as a strip electrode, since the first direction and the second direction are not perpendicular, the electric field formed by the second edge of the control electrode and the common electrode still has an electric field component parallel to the direction of the liquid crystal, resulting in Some liquid crystals cannot be driven by the electric field, resulting in dark areas.
  • the second edge By arranging the second edge to have protrusions and recesses, the component of the electric field parallel to the direction of the liquid crystal can be reduced, thereby reducing dark areas.
  • Figure 24 schematically shows the situation of the dark area of the dimming panel when the second edge has protrusions and recesses, in which the outline of the control electrode is depicted with a dotted line for better clarity.
  • the second edge within the dotted line box has protrusions and recesses
  • the second edge outside the dotted line box has protrusions and recesses.
  • the two edges have no protrusions or recesses.
  • the width and visibility of the dark areas within the dotted box are weaker than those outside the dotted box. This shows that by providing protrusions and recesses on the second edge, the situation of dark areas can be improved.
  • the width of the auxiliary electrode is 1 to 2 times the width of the spacer.
  • the inventor verified the shielding effect of auxiliary electrodes of different widths through experiments.
  • Figure 25 schematically shows the dark area conditions corresponding to auxiliary electrodes of different widths, which respectively shows the dark area conditions at the intervals between the control electrodes when the display screen is white display and grayscale display.
  • the spacing width of the control electrodes was 3.5 ⁇ m.
  • This experiment verified five situations, including when there is no auxiliary electrode and when the auxiliary electrode width is 2 ⁇ m, 3 ⁇ m, 5 ⁇ m, and 7 ⁇ m.
  • the width of the auxiliary electrode is 5 ⁇ m, the dark area is the least obvious in both white display and grayscale display.
  • the dimming panel provides auxiliary electrodes at positions corresponding to the intervals of the control electrodes, thereby improving the electric field near the intervals and adjusting the deflection direction of the liquid crystal, thereby improving light leakage and The phenomenon of dark areas.
  • this application also arranges the auxiliary electrode close to the weak alignment area, so that the electric field of the auxiliary electrode is more targeted and the width is narrower, thereby improving the transmittance of the dimming panel.
  • this application also makes the auxiliary electrode invisible to the human eye through the arrangement of gate lines and dummy wiring, thereby improving the display quality.
  • a stacked screen panel includes a dimming panel according to any embodiment of the present application, and a display panel.
  • the display panel and the dimming panel are stacked.
  • Figure 26 schematically shows a cross-sectional view of a stacked screen panel according to an embodiment of the present application. As shown in Figure 26, the display panel 2610 and the dimming panel 2605 are stacked. The display panel 2610 and the dimming panel 2605 may be connected through an optical adhesive layer 2615 between them.
  • the dimming panel includes a first substrate 2601 and a second substrate 2602, and a dimming liquid crystal layer 2620 sandwiched between them.
  • Both sides of the dimming liquid crystal layer 2620 include a first alignment layer 2621 and a second alignment layer 2622.
  • An auxiliary electrode 2630 and a gate line 2631 are arranged on the first substrate 2601.
  • a first insulation layer 2640 is arranged above the auxiliary electrode 2630 and the gate line 2631.
  • a control electrode layer 2650 is arranged on the first insulating layer 2640, which includes control electrodes arranged in an array.
  • the common electrode layer 2651 is arranged on the second substrate 2602. It should be understood that FIG. 26 only schematically shows the structure of the dimming panel 2605, and does not show elements that do not affect the understanding of the present application.
  • the dimming panel 2605 may also include elements and structures described in any of the previously described embodiments.
  • the display panel 2610 may be a display panel commonly used in the art.
  • the display panel 2610 includes a third substrate 2661 and a fourth substrate 2662 and a display liquid crystal layer 2665 sandwiched between them.
  • the display liquid crystal layer 2665 also includes alignment layers on both sides (omitted in Figure 26).
  • a color filter layer 2670 is arranged on one side of the display liquid crystal layer 2665, which includes a red filter layer, a green filter layer, a blue filter layer, and a black matrix 2671.
  • the red filter layer, the green filter layer, and the blue filter layer together define the pixels of the display panel, while the black matrix 2671 separates the pixels.
  • a control layer 2674 is arranged on the third substrate 2661, which may include structures such as control electrodes, gate lines, and insulating layers.
  • a common electrode layer 2675 is arranged on the fourth substrate 2661. It should be understood that although in Figure 26, the control layer 2674 and the common electrode layer 2675 are arranged on both sides of the display liquid crystal layer 2665, in other embodiments, depending on the specific forms of the common electrode and the control electrode, the control layer 2674 and The common electrode layer 2675 may be disposed on the same side of the display liquid crystal layer 2665.
  • the display panel should be able to cooperate with the dimming panel according to the embodiment of the present application.
  • the number, size and arrangement of pixels of the display panel should match the partitions of the dimming panel.
  • the length and width of the partitions of the dimming panel should be an integral multiple of the length and width of the pixels of the display panel.
  • the spacing of the control electrodes of the dimming panel can be aligned with the spacing of the pixels of the display panel.
  • the orthographic projection of the black matrix 2671 of the display panel on the first substrate 2601 and the orthographic projection of the spacing between the control electrodes of the dimming panel on the first substrate 2601 at least partially overlap.
  • the inflection points of the grid lines of the dimming panel can appear at the intervals of the pixels of the display panel, and so on.
  • the stacked screen panel according to the embodiment of the present application has all the advantages and effects of the dimming panel according to the embodiment of the present application, which will not be described again here.
  • FIG. 27 schematically shows a flow chart of a method of manufacturing a dimming panel according to an embodiment of the present application.
  • the method includes: at step S2705, providing a substrate; at step S2710, forming a control electrode layer on the substrate, wherein the control electrode layer includes control electrodes arranged in an array and adjacent There is a space between the control electrodes; and, in step S2715, an auxiliary electrode is formed on the substrate, wherein the orthographic projection of the auxiliary electrode on the substrate is the same as the orthographic projection of the space on the substrate layer. At least partially coincide. It should be noted that there is no order requirement for step S2710 and step S2715.
  • the auxiliary electrode can be formed first and then the control electrode, or the control electrode can be formed first and then the control electrode.
  • the statement "the orthographic projection of the auxiliary electrode on the substrate at least partially coincides with the orthographic projection of the spacer on the substrate layer" should not be understood to mean that the auxiliary electrode needs to be formed after the control electrode is formed. It should be understood that whether the auxiliary electrode or the control electrode is formed first, the structure of the resulting dimming panel should be such that the orthographic projection of the auxiliary electrode on the substrate at least partially overlaps the orthographic projection spaced on the substrate layer. This method is described in detail below.
  • the substrate can be any suitable substrate, such as a glass substrate, or other transparent material substrate with a load-bearing function.
  • control electrode layer and an auxiliary electrode are respectively formed on the substrate.
  • the material of the control electrode layer may be a transparent conductive material, such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the method of forming the control electrode layer may be to deposit a layer of control electrode material, then coat a photoresist layer on the control electrode material, expose and develop the photoresist layer, and then use an etching solution to etch the control electrode material. Etch to obtain the control electrodes, then remove the photoresist.
  • the auxiliary electrode can be a transparent conductive material ITO, or an opaque conductive material such as metal.
  • a similar method can be used to form the auxiliary electrode, such as depositing the auxiliary electrode material, coating the photoresist, exposing and developing, etching the auxiliary electrode material, and removing the photoresist. Since both the control electrode layer and the auxiliary electrode are formed on the substrate, the alignment accuracy between the two is high, and the positional relationship between the auxiliary electrode and the control electrode is more precise, so that the electric field generated by the auxiliary electrode can be more accurately targeted at the intervals. Light leakage.
  • the meanings and specific operation processes of the steps of depositing electrode material, coating photoresist, exposing and developing, etching electrode material, and removing photoresist are clear in the art and will not be described again here. When combined together, these steps can be collectively referred to as an "exposure and etching operation.”
  • the auxiliary electrode can be formed first, or the control electrode can be formed first. Next, these two situations are introduced separately.
  • step S2715 may include: forming a first electrode material layer on the substrate, and performing a first exposure and etching operation on the first electrode material layer to obtain the auxiliary electrode.
  • the method for manufacturing a dimming panel according to an embodiment of the present application further includes: forming a first insulating layer on a side of the auxiliary electrode away from the substrate.
  • step S2710 may include: forming a second electrode material layer on a side of the first insulating layer away from the substrate, and performing a second exposure and etching operation on the second electrode material layer to obtain the The control electrode layer.
  • the control electrode layer is further away from the substrate than the auxiliary electrode.
  • the auxiliary electrode can be formed in the same step as the grid lines of the dimming panel.
  • a metal layer can be deposited on the surface of the substrate, and after exposure and etching processes, patterns of gate lines and auxiliary electrodes can be formed.
  • an insulating layer can be deposited on the gate lines and auxiliary electrodes.
  • the material of the insulating layer may be, for example, silicon nitride.
  • a first via hole for connecting the auxiliary electrode and the control electrode, and a second via hole for connecting the gate line and the control electrode may be formed in the insulating layer through exposure and etching operations.
  • the material of the control electrode can be deposited or sputtered on the insulating layer, and the control electrode can be formed through exposure and etching processes.
  • the material of the control electrode can enter the aforementioned via hole, so that the control electrode can be electrically connected to the gate line and the auxiliary electrode.
  • the position of the control electrode to be formed has actually been determined. Therefore, when etching the control electrode, the etched position should be aligned with the position of the auxiliary electrode.
  • the method forms the common electrode of the dimming panel in an opposite substrate opposite to the array substrate.
  • the process of forming the opposite substrate may include, for example: providing a second substrate, coating a black matrix layer material on the second substrate, and subjecting it to exposure and development to form a mark for alignment with the array substrate. Then, a common electrode material layer is formed by deposition or sputtering to obtain an entire common electrode layer. In some embodiments, it is also necessary to coat a spacer material on the common electrode layer, and undergo exposure and development to obtain a support in the box. Through the above process, the opposite substrate of the dimming panel can be obtained.
