WO2022151585A1 - 一种2,5‐呋喃二甲酸的制备方法 - Google Patents

一种2,5‐呋喃二甲酸的制备方法 Download PDF

Info

Publication number
WO2022151585A1
WO2022151585A1 PCT/CN2021/082114 CN2021082114W WO2022151585A1 WO 2022151585 A1 WO2022151585 A1 WO 2022151585A1 CN 2021082114 W CN2021082114 W CN 2021082114W WO 2022151585 A1 WO2022151585 A1 WO 2022151585A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
catalyst
carrier
furandimethanol
acid
Prior art date
Application number
PCT/CN2021/082114
Other languages
English (en)
French (fr)
Inventor
张建
李振宇
郝盼盼
赵玺
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2022151585A1 publication Critical patent/WO2022151585A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the application relates to a preparation method of 2,5-furandicarboxylic acid, which belongs to the technical field of chemical production.
  • FDCA 2,5-furandicarboxylic acid
  • TPA terephthalic acid
  • PTT polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • FDCA is usually prepared from 5-hydroxymethylfurfural (HMF) at a certain temperature by continuous oxygen or increasing the reaction pressure.
  • HMF 5-hydroxymethylfurfural
  • the main reaction path is shown in Figure 1. Adding alkali to the reaction solution will also increase the reaction rate, but this will lead to the degradation of HMF, and it is impossible to determine whether the conversion of HMF comes from the action of the catalyst or the alkali.
  • HMF is used as a raw material. Due to the particularity of its structure, the coexistence of hydroxyl and aldehyde groups makes the aldehyde group very active compared to the aldehyde group. When HMF encounters the catalyst, the aldehyde group will be rapidly oxidized to obtain 5-hydroxyl group.
  • Methyl-2-furancarboxylic acid HMFCA
  • FFCA 5-formyl-2-furancarboxylic acid
  • a method for preparing 2,5-furandicarboxylic acid comprising: reacting a material containing 2,5-furandicarboxylate and an alkali source in the presence of a catalyst, The 2,5-furandicarboxylic acid can be obtained.
  • This reaction route has few by-products and high yield of 2,5-furandicarboxylic acid, which is very innovative.
  • BHMF 2,5-Furandimethanol
  • BHMF 2,5-Furandimethanol
  • its melting point is higher, its physicochemical properties are stable, and it is more convenient for storage and transportation. Therefore, we propose to convert HMF into a symmetrical intermediate BHMF or 2,5-furandicarbaldehyde (DFF) first, which can avoid the problem of high energy barrier in the oxidation reaction of HMFCA to a certain extent.
  • DFF has a symmetrical structure , but the dialdehyde group also brings unstable physicochemical properties.
  • this route solves the problem of poor stability of HMF as a raw material; this reaction route is longer than HMF, which is more challenging in terms of chemical reaction; the alkali resistance of BHMF The properties allow us to increase the amount of alkali to increase the oxidation reaction rate, making the production of FDCA more efficient.
  • reaction path may not be longer than that of HMF, but the path becomes shorter, and the whole reaction process is very efficient.
  • the reaction path is shown in Figure 2.
  • This application designs a new and efficient method for the preparation of 2,5-furandicarboxylic acid.
  • This method is mainly derived from the innovation of raw material route and is a brand-new preparation route. This method can realize the efficient preparation of 2,5-furandicarboxylic acid. formic acid.
  • a method for preparing 2,5-furandicarboxylic acid comprising:
  • the 2,5-furandicarboxylic acid can be obtained by reacting the material containing 2,5-furandimethanol (BHMF) and an alkali source in the presence of a catalyst;
  • BHMF 2,5-furandimethanol
  • the catalyst includes an active component and a carrier; the active component is supported on the carrier;
  • the active components are selected from noble metals.
  • the initial BHMF concentration is the initial reaction concentration containing 0.0192g-7.68g of raw materials in 30 mL of alkaline solution.
  • the raw material 2,5-furandimethanol in the present application is derived from the reduction of 5-hydroxymethylfurfural.
  • the carrier is derived from a carbon carrier; and the noble metal is selected from at least one of palladium, gold, platinum, ruthenium, silver, and iridium.
  • the carbon support is selected from at least one of carbon nanotubes, graphene oxide, activated carbon, conductive carbon black, graphene, and football olefin (C 60 ).
  • the carbon nanotubes are selected from at least one of multi-walled carbon nanotubes and single-walled carbon nanotubes.
  • the method includes: reacting a material containing 2,5-furandimethanol and an alkali source solution in the presence of a catalyst to obtain the 2,5-furandicarboxylic acid.
  • the concentration of the alkali source solution is 0.01M-1M.
  • the upper limit of the concentration of the alkali source solution is independently selected from 1M, 0.8M, 0.6M, 0.4M, 0.1M, 0.05M, and the lower limit is independently selected from 0.01M, 0.8M, 0.6M, 0.4M, 0.1M, 0.05M.
  • the noble metal is used as a catalytically active substance to catalyze the reduction-oxidation reaction
  • noble metals such as palladium, gold, platinum, ruthenium, and silver are the catalytically active centers.
  • the mass content of the active component is 0.1-10 wt %.
  • the upper limit of the mass content of the active component is independently selected from 10wt%, 9wt%, 8wt%, 7wt%, 6wt%, 5wt%, 4wt%, 3wt%, 2wt%, 1 wt %
  • the lower limit is independently selected from 0.1 wt %, 9 wt %, 8 wt %, 7 wt %, 6 wt %, 5 wt %, 4 wt %, 3 wt %, 2 wt %, 1 wt %.
  • the catalyst is supported by an impregnation method and reduced by a liquid phase reduction method.
  • the catalyst is prepared by the following method:
  • the catalyst is obtained by reducing the precursor.
  • the mass-to-volume ratio of the carrier and the solution containing the precious metal source is 0.1 g/mL to 10 g/mL.
  • the upper limit of the mass and volume of the carrier and the solution containing the precious metal source is independently selected from 10g/mL, 8g/mL, 6g/mL, 4g/mL, 2g/mL. mL, 0.5 g/mL, 0.2 g/mL, and the lower limit is independently selected from 0.1 g/mL, 8 g/mL, 6 g/mL, 4 g/mL, 2 g/mL, 0.5 g/mL, 0.2 g/mL.
  • the noble metal source is selected from noble metal salts.
  • the noble metal salt is selected from soluble salts of noble metals.
  • the noble metal salt is selected from at least one of noble metal chloride salts and noble metal nitrates.
  • the noble metal salt is selected from at least one of sodium chloropalladium, chloroauric acid, ruthenium chloride, and iridium chloride.
  • the step (2) includes: reducing the solution containing the precursor and the reducing agent to obtain the catalyst.
  • the solution containing the reducing agent is slowly added dropwise to the precursor, and the slow dropwise addition can ensure the uniformity of the reduction of the precious metal particles.
  • the reducing agent is selected from at least one of formaldehyde, sodium borohydride, and hydrogen.
  • the carrier is used after pretreatment
  • the pretreatment includes: refluxing the solution containing the carrier and substance A to obtain the pretreated carrier;
  • the substance A is selected from any one of nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, hydrogen peroxide, and ammonia water.
  • the carrier is used after pretreatment, and the surface functional groups and hydrophilicity and hydrophobicity of the carrier can be regulated through the pretreatment process, thereby regulating the degree of metal dispersion.
  • the conditions of the reflux are: the temperature is 60-200° C.; and the time is 0.5-10 hours.
  • the alkali source is selected from at least one of sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, sodium bicarbonate, and ammonia water.