  • the dimming panel according to the embodiment of the present application can be obtained.
  • control electrode may be formed first.
  • step S2710 may include: forming a third electrode material layer on the substrate, and performing a third exposure and etching operation on the third electrode material layer to obtain the control electrode layer.
  • the method further includes: forming a second insulating layer on a side of the control electrode layer away from the substrate.
  • step S2715 may include: forming a fourth electrode material layer on a side of the second insulating layer away from the substrate, and performing a fourth exposure and etching operation on the fourth electrode material layer to obtain the The auxiliary electrode.
  • the control electrode layer is closer to the substrate than the auxiliary electrode.
  • the common electrode of the dimming panel can also be provided on the substrate, and the auxiliary electrode and the common electrode can be formed in the same step.
  • the patterns of the auxiliary electrode and the common electrode may be formed simultaneously, and then exposed and etched. etching process to obtain a common electrode and an auxiliary electrode.
  • the patterns of the auxiliary electrode and the common electrode can also be set so that the common electrode and the auxiliary electrode are electrically connected.
  • the common electrode is also formed on the array substrate, so the process of forming the opposite substrate may only include steps such as providing a third substrate, forming a mark for alignment with the array substrate, forming a support in the box, etc., I won’t go into details here. Then, similarly, by instilling liquid crystal and assembling the array substrate and the counter substrate, the dimming panel according to the embodiment of the present application can be obtained.
  • the dimming panel obtained by the above method provides auxiliary electrodes at positions corresponding to the intervals of the control electrodes, thereby improving the electric field near the intervals and adjusting the deflection direction of the liquid crystal, thus improving the phenomena of light leakage and dark areas.

Abstract

一种调光面板(300)、叠屏面板、和制造调光面板(300)的方法。调光面板(300)包括层叠布置的公共电极层(305)、控制电极层(310)和调光液晶层(315),以及辅助电极(320)。控制电极层(310)包括布置在阵列中的控制电极(311),并且相邻的控制电极(311)之间存在间隔(313)。间隔(313)在公共电极层(305)上的正投影与辅助电极(320)在公共电极层(305)上的正投影至少部分地重合。

Description

调光面板、叠屏面板、和制造调光面板的方法 技术领域
本申请涉及液晶显示技术的领域,尤其涉及一种调光面板、叠屏面板、和制造调光面板的方法。
背景技术
常规的液晶显示屏(liquid crystal display)具有色域不足、对比度低的缺点(对比度约为1000∶1)。色域是指某一显示设备能够显示的颜色的集合。对比度是指某一显示设备可显示的最亮亮度和最暗亮度之间的比例。
为了实现高对比度,一种方案是使用次毫米级发光二极管(Mini LED)技术。Mini LED技术利用大量的小型LED光源实现较多背光分区的调光。但受限于LED的数量较多,Mini LED技术的功耗较大、良率较低、成本较高。
另一种方案是使用叠屏显示技术。叠屏显示技术的产品包括两个贴合的面板,分别是显示面板(也称主屏,Main cell)和调光面板(也称副屏,Sub cell)。显示面板主要用于控制显示画面的颜色和图案。调光面板包括各自单独控制的多个调光分区,可以实现局部背光的调节,从而提高画面的对比度,使图像显示更加清晰,色彩表现力更强,颜色过渡更顺畅。叠屏显示技术可以将液晶显示的对比度从1000∶1的量级提升至1000000∶1的量级,而且还具有较低的功耗和成本。
但是,在一些相关的叠屏显示面板中,调光面板的分区之间的间隔处可能出现亮暗不均(mura)的问题。例如,调光分区之间出现漏光或暗区。而且,调光面板可能对显示面板的整体透过率产生影响。
发明内容
根据本申请的一方面,提供了一种调光面板。所述调光面板包括层叠布置的公共电极层、控制电极层和调光液晶层,以及辅助电极。所述控制电极层包括布置在阵列中的控制电极,并且相邻的控制电极之间存在间隔。所述间隔在所述公共电极层上的正投影与所述辅助电极在所述公共电极层上的正投影至少部分地重合。
在一些实施例中,所述间隔包括第一边界、第二边界、配向弱区和非配向弱区,所述配向弱区相对于所述非配向弱区更靠近所述第一边界,所述非配向弱区相对于所述配向弱区更靠近所述第二边界。所述调光液晶层包括第一调光液晶和第二调光液晶,所述第一调光液晶在所述间隔的正投影位于所述配向弱区内,所述第二调光液晶在所述间隔的正投影位于所述非配向弱区内。所述第一调光液晶的平均锚定能小于所述第二调光液晶的平均锚定能。所述第一边界在所述辅助电极上的正投影相比于所述第二边界在所述辅助电极上的正投影更靠近所述辅助电极的中线。
在一些实施例中,所述辅助电极的中线在公共电极层的正投影与所述间隔的中线在所述公共电极层的正投影的距离在0.5μm至1.5μm的范围内。
在一些实施例中,布置在阵列中的控制电极沿第一方向和第二方向排列,所述第一方向与所述第二方向成角度。所述调光面板还包括栅线层,其中,所述栅线层包括栅线,所述栅线与所述控制电极中对应的一个控制电极电连接,所述栅线沿所述第一方向延伸。所述辅助电极包括沿所述第一方向延伸的第一辅助电极,所述第一辅助电极与所述栅线在所述公共电极层的投影平行且间隔地排列。
在一些实施例中,所述第一辅助电极与所述栅线在所述公共电极层的正投影中的任意两个相邻的正投影之间的间距是相同的。
在一些实施例中,所述调光面板还包括虚设走线,所述虚设走线沿所述第二方向延伸。所述辅助电极还包括沿所述第二方向延伸的第二辅助电极,所述虚设走线与所述第二辅助电极在所述公共电极层的正投影平行且间隔地排列。
在一些实施例中,所述栅线在拐点处弯折,并且所述虚设走线所在的直线在所述栅线层上的正投影经过所述拐点
在一些实施例中,所述虚设走线、所述栅线、和所述辅助电极中的至少两个位于同层。
在一些实施例中,所述调光面板还包括电压控制芯片,其中所述电压控制芯片配置成通过输出管脚连接到所述栅线,并经过所述栅线连接到所述控制电极,以控制所述控制电极的电压,其中所述控制电极中的各个控制电极均连接到电压极性相同的输出管脚。
在一些实施例中,所述辅助电极与所述间隔两侧的控制电极之一电连接。
在一些实施例中,所述公共电极层夹置于所述调光液晶层和所述控制电极层之间。所述公共电极层包括平行的条状电极,所述辅助电极位于所述公共电极层中,并且与所述条状电极平行且电连接。
在一些实施例中,布置在阵列中的所述控制电极沿第一方向和第二方向排列,所述第一方向与所述第二方向成小于90°的角度。所述条状电极沿所述第一方向延伸。
在一些实施例中,所述第一方向和所述第二方向之间的角度在75°到85°之间。
在一些实施例中,所述控制电极包括在所述第一方向上相邻的第一控制电极和第二控制电极,所述第一控制电极和所述第二控制电极各自包括沿所述第一方向延伸的第一边缘和沿所述第二方向延伸的第二边缘。所述第一控制电极的靠近所述第二控制电极的第二边缘上包括间隔设置的凸出部,所述第二控制电极的靠近所述第一控制电极的第二边缘上包括间隔设置的凹陷部,所述凸出部与所述凹陷部沿所述第一方向至少部分地对齐。
在一些实施例中,所述辅助电极的宽度是所述间隔的宽度的1到2倍。
根据本申请的另一方面,提供了一种叠屏面板,包括根据本申请任一实施例所述的调光面板,和与所述调光面板层叠布置的显示面板。
根据本申请的又一方面,提供了一种制造调光面板的方法。所述方法包括:提供基板;在所述基板上形成控制电极层,其中所述控制电极层包括布置在阵列中的控制电极,并且相邻的控制电极之间存在间隔;在所述基板上形成辅助电极,其中所述辅助电极在所述基板上的正投影与所述间隔在所述基板上的正投影至少部分地重合。
在一些实施例中,在所述基板上形成辅助电极包括:在所述基板上形成第一电极材料层,以及,对所述第一电极材料层进行第一曝光和刻蚀操作,以得到所述辅助电极;。所述方法还包括:在所述辅助电极远离所述基板的一侧形成第一绝缘层。并且,在所述基板上形成控制电极层包括:在所述第一绝缘层远离所述基板的一侧形成第二电极材料层,以及,对所述第二电极材料层进行第二曝光和刻蚀操作, 以得到所述控制电极层。
在一些实施例中,在所述基板上形成控制电极层包括:在所述基板上形成第三电极材料层,以及,对所述第三电极材料层进行第三曝光和刻蚀操作,以得到所述控制电极层。所述方法还包括:在所述控制电极层远离所述基板的一侧形成第二绝缘层。并且,在所述基板上形成辅助电极包括:在所述第二绝缘层远离所述基板的一侧形成第四电极材料层,以及,对所述第四电极材料层进行第四曝光和刻蚀操作,以得到所述辅助电极。
附图说明
为了更清楚地描述本公开实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在本申请的附图中:
图1A和图1B分别示意性地示出了相关的调光面板的控制电极的间隔处的漏光和暗区的情况;
图2A和图2B分别示意性地示出了调光面板的漏光区域宽度与相邻控制电极的间隔宽度的关系;
图3A示意性地示出了根据本申请实施例的调光面板的截面图;
图3B示意性地示出了根据本申请实施例的调光面板的截面图;
图4示意性地示出了根据本申请实施例的调光面板的漏光情况;
图5示意性地示出了根据本申请实施例的调光面板的俯视图;
图6示意性地示出了调光面板的配向方向与漏光区域位置的关系;
图7A和图7B分别示意性地示出了根据本申请实施例的调光面板的俯视图和截面图;
图8示意性地示出了细长的条形结构的间距与该条形结构的可分辨性的关系;
图9示意性地示出了根据本申请实施例的调光面板的俯视图;
图10示意性地示出了调光面板的栅线的弯折与显示面板的像素的关系;
图11示意性地示出了根据本申请实施例的调光面板的俯视图;
图12示意性地示出了根据本申请实施例的调光面板的截面图;
图13示意性地示出了调光面板中的相邻的控制电极的极性与控制电极间隔的漏光情况的关系;
图14示意性地示出了根据本申请实施例的调光面板的俯视图;
图15A和图15B分别示意性地示出了相关的调光面板的截面图和俯视图;
图16示意性地示出了调光面板中的相邻的控制电极之间的暗区的情况;
图17A和图17B分别示意性地示出了根据本申请实施例的调光面板的截面图和俯视图;
图18示意性地示出了提供有辅助电极的调光面板中的相邻的控制电极之间的暗区的情况;
图19A和图19B分别示意性地示出了无辅助电极和有辅助电极时调光面板的白色显示效果;
图20A和图20B分别示意性地示出了无辅助电极和有辅助电极时调光面板的灰阶显示效果;
图21示意性地示出了根据本申请实施例的调光面板的暗区的情况;
图22示意性地示出了根据本申请实施例的调光面板的俯视图;
图23示意性地示出了根据本申请实施例的调光面板的俯视图;
图24示意性地示出了控制电极的第二边缘具有凸出部和凹陷部时调光面板的暗区的情况;
图25示意性地示出了不同宽度的辅助电极对应的暗区情况;
图26示意性地示出了根据本申请实施例的叠屏面板的截面图;并且
图27示意性地示出了根据本申请实施例的制作调光面板的方法的流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普 通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在相关的叠屏显示技术中,一种方案是应用高分辨率的调光面板,其分辨率可能达到显示面板的分辨率的二分之一,甚至更高。例如,在显示面板具有4K分辨率的情况下,调光面板的分辨率可达到2K。高分辨率的调光面板具有高达百万级的分区数量,一般采用有源驱动,即,每个分区具有单独的开关元件,如薄膜晶体管(TFT)。这会降低调光面板的透过率,而且分区数量过多也会增加系统运算能力的负担。还应注意到,如果显示面板和调光面板的分辨率都很高,那么就意味着像素和调光分区的尺寸都很小,但现有的面板贴合技术的精度可能不足以支持尺寸如此小的像素和调光分区的对齐。
另一种方案是应用低分区数量的调光面板。这种调光面板一般具有三千个以下的分区,可以采用无源驱动,也就是,其不含有TFT结构,各分区的控制电极直接电连接到电压控制芯片,这有利于提高透过率。也可以理解为,高透过率是低分区数量的调光面板的主要追求。而且,每个分区的尺寸较大,可达到毫米级,这对于像素和调光分区的对齐精度的要求较低。
发明人发现,受到工艺精度的限制,这种低分区数量的调光面板的控制电极之间的间隔的距离较大。间隔处的电场存在边缘效应,可能会出现漏光或暗区的现象,严重降低画面的质量。电场的边缘效应是指,电极所带的同种电荷互相排斥,导致电荷主要集中在了电极的边缘地带,使得电极的边缘地带的电场会变得不匀,电场线向周围扩散出去。因此,控制电极边缘处的液晶的偏转会发生变化。
图1A和图1B分别示意性地示出了相关的调光面板的控制电极间隔处的漏光和暗区的情况。图1A示出了布置成阵列的控制电极105的间隔处出现了细长的亮区。图1B示出了纵向布置的两个控制电极110之间存在暗区。在图1B中,用虚线示意性地示出了控制电极110的轮廓。图1B中出现了纵向布置的两个控制电极110。控制电极的形状是带有纵向狭缝111的块状电极。如图1B所示,在上下相邻的控制电极110之间存在暗区。这种漏光或暗区的现象会严重阻碍叠屏显示技术的推广。
在相关技术中,调光面板包括控制电极所在的阵列基板和相对于 液晶层设置在阵列基板对侧的对置基板。为了解决相邻的控制电极之间的亮区问题,一种方法是,在对置基板中设置黑矩阵,并使黑矩阵的位置与控制电极的间隔的位置对齐,以对间隔处的亮区进行遮挡。但是,发明人注意到,实际生产中,阵列基板与对置基板的对盒的工艺精度较低,使得对置基板上的黑矩阵无法准确地与控制电极的间隔对齐,导致遮光效果不理想。
发明人还发现,漏光和暗区的宽度比相邻控制电极的间隔的宽度更大,可达到控制电极间隔宽度的3倍之多。漏光区和暗区的形状以及控制电极的间隔的形状都可以看做细长的条形。在本申请的语境下,术语“宽度”表示这种条形形状在与其延伸方向垂直的方向上的尺寸。图2A和图2B示例性地示出了相关技术中漏光区域宽度与相邻控制电极210的间隔215的宽度的关系。在图2A的示例中,在相邻控制电极的间隔内提供了与间隔宽度相等的遮光物。然而,如图2A所示,在相邻控制电极之间,遮光物并未完全遮住漏光。图2B示出了不同宽度的遮光物对应的漏光情况。在该示例中,控制电极之间的间隔的宽度为3.5μm。如图2B所示,当遮光物宽度为6.5μm、7μm、7.5μm、8μm、8.5μm、9μm时,均仍存在一定程度的漏光。直到当遮光物宽度增加到9.5μm或10μm时,漏光才变得不明显。
图3A示意性地示出了根据本申请实施例的调光面板的截面图。如图3A所示,调光面板300包括层叠布置的公共电极层305、控制电极层310和调光液晶层315。术语“层”表示这样的结构:在该结构的三个相互垂直的维度中,此结构在其中一个维度上的长度远小于其余两个维度的长度。术语“层叠布置”表示,多个层结构沿着前述长度明显较小的维度的方向排列,但并不一定要求层结构之间是紧挨或接触的。此外,层结构并不排除其表面一定是平坦的。其表面上也可能出现沿着前述长度明显较小的维度上的凸出或凹陷。术语“层叠布置”并不排除一个层结构的凸出部嵌入另一个层结构的凹陷部内的情况。
应注意,术语“层叠布置”并不对层结构的排列顺序进行限定。例如,在“公共电极层305、控制电极层310和调光液晶层315层叠布置”的语境下,并不要求按照文字的先后来确定层结构的顺序,即,并不要求控制电极层310位于公共电极层305和调光液晶层315之间。在一些实施例中,调光液晶层315位于公共电极层305和控制电极层 310之间。在另一些实施例之中,公共电极层305位于调光液晶层315和控制电极层310之间。
在图3A的示例中,调光液晶层315位于公共电极层305和控制电极层310之间。调光面板300还包括第一基板301和第二基板302。控制电极层310包括布置在阵列中的控制电极311。如图3A所示,相邻的控制电极311之间存在间隔313。在调光面板300中,每个控制电极311定义了调光面板的分区。
在一些实施例中,调光面板300还包括辅助电极320。辅助电极320的材料可以是金属。如图3A所示,所述间隔313在所述公共电极层305上的正投影与所述辅助电极320在所述公共电极层305上的正投影至少部分地重合。术语“至少部分地重合”即包括一个投影完全落入另一投影中的情况,也包括两个投影的边界完全重合的情况,还包括一个投影的一部分与另一投影的一部分重合且两个投影的其余部分不重合的情况。间隔313在公共电极层305上的正投影与辅助电极320在公共电极层305上的正投影至少部分地重合可以被理解为,当以垂直于公共电极层305的方向看向调光面板300时,辅助电极320至少部分地出现在控制电极311的间隔313中。这种位置关系可以简述为,辅助电极320与间隔313对应。