  • reaction conditions are as follows: the temperature is 30-80° C.; and the time is 0.1-12 h.
  • the upper temperature limit of the reaction is independently selected from 80°C, 70°C, 60°C, 50°C, 40°C, and the lower limit is independently selected from 30°C, 70°C, 60°C, 50°C, 40°C.
  • the upper limit of the reaction time is independently selected from 12h, 10h, 8h, 6h, 4h, 2h, 1h
  • the lower limit is independently selected from 0.1h, 10h, 8h, 6h, 4h, 2h, 1h.
  • the mass ratio of the 2,5-furandimethanol and the alkali source is 0.05-20:0.1-180.
  • the upper limit of the mass ratio of the 2,5-furandimethanol and the alkali source is independently selected from 0.05:180, 0.2:0.56, 0.1:0.24, 0.08:0.24, 0.077:0.24, 19.25:84, 3.3:8, 10:24
  • the lower limit is independently selected from 0.05:0.1, 0.2:0.56, 0.1:0.24, 0.08:0.24, 0.077:0.24, 19.25:84, 3.3:8, 10:24.
  • the mass ratio of the catalyst and the 2,5-furandimethanol is 0.01-10:0.05-20.
  • the upper limit of the mass ratio of the catalyst and the 2,5-furandimethanol is independently selected from 0.01:20, 0.05:0.2, 0.025:0.1, 0.025:0.08, 6.4:19.25, 0.85:3.3, 2.56 : 10
  • the lower limit is independently selected from 0.01: 0.05, 0.05: 0.2, 0.025: 0.1, 0.025: 0.08, 6.4: 19.25, 0.85: 3.3, 2.56: 10.
  • the preparation method of the catalyst includes the following aspects:
  • Carbon supports include carbon spheres, activated carbon, xc-72, and carbon nanotubes.
  • S200 The carbon support is pretreated in different ways before supporting the noble metal.
  • the carbon carrier is uniformly dispersed in the aqueous solution, and the dispersion is uniform.
  • the carbon carriers are dried until moisture-free.
  • the carbon support in step S200 is pretreated in different ways before loading the precious metal, including using different mass fractions of hydrogen peroxide and different mass fractions of nitric acid, etc., and condensing and refluxing at a temperature of 50-150 °C 1 ⁇ 24 hours.
  • step S300 the carbon carrier is uniformly dispersed in the aqueous solution, and the dispersion is uniform. Including ultrasonic, stirring, shaking and other processes on the carbon carrier.
  • the palladium metal solution in step S400 is a pre-dissolved sodium chloropalladium solution containing a certain proportion of precious metal palladium.
  • step S500 adding a certain concentration of reducing agent in step S500 is to prepare and dilute to 0.2 mol/L, and then add it in an excess of five times according to the number of moles of the actual required reduction amount.
  • step S600 the catalyst is obtained by filtration, and the solution is washed to make the solution free of chloride ions. After the catalyst is prepared, it is dried in a vacuum drying oven at 60° C. for more than 12 hours.
  • BHMF 2,5-furandimethanol
  • FDCA 2,5-furandicarboxylic acid
  • HMFCA 5-hydroxymethyl-2-furancarboxylic acid
  • FFCA -Formyl-2-furancarboxylic acid
  • HMF 5-hydroxymethylfurfural
  • DFF 2,5-furandicarbaldehyde
  • the method for preparing 2,5-furandicarboxylic acid provided in this application starts from the oxidation reaction path, and fundamentally solves a series of problems starting from HMF, and the innovation is of great significance. That is, the conventional route is 5-hydroxymethylfurfural as the raw material. Due to the particularity of the HMF structure, the coexistence of hydroxyl and aldehyde groups makes it easy to obtain HMFCA when HMF encounters the catalyst, and the oxidation of HMFCA must take the intermediate product FFCA. The process has a high energy barrier. Using BHMF as a raw material not only solves the problem of instability of HMF itself, but also solves the problem of high oxidation reaction barrier of HMFCA.
  • 2,5-furandimethanol is used as a raw material in the process of preparing 2,5-furandicarboxylic acid. Since 2,5-furandimethanol can withstand high temperature and strong alkali, the alkali concentration of the initial reaction can be increased to increase the reaction rate of the entire oxidation reaction process and the preparation efficiency of 2,5-furandicarboxylic acid.
  • the molar yield of FDCA can reach 92.7% in just one hour, the reaction rate is fast, and the yield of FDCA is high.
  • the catalyst preparation method provided by the present application has the advantages of simple preparation process, high activity, long service life, and easy separation from products after use.
  • Fig. 1 is the conventional reaction route of HMF oxidation to prepare FDCA
  • Fig. 2 is the reaction route of preparing FDCA in this application
  • Fig. 3 is the X-ray diffraction pattern of the Pd/CNT (1#) catalyst obtained in the embodiment of the present invention 1;
  • Figure 4 is a TEM image of Pd/CNT-30NA (3#) prepared in Example 1 of the present invention.
  • Figure 5 is a qualitative analysis diagram of the evaluation results by HPLC
  • FIG. 6 is a curve of the yield of furandicarboxylic acid of Comparative Example 1 and Example 4 as a function of time.
  • the Bruker D8 ADVANCE X-ray diffractometer produced by Bruker AXS, Germany was used to measure Cu K ⁇ As the radiation source, powder X-ray diffraction (XRD) patterns were recorded.
  • the working voltage is 40kV and the current is 40mA.
  • the TEM image was measured using a JEM2100 transmission electron microscope (TEM) produced by JEOL Corporation of Japan at an accelerating voltage of 200 kV.
  • TEM transmission electron microscope
  • XPS X-ray photoelectron spectroscopy
  • FDCA yield FDCA molar concentration after reaction/initial BHMF molar concentration
  • Carbon balance (post-reaction FDCA molar concentration + possible intermediate molar concentration + possible incompletely converted BHMF molar concentration)/initial BHMF molar concentration.
  • step (3) 6.5 mL of a 0.2 M sodium borohydride aqueous solution was added dropwise to the solution in step (2), and vigorously stirred for 12 hours, the divalent palladium was reduced.
  • step (3) The solution obtained in step (3) is washed and filtered to obtain palladium-based catalyst 1# (5wt%) in a wet base state, which is denoted as Pd/CNT.
  • the 1# catalyst prepared in Example 1 was tested by XRD. The results are shown in Figure 3. The diffraction peaks of the (111) crystal plane and (200) crystal plane of metal palladium and carbon are clearly visible; The prepared catalyst was tested by TEM, and the results are shown in Figure 4. The palladium metal particles are uniformly distributed, and the average particle size is 4.2 nm in lattice spacing. Corresponds to the (111) plane of palladium.
  • the steps of pretreatment are as follows: adding 5 g of carbon nanotubes to the prepared nitric acid (500 g) of a certain mass fraction, condensing and refluxing the above solution at a certain temperature for a certain period of time, then cooling to room temperature, filtering to neutrality, and drying. After that, pretreated carbon nanotubes (CNT-xNA) can be obtained.
  • Catalyst 11# ⁇ 12# differs from the preparation method of catalyst 10# in that the carrier and the metal salt solution (replaced with iridium chloride) are replaced. ), and an additional pretreatment process, which is to wash the graphene with a certain mass fraction of hydrogen peroxide.
  • the pretreatment conditions and catalytic performance comparisons are shown in Table 2.
  • the steps of pretreatment are as follows: 5g graphene oxide is added to the configured hydrogen peroxide (500g) of a certain mass fraction, the above solution is condensed and refluxed for a certain period of time at a certain temperature, then cooled to room temperature, filtered and dried.
  • the pretreated graphene oxide (GO ⁇ xHP) can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本申请公开了一种2,5‐呋喃二甲酸的制备方法,所述方法包括:将含有2,5‐呋喃二甲醇和碱源的物料,在催化剂的存在下,反应,即可得到所述2,5‐呋喃二甲酸;所述催化剂包括活性组分和载体;所述活性组分负载在所述载体上;所述活性组分选自贵金属。本申请以2,5‐呋喃二甲醇为原料,通过调整碱量和温度实现高效制备2,5‐呋喃二甲酸,具有较好的产业应用前景。

Description

一种2,5‐呋喃二甲酸的制备方法 技术领域
本申请涉及一种2,5‐呋喃二甲酸的制备方法,属于化工生产技术领域。
背景技术
随着人们物质生活水平的提高,对化石资源的需求越来越大。然而由于全球化石资源的不断消耗以及全人类对环境污染和碳排放的日益关注,减少对不可再生化石资源的依赖并寻找化石资源的替代品已经处于迫不及待的地步。以生物质为原料,经过适当处理可以得到多种化学品,如何将可再生的生物质转化为更高附加值的产品成为当前最迫在眉睫的问题。
美国能源部确认为用于建立未来“绿色”学工业的12种优先化合物之一,即2,5‐呋喃二甲酸(FDCA)。FDCA与对苯二甲酸(TPA)的结构相似,具有可替代性。可广泛用于合成聚对苯二甲酸乙二醇酯(PET)聚对苯二甲酸丙二醇酯(PTT)等,
FDCA通常由5‐羟甲基糠醛(HMF)作为原料,在一定温度下通过持续不断的氧气或增大反应压力制得,主要反应路径如图1所示。在反应液中加入碱也会增大反应速率,但这会导致HMF降解,无法判断HMF的转化来源于催化剂的作用还是碱导致的。此外,HMF作为原料,由于其结构的特殊性,羟基和醛基的共同存在使得醛基相较于醛基十分活泼,当HMF遇到催化剂时,醛基会快速的氧化,进而得到5‐羟甲基‐2‐呋喃甲酸(HMFCA),而HMFCA氧化得到5‐甲酰基‐2‐呋喃甲酸(FFCA)存在较高的能量壁垒。从另一方面来说,HMF必须要低温保存,加之其常温十分容易融化的性质,采用HMF直接氧化制备FDCA存在着很大的局限性。
发明内容
根据本申请的一个方面,提供了一种2,5‐呋喃二甲酸的制备方法,所述方法包括:将含有2,5‐呋喃二甲醇和碱源的物料,在催化剂的存在下,反应,即可得到所述2,5‐呋喃二甲酸。该反应路径下副产物少,2,5‐呋喃二甲酸产率高,十分具有创新意义。
2,5‐呋喃二甲醇(BHMF)是HMF的还原产物,具有典型的二元醇的性质,并且与HMF相比,其熔点更高,物理化学性质稳定,在储存和运输上也更方便,因此我们提出了将HMF先转化成对称的中间体BHMF或者2,5‐呋喃二甲醛(DFF),这在一定程度上能够规避HMFCA氧化反应过程中的能量壁垒高的问题,DFF虽然有着对称结构,但是双醛基也带来了不稳定的物理化学性质。
以BHMF作为原料制备FDCA,从整个反应过程来看,该路径解决了HMF作为原料稳定性差的问题;该反应路径相较于HMF更长,从化学反应来说更具有挑战性;BHMF的耐碱性使我们可以增大碱用量来提高氧化反应速率,使得FDCA的生产更加的高效。
令人惊喜的是,实际反应路径相较于HMF来说可能不仅没有更长,反而路径变得更短了,整个反应过程十分高效,反应路径如图2所示。
本申请设计了一种全新的高效制备2,5‐呋喃二甲酸的新方法,该方法主要来源于原料路径创新,是一种全新的制备路径,该方法能实现高效制备2,5‐呋喃二甲酸。
根据本申请的第一方面,提供了一种2,5‐呋喃二甲酸的制备方法,所述方法包括:
将含有2,5‐呋喃二甲醇(BHMF)和碱源的物料,在催化剂的存在下,反应,即可得到所述2,5‐呋喃二甲酸;
所述催化剂包括活性组分和载体;所述活性组分负载在所述载体上;
所述活性组分选自贵金属。
可选地,所述初始BHMF浓度为30mL碱溶液中含有0.0192g‐7.68g原料的初始反应浓度。
可选地,本申请中的原料2,5‐呋喃二甲醇来源于5‐羟甲基糠醛的还原。
可选地,所述载体来自碳载体;所述贵金属选自钯、金、铂、钌、银、铱中的至少一种。
可选地,所述碳载体选自碳纳米管、氧化石墨烯、活性炭、导电炭黑、石墨烯、足球烯(C 60)中的至少一种。
可选地,所述碳纳米管选自多壁碳纳米管、单壁碳纳米管中的至少一种。
可选地,所述方法包括:将含有2,5‐呋喃二甲醇和碱源溶液的物料,在催化剂的存在下,反应,即可得到所述2,5‐呋喃二甲酸。
可选地,所述碱源溶液的浓度为0.01M~1M。
可选地,所述碱源溶液的浓度上限独立地选自1M、0.8M、0.6M、0.4M、0.1M、0.05M,下限独立地选自0.01M、0.8M、0.6M、0.4M、0.1M、0.05M。
可选地,所述贵金属作为催化活性物质催化该还原氧化反应的进行,贵金属钯、金、铂、钌、银等是催化活性中心。
可选地,在所述催化剂中,所述活性组分的质量含量为0.1~10wt%。
可选地,在所述催化剂中,所述活性组分的质量含量上限独立地选自10wt%、9wt%、8wt%、7wt%、6wt%、5wt%、4wt%、3wt%、2wt%、1wt%,下限独立地选自0.1wt%、9wt%、8wt%、7wt%、6wt%、5wt%、4wt%、3wt%、2wt%、1wt%。
可选地,所述催化剂采用浸渍法的方法负载,采用液相还原法还原。
可选地,所述催化剂采用以下方法制备得到:
(1)将含有贵金属源的溶液浸渍到载体中,得到前驱体;
(2)将所述前驱体还原,即可得到所述催化剂。
可选地,在所述步骤(1)中,所述载体和所述含有贵金属源的溶液的质量体积比为0.1g/mL~10g/mL。