图3A所示的这种调光液晶层315位于公共电极层305和控制电极层310之间的调光面板一般是常亮型面板。当调光液晶没有电场驱动时,其允许背光模组发出的光穿过。在间隔313处,不存在控制电极311,因此此处不存在由公共电极层305和控制电极311形成的电场,这使得调光液晶允许背光模组发出的光穿过,造成漏光。而且,在间隔313处,控制电极311的边缘会导致形成边缘电场,这会进一步加剧漏光,增大漏光区域的宽度。通过在对应于间隔313的位置提供辅助电极320,辅助电极既可以在间隔313处与公共电极层305形成电场,使得调光液晶层315中对应于间隔313处的调光液晶的偏转可以受到辅助电极320的控制,还可以屏蔽控制电极311的边缘电场,从而可以改变间隔313处的光通过情况,克服例如前述的漏光问题,改善了显示效果。而且,在该实施例中,辅助电极320和控制电极311都位于第一基板301上,也就是,两者是位于同一基板上的两个膜层,这使得两者的对位精度较高,辅助电极与控制电极的位置关系更精确, 因此辅助电极产生的电场可以更加精准地针对漏光处的液晶。图4示意性地示出了根据本申请实施例的调光面板的漏光情况。如图4所示,与图2相比,控制电极间的漏光现象显著减弱,甚至几乎完全消除,因此显示的画质更高。
在一些实施例中,如图3A所示,所述辅助电极320与所述间隔313两侧的控制电极311之一电连接。这首先意味着无需为辅助电极320提供专用的供电元件。而且,在辅助电极320与控制电极311电连接的情况下,辅助电极320的电压与控制电极311的电压基本相同。因此,辅助电极320与公共电极层305的电压差和控制电极311与公共电极层305的电压差基本一致,所以间隔313处对应的调光液晶的电场与控制电极311对应的调光液晶的电场基本相同,液晶的偏转程度也会基本相同。这样,在观察调光面板300时,间隔313处的亮度与控制电极311处的亮度基本一致,将不会出现间隔更亮或更暗的情况。
在一些实施例中,如图3A所示,控制电极层310和辅助电极320之间存在绝缘层325。绝缘层325覆盖辅助电极320。绝缘层325中存在过孔330,辅助电极320通过过孔330内的导电材料与控制电极310电连接。在一些实施例中,辅助电极320在公共电极层305上的正投影与控制电极311在公共电极层305上的正投影存在重叠区域。过孔330的位置可以设置为使得过孔330在公共电极层305上的正投影位于该重叠区域内。形成辅助电极320与控制电极311之间的电连接的方式可以是,先在辅助电极320上提供绝缘层325,然后对绝缘层325进行刻蚀操作,以在其中形成过孔330。过孔330应到达辅助电极320。为了保证电连接的效果,可以对绝缘层325进行过刻,即,在形成过孔330的过程中,对过孔330内的辅助电极320的表面也进行一定程度的刻蚀,确保过孔内的辅助电极320的表面上不会残留绝缘材料。然后在绝缘层上沉积控制电极材料。一部分控制电极材料会进入到过孔330中,并到达辅助电极320,起到导电的作用。然后,对控制电极材料进行刻蚀,以得到控制电极311。经此操作,控制电极311经过控制电极材料与辅助电极320电连接。
图3B示意性地示出了根据本申请另一实施例的调光面板的截面图。辅助电极320自身不是绝对透明的,甚至还有可能是不透明的(例 如,当辅助电极的材料是金属时)。因此,只要辅助电极被布置在控制电极的间隔处,辅助电极就能实现一定的遮光作用,从而减弱前述漏光问题。在一些实施例中,如图3B所示,辅助电极320并未与调光面板内的其它元件电连接,也就是,辅助电极320可以是不被供电的。在这种情况下,既可以实现一定的遮光效果,还无需为辅助电极320提供对应的供电电路,这对于简化调光面板的结构以及减轻调光面板的制造工艺复杂度是有利的。应理解,在本申请下述其它实施例中,除非明确描述,否则辅助电极320既可以被设置为与调光面板内其它元件电连接,也可以被设置为不与其它元件电连接。
图5示意性地示出了根据本申请实施例的调光面板的俯视图,其具体示出了沿垂直于公共电极层305的方向看向所述调光面板300时,调光面板300内的各元件的位置关系。如图5所示,控制电极311的正投影与辅助电极320的正投影部分地重合。过孔330的正投影的位于控制电极311的正投影与辅助电极320的正投影的重合处。应理解,在前面提到的辅助电极不与调光面板内的其它元件电连接的情况下,无需为辅助电极320提供过孔330。
前文提到,高透过率是低分区数量的调光面板的主要追求,因此希望减小辅助电极对透过率的影响。发明人经过实验发现,控制电极之间的漏光往往偏向于液晶的配向弱区。配向弱区的产生是因为,在液晶面板的实际制作工艺中,阵列基板的表面各处的元件不同,且各元件的高度也不同。例如,由于辅助电极具有一定厚度,且辅助电极布置在控制电极的间隔处,因此控制电极间隔处的高度可能高于控制电极处的高度。这样,配向层并非平坦的涂覆在阵列基板的表面,而是存在段差。在利用摩擦滚轮摩擦配向层时,滚轮会经历上坡和下坡过程。例如,滚轮到达控制电极的间隔处时会经历上坡,而离开控制电极的间隔处时会经历下坡。在下坡时,滚轮与配向层的膜面的接触较弱,导致配向力度弱,因此形成了配向弱区。配向弱区内的液晶的锚定能较弱,更易受到电场扰动和出现配向紊乱现象,因此配向弱区的漏光会更严重。
图6示意性地示出了配向方向与漏光区域位置的关系。图6的液晶面板沿图中箭头的方向(从下到上)进行配向。在图6所示出的方向中,漏光区域偏向于图中控制电极间隔605的上方,因为滚轮在经 过此处时,正在离开控制电极610与控制电极615之间的间隔605,向着控制电极610行进,也就是正在经历下坡。
在本申请的一些实施例中,辅助电极被设置为更靠近配向弱区所在的一侧。相比于辅助电极与控制电极的间隔中心对称的布置方式,在实现同等遮光效果的情况下,辅助电极需要更窄的宽度,因此对于面板的透过率是有利的。也就是说,该实施例以更窄的宽度实现了更好的遮光效果。
图7A和图7B示意性地示出了根据本申请实施例的调光面板的俯视图和截面图。如图7A和图7B所示,控制电极711之间的间隔713包括第一边界741、第二边界742、配向弱区743和非配向弱区744。所述配向弱区743相对于所述非配向弱区744更靠近所述第一边界741。所述非配向弱区744相对于所述配向弱区743更靠近所述第二边界742。所述调光液晶层包括第一调光液晶和第二调光液晶。所述第一调光液晶在所述间隔的正投影位于所述配向弱区内。也就是,第一调光液晶的位置对应于配向弱区。所述第二调光液晶在所述间隔的正投影位于所述非配向弱区内。也就是,第二调光液晶的位置对应于非配向弱区。因此,所述第一调光液晶的平均锚定能小于所述第二调光液晶的平均锚定能。术语“第一调光液晶的平均锚定能”应理解为位置对应于配向弱区的各液晶分子的锚定能的平均值。术语“第二调光液晶的平均锚定能”应理解为位置对应于非配向弱区的各液晶分子的锚定能的平均值。
所述第一边界741在所述辅助电极720上的正投影相比于所述第二边界在所述辅助电极720上的正投影更靠近所述辅助电极的中线745。这可以理解为,辅助电极720的中线更靠近第一边界741。这表示,辅助电极720更靠近第一边界741。配向弱区743相对于非配向弱区744更靠近所述第一边界741,说明第一边界741所在的一侧是间隔713的配向弱侧。这一侧的液晶的锚定能较弱,漏光现象主要发生在这一侧。通过将辅助电极720设置为更靠近配向弱侧,可以使得辅助电极720能够更有效的控制配向弱区内的液晶分子,使得对于漏光的控制更有针对性。而且,在实现同等遮光效果的前提下,相比于辅助电极与控制电极的间隔居中对齐的方案,这可以使得辅助电极所需要的宽度更窄,有利于调光面板的透过率。
在一些实施例中,所述辅助电极720的中线745在公共电极层705的正投影与控制电极711之间的间隔713的中线747在所述公共电极层的正投影之间的距离在0.5μm至1.5μm的范围内。位置满足此要求的辅助电极所产生的电场与漏光区的位置更加接近,既有效地减小了漏光现象,又减小了所需要的宽度。例如,在辅助电极与控制电极的间隔居中对齐的情况下,为了完全阻止漏光,辅助电极的宽度需要达到11μm,而在辅助电极更靠近间隔的配向弱侧时,仅需要辅助电极的宽度为9μm。经过实验验证,后者比前者的透过率可高出15%至20%。
发明人还认识到,在低分区数量的调光面板中,由于各分区的尺寸较大,因此辅助电极之间的间隔较大。调光面板的设计,需要结合分区数量、显示面板的分辨率等指标进行综合考量。以对角线长度为15.6英寸的叠屏面板为例,如果要求显示面板(即,主屏)的分辨率为3840×2160,则对应的像素尺寸为90μm×90μm。如果选择调光面板(即,副屏)的分区数量为1200个左右,则可以将调光面板内的分区设置为48×27个(共计1296个分区)。此时,每个分区包含了80×80个(共计6400个)像素,分区尺寸约为7.2mm×7.2mm。辅助电极布置在控制电极的间隔内,也就是相邻的辅助电极的间距为一个分区的宽度,即7.2mm。当相近辅助电极间距如此大时,辅助电极是可被人眼分辨的。
图8示出了细长的条形结构的间距(pitch)与其可分辨性的关系。具体的,图8示意性地示出了宽度为6μm的条形结构的间距分别为250μm、500μm、750μm、3000μm和5000μm时,人眼的观看效果。如图8所示,当间距较宽(例如750μm、3000μm或5000μm)时,即使条形结构只有6μm的宽度,也依然可以被人眼分辨。当间距小于500μm时,人眼辨别将变得较难。当间距减小至250μm时,人眼将无法区分出暗线。
还应注意,人眼的分别能力与人眼距显示设备的距离也有关系。下表1示出了不同观看距离和条形结构间距的关系。
  笔记本电脑 台式计算机 电视
观看距离(cm) 30~50 50~70 300~350
条形结构间距(μm) <250~280 <450~550 <5000
表1:不同观看距离和条形结构间距的关系。
如表1所示,当观看距离在30cm到50cm之间时(如笔记本电脑的使用场景),人眼可分辨的最小间距在250μm到280μm之间。也就是,当条形结构间距小于250μm时,其无法被人眼分辨出来。类似的,当观看距离在50cm到70cm之间时(如台式计算机的使用场景),人眼可分辨的最小间距在450μm到550μm之间。当观看距离在300cm到350cm之间时(如电视的使用场景),当条形结构间距小于5000μm,其无法被人眼分辨出来。可见,观看距离增大,可允许的条形结构的间距也可以越大。不同的产品可选择不同的间距,以实现高质量的显示效果。
总而言之,在低分区数量的调光面板中,布置在控制电极间隔处的辅助电极有可能被人眼分辨出来。这会影响叠屏面板的显示效果。