可选地,在所述步骤(1)中,所述载体和所述含有贵金属源的溶液的质量体积上限独立地选自10g/mL、8g/mL、6g/mL、4g/mL、2g/mL、0.5g/mL、0.2g/mL,下限独立地选自0.1g/mL、8g/mL、6g/mL、4g/mL、2g/mL、0.5g/mL、0.2g/mL。
可选地,所述贵金属源选自贵金属盐。
可选地,所述贵金属盐选自贵金属的可溶性盐。
可选地,所述贵金属盐选自贵金属的氯化盐、贵金属的硝酸盐中的至少一种。
可选地,所述贵金属盐选自氯钯钠、氯金酸、氯化钌、氯化铱中的至少一种。
可选地,所述步骤(2)包括:将含有所述前驱体和还原剂的溶液,还原,即可得到所述催化剂。
可选地,所述步骤(2)中,将含有还原剂的溶液缓慢滴加到所述前驱体中,缓慢滴加可以确保贵金属颗粒还原的均匀性。
可选地,所述还原剂选自甲醛、硼氢化钠、氢气中的至少一种。
可选地,所述载体经预处理后使用;
所述预处理包括:将含有所述载体和物质A的溶液,回流,即可得到预处理后的载体;
所述物质A选自硝酸、盐酸、硫酸、磷酸、过氧化氢、氨水中的任一种。
可选地,所述载体经预处理后使用,通过预处理过程可以调控载体表面官能团及亲疏水性,从而调控金属分散度。
可选地,所述回流的条件为:温度为60~200℃;时间为0.5~10小时。
可选地,所述碱源选自氢氧化钠、氢氧化钾、氢氧化钙、碳酸钠、碳酸氢钠、氨水中的至少一种。
可选地,所述反应的条件为:温度为30~80℃;时间为0.1~12h。
可选地,所述反应的温度上限独立地选自80℃、70℃、60℃、50℃、40℃,下限独立地选自30℃、70℃、60℃、50℃、40℃。
可选地,所述反应时间上限独立地选自12h、10h、8h、6h、4h、2h、1h,下限独立地选自0.1h、10h、8h、6h、4h、2h、1h。
可选地,所述2,5‐呋喃二甲醇和所述碱源的质量比为0.05~20:0.1~180。
可选地,所述2,5‐呋喃二甲醇和所述碱源的质量比上限独立地选自0.05:180、0.2:0.56、0.1:0.24、0.08:0.24、0.077:0.24、19.25:84、3.3:8、10:24,下限独立地选自0.05:0.1、0.2:0.56、0.1:0.24、0.08:0.24、0.077:0.24、19.25:84、3.3:8、10:24。
可选地,所述催化剂和所述2,5‐呋喃二甲醇的质量比为0.01~10:0.05~20。
可选地,所述催化剂和所述2,5‐呋喃二甲醇的质量比上限独立地选自0.01:20、0.05:0.2、0.025:0.1、0.025:0.08、6.4:19.25、0.85:3.3、2.56:10,下限独立地选自0.01:0.05、0.05:0.2、0.025:0.1、0.025:0.08、6.4:19.25、0.85:3.3、2.56:10。
可选地,所述催化剂的制备方法,包括以下方面:
S100:获得不同类型的碳载体。碳载体包括碳球、活性炭、xc‐72和碳纳米管等。
S200:所述碳载体在负载贵金属之前进行了不同方式的预处理。
S300:碳载体均匀的分散在水溶液中,分散均匀。
S400:加入一定浓度的钯金属溶液,分散均匀。
S500:加入一定浓度的还原剂,分散均匀。
S600:过滤、洗涤、真空干燥箱干燥。
可选地,步骤S100中所述不同类型的碳载体,碳载体烘干至无水分。
可选地,步骤S200中所述碳载体在负载贵金属之前进行了不同方式的预处理,包括使用不同质量分数的过氧化氢和不同质量分数的硝酸等,在50‐150℃的温度下冷凝回流1‐24小时。
可选地,步骤S300中碳载体均匀的分散在水溶液中,分散均匀。包括对碳载体进行超声、搅拌、震荡等过程。
可选地,步骤S400中所述钯金属溶液为预先溶解的含有一定比例的贵金属钯的氯钯钠溶液。
可选地,步骤S500中加入一定浓度的还原剂为配制并稀释到0.2mol/L然后按照实际所需还原量的摩尔数,过量五倍进行添加。
可选地,步骤S600中过滤得到催化剂,并通过洗涤使得溶液中无氯离子,催化剂制备完毕后用真空干燥箱在60℃干燥12h以上。
本申请中,2,5‐呋喃二甲醇的简写为“BHMF”;2,5‐呋喃二甲酸的简写为“FDCA”;5‐羟甲基‐2‐呋喃甲酸的简写为“HMFCA”;5‐甲酰基‐2‐呋喃甲酸的简写为“FFCA”;5‐羟甲基糠醛的简写为“HMF”;2,5‐呋喃二甲醛的简写为“DFF”。
本申请能产生的有益效果包括:
1)本申请所提供的制备2,5‐呋喃二甲酸的方法从氧化反应路径出发,根本上解决了HMF出发的一系列问题,创新意义十分大。即常规的路线是5‐羟甲基糠醛作为原料,由于HMF结构的特殊性,羟基和醛基的共同存在使得HMF遇到催化剂时,很容易得到HMFCA,而HMFCA氧化必然走中间产物FFCA,该过程存在较高的能量壁垒。以BHMF作为原料既解决了HMF自身不稳定的问题,又能解决HMFCA氧化反应壁垒高的问题。
2)本申请所提供的线路创新中,2,5‐呋喃二甲醇作为原料制备2,5‐呋喃二甲酸过程中。由于2,5‐呋喃二甲醇能够耐高温、耐强碱,因此可以提高初始反应的碱浓度来增大整个氧化反应过程的反应速率和2,5‐呋喃二甲酸的制备效率。