不过,发明人注意到,低分区数量的调光面板可采用无源驱动方式,其中,各个控制电极会连接到对应的栅线。栅线用于连接控制电极和电压控制芯片,以将电压控制芯片发出的控制信号传递到控制电极。栅线的具体布置形式可以是,当N个分区布置成一列时(N为自然数),N条栅线沿着列方向平行且间隔地布置在该列分区内,每条栅线会和对应的一个控制电极电连接。栅线之间彼此的距离非常近,由于人眼分辨能力有限,是无法看出来的。因此,在一些实施例中,可以将栅线布置成与所述辅助电极平行且间隔地排列。辅助电极和栅线可具有相近的宽度,而且平行且间隔地排列的辅助电极和栅线在视觉上可以混合在一起,彼此的间距的小于人眼能分别的最小间距,此时,控制电极和栅线都不会被人眼分别出来。
图9示意性地示出了根据本申请实施例的调光面板的俯视图。如图9所示,在根据本申请实施例的调光面板中,布置在阵列中的控制电极911沿第一方向和第二方向排列。所述第一方向与所述第二方向成角度。例如,第一方向与第二方向可以垂直。所述调光面板还包括栅线层。所述栅线层包括栅线950。所述栅线950与所述控制电极中对应的一个控制电极911电连接。例如,栅线950可通过过孔951内的导电物与对应的控制电极911电连接。所述栅线050沿所述第一方向延伸。应注意,术语“沿某方向延伸”是从整体上对延伸方向进行考虑。在整体方向之外的方向上的细微波动并不影响延伸方向的认定。 例如,如图9所示,虽然栅线950存在弯折,但这种弯折是往复的。弯折的范围(例如在第二方向上的行进距离)远小于其在第一方向上的行进距离。因此,可以认为栅线950整体上是沿第一方向延伸的。栅线之所以存在弯折,是为了改善调光面板和显示面板组合在一起后出现的摩尔纹现象。图10示意性地示出了调光面板的栅线的弯折与显示面板的像素的关系。在显示面板中,一个像素可以包括红色子像素R、绿色子像素G、和蓝色子像素B。根据模拟和实验的结果,栅线可以被配置为,每当在第一方向上跨过四个像素,并在第二方向上跨过两个像素后进行弯折(如图10的左图所示),也可以配置为,每当在第一方向上跨过三个像素,并在第二方向上跨过两个像素后进行弯折(如图10的中图所示),还可以配置为,每当在第一方向上跨过两个像素,并在第二方向上跨过两个像素后进行弯折(如图10的右图所示)。通过这种设置可显著减小摩尔纹。
在一些实施例中,所述辅助电极包括沿所述第一方向延伸的第一辅助电极921。所述第一辅助电极921与所述栅线950在所述公共电极层的投影平行且间隔地排列。通过按照这种方式布置栅线950和第一辅助电极921,栅线950和第一辅助电极921混合在一起。第一辅助电极921与最近的栅线950之间的距离可以足够小,使得无法被人眼分辨。当人眼观察调光面板时,将不会看到沿第一方向的黑线不良。
例如,在前述15.6英寸的叠屏面板中,每列控制电极的内部存在27列栅线,控制电极的宽度约为7.2μm,因此,栅线的间距约为257μm。第一辅助电极921和栅线950混合在一起。第一辅助电极921与最近的栅线950之间的距离也在250μm的量级,低于人眼的可分辨的最小间距,因此不会被人眼识别。
在一些实施例中,所述第一辅助电极与所述栅线在所述公共电极层的正投影中的任意两个相邻的正投影之间的间距是相同的。在这种情况下,第一辅助电极与栅线的混合是均匀的。第一辅助电极与其相邻的栅线的距离与任意两条相邻栅线的间距相同。这使得第一辅助电极不易被观察到。
栅线沿第一方向延伸,因此,沿第一方向延伸的第一辅助电极可以不被观察到。但是,辅助电极还包括沿第二方向延伸的第二辅助电极。相邻的第二辅助电极的间距是控制电极在第二方向上的尺寸,该 间距相对较大,且此方向上没有栅线。当观察调光面板时,尤其是面板显示白色时,可能出现沿第二方向延伸的黑线。为此,在一些实施例中,可以增加沿第二方向延伸的走线,使得走线与第二辅助电极的密度超出人眼识别范围。
图11示意性地示出了根据本申请实施例的调光面板的俯视图。如图11所示,所述调光面板还包括虚设走线1155。所述虚设走线1155沿所述第二方向延伸。所述辅助电极还包括沿所述第二方向延伸的第二辅助电极1122。所述虚设走线1155与所述第二辅助电极1122在所述公共电极层的正投影平行且间隔地排列。通过在调光分区内增设虚设走线1155,第二辅助电极1122可以和虚设走线1155混合在一起,使得人眼无法分辨单条第二辅助电极1122和虚设走线1155。也就是,人眼无法看出第二辅助电极1122和虚设走线1155对光的遮挡效果。因此,通过增加沿第二方向延伸的虚设走线1155并控制其密度,可以有效改善沿第一方向排列的控制电极1111之间的漏光现象。
在一些实施例中,所述栅线1150在拐点处弯折,并且所述虚设走线1155所在的直线在所述栅线层上的正投影经过所述拐点。从图10所描绘的栅线与像素的关系的示例可看出,栅线的拐点一般出现在像素的间隔处。在显示面板中,像素的间隔处一般设置有黑矩阵。因此,通过将虚设走线1155的位置设置为使其所在直线在栅线层上的正投影经过所述拐点,虚设走线1155与显示面板的黑矩阵可能至少部分的重合,使得虚设走线1155的存在并不会影响显示面板的像素的显示功能,而且不会显著减小叠层面板整体的透过率。
应注意,栅线和辅助电极都是加电的。虚设走线位于相邻的栅线之间以及栅线和第一辅助电极之间。因此虚设走线是分段式的,其不应将向相邻的栅线短路,也不应将栅线和第一辅助电极短路。
在一些实施例中,所述虚设走线、所述栅线、和所述辅助电极中的至少两个位于同层。图12示意性地示出了根据本申请实施例的调光面板的截面图。图12是沿图11中的AA方向的截面图的局部图。如图12所示,辅助电极1220、虚设走线1255、栅线1250可以布置在同一层。在这种情况下,通过为这三者选择相同的材料,例如金属,这三者可以在同一个步骤中形成。例如,可以只利用一个掩模板对金属材料层进行刻蚀操作,以在一次曝光和刻蚀工艺中同时形成辅助电极 1220、虚设走线1255、和栅线1250的图案。这减少了工艺的流程数量,并且仅需要一个掩模板,因此节省了成本。
发明人还发现,通过将相邻的控制电极的极性设置为相同电压极性,例如使两者的控制电压都为正电压或负电压,漏光区域的宽度可以减小。当相邻控制电极的电压极性相反时,相邻控制电极之间的电压差较大,这会导致漏光区域宽度较大。图13示意性地示出了调光面板中的相邻控制电极的极性与控制电极间隔的漏光情况的关系。在图13的实验中,相邻控制电极之间的间隔的宽度为3.5μm。图13的左侧示出了相邻控制电极的电压极性相反时的漏光情况。可以看出,此时,漏光现象明显。实验结果是,漏光宽度可达10μm。图13的右侧示出了相邻控制电极的电压极性相同时的漏光情况。可以看出,此时,漏光程度明显轻微。实验结果是,漏光宽度在6μm以内。
在调光面板中,控制电极的电压由电压控制芯片控制。图14示意性地示出了根据本申请实施例的调光面板的俯视图。在一些实施例中,调光面板还包括电压控制芯片1460。所述电压控制芯片1460包括输出管脚1461。所述电压控制芯片1460配置成通过输出管脚1461连接到所述栅线1450,并经过所述栅线1450连接到所述控制电极1411,以控制所述控制电极1411的电压。如图14所示,各个控制电极1411均连接到电压极性相同的输出管脚1461。例如,在图14所示出的调光面板中,各个控制电极1411通过栅线1450均连接到具有正电压极性的输出管脚1461。通过这种设置,可以使得调光面板内各个控制电极1411的极性都相同。这样,控制电极之间的电压差会减小,边缘电场的影响范围也会减小。相应的,漏光区域的宽度也会减小,改善了显示效果。而且,需要辅助电极提供的电场的范围也会减小,因此,辅助电极的宽度也可减小,这对于面板的透过率是有益的。
有时,在设计调光面板时,电压控制芯片的选型已经确定。电压控制芯片的输出管脚可被预先设置为,相邻的管脚具有不同的电压极性,如图14所示。在这种情况下,在一些实施例中,为了实现控制电极的极性相同,可以选择性地连接栅线与输出管脚。例如,使栅线均连接到正极性管脚或均连接到负极性管脚。这样虽然会空置相反极性的输出管脚,造成一定程度上的浪费,但是无需重新选择电压控制芯片,有利于工艺的连贯性。
前文提到,在一些实施例中,调光液晶层315位于公共电极层305和控制电极层310之间。在本申请的另一些实施例之中,公共电极层可以位于调光液晶层和控制电极层之间。下面对这种实施例进行介绍。
图15A和图15B示意性地示出了相关的调光面板的截面图和俯视图。如图15A所示,调光面板包括第一基板1501和第二基板1502。调光面板还包括公共电极层1505、控制电极层1510和调光液晶层1515。第一基板1501和公共电极层1505之间存在绝缘层。控制电极层1510夹置于调光液晶层1515和公共电极层1505之间。换言之,公共电极层1505和控制电极层1510位于调光液晶层1515的同侧。在这种结构下,公共电极层1505和控制电极层1510在调光液晶层1515中形成水平电场,以驱动液晶偏转。控制电极层1510包括控制电极1511。控制电极1511的边缘处产生边缘电场。
公共电极层1505和控制电极层1510位于调光液晶层1515的同侧的调光面板一般是长暗型面板。调光液晶在没有电场驱动时,会阻止背光模组的光通过。如图15B所示,为了使电场线从离调光液晶层1515较近的控制电极1511发出,先向调光液晶层1515延伸,再反向延伸到达离调光液晶层1515较远的公共电极层1505,控制电极1511中形成有狭缝1512。也可以理解为,控制电极1511包括多条沿第一方向延伸的第一分量电极1551和沿第二方向延伸的第二分量电极1552。第一方向和第二方向是成角度的。在本申请中,除非明确描述,否则第一方向与第二方向可以是垂直的,也可以是不垂直的。第二分量电极1552与公共电极层1505形成的电场的方向与液晶的方向(例如液晶分子的长轴的方向)平行,此时无法驱动附近的液晶。因此,在沿第一方向相邻的两个控制电极1511的间隔附近的液晶分子不会偏转,该区域出现暗区。本申请的图1B已经示意性地示出了相关的调光面板在沿第一方向相邻的两个控制电极的间隔处的暗区。该调光面板的控制电极间隔的宽度3.5μm,而暗区的宽度可达15μm。
应理解,液晶分子的长轴的方向是由液晶层两侧的配向膜决定的。在该调光面板中,液晶分子的长轴方向是第一方向。
第一分量电极1551与公共电极层1505形成的电场的方向与液晶的方向垂直,可以驱动附近的液晶。不过,受到边缘效应的影响,在第二方向上相邻的两个控制电极1511的间隔处,仍然存在暗区。图16 示意性地示出了调光面板在第二方向上相邻的两个控制电极之间的暗区。
图17A示意性地示出了根据本申请实施例的调光面板的截面图。图17B示意性地示出了根据本申请实施例的调光面板的俯视图。如图17所示,公共电极层1705夹置于所述调光液晶层1715和所述控制电极层1710之间。也就是,公共电极层1705和所述控制电极层1710位于所述调光液晶层1715的同侧,且公共电极层1705相对于控制电极层1710更靠近调光液晶层1715。
如图17B所示,所述公共电极层1705包括平行的条状电极1706,所述辅助电极1720位于所述公共电极层1705中,并且与所述条状电极1706平行且电连接。由于所述辅助电极1720位于所述公共电极层1705中,因此辅助电极和公共电极层的条状电极可以在一个工艺步骤中,利用一个掩模板,同时形成。这减少了工艺数量,也节省了成本。辅助电极1720与条状电极1706可以以适当的方式电连接,如图17B中的虚线所示。例如,在与控制电极1711不重叠处,在辅助电极1720与条状电极1706之间提供导线,使得导线即可以在辅助电极1720与条状电极1706之间形成电连接,又不会与控制电极1711形成电场而影响调光液晶的偏转。应理解,公共电极层1705内的各条状电极1706的电位是相同,因此,在一些实施例中,各条状电极1706之间也是电连接的,如图17B中的虚线所示。在更进一步的实施例中,可以通过在导电材料层中去除平行的多个狭缝来得到条状电极1706和辅助电极1720。在这样的实施例中,这些条状电极1706和辅助电极1720的顶端和底端是通过导电材料相连的,即,实现了条状电极1706和辅助电极1720的电连接。
控制电极1711之间的间隔在所述公共电极层1705上的正投影与所述辅助电极1720在所述公共电极层1705上的正投影至少部分地重合,也就是,辅助电极1720被布置成对应于控制电极1711的边缘处。由于辅助电极1720与条状电极1706电连接,因此,辅助电极1720可以起到屏蔽作用,减轻了边缘效应。图18示出了在图16的调光面板的与控制电极间隔对应的位置提供辅助电极后,在第二方向上相邻的两个控制电极之间的暗区。如图18所示,相比于图16,暗区的情况得到极大好转。
图19A和图19B分别示出了无辅助电极和有辅助电极时,调光面板的白色显示效果。如图19A所示,在无辅助电极进行屏蔽时,相邻的控制电极的间隔处存在暗区。如图19B所示,当提供辅助电极以进行屏蔽时,相邻的控制电极的间隔处的暗区可被显著减小。不仅如此,在灰阶显示下,通过提供辅助电极进行屏蔽,调光面板也可以具有更好的显示效果。图20A和图20B分别示出了无辅助电极和有辅助电极时,调光面板的灰阶显示效果。如图20A所示,在无辅助电极进行屏蔽时,相邻的控制电极的间隔处存在暗区。如图20B所示,当提供辅助电极进行屏蔽时,控制电极的间隔处与其它位置的亮暗没有显著区别。
除此之外,根据本申请实施例的调光面板中的公共电极层与控制电极的位置和形状的设置也有利于减少暗区。在本申请实施例中,公共电极层包括平行的条状电极,而控制电极按照阵列排列。为了使电场线从离调光液晶层较近的电极层出发,先到达调光液晶层,再往回延伸到达离调光液晶层较远的电极层,形状为平行的条状电极的公共电极层被设置为离近调光液晶层更近,而控制电极层被设置为离近调光液晶层更远。如图17B所示,控制电极1711是无狭缝的平面结构,其不包括沿第二方向延伸的第二分量电极,而公共电极层均为沿第一方向延伸的条状电极1706,所以控制电极1711与公共电极层并不会产生沿第一方向的电场。由于液晶分子的方向是第一方向,因此不会出现控制电极层与公共电极层产生的电场的方向与液晶分子的方向平行,使得液晶分子无法被控制电极层与公共电极层产生的电场控制的情况。图21示意性地示出了根据本申请实施例的调光面板的暗区情况,其中为了更清楚,用虚线示出了电极的轮廓。如图21所示,与图1B相比,暗区的情况大大减轻。
在一些实施例中,布置在阵列中的所述控制电极1711沿第一方向和第二方向排列。所述第一方向与所述第二方向成小于90°的角度。所述条状电极1706沿所述第一方向延伸。首先,通过这种设置,条状电极1706的延伸方向将和控制电极的边缘的延伸方向相同。这样,在与该边缘对应的间隔处,电场将只包括与液晶分子的方向垂直的电场分量,而没有与液晶分子的方向平行的电场分量。这样减少了由于电场方向与液晶分子方向平行而使得液晶分子无法被电场驱动从而出现 暗区的情况。
而且,所述第一方向与所述第二方向成小于90°的角度,也就是,第一方向与第二方向不垂直。通常,在显示面板中,像素是按照相互垂直的两个方向排列成矩阵的。在调光面板中,当第一方向与第二方向不垂直时,辅助电极与公共电极的条状电极的延伸方向与显示面板的像素的排列方向不同。这有助于减少摩尔纹的现象。
在一些实施例中,所述第一方向和所述第二方向之间的角度在75°到85°之间。当第一方向和第二方向之间的角度在75°到85°之间时,减少摩尔纹的效果较佳。图22示意性地示出了根据本申请实施例的调光面板的俯视图。如图20所示,第一方向和第二方向不垂直。与该调光面板配合的显示面板中,像素是以第二方向和与第二方向垂直的另一方向排列的。通过使调光面板的第一方向和第二方向不垂直,可以有效的减小摩尔纹,并且当第一方向和第二方向之间的角度在75°到85°之间时,可实现较佳的效果。
图23示意性地示出了根据本申请实施例的调光面板的俯视图。如图23所示,在一些实施例中,所述控制电极包括在所述第一方向上相邻的第一控制电极2351和第二控制电极2352。所述第一控制电极和第二控制电极分别包括沿所述第一方向延伸的第一边缘和沿所述第二方向延伸的第二边缘。所述第一控制电极2351的靠近所述第二控制电极2352的第二边缘上包括间隔设置的凸出部2353,所述第二控制电极2352的靠近所述第一控制电极2351的第二边缘上包括间隔设置的凹陷部2354。所述凸出部2353与所述凹陷部2354沿所述第一方向至少部分地对齐。凸出部与凹陷部沿第一方向至少部分地对齐可以理解为,在与第一方向垂直的方向上,所述凸出部与所述凹陷部的正投影至少部分地重合。应理解,凸出和凹陷是一组相对的概念。按照图23的视角,相邻的凸出部2353之间可以被理解为是一种凹陷,而相邻的凹陷部2354之间可以被理解为是一种凸出。所以该实施例也可以理解为,所述第一控制电极的靠近所述第二控制电极的第二边缘上包括间隔设置的凸出部,所述第二控制电极的靠近所述第一控制电极的第二边缘上也包括间隔设置的凸出部,且第一控制电极的凸出部与第二控制电极的凸出部交错地布置,即,在第二方向上,第一控制电极的凸出部沿第一方向的投影位于第二控制电极的凸出部的间隔处,且第二控制 电极的凸出部沿第一方向的投影位于第一控制电极的凸出部的间隔处。
虽然公共电极层已设置为条状电极,但由于第一方向与第二方向不垂直,因此,控制电极的第二边缘与公共电极形成的电场仍然具有与液晶方向平行的电场分量,造成边缘处的部分液晶无法被电场驱动,产生暗区。通过将第二边缘设置为具有凸出部和凹陷部,可以减少电场与液晶方向平行的分量,进而减少暗区。
图24示意性地示出了第二边缘具有凸出部和凹陷部时,调光面板的暗区的情况,其中为了更清楚,用虚线描绘了控制电极的轮廓。为了更清楚地对比存在凸出部与凹陷部和不存在凸出部与凹陷部这两种情况的区别,在虚线框内的第二边缘具有凸出部和凹陷部,在虚线框外的第二边缘不具有凸出部与凹陷部。从图24中可以看出,虚线框内的暗区宽度和明显程度都弱于虚线框外的暗区。这说明,通过在第二边缘设置凸出部和凹陷部,可以改善暗区的情况。
在一些实施例中,所述辅助电极的宽度是所述间隔的宽度的1到2倍。发明人通过实验验证了不同宽度的辅助电极的屏蔽效果。图25示意性地示出了不同宽度的辅助电极对应的暗区情况,其中分别示出了显示画面为白色显示和灰阶显示时,控制电极间隔处的暗区情况。该实验中,控制电极的间隔宽度为3.5μm。该实验验证了五种情况,包括无辅助电极时、辅助电极宽度为2μm、3μm、5μm、以及7μm时。如图20所示,当辅助电极宽度为5μm时,无论是白色显示和灰阶显示时,暗区的情况都是最不明显的。
综上所述,根据本申请实施例的调光面板在与控制电极的间隔对应的位置提供了辅助电极,从而改善了所述间隔附近的电场,调整了液晶的偏转方向,从而改善了漏光和暗区的现象。而且,本申请还通过将辅助电极布置在靠近配向弱区,而使辅助电极的电场更有针对性,且宽度更窄,改善了调光面板的透过率。另外,本申请还通过栅线和虚设走线的设置,使得辅助电极无法被人眼分辨出来,提高了显示质量。
根据本申请的另一方面,提供了一种叠屏面板。该叠屏面板包括根据本申请任一实施例的调光面板,以及显示面板。所述显示面板与所述调光面板层叠布置。图26示意性地示出了根据本申请实施例的叠 屏面板的截面图。如图26所示,显示面板2610与调光面板2605层叠布置。显示面板2610与调光面板2605可以通过介于两者之间的光学胶层2615连接。调光面板包括第一基板2601和第二基板2602以及夹置于两者之间的调光液晶层2620。调光液晶层2620的两侧包括第一配向层2621和第二配向层2622。第一基板2601上布置有辅助电极2630和栅线2631。辅助电极2630和栅线2631上方布置有第一绝缘层2640。第一绝缘层2640上布置有控制电极层2650,其包括布置在阵列中的控制电极。公共电极层2651布置在第二基板2602上。应理解,图26仅示意性地示出了调光面板2605的结构,并且未示出不影响本申请的理解的元件。调光面板2605还可以包括前文记载的任一实施例中所描述的元件和结构。显示面板2610可以是本领域中常用的显示面板。显示面板2610包括第三基板2661和第四基板2662以及夹置在两者之间的显示液晶层2665。显示液晶层2665两侧也包含配向层(图26中已省略)。显示液晶层2665的一侧布置有彩膜层2670,其中包括红色滤光层、绿色滤光层、蓝色滤光层、以及黑矩阵2671。红色滤光层、绿色滤光层、蓝色滤光层一起定义显示面板的像素,而黑矩阵2671将像素间隔开。第三基板2661上布置有控制层2674,其中可包括控制电极、栅线、绝缘层等结构。第四基板2661上布置有公共电极层2675。应理解,虽然在图26中,控制层2674和公共电极层2675布置在显示液晶层2665的两侧,但在其它的实施例中,取决于公共电极和控制电极的具体形式,控制层2674和公共电极层2675可以布置在显示液晶层2665的同一侧。