3)本申请所提供的制备2,5‐呋喃二甲酸的方法,在短短一个小时内FDCA摩尔产率能够达到92.7%,反应速率快,FDCA产率高。
4)本申请所提供的催化剂制备方法,催化剂制备过程简单,活性高,使用寿命长,使用后容易与产物分离。
附图说明
图1为HMF氧化制备FDCA的常规反应路径;
图2为本申请中制备FDCA的反应路径;
图3是本发明实施例1中制得的Pd/CNT(1#)催化剂的X射线衍射图;
图4是本发明实施例1中制得的Pd/CNT‐30NA(3#)的TEM图;
图5是通过HPLC进行评价结果的定性分析图;
图6为对比例1和实施例4的呋喃二甲酸的产率随时间变化曲线。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
本申请的实施例中分析方法如下:
采用德国Bruker AXS公司生产的Bruker D8 ADVANCEX射线衍射仪,以Cu Kα
Figure PCTCN2021082114-appb-000001
为辐射源,来记录粉末X射线衍射(XRD)图谱。工作电压为40kV,电流为40mA。
采用日本JEOL公司生产的JEM2100透射电子显微镜(TEM)在200kV的加速电压下测试的TEM图像。
采用Kratos Axis Ultra DLD的X射线光电子能谱(XPS)对元素的价态进行分析。
采用SPECTRO ARCOSⅡ的电感耦合等离子体光学发射光谱仪(ICP‐OES)对元素的实际负载量进行定量分析。
由于现有技术的局限性,本案发明人通过大量理论和实践分析,最终提出了技术方案。如下对该技术方案的实施过程进行部分解释说明。
BHMF转化率计算公式如下:
BHMF转化率=1‐反应后BHMF摩尔浓度/初始BHMF摩尔浓度
FDCA产率计算公式如下:
FDCA产率=反应后FDCA摩尔浓度/初始BHMF摩尔浓度
碳平衡计算公式如下:
碳平衡=(反应后FDCA摩尔浓度+可能存在的中间产物摩尔浓度+可能未完全转化的BHMF摩尔浓度)/初始BHMF摩尔浓度。
实施例1
催化剂1#的制备
(1)在烧杯中加入0.5g碳纳米管、50mL去离子水,室温下搅拌5小时至载体分散均匀。
(2)在(1)中加入氯钯钠水溶液2.4mL(浓度为0.1M),通过大力搅拌12小时,使钯金属在溶液中分散均匀。
(3)在步骤(2)中的溶液中逐滴滴加0.2M的硼氢化钠水溶液6.5mL,大力搅拌12小时,二价钯得到还原。
(4)通过对步骤(3)中得到的溶液进行洗涤,过滤,即得到湿基状态的钯基催化剂1#(5wt%),记为Pd/CNT。
将实施例1中制备得到的1#催化剂进行XRD测试,结果如图3所示,金属钯的(111)晶面和(200)晶面与碳的衍射峰清晰可见;接着对实施例1中制备得到的催化剂进行TEM测试,结果如图4所示,钯金属颗粒分布均匀,平均粒径4.2nm晶格间距
Figure PCTCN2021082114-appb-000002
对应于钯的(111)晶面。
催化剂2#‐7#(Pd/CNT‐xNA(x=15,30,45))的制备
催化剂2#‐7#(Pd/CNT‐xNA(x=15,30,45))在制备时与催化剂1#制备方法的不同之处在于多了一个预处理过程,该过程是将碳纳米管经过了一定质量分数的硝酸洗涤,其他步骤同催化剂1#的制备。其预处理条件及催化性能对比如表1所示。
预处理的步骤如下:将5g碳纳米管加入到配置好的一定质量分数的硝酸(500g)中,将上述溶液在一定温度下冷凝回流一定时间,随后冷却至室温,过滤至中性,烘干后即可得到预处理后的碳纳米管(CNT‐xNA)。
表1
Figure PCTCN2021082114-appb-000003
Figure PCTCN2021082114-appb-000004
催化剂8#(Pd/导电炭黑)的制备
催化剂8#(Pd/导电炭黑)在制备时与催化剂1#制备方法的不同之处在于载体,选择导电炭黑作为载体,其他步骤同催化剂1#的制备。
催化剂9#(Au/CNT)的制备
催化剂9#(Au/CNT)在制备时与催化剂1#制备方法的不同之处在于贵金属,选择Au作为贵金属,以氯金酸水溶液作为金源,其他步骤和条件同催化剂1#的制备。
实施例2
催化剂10#(Ru/AC)的制备
(1)在烧杯中加入2g活性炭。
(2)在(1)中逐滴加入氯化钌水溶液18.8mL(浓度为0.1M)。
(3)将(2)中的催化剂超声30分钟,静置24小时。
(4)将(3)中的催化剂在500℃氮气气氛下焙烧5小时,在400℃氢气气氛下还原5小时。
(5)待冷却至室温,即得到Ru/AC催化剂(10wt%,10#)。
催化剂11#‐12#(Ir/GO‐xHP(x=15,30))的制备
催化剂11#‐12#(Ir/GO‐xHP(x=15,30))在制备时与催化剂10#制备方法的不同之处在于不同之处在于更换载体和金属盐溶液(更换为了氯化铱),且多了一个预处理过程,该过程是将石墨烯经过了一定质量分数的过氧化氢洗涤。其预处理条件及催化性能对比如表2所示。