所述显示面板应当能够与根据本申请实施例的调光面板相配合。例如,显示面板的像素数量、尺寸与排列应当与调光面板的分区配合,比如,调光面板的分区的长度和宽度应该是显示面板的像素的长度和宽度的整数倍。又如,在显示面板与调光面板组装在一起后,调光面板的控制电极的间隔可以与显示面板的像素的间隔对齐。例如,显示面板的黑矩阵2671在第一基板2601上的正投影和调光面板的控制电极间的间隔在第一基板2601上的正投影至少部分的重合。又如,如前文提到的,调光面板的栅线的拐点可以出现在显示面板的像素的间隔处,等等。根据本申请实施例的叠屏面板具有根据本申请实施例的调光面板的全部优点和效果,在此不再赘述。
根据本申请的又一方面,提供了一种制作调光面板的方法。图27示意性地示出了根据本申请实施例的制作调光面板的方法的流程图。如图27所述,所述方法包括:在步骤S2705,提供基板;在步骤S2710,在所述基板上形成控制电极层,其中所述控制电极层包括布置在阵列中的控制电极,并且相邻的控制电极之间存在间隔;以及,在步骤S2715,在所述基板上形成辅助电极,其中,所述辅助电极在所述基板上的正投影与所述间隔在所述基板层上的正投影至少部分地重合。应注意,步骤S2710与步骤S2715并没有顺序要求。取决于要制作的调光面板的结构设计,可以先形成辅助电极,再形成控制电极,也可以先形成控制电极,再形成控制电极。表述“所述辅助电极在所述基板上的正投影与所述间隔在所述基板层上的正投影至少部分地重合”并不应该被理解为辅助电极需要在控制电极形成之后再形成,其应该被理解为,无论是先形成辅助电极还是先形成控制电极,所得到的调光面板的结构都应满足辅助电极在基板上的正投影与间隔在基板层上的正投影至少部分地重合。下面对该方法进行具体描述。
首先,提供基板。该基板可以采用任何合适的基板,比如玻璃基板,或者其他具有承载功能的透明材料基板。
然后,在基板上分别形成控制电极层和辅助电极。控制电极层的材料可以是透明的导电材料,例如,氧化铟锡(Indium Tin Oxide,简称ITO)。形成控制电极层的方法可以是,沉积一层控制电极材料,然后在控制电极材料上涂覆光刻胶层,并对光刻胶层进行曝光和显影,然后使用刻蚀液对控制电极材料进行刻蚀,以得到控制电极,然后移除光刻胶。辅助电极可以是透明导电材料ITO,也可以是不透明导电材料,例如金属。形成辅助电极也可以采用类似的方式,例如经历沉积辅助电极材料、涂覆光刻胶、曝光和显影、刻蚀辅助电极材料、移除光刻胶等步骤。由于控制电极层和辅助电极都是在基板上形成的,因此两者的对位精度较高,辅助电极与控制电极的位置关系更精确,使得辅助电极产生的电场可以更加精准地针对间隔处的漏光。沉积电极材料、涂覆光刻胶、曝光和显影、刻蚀电极材料、移除光刻胶等步骤在本领域中的含义和具体操作过程都是清楚的,在此不再赘述。将这些步骤组合在一起后,可整体上称为“曝光和刻蚀操作”。
前面提到,取决于要制作的调光面板的结构设计,可以先形成辅 助电极,或者先形成控制电极。接下来对这两种情况分别介绍。
在一些实施例中,步骤S2715可以包括:在所述基板上形成第一电极材料层,以及,对所述第一电极材料层进行第一曝光和刻蚀操作,以得到所述辅助电极。在得到辅助电极后,根据本申请实施例的制作调光面板的方法还包括:在所述辅助电极远离所述基板的一侧形成第一绝缘层。之后,步骤S2710可以包括:在所述第一绝缘层远离所述基板的一侧形成第二电极材料层,以及,对所述第二电极材料层进行第二曝光和刻蚀操作,以得到所述控制电极层。在经过上述步骤形成的调光面板中,控制电极层相对于辅助电极离基板更远。在这种情况下,辅助电极可以和调光面板的栅线在同一个步骤中形成。例如,可以在基板表面沉积一层金属层,经过曝光和刻蚀过程后,形成栅线和辅助电极的图案。然后,可以在栅线和辅助电极上沉积绝缘层。绝缘层的材料例如可以是硅的氮化物。然后,可以在绝缘层中,通过曝光和刻蚀操作,形成用于连接辅助电极和控制电极的第一过孔,以及用于连接栅线和控制电极的第二过孔。然后,可以在绝缘层上沉积或者溅射控制电极的材料,并通过曝光和刻蚀工艺,形成控制电极。控制电极的材料可以进入到前述过孔中,使得控制电极与栅线和辅助电极均可电连接。在形成辅助电极后,待形成的控制电极的位置实际上已被确定。因此,在刻蚀控制电极时,应将被刻蚀的位置对准辅助电极的位置。通过上述工艺,可得到调光面板的阵列基板。
在更进一步的实施例中,所述方法将调光面板的公共电极形成在与该阵列基板相对的对置基板中。形成对置基板的过程例如可以包括:提供第二基板,并在第二基板上涂覆黑矩阵层材料,并经过曝光显影,形成用于与阵列基板对准的标识。然后,通过沉积或溅射形成公共电极材料层,以得到一整层公共电极层。在一些实施例中,还需要在公共电极层上涂覆间隔物材料,并经过曝光和显影,得到盒内支撑物。通过上述工艺,可得到调光面板的对置基板。
最后,经过滴注液晶,并将阵列基板与对置基板对盒,可以得到根据本申请实施例的调光面板。
在另外一些实施例中,可以先形成控制电极。在这种情况下,步骤S2710可以包括:在所述基板上形成第三电极材料层,以及,对所述第三电极材料层进行第三曝光和刻蚀操作,以得到所述控制电极层。 在这些实施例中,该方法还包括:在所述控制电极层远离所述基板的一侧形成第二绝缘层。并且,步骤S2715可以包括:在所述第二绝缘层远离所述基板的一侧形成第四电极材料层,以及,对所述第四电极材料层进行第四曝光和刻蚀操作,以得到所述辅助电极。在经过上述步骤形成的调光面板中,控制电极层相对于辅助电极离基板更近。在这种情况下,可以将调光面板的公共电极也设置在所述基板上,并且让所述辅助电极与公共电极在同一个步骤中形成。例如,在已经形成控制电极层和第二绝缘层之后,在对所述第四电极材料层进行第四曝光和刻蚀操作时,可以同时形成辅助电极和公共电极的图案,然后经过曝光和刻蚀工艺,得到公共电极和辅助电极。辅助电极和公共电极的图案还可以设置为,使公共电极和辅助电极电连接。在形成控制电极后,控制电极间的间隔的位置已确定,待形成的辅助电极的位置实际上也已确定。因此,在刻蚀控制第四电极材料层时,应将被留下的材料对准间隔的位置。通过上述工艺,可得到调光面板的阵列基板。
在上述实施例中,公共电极也形成在阵列基板上,因此形成对置基板的过程例如可以只包括提供第三基板、形成用于与阵列基板对准的标识、形成盒内支撑物等步骤,在此不再赘述。然后,同样的,经过滴注液晶,并将阵列基板与对置基板对盒,可以得到根据本申请实施例的调光面板。
通过上述方法得到的调光面板在与控制电极的间隔对应的位置提供了辅助电极,从而改善了所述间隔附近的电场,调整了液晶的偏转方向,从而改善了漏光和暗区的现象。
如本领域技术人员将理解的,尽管在附图中以特定顺序描述了本公开实施例中方法的各个步骤,但是这并非要求或者暗示必须按照该特定顺序来执行这些步骤,除非上下文另有明确说明。附加的或可替换的,可以将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行。此外,在步骤之间可以插入其他方法步骤。插入的步骤可以表示诸如本文所描述的方法的改进,或者可以与该方法无关。此外,在下一步骤开始之前,给定步骤可能尚未完全完成。
在本公开实施例的描述中,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例而不是要求本公开实施例必须以特定的方位 构造和操作,因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种调光面板,包括:
    层叠布置的公共电极层、控制电极层和调光液晶层,以及
    辅助电极,
    其中,所述控制电极层包括布置在阵列中的控制电极,并且相邻的控制电极之间存在间隔,
    其中,所述间隔在所述公共电极层上的正投影与所述辅助电极在所述公共电极层上的正投影至少部分地重合。
  2. 如权利要求1所述的调光面板,其中,所述间隔包括第一边界、第二边界、配向弱区和非配向弱区,所述配向弱区相对于所述非配向弱区更靠近所述第一边界,所述非配向弱区相对于所述配向弱区更靠近所述第二边界,
    所述调光液晶层包括第一调光液晶和第二调光液晶,所述第一调光液晶在所述间隔的正投影位于所述配向弱区内,所述第二调光液晶在所述间隔的正投影位于所述非配向弱区内,其中,所述第一调光液晶的平均锚定能小于所述第二调光液晶的平均锚定能,
    其中,所述第一边界在所述辅助电极上的正投影相比于所述第二边界在所述辅助电极上的正投影更靠近所述辅助电极的中线。
  3. 如权利要求2所述的调光面板,其中,所述辅助电极的中线在公共电极层的正投影与所述间隔的中线在所述公共电极层的正投影的距离在0.5μm至1.5μm的范围内。
  4. 如权利要求1所述的调光面板,其中,布置在阵列中的控制电极沿第一方向和第二方向排列,所述第一方向与所述第二方向成角度,
    所述调光面板还包括栅线层,其中,所述栅线层包括栅线,所述栅线与所述控制电极中对应的一个控制电极电连接,所述栅线沿所述第一方向延伸,
    所述辅助电极包括沿所述第一方向延伸的第一辅助电极,所述第一辅助电极与所述栅线在所述公共电极层的投影平行且间隔地排列。
  5. 如权利要求4所述的调光面板,其中,所述第一辅助电极与所述栅线在所述公共电极层的正投影中的任意两个相邻的正投影之间的间距是相同的。
  6. 如权利要求4所述的调光面板,还包括虚设走线,所述虚设走线沿所述第二方向延伸,
    所述辅助电极还包括沿所述第二方向延伸的第二辅助电极,所述虚设走线与所述第二辅助电极在所述公共电极层的正投影平行且间隔地排列。
  7. 如权利要求6所述的调光面板,其中,所述栅线在拐点处弯折,并且所述虚设走线所在的直线在所述栅线层上的正投影经过所述拐点。
  8. 如权利要求6所述的调光面板,其中,所述虚设走线、所述栅线、和所述辅助电极中的至少两个位于同层。
  9. 如权利要求4所述的调光面板,还包括电压控制芯片,其中所述电压控制芯片配置成通过输出管脚连接到所述栅线,并经过所述栅线连接到所述控制电极,以控制所述控制电极的电压,其中所述控制电极中的各个控制电极均连接到电压极性相同的输出管脚。
  10. 如权利要求1所述的调光面板,其中,所述辅助电极与所述间隔两侧的控制电极之一电连接。
  11. 如权利要求1所述的调光面板,其中,所述公共电极层夹置于所述调光液晶层和所述控制电极层之间,
    其中,所述公共电极层包括平行的条状电极,所述辅助电极位于所述公共电极层中,并且与所述条状电极平行且电连接。
  12. 如权利要求11所述的调光面板,其中,布置在阵列中的所述控制电极沿第一方向和第二方向排列,所述第一方向与所述第二方向成小于90°的角度,
    其中,所述条状电极沿所述第一方向延伸。
  13. 如权利要求12所述的调光面板,其中,所述第一方向和所述第二方向之间的角度在75°到85°之间。
  14. 如权利要求12所述的调光面板,其中,所述控制电极包括在所述第一方向上相邻的第一控制电极和第二控制电极,所述第一控制电极和所述第二控制电极各自包括沿所述第一方向延伸的第一边缘和沿所述第二方向延伸的第二边缘,
    所述第一控制电极的靠近所述第二控制电极的第二边缘上包括间隔设置的凸出部,所述第二控制电极的靠近所述第一控制电极的第二 边缘上包括间隔设置的凹陷部,所述凸出部与所述凹陷部沿所述第一方向至少部分地对齐。
  15. 如权利要求11所述的调光面板,其中,所述辅助电极的宽度是所述间隔的宽度的1到2倍。
  16. 一种叠屏面板,包括:
    如权利要求1-15中的任一项所述的调光面板,和
    与所述调光面板层叠布置的显示面板。
  17. 一种制造调光面板的方法,包括:
    提供基板,
    在所述基板上形成控制电极层,其中所述控制电极层包括布置在阵列中的控制电极,并且相邻的控制电极之间存在间隔,
    在所述基板上形成辅助电极,其中所述辅助电极在所述基板上的正投影与所述间隔在所述基板上的正投影至少部分地重合。
  18. 如权利要求17所述的方法,其中,
    在所述基板上形成辅助电极包括:
    在所述基板上形成第一电极材料层,以及
    对所述第一电极材料层进行第一曝光和刻蚀操作,以得到所述辅助电极;
    所述方法还包括:在所述辅助电极远离所述基板的一侧形成第一绝缘层;
    并且,在所述基板上形成控制电极层包括:
    在所述第一绝缘层远离所述基板的一侧形成第二电极材料层,以及
    对所述第二电极材料层进行第二曝光和刻蚀操作,以得到所述控制电极层。
  19. 如权利要求17所述的方法,其中,
    在所述基板上形成控制电极层包括:
    在所述基板上形成第三电极材料层,以及
    对所述第三电极材料层进行第三曝光和刻蚀操作,以得到所述控制电极层;
    所述方法还包括:在所述控制电极层远离所述基板的一侧形成第二绝缘层;
    并且,在所述基板上形成辅助电极包括:
    在所述第二绝缘层远离所述基板的一侧形成第四电极材料层,以及
    对所述第四电极材料层进行第四曝光和刻蚀操作,以得到所述辅助电极。
PCT/CN2022/083104 2022-03-25 2022-03-25 调光面板、叠屏面板、和制造调光面板的方法 WO2023178666A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/083104 WO2023178666A1 (zh) 2022-03-25 2022-03-25 调光面板、叠屏面板、和制造调光面板的方法
CN202280000515.4A CN117136329A (zh) 2022-03-25 2022-03-25 调光面板、叠屏面板、和制造调光面板的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083104 WO2023178666A1 (zh) 2022-03-25 2022-03-25 调光面板、叠屏面板、和制造调光面板的方法

Publications (1)

Publication Number Publication Date
WO2023178666A1 true WO2023178666A1 (zh) 2023-09-28

Family

ID=88099580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083104 WO2023178666A1 (zh) 2022-03-25 2022-03-25 调光面板、叠屏面板、和制造调光面板的方法

Country Status (2)

Country Link
CN (1) CN117136329A (zh)
WO (1) WO2023178666A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898330A (zh) * 2015-05-12 2015-09-09 南京中电熊猫液晶显示科技有限公司 一种tft阵列基板、液晶显示面板
US20160093252A1 (en) * 2014-09-29 2016-03-31 Japan Display Inc. Display device
CN110780500A (zh) * 2019-11-15 2020-02-11 京东方科技集团股份有限公司 阵列基板、控光面板和显示装置
CN211149139U (zh) * 2020-01-22 2020-07-31 京东方科技集团股份有限公司 调光面板
CN112433416A (zh) * 2020-12-18 2021-03-02 厦门天马微电子有限公司 一种双屏显示面板及电子设备
CN213987120U (zh) * 2020-10-19 2021-08-17 京东方科技集团股份有限公司 显示模组及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160093252A1 (en) * 2014-09-29 2016-03-31 Japan Display Inc. Display device
CN104898330A (zh) * 2015-05-12 2015-09-09 南京中电熊猫液晶显示科技有限公司 一种tft阵列基板、液晶显示面板
CN110780500A (zh) * 2019-11-15 2020-02-11 京东方科技集团股份有限公司 阵列基板、控光面板和显示装置
CN211149139U (zh) * 2020-01-22 2020-07-31 京东方科技集团股份有限公司 调光面板
CN213987120U (zh) * 2020-10-19 2021-08-17 京东方科技集团股份有限公司 显示模组及显示装置
CN112433416A (zh) * 2020-12-18 2021-03-02 厦门天马微电子有限公司 一种双屏显示面板及电子设备

Also Published As

Publication number Publication date
CN117136329A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
CN103713432B (zh) 显示装置及电子设备
US11550190B2 (en) Display device comprising a first slit separating first and second common electrodes and overlapping first and second metal lines
CN209373316U (zh) 一种阵列基板及液晶显示面板
WO2021093475A1 (zh) 阵列基板、控光面板和显示装置
CN109870855A (zh) 一种阵列基板、液晶显示面板及液晶显示装置
CN112987360B (zh) 显示面板及显示装置
CN101872092B (zh) 液晶显示面板
CN104950537A (zh) 显示装置的阵列基板
WO2020052020A1 (zh) 一种显示面板及其制程方法和显示装置
CN111736393B (zh) 一种显示基板及其制备方法和液晶显示组件
CN105319784A (zh) 显示面板
WO2020124896A1 (zh) 液晶显示面板
US11372289B2 (en) Display panel comprising at least one binding alignment block having a thickness greater than a thickness of each of a plurality of binding pins and method of manufacturing the same
CN110308596B (zh) 显示装置
KR20040061810A (ko) 박막 트랜지스터형 액정 표시 장치
WO2021036874A1 (zh) 阵列基板、控光面板和显示装置
WO2019062320A1 (zh) 阵列基板及其制备方法、显示装置
WO2023142694A1 (zh) 阵列基板及液晶显示面板
WO2023178666A1 (zh) 调光面板、叠屏面板、和制造调光面板的方法
US20070058112A1 (en) Liquid crystal display panel, color filter, and manufacturing method thereof
CN109507837B (zh) 显示装置及其制造方法
KR102043862B1 (ko) 액정표시장치 및 그 제조방법
US20220123027A1 (en) Display panel and display apparatus
WO2022001386A1 (zh) 液晶显示面板及液晶显示装置
US20150042912A1 (en) Liquid crystal display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932727

Country of ref document: EP

Kind code of ref document: A1