预处理的步骤如下:将5g氧化石墨烯加入到配置好的一定质量分数的过氧化氢(500g)中,将上述溶液在一定温度下冷凝回流一定时间,随后冷却至室温,过滤、烘干后即可得到预处理后的氧化石墨烯(GO‐xHP)。
表2
Figure PCTCN2021082114-appb-000005
实施例3
催化剂13#的制备
(1)在烧杯中加入5g碳纳米管、500mL去离子水,室温下搅拌5小时至载体分散均匀。
(2)在(1)中加入硝酸银水溶液0.47mL(浓度为0.1M),通过大力搅拌12小时,使银金属在溶液中分散均匀。
(3)将(2)中的催化剂超声30分钟,静置24小时。
(4)将(3)中的催化剂在500℃氮气气氛下焙烧5小时,在400℃氢气气氛下还原5小时。
(5)待冷却至室温,即得到Ag/CNT催化剂(0.1wt%,13#)。
实施例4
(1)在烧瓶中加入70mL氢氧化钠溶液(浓度为0.2M),升高油浴温度至反应温度60℃,随后加入2,5‐呋喃二甲醇原料0.2g。
(2)开通氧气,开通搅拌和回流。
(3)加入0.05g实施例1中制备得到的3#催化剂,定时取样,通过HPLC进行评价结果的定性和定量,其高效液相色谱图如图5所示。
(4)2,5‐呋喃二甲酸在1小时摩尔产率93%。
对比例1
(1)在烧瓶在加入70mL氢氧化钠溶液,升高油浴温度至反应温度60℃,随后加入2,5‐呋喃二甲醇原料0.2g。
(2)开通氧气,开通搅拌和回流。
(3)不加催化剂,定时取样,通过HPLC进行评价结果的定性和定量。
(4)2,5‐呋喃二甲醇不发生转化,2,5‐呋喃二甲酸无任何产率。实施例4和对比例1的呋喃二甲酸产率数据如图6所示。
实施例5
(1)在烧瓶中加入30mL氢氧化钠溶液(浓度为0.2M),升高油浴温度至反应温度80℃,随后加入2,5‐呋喃二甲醇原料0.1g。
(2)开通氧气,开通搅拌和回流。
(3)加入0.025g实施例1中制备得到的8#催化剂,定时取样,通过HPLC进行评价结果的定性和定量。
(4)2,5‐呋喃二甲酸在0.5小时摩尔产率89%。
实施例6
(1)在烧瓶中加入30mL氢氧化钠溶液(浓度为0.2M),升高油浴温度至反应温度30℃,随后加入2,5‐呋喃二甲醇原料0.08g。
(2)开通氧气,开通搅拌和回流。
(3)加入0.025g实施例1中制备得到的6#催化剂,定时取样,通过HPLC进行评价结果的定性和定量。
(4)2,5‐呋喃二甲酸在12小时摩尔产率80%。
实施例7
(1)在反应釜中加入6000mL氢氧化钾溶液(浓度为0.2M),升高油浴温度至反应温度60℃,随后加入2,5‐呋喃二甲醇原料15.4g。
(2)开通氧气,开通搅拌和回流。
(3)加入5.12g实施例1中制备得到的3#催化剂,定时取样,通过HPLC进行评价结果的定性和定量。
(4)2,5‐呋喃二甲酸在3小时摩尔产率85%。
实施例8
(1)在反应釜中加入15000mL氢氧化钾溶液(浓度为0.2M),升高油浴温度至反应温度60℃,随后加入2,5‐呋喃二甲醇原料38.5g。
(2)开通氧气,开通搅拌和回流。
(3)加入12.8g实施例1中制备得到的3#催化剂,定时取样,通过HPLC进行评价结果的定性和定量。
(4)2,5‐呋喃二甲酸在5小时摩尔产率78%。
实施例9
(1)在反应釜中加入1000mL氢氧化钠溶液(浓度为0.2M),升高油浴温度至反应温度60℃,随后加入2,5‐呋喃二甲醇原料3.3g。
(2)开通氧气,开通搅拌和回流。
(3)加入0.85g实施例1中制备得到的8#催化剂,定时取样,通过HPLC进行评价结果的定性和定量。
(4)2,5‐呋喃二甲酸在3小时摩尔产率87%。
实施例10
(1)在反应釜中加入3000mL氢氧化钠溶液(浓度为0.2M),升高油浴温度至反应温度60℃,随后加入2,5‐呋喃二甲醇原料10g。
(2)开通氧气,开通搅拌和回流。
(3)加入2.56g实施例1中制备得到的8#催化剂,定时取样,通过HPLC进行评价结果的定性和定量。
(4)2,5‐呋喃二甲酸在3小时摩尔产率83%。
实施例11
(1)在烧瓶中加入30mL氢氧化钠溶液(浓度为0.2M),升高油浴温度至反应温度60℃,随后加入2,5‐呋喃二甲醇原料0.077g。
(2)开通氧气,开通搅拌和回流。
(3)按照BHMF/Pd=50mol/mol的固定值,根据催化剂不同的负载量加入催化剂,定时取样,通过HPLC进行评价结果的定性和定量。
(4)计算得到2,5‐呋喃二甲酸产率。如表3所示。
表3
Figure PCTCN2021082114-appb-000006
Figure PCTCN2021082114-appb-000007
反应条件:BHMF初始浓度:20mM,反应温度:60℃,BHMF/Pd=50mol/mol,氧气流速:100mL/min,反应时间:1小时。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (17)

  1. 一种2,5‐呋喃二甲酸的制备方法,其特征在于,所述方法包括:
    将含有2,5‐呋喃二甲醇和碱源的物料,在催化剂的存在下,反应,即可得到所述2,5‐呋喃二甲酸;
    所述催化剂包括活性组分和载体;所述活性组分负载在所述载体上;
    所述活性组分选自贵金属。
  2. 根据权利要求1所述的制备方法,其特征在于,所述载体来自碳载体;所述贵金属选自钯、金、铂、钌、铱、银中的至少一种。
  3. 根据权利要求2所述的制备方法,其特征在于,所述碳载体选自碳纳米管、氧化石墨烯、活性炭、导电炭黑、石墨烯、足球烯中的至少一种。
  4. 根据权利要求1所述的制备方法,其特征在于,在所述催化剂中,所述活性组分的质量含量为0.1~10wt%。
  5. 根据权利要求1所述的制备方法,其特征在于,所述催化剂采用以下方法制备得到:
    (1)将含有贵金属源的溶液浸渍到载体中,得到前驱体;
    (2)将所述前驱体还原,即可得到所述催化剂。
  6. 根据权利要求5所述的制备方法,其特征在于,在所述步骤(1)中,所述载体和所述含有贵金属源的溶液的质量体积比为0.1g/mL~10g/mL。
  7. 根据权利要求5所述的制备方法,其特征在于,所述贵金属源选自贵金属盐。
  8. 根据权利要求5所述的制备方法,其特征在于,所述步骤(2)包括:将含有所述前驱体和还原剂的溶液,还原,即可得到所述催化剂。
  9. 根据权利要求8所述的制备方法,其特征在于,所述还原剂选自甲醛、硼氢化钠、氢气中的至少一种。
  10. 根据权利要求5所述的制备方法,其特征在于,所述载体经预处理后使用;
    所述预处理包括:将含有所述载体和物质A的溶液,回流,即可得到预处理后的载体;
    所述物质A选自硝酸、盐酸、硫酸、磷酸、过氧化氢、氨水中的任一种。
  11. 根据权利要求10所述的制备方法,其特征在于,所述回流的条件为:温度为60~200℃;时间为0.5~10小时。
  12. 根据权利要求1所述的制备方法,其特征在于,所述碱源选自氢氧化钠、氢氧化钾、氢氧化钙、碳酸钠、碳酸氢钠、氨水中的至少一种。
  13. 根据权利要求1所述的制备方法,其特征在于,所述反应的条件为:温度为30~80℃;时间为0.1~12小时。
  14. 根据权利要求1所述的制备方法,其特征在于,所述2,5‐呋喃二甲醇和所述碱源的质量比为0.05~20:0.1~180。
  15. 根据权利要求1所述的制备方法,其特征在于,所述催化剂和所述2,5‐呋喃二甲醇的质量比为0.01~10:0.05~20。
  16. 根据权利要求1所述的制备方法,其特征在于,所述方法包括:将含有2,5‐呋喃二甲醇和碱源溶液的物料,在催化剂的存在下,反应,即可得到所述2,5‐呋喃二甲酸。
  17. 根据权利要求16所述的制备方法,其特征在于,所述碱源溶液的浓度 为0.01~1M。
PCT/CN2021/082114 2021-01-18 2021-03-22 一种2,5‐呋喃二甲酸的制备方法 WO2022151585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110064126.5 2021-01-18
CN202110064126.5A CN112898252B (zh) 2021-01-18 2021-01-18 一种2,5-呋喃二甲酸的制备方法

Publications (1)

Publication Number Publication Date
WO2022151585A1 true WO2022151585A1 (zh) 2022-07-21

Family

ID=76115661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082114 WO2022151585A1 (zh) 2021-01-18 2021-03-22 一种2,5‐呋喃二甲酸的制备方法

Country Status (2)

Country Link
CN (1) CN112898252B (zh)
WO (1) WO2022151585A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710242A (zh) * 2022-11-30 2023-02-24 盱眙凹土能源环保材料研发中心 一种5-羟甲基糠醛制备2, 5-呋喃二甲酸的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563289B (zh) * 2021-08-05 2023-04-28 华东师范大学 一种从糠醛制备2,5-呋喃二甲酸的方法
CN115715979A (zh) * 2021-08-26 2023-02-28 中国石油化工股份有限公司 一种氧化催化剂及其制备方法和在制备2,5-呋喃二羧酸的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059037A (zh) * 2014-03-25 2014-09-24 浙江理工大学 一种制备2,5-呋喃二甲酸的方法
CN107365287A (zh) * 2016-05-11 2017-11-21 中国石油化工股份有限公司 一种合成2,5-呋喃二甲酸的方法
WO2018002291A1 (fr) * 2016-07-01 2018-01-04 Centre National De La Recherche Scientifique Procédé de préparation de l'acide 2,5-furane dicarboxylique (fdca) à partir de dérivés de pentoses
CN108299358A (zh) * 2018-01-19 2018-07-20 中国科学技术大学 用于呋喃醇或醛类化合物的选择性氧化方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106890659A (zh) * 2017-01-10 2017-06-27 北京化工大学 一种高分散负载型纳米金钯双金属催化剂的制备及其催化5‑羟甲基糠醛氧化反应的应用
CN111036195B (zh) * 2018-10-12 2023-04-07 中国石油化工股份有限公司 催化剂及2,5-呋喃二甲酸的制备方法
CN109651311A (zh) * 2018-11-29 2019-04-19 合肥利夫生物科技有限公司 一种2,5-呋喃二甲酸的制备方法
CN109666011A (zh) * 2018-12-27 2019-04-23 厦门大学 一种制备2,5-呋喃二甲酸的方法
CN111468186A (zh) * 2020-05-25 2020-07-31 深圳瀚光科技有限公司 一种负载型金属亚纳米催化剂及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059037A (zh) * 2014-03-25 2014-09-24 浙江理工大学 一种制备2,5-呋喃二甲酸的方法
CN107365287A (zh) * 2016-05-11 2017-11-21 中国石油化工股份有限公司 一种合成2,5-呋喃二甲酸的方法
WO2018002291A1 (fr) * 2016-07-01 2018-01-04 Centre National De La Recherche Scientifique Procédé de préparation de l'acide 2,5-furane dicarboxylique (fdca) à partir de dérivés de pentoses
CN108299358A (zh) * 2018-01-19 2018-07-20 中国科学技术大学 用于呋喃醇或醛类化合物的选择性氧化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115710242A (zh) * 2022-11-30 2023-02-24 盱眙凹土能源环保材料研发中心 一种5-羟甲基糠醛制备2, 5-呋喃二甲酸的方法

Also Published As

Publication number Publication date
CN112898252B (zh) 2022-09-13
CN112898252A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022151585A1 (zh) 一种2,5‐呋喃二甲酸的制备方法
JP5920750B2 (ja) エタノール酸化用金触媒およびそれを用いたアセトアルデヒド、酢酸の製造方法
Liu et al. Simultaneous production of lactic acid and propylene glycol from glycerol using solid catalysts without external hydrogen
JP5010547B2 (ja) 高活性触媒およびその製造方法
CN108722420A (zh) 一种铜硅系催化剂的制备方法
CN107899583A (zh) 一种用于甲醇合成气制备乙醇的催化剂及其制备方法
CN113061122B (zh) 一种2,5-二羟甲基四氢呋喃的制备方法
Mao et al. Pt-Ru bi-metal co-catalyst: Preparation, characterization and its effect on CdS’s activity for water splitting under visible light
CN114700084A (zh) 用于有机储氢液体加氢与脱氢的催化剂及其制备方法和有机储氢液体加氢与脱氢的方法
Li et al. Ru nanoparticles supported on nitrogen-doped porous carbon derived from ZIF-8 as an efficient catalyst for the selective hydrogenation of p-chloronitrobenzene and p-bromonitrobenzene
WO2023280276A1 (zh) 一种3-甲基哌啶脱氢催化剂及其制备方法与应用
Yang et al. Enhanced activity of Pd–Cu (Ni) bimetallic catalysts for oxidative carbonylation of phenol
Amirsardari et al. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone
JP7421177B2 (ja) 水素化触媒およびこれを用いた水素化有機化合物の製造方法
CN111054384B (zh) 有机液体储氢材料脱氢的催化剂及其制备方法
JP2022552169A (ja) シクロアルカン脱水素用触媒及びその製造と応用
CN110711578A (zh) 一种乙醇转化制备c4-c8高碳醇的催化剂及其制备方法与应用
CN103288574B (zh) 一种苯选择加氢制备环己烯的方法
Taketoshi et al. Aerobic oxidation of sulfides to sulfoxides catalyzed by gold/manganese oxides
JPH07112945A (ja) 二酸化炭素の変換方法
CN113019394A (zh) 氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用
JP6650840B2 (ja) MgO担持触媒の製造方法
CN110560165A (zh) 一种超小尺寸铂基磁性空间限域催化剂及其制备方法
CN114887621B (zh) 一种氧化钨改性的水滑石负载双金属的催化剂及其制备方法、应用
CN103288575B (zh) 一种苯选择加氢制备环己烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918784

Country of ref document: EP

Kind code of ref document: A